Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Diabetic retinal disease

Abstract

Diabetic retinopathy is a complication of diabetes mellitus that is clinically characterized by changes in retinal microvasculature. Diabetic retinopathy is now better defined as diabetic retinal disease (DRD), as diabetes mellitus affects not only the retinal microvasculature but the whole retina, including neurons and glia. A global concerted effort to study preclinical and clinical signs of DRD and their association with visual acuity and patient-reported vision-related quality of life, and the integration of these features with systemic health and biochemical milieu in people with diabetes mellitus is underway. The Diabetic Retinopathy Clinical Research Retina Network trials and other researchers have provided substantial robust evidence on the current management of vision-threatening diabetic retinopathy that includes proliferative diabetic retinopathy and diabetic macular oedema. Progress is also being made to develop, evaluate and implement cost-effective strategies for personalized screening, treatment and monitoring, incorporating artificial intelligence as clinical decision support tools, where appropriate. In addition, novel therapies and modes of delivery are being evaluated to increase durability of interventions and improve affordability to improve vision-related quality of life and reduce the global burden of blindness owing to DRD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Grades of diabetic retinopathy.
Fig. 2: Epidemiology of diabetic retinopathy and principles of management.
Fig. 3: Diabetes affects the whole retina.
Fig. 4: Known changes in the neurovascular unit in diabetes.
Fig. 5: Timeline of diabetic retinopathy management.
Fig. 6: Treatment options for DMO at presentation.
Fig. 7: Summary of anti-VEGF therapy for DMO.

Similar content being viewed by others

References

  1. Sabanayagam, C., Yip, W., Ting, D. S. W., Tan, G. & Wong, T. Y. Ten emerging trends in the epidemiology of diabetic retinopathy. Ophthalmic Epidemiol. 23, 209–222 (2016).

    Article  PubMed  Google Scholar 

  2. Wong, T. Y. et al. Rates of progression in diabetic retinopathy during different time periods: a systematic review and meta-analysis. Diabetes Care 32, 2307–2313 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Li, H. et al. Current research and future strategies for the management of vision-threatening diabetic retinopathy. Asia Pac. J. Ophthalmol. 13, 100109 (2024).

    Article  Google Scholar 

  4. Wong, T. Y. & Tan, T.-E. The diabetic retinopathy ‘pandemic’ and evolving global strategies: the 2023 friedenwald lecture. Invest. Ophthalmol. Vis. Sci. 64, 47 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ting, D. S. W., Cheung, G. C. M. & Wong, T. Y. Diabetic retinopathy: global prevalence, major risk factors, screening practices and public health challenges: a review: global burden of diabetic eye diseases. Clin. Exp. Ophthalmol. 44, 260–277 (2016).

    Article  PubMed  Google Scholar 

  6. Gardner, T. W., Antonetti, D. A., Barber, A. J., LaNoue, K. F. & Levison, S. W. Diabetic retinopathy: more than meets the eye. Surv. Ophthalmol. 47, S253–S262 (2002).

    Article  PubMed  Google Scholar 

  7. Wong, T. Y., Cheung, C. M., Larsen, M., Sharma, S. & Simó, R. Diabetic retinopathy. Nat. Rev. Dis. Primers 2, 16012 (2016).

    Article  PubMed  Google Scholar 

  8. Abramoff, M. D. et al. Approach for a clinically useful comprehensive classification of vascular and neural aspects of diabetic retinal disease. Invest. Ophthalmol. Vis. Sci. 59, 519–527 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sun, J. K. et al. Updating the staging system for diabetic retinal disease. Ophthalmology 128, 490–493 (2021). The manuscript provides the evidence why a new staging system for diabetic retinopathy is warranted.

    Article  PubMed  Google Scholar 

  10. Levine, S. R., Sapieha, P., Dutta, S., Sun, J. K. & Gardner, T. W. It is time for a moonshot to find ‘cures’ for diabetic retinal disease. Prog. Retin. Eye Res. 90, 101051 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. Tan, T.-E. et al. Imaging modalities for assessing the vascular component of diabetic retinal disease: review and consensus for an updated staging system. Ophthalmol. Sci. 4, 100449 (2024). This manuscript highlights the current evidence and gaps in imaging microvascular changes in diabetic retinopathy.

    Article  PubMed  Google Scholar 

  12. Glassman, A. R. et al. Visual function measurements in eyes with diabetic retinopathy: an expert opinion on available measures. Ophthalmol. Sci. 4, 100519 (2024). This narrative review on visual function demonstrates the need to integrate visual function measures in future diabetic retinopathy classification.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Vujosevic, S., Chew, E., Labriola, L., Sivaprasad, S. & Lamoureux, E. Measuring quality of life in diabetic retinal disease: a narrative review of available patient-reported outcome measures. Ophthalmol. Sci. 4, 100378 (2024). This manuscript highlights the lack of PROMs that can be used in diabetic retinopathy clinical trials and practice and the need to develop more appropriate measures.

    Article  PubMed  Google Scholar 

  14. Hartnett, M. E. et al. Rationale of basic and cellular mechanisms considered in updating the staging system for diabetic retinal disease. Ophthalmol. Sci. 4, 100521 (2024). This manuscript provides a summary of mechanisms of diabetic retinal disease to inform future classification of diabetic retinal disease.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Channa, R. et al. A new approach to staging diabetic eye disease: staging of diabetic retinal neurodegeneration and diabetic macular edema. Ophthalmol. Sci. 4, 100420 (2024). This review of current evidence of neurodegeneration in diabetic retinopathy highlights the evidence gaps especially in early disease.

    Article  PubMed  Google Scholar 

  16. Nair, P., Aiello, L. P., Gardner, T. W., Jampol, L. M. & Ferris, F. L. III Report from the NEI/FDA diabetic retinopathy clinical trial design and endpoints workshop. Invest. Ophthalmol. Vis. Sci. 57, 5127–5142 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Nugawela, M. D. et al. Development and validation of predictive risk models for sight threatening diabetic retinopathy in patients with type 2 diabetes to be applied as triage tools in resource limited settings. eClinicalMedicine 51, 101578 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Guo, H. et al. Scoring and validation of a simple model for predicting diabetic retinopathy in patients with type 2 diabetes based on a meta-analysis approach of 21 cohorts. Ann. Med. 56, 2413920 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Vujosevic, S., Limoli, C. & Nucci, P. Novel artificial intelligence for diabetic retinopathy and diabetic macular edema: what is new in 2024? Curr. Opin. Ophthalmol. 35, 472–479 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Tan, T.-E. & Wong, T. Y. Diabetic retinopathy: looking forward to 2030. Front. Endocrinol. 13, 1077669 (2022).

    Article  Google Scholar 

  21. Li, J. et al. Integrated image-based deep learning and language models for primary diabetes care. Nat. Med. 30, 2886–2896 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Arabi, A., Tadayoni, R., Ahmadieh, H., Shahraki, T. & Nikkhah, H. Update on management of non-proliferative diabetic retinopathy without diabetic macular edema; is there a paradigm shift? J. Ophthalmic Vis. Res. 17, 108-117 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bahr, T. A. & Bakri, S. J. Update on the management of diabetic retinopathy: anti-VEGF agents for the prevention of complications and progression of nonproliferative and proliferative retinopathy. Life 13, 1098 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kim, E. J. et al. Treatment of diabetic macular edema. Curr. Diab. Rep. 19, 68 (2019).

    Article  PubMed  Google Scholar 

  25. Somani, S. et al. Characteristics and treatment patterns of patients with diabetic macular edema non-responsive to anti-vascular endothelial growth factor treatment in Ontario, Canada. Clin. Ophthalmol. 17, 2013–2025 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mandava, N. K. et al. Enhanced durability and evolution of retreatment criteria of intravitreal antivascular endothelial growth factor agents for diabetic macular edema. Curr. Opin. Ophthalmol. 35, 197–204 (2024).

    Article  PubMed  Google Scholar 

  27. Bressler, N. M. et al. Biosimilars of anti-vascular endothelial growth factor for ophthalmic diseases: a review. Surv. Ophthalmol. 69, 521–538 (2024). As we pave forward to ensure diabetic retinopathy treatment is available and equitable to all, this review provides a comprehensive understanding on biosimilars and their use in ophthalmology.

    Article  PubMed  Google Scholar 

  28. Sun, H. et al. IDF diabetes atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 183, 109119 (2022).

    Article  PubMed  Google Scholar 

  29. No authors listed. Diabetes is ‘a pandemic of unprecedented magnitude’ now affecting one in 10 adults worldwide. Diabetes Res. Clin. Pract. 181, 109133 (2021).

    Article  Google Scholar 

  30. Unnikrishnan, R., Pradeepa, R., Joshi, S. R. & Mohan, V. Type 2 diabetes: demystifying the global epidemic. Diabetes 66, 1432–1442 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Teo, Z. L. et al. Global prevalence of diabetic retinopathy and projection of burden through 2045: systematic review and meta-analysis. Ophthalmology 128, 1580–1591 (2021). This systematic review provides the latest and projected figures on the prevalence of diabetic retinopathy to demonstrate the global burden of the disease.

    Article  PubMed  Google Scholar 

  32. Gurudas, S. et al. National prevalence of vision impairment and blindness and associated risk factors in adults aged 40 years and older with known or undiagnosed diabetes: results from the SMART-India cross-sectional study. Lancet Glob. Health 12, e838–e847 (2024).

    Article  CAS  PubMed  Google Scholar 

  33. Li, X., Tan, T.-E., Wong, T. Y. & Sun, X. Diabetic retinopathy in China: epidemiology, screening and treatment trends-a review. Clin. Exp. Ophthalmol. 51, 607–626 (2023).

    Article  PubMed  Google Scholar 

  34. Sivaprasad, S. et al. Burden of diabetic retinopathy amongst people with diabetes attending primary care in Kerala: Nayanamritham project. J. Clin. Med. 10, 5903 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  35. General assembly adopts resolutions aimed at ensuring global access to eye care, combating illicit trafficking in wildlife, highlighting links with 2030 agenda. United Nations https://press.un.org/en/2021/ga12349.doc.htm (2021).

  36. TODAY Study Group. et al. Long-term complications in youth-onset type 2 diabetes. N. Engl. J. Med. 385, 416–426 (2021).

    Article  PubMed Central  Google Scholar 

  37. TODAY Study Group. Development and progression of diabetic retinopathy in adolescents and young adults with type 2 diabetes: results from the TODAY study. Diabetes Care 45, 1049–1055 (2021).

    Article  PubMed Central  Google Scholar 

  38. Cioana, M. et al. Global prevalence of diabetic retinopathy in pediatric type 2 diabetes: a systematic review and meta-analysis. JAMA Netw. Open 6, e231887 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  39. GBD 2019 Blindness and Vision Impairment Collaborators and Vision Loss Expert Group of the Global Burden of Disease Study. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the right to sight: an analysis for the global burden of disease study. Lancet Glob. Health 9, e144–e160 (2021).

    Article  Google Scholar 

  40. Rein, D. B. et al. The economic burden of major adult visual disorders in the United States. Arch. Ophthalmol. 124, 1754–1760 (2006).

    Article  PubMed  Google Scholar 

  41. Benhamza, M., Dahlui, M. & Said, M. A. Determining direct, indirect healthcare and social costs for diabetic retinopathy management: a systematic review. BMC Ophthalmol. 24, 424 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Moshfeghi, A. A. et al. Social cost of blindness due to AMD and diabetic retinopathy in the United States in 2020. Ophthalmic Surg. Lasers Imaging Retin. 51, S6–S14 (2020).

    Article  Google Scholar 

  43. Redding, S. et al. Estimating the costs of blindness and moderate to severe visual impairment among people with diabetes in India. BMJ Open. 13, e063390 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Stewart, M. W. Intraocular drugs: pharmacokinetic strategies and the influence on efficacy and durability. Expert. Opin. Drug. Metab. Toxicol. 20, 977–987 (2024).

    Article  CAS  PubMed  Google Scholar 

  45. Maredza, M. et al. Surveillance of people with previously successfully treated diabetic macular oedema and proliferative diabetic retinopathy by trained ophthalmic graders: cost analysis from the EMERALD study. Br. J. Ophthalmol. 106, 1549–1554 (2022).

    Article  PubMed  Google Scholar 

  46. Lois, N. et al. Evaluation of a new model of care for people with complications of diabetic retinopathy: the EMERALD study. Ophthalmology 128, 561–573 (2021).

    Article  PubMed  Google Scholar 

  47. Nguyen, H. V. et al. Cost-effectiveness of a national telemedicine diabetic retinopathy screening program in Singapore. Ophthalmology 123, 2571–2580 (2016).

    Article  PubMed  Google Scholar 

  48. Scanlon, P. H. et al. Development of a cost-effectiveness model for optimisation of the screening interval in diabetic retinopathy screening. Health Technol. Assess. 19, 1–116 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Broadbent, D. M. et al. Safety and cost-effectiveness of individualised screening for diabetic retinopathy: the ISDR open-label, equivalence RCT. Diabetologia 64, 56–69 (2021).

    Article  PubMed  Google Scholar 

  50. Avidor, D., Loewenstein, A., Waisbourd, M. & Nutman, A. Cost-effectiveness of diabetic retinopathy screening programs using telemedicine: a systematic review. Cost. Eff. Resour. Alloc. 18, 16 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Hu, W. et al. Population impact and cost-effectiveness of artificial intelligence-based diabetic retinopathy screening in people living with diabetes in Australia: a cost effectiveness analysis. eClinicalMedicine 67, 102387 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Wong, T. Y. & Sabanayagam, C. Strategies to tackle the global burden of diabetic retinopathy: from epidemiology to artificial intelligence. Ophthalmologica 243, 9–20 (2020).

    Article  CAS  PubMed  Google Scholar 

  53. Rizvi, A. et al. Is artificial intelligence the cost-saving lens to diabetic retinopathy screening in low- and middle-income countries? Cureus 15, e45539 (2023).

    PubMed  PubMed Central  Google Scholar 

  54. Marques, A. P. et al. The economics of vision impairment and its leading causes: a systematic review. eClinicalMedicine 46, 101354 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Meads, C. & Hyde, C. What is the cost of blindness? Br. J. Ophthalmol. 87, 1201–1204 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yau, J. W. Y. et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 35, 556–564 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Kim, H. U., Park, S. P. & Kim, Y. K. Long-term HbA1c variability and the development and progression of diabetic retinopathy in subjects with type 2 diabetes. Sci. Rep. 11, 4731 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Battelino, T. et al. Clinical targets for continuous glucose monitoring data interpretation: recommendations from the international consensus on time in range. Diabetes Care 42, 1593–1603 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Raj, R. et al. Time in range, as measured by continuous glucose monitor, as a predictor of microvascular complications in type 2 diabetes: a systematic review. BMJ Open. Diabetes Res. Care 10, e002573 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Lu, J. et al. Association of time in range, as assessed by continuous glucose monitoring, with diabetic retinopathy in type 2 diabetes. Diabetes Care 41, 2370–2376 (2018).

    Article  CAS  PubMed  Google Scholar 

  61. Shah, V. N. et al. Time in range is associated with incident diabetic retinopathy in adults with type 1 diabetes: a longitudinal study. Diabetes Technol. Ther. 26, 246–251 (2024).

    Article  PubMed  Google Scholar 

  62. Sartore, G., Chilelli, N. C., Burlina, S. & Lapolla, A. Association between glucose variability as assessed by continuous glucose monitoring (CGM) and diabetic retinopathy in type 1 and type 2 diabetes. Acta Diabetol. 50, 437–442 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Sugasini, D. et al. Retinal docosahexaenoic acid is significantly reduced in diabetic humans and mice: possible relationship to diabetic retinopathy. Invest. Ophthalmol. Vis. Sci. 65, 39 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Amiri-Dashatan, N., Etemadi, S. M., Besharati, S., Farahani, M. & Moghaddam, A. K. Dysregulation of amino acids balance as potential serum-metabolite biomarkers for diagnosis and prognosis of diabetic retinopathy: a metabolomics study. J. Diabetes Metab. Disord. 23, 2031–2042 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mellor, J. et al. Role of systemic factors in improving the prognosis of diabetic retinal disease and predicting response to diabetic retinopathy treatment. Ophthalmol. Sci. 4, 100494 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Sivaprasad, S., Gupta, B., Crosby-Nwaobi, R. & Evans, J. Prevalence of diabetic retinopathy in various ethnic groups: a worldwide perspective. Surv. Ophthalmol. 57, 347–370 (2012).

    Article  PubMed  Google Scholar 

  67. Pereira-Payo, D., Denche-Zamorano, Á., Mendoza-Muñoz, M. & Pastor-Cisneros, R. Diabetes eye disease sufferers and non-sufferers are differentiated by sleep hours, physical activity, diet, and demographic variables: a CRT analysis. Healthcare 12, 2345 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Huang, Y., Rao, S., Sun, X. & Liu, J. Advances in molecular epidemiology of diabetic retinopathy: from genomics to gut microbiomics. Mol. Biol. Rep. 52, 304 (2025).

    Article  CAS  PubMed  Google Scholar 

  69. Gopalakrishnan, V., Purushothaman, P. & Bhaskar, A. Proteomic analysis of plasma proteins in diabetic retinopathy patients by two dimensional electrophoresis and MALDI-Tof-MS. J. Diabetes Complicat. 29, 928–936 (2015).

    Article  Google Scholar 

  70. Garcia-Ramírez, M. et al. Interphotoreceptor retinoid-binding protein (IRBP) is downregulated at early stages of diabetic retinopathy. Diabetologia 52, 2633–2641 (2009).

    Article  PubMed  Google Scholar 

  71. Yokomizo, H. et al. Retinol binding protein 3 is increased in the retina of patients with diabetes resistant to diabetic retinopathy. Sci. Transl. Med. 11, eaau6627 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Fickweiler, W. et al. Elevated retinol binding protein 3 concentrations are associated with decreased vitreous inflammatory cytokines, VEGF, and progression of diabetic retinopathy. Diabetes Care 45, 2159–2162 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Santos, A. R. et al. Microaneurysm turnover in mild non-proliferative diabetic retinopathy is associated with progression and development of vision-threatening complications: a 5-year longitudinal study. J. Clin. Med. 10, 2142 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Antonetti, D. A. et al. Diabetic retinopathy: seeing beyond glucose-induced microvascular disease: seeing beyond glucose-induced microvascular disease. Diabetes 55, 2401–2411 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Goldberg, M. F. & Jampol, L. M. Knowledge of diabetic retinopathy before and 18 years after the Airlie house symposium on treatment of diabetic retinopathy. Ophthalmology 94, 741–746 (1987).

    Article  CAS  PubMed  Google Scholar 

  76. Wilkinson, C. P. et al. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology 110, 1677–1682 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Abràmoff, M. D., Lavin, P. T., Birch, M., Shah, N. & Folk, J. C. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. npj Digit. Med. 1, 39 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Osbak, K. K. et al. Update on mutations in glucokinase (GCK), which cause maturity-onset diabetes of the young, permanent neonatal diabetes, and hyperinsulinemic hypoglycemia. Hum. Mutat. 30, 1512–1526 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Flier, J. S. Starvation in the midst of plenty: reflections on the history and biology of insulin and leptin. Endocr. Rev. 40, 1–16 (2019).

    Article  PubMed  Google Scholar 

  80. Okar, D. A. Starvation amidst plenty: PDKs and diabetes mellitus. Trends Biochem. Sci. 27, 227–228 (2002).

    Article  PubMed  Google Scholar 

  81. White, P. J. et al. Insulin action, type 2 diabetes, and branched-chain amino acids: a two-way street. Mol. Metab. 52, 101261 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. De Block, C. E. M., De Leeuw, I. H. & Van Gaal, L. F. Impact of overweight on chronic microvascular complications in type 1 diabetic patients. Diabetes Care 28, 1649–1655 (2005).

    Article  PubMed  Google Scholar 

  83. Parente, E. B., Harjutsalo, V., Forsblom, C. & Groop, P.-H. Waist-height ratio and the risk of severe diabetic eye disease in type 1 diabetes: a 15-year cohort study. J. Clin. Endocrinol. Metab. 107, e653–e662 (2022).

    Article  PubMed  Google Scholar 

  84. Diabetes Prevention Program Research Group. The prevalence of retinopathy in impaired glucose tolerance and recent-onset diabetes in the diabetes prevention program. Diabet. Med. 24, 137–144 (2007).

    Article  PubMed Central  Google Scholar 

  85. Harrower, A. D. & Clarke, B. F. Diabetic retinopathy with normal glucose tolerance. Br. J. Ophthalmol. 60, 459–463 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Klein, R., Barrett-Connor, E. L., Blunt, B. A. & Wingard, D. L. Visual impairment and retinopathy in people with normal glucose tolerance, impaired glucose tolerance, and newly diagnosed NIDDM. Diabetes Care 14, 914–918 (1991).

    Article  CAS  PubMed  Google Scholar 

  87. Callaghan, B. C., Little, A. A., Feldman, E. L. & Hughes, R. A. C. Enhanced glucose control for preventing and treating diabetic neuropathy. Cochrane Database Syst. Rev. 2012, CD007543 (2012).

    PubMed  PubMed Central  Google Scholar 

  88. Lachin, J. M., McGee, P., Palmer, J. P. & DCCT/EDIC Research Group. Impact of C-peptide preservation on metabolic and clinical outcomes in the diabetes control and complications trial. Diabetes 63, 739–748 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Harsunen, M. et al. Residual insulin secretion in individuals with type 1 diabetes in Finland: longitudinal and cross-sectional analyses. Lancet Diabetes Endocrinol. 11, 465–473 (2023).

    Article  CAS  PubMed  Google Scholar 

  90. Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med. 329, 977–986 (1993).

    Article  Google Scholar 

  91. Diabetes Control and Complications Trial Research Group. The absence of a glycemic threshold for the development of long-term complications: the perspective of the diabetes control and complications trial. Diabetes 45, 1289–1298 (1996).

    Article  Google Scholar 

  92. Retinopathy and nephropathy in patients with type 1 diabetes four years after a trial of intensive therapy. Am. J. Ophthalmol. 129, 704–705 (2000).

  93. Mathew, A. V. et al. Impaired amino acid and TCA metabolism and cardiovascular autonomic neuropathy progression in type 1 diabetes. Diabetes 68, 2035–2044 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Fort, P. E. et al. Diminished retinal complex lipid synthesis and impaired fatty acid β-oxidation associated with human diabetic retinopathy. JCI Insight 6, e152109 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Afshinnia, F. et al. Increased lipogenesis and impaired β-oxidation predict type 2 diabetic kidney disease progression in American Indians. JCI Insight 4, e130317 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Pambianco, G., Costacou, T. & Orchard, T. J. The prediction of major outcomes of type 1 diabetes: a 12-year prospective evaluation of three separate definitions of the metabolic syndrome and their components and estimated glucose disposal rate: the Pittsburgh epidemiology of diabetes complications study experience. Diabetes Care 30, 1248–1254 (2007).

    Article  PubMed  Google Scholar 

  97. Van der Schueren, B. et al. Obesity in people living with type 1 diabetes. Lancet Diabetes Endocrinol. 9, 776–785 (2021).

    Article  PubMed  Google Scholar 

  98. Snell-Bergeon, J. K. et al. Effectiveness of semaglutide and tirzepatide in overweight and obese adults with type 1 diabetes. Diabetes Technol. Ther. 27, 1–9 (2025).

    Article  CAS  PubMed  Google Scholar 

  99. Garg, S. K. et al. Cardiovascular and renal biomarkers in overweight and obese adults with type 1 diabetes treated with tirzepatide for 21 months. Diabetes Technol. Ther. 27, 152–160 (2025).

    Article  CAS  PubMed  Google Scholar 

  100. Ahlqvist, E., Prasad, R. B. & Groop, L. Subtypes of type 2 diabetes determined from clinical parameters. Diabetes 69, 2086–2093 (2020).

    Article  CAS  PubMed  Google Scholar 

  101. Callaghan, B. C. et al. Severe insulin-deficient diabetes is at the opposite end of the neuropathy spectrum to mild aged-related diabetes. J. Diabetes Investig. 16, 1045–1049 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Schrader, S. et al. Novel subgroups of type 2 diabetes display different epigenetic patterns that associate with future diabetic complications. Diabetes Care 45, 1621–1630 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Franks, P. W., Rich, S. S., Linder, B., Zaghloul, N. A. & Cefalu, W. T. A research roadmap to address the heterogeneity of diabetes and advance precision medicine. J. Clin. Endocrinol. Metab. 110, 601–610 (2025).

    Article  CAS  PubMed  Google Scholar 

  104. Prasad, R. B. et al. Subgroups of patients with young-onset type 2 diabetes in India reveal insulin deficiency as a major driver. Diabetologia 65, 65–78 (2022).

    Article  CAS  PubMed  Google Scholar 

  105. Chung, W. K. et al. Precision medicine in diabetes: a consensus report from the American diabetes association (ADA) and the European association for the study of diabetes (EASD). Diabetes Care 43, 1617–1635 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Klein, R., Knudtson, M. D., Lee, K. E., Gangnon, R. & Klein, B. E. K. The Wisconsin epidemiologic study of diabetic retinopathy: XXII the twenty-five-year progression of retinopathy in persons with type 1 diabetes. Ophthalmology 115, 1859–1868 (2008).

    Article  PubMed  Google Scholar 

  107. Klein, R., Knudtson, M. D., Lee, K. E., Gangnon, R. & Klein, B. E. K. The Wisconsin epidemiologic study of diabetic retinopathy XXIII: the twenty-five-year incidence of macular edema in persons with type 1 diabetes. Ophthalmology 116, 497–503 (2009).

    Article  PubMed  Google Scholar 

  108. Li, Y., Yu, Y. & VanderBeek, B. L. Anaemia and the risk of progression from non-proliferative diabetic retinopathy to vision threatening diabetic retinopathy. EYE 34, 934–941 (2020).

    Article  CAS  PubMed  Google Scholar 

  109. Breeyear, J. H. et al. Adaptive selection at G6PD and disparities in diabetes complications. Nat. Med. 30, 2480–2488 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Loukovaara, S. et al. Quantitative proteomics analysis of vitreous humor from diabetic retinopathy patients. J. Proteome Res. 14, 5131–5143 (2015).

    Article  CAS  PubMed  Google Scholar 

  111. Haliyur, R. et al. Liquid biopsy for proliferative diabetic retinopathy: single-cell transcriptomics of human vitreous reveals inflammatory T-cell signature. Ophthalmol. Sci. 4, 100539 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Weber, S. R. et al. Proteomic analyses of vitreous in proliferative diabetic retinopathy: prior studies and future outlook. J. Clin. Med. 10, 2309 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Gomułka, K. & Ruta, M. The role of inflammation and therapeutic concepts in diabetic retinopathy-a short review. Int. J. Mol. Sci. 24, 1024 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Campochiaro, P. A. et al. Long-term benefit of sustained-delivery fluocinolone acetonide vitreous inserts for diabetic macular edema. Ophthalmology 118, 626–635.e2 (2011).

    Article  PubMed  Google Scholar 

  115. Calle, M. C. & Fernandez, M. L. Inflammation and type 2 diabetes. Diabetes Metab. 38, 183–191 (2012).

    Article  CAS  PubMed  Google Scholar 

  116. Harris Nwanyanwu, K. et al. Predicting development of proliferative diabetic retinopathy. Diabetes Care 36, 1562–1568 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Simonsen, J. R. et al. Bacterial infections as novel risk factors of severe diabetic retinopathy in individuals with type 1 diabetes. Br. J. Ophthalmol. 105, 1104–1110 (2021).

    Article  PubMed  Google Scholar 

  118. Fante, R. J., Gardner, T. W. & Sundstrom, J. M. Current and future management of diabetic retinopathy: a personalized evidence-based approach. Diabetes Manag. 3, 481–494 (2013).

    Article  CAS  Google Scholar 

  119. Antonetti, D. A., Klein, R. & Gardner, T. W. Diabetic retinopathy. N. Engl. J. Med. 366, 1227–1239 (2012).

    Article  CAS  PubMed  Google Scholar 

  120. Antonetti, D. A., Silva, P. S. & Stitt, A. W. Current understanding of the molecular and cellular pathology of diabetic retinopathy. Nat. Rev. Endocrinol. 17, 195–206 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Newman, E. A. Functional hyperemia and mechanisms of neurovascular coupling in the retinal vasculature. J. Cereb. Blood Flow. Metab. 33, 1685–1695 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Newman, E. A. Glial cell regulation of neuronal activity and blood flow in the retina by release of gliotransmitters. Philos. Trans. R. Soc. Lond. B 370, 20140195 (2015).

    Article  Google Scholar 

  123. Kohner, E. M., Patel, V. & Rassam, S. M. B. Role of blood flow and impaired autoregulation in the pathogenesis of diabetic retinopathy. Diabetes 44, 603–607 (1995).

    Article  CAS  PubMed  Google Scholar 

  124. Sinclair, S. H. et al. Retinal vascular autoregulation in diabetes mellitus. Ophthalmology 89, 748–750 (1982).

    Article  CAS  PubMed  Google Scholar 

  125. Bresnick, G. H. Diabetic retinopathy viewed as a neurosensory disorder. Arch. Ophthalmol. 104, 989–990 (1986).

    Article  CAS  PubMed  Google Scholar 

  126. Simó, R., Hernández, C. & European Consortium for the Early Treatment of Diabetic Retinopathy (EUROCONDOR). Neurodegeneration in the diabetic eye: new insights and therapeutic perspectives. Trends Endocrinol. Metab. 25, 23–33 (2014).

    Article  PubMed  Google Scholar 

  127. Simó, R., Stitt, A. W. & Gardner, T. W. Neurodegeneration in diabetic retinopathy: does it really matter? Diabetologia 61, 1902–1912 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Wolter, J. R. Diabetic retinopathy. Am. J. Ophthalmol. 51, 1123–1141 (1961).

    Article  CAS  PubMed  Google Scholar 

  129. Abcouwer, S. F. & Gardner, T. W. Diabetic retinopathy: loss of neuroretinal adaptation to the diabetic metabolic environment: neuroretinal adaptation in diabetic retinopathy. Ann. N. Y. Acad. Sci. 1311, 174–190 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Albertos-Arranz, H. et al. Neuronal degeneration and glial activation in the absence of vascular changes in human retinas of patients with diabetes. Invest. Ophthalmol. Vis. Sci. 66, 53 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Becker, K. & Klein, H. In-depth transcriptomic analysis of human retina reveals molecular mechanisms underlying diabetic retinopathy. Sci. Rep. 11, 10494 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Carrasco, E. et al. Lower somatostatin expression is an early event in diabetic retinopathy and is associated with retinal neurodegeneration. Diabetes Care 30, 2902–2908 (2007).

    Article  CAS  PubMed  Google Scholar 

  133. Li, Q. et al. Differential effects of retinol-binding protein 3 and anti-VEGF antibodies on retinal dysfunctions in diabetic retinopathy. Diabetes 74, 787–797 (2025).

    PubMed  Google Scholar 

  134. Fort, P. E. et al. Differential roles of hyperglycemia and hypoinsulinemia in diabetes induced retinal cell death: evidence for retinal insulin resistance. PLoS ONE 6, e26498 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Zolov, S. N. et al. Insulin-like growth factor-2 regulates basal retinal insulin receptor activity. J. Biol. Chem. 296, 100712 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Hernández, C. et al. Topical administration of GLP-1 receptor agonists prevents retinal neurodegeneration in experimental diabetes. Diabetes 65, 172–187 (2016).

    Article  PubMed  Google Scholar 

  137. Simó, R. et al. Effects of topically administered neuroprotective drugs in early stages of diabetic retinopathy: results of the EUROCONDOR clinical trial. Diabetes 68, 457–463 (2019).

    Article  PubMed  Google Scholar 

  138. Garhöfer, G. et al. Retinal neurovascular coupling in diabetes. J. Clin. Med. 9, 2829 (2020).

    Article  PubMed  Google Scholar 

  139. Pan, W. W., Gardner, T. W. & Harder, J. L. Integrative biology of diabetic retinal disease: lessons from diabetic kidney disease. J. Clin. Med. 10, 1254 (2021). This manuscript provides a new direction of research in diabetic retinopathy through the study and integration of findings from other complications of diabetes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Early Treatment Diabetic Retinopathy Study Research Group. Grading diabetic retinopathy from stereoscopic color fundus photographs — an extension of the modified Airlie house classification. ETDRS report number 10. Early treatment diabetic retinopathy study research group. Ophthalmology 98, 786–806 (1991).

    Article  Google Scholar 

  141. Early Treatment Diabetic Retinopathy Study Research Group. Fundus photographic risk factors for progression of diabetic retinopathy. ETDRS report number 12. Early treatment diabetic retinopathy study research group. Ophthalmology 98, 823–833 (1991).

    Google Scholar 

  142. Zhang, J. & Strauss, E. C. Sensitive detection of therapeutic efficacy with the ETDRS diabetic retinopathy severity scale. Clin. Ophthalmol. 14, 4385–4393 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Wykoff, C. C. et al. Longitudinal changes in diabetic retinopathy severity: learnings from PANORAMA. Ophthalmol. Retin. 9, 91–94 (2024).

    Article  Google Scholar 

  144. Novotny, H. R. & Alvis, D. L. A method of photographing fluorescence in circulating blood in the human retina. Circulation 24, 82–86 (1961).

    Article  CAS  PubMed  Google Scholar 

  145. Duncan, N. et al. Comparison of standard 7-field, Clarus, and Optos ultrawidefield imaging systems for diabetic retinopathy (COCO study). Ophthalmol. Sci. 4, 100427 (2024).

    Article  PubMed  Google Scholar 

  146. Sadda, S. R. et al. Quantitative assessment of the severity of diabetic retinopathy. Am. J. Ophthalmol. 218, 342–352 (2020).

    Article  PubMed  Google Scholar 

  147. Silva, P. S. et al. Peripheral lesions identified on ultrawide field imaging predict increased risk of diabetic retinopathy progression over 4 years. Ophthalmology 122, 949–956 (2015).

    Article  PubMed  Google Scholar 

  148. He, Y. et al. Ethnic variation in diabetic retinopathy lesion distribution on ultra-widefield imaging. Am. J. Ophthalmol. 247, 61–69 (2023).

    Article  PubMed  Google Scholar 

  149. Marcus, D. M. et al. Association of predominantly peripheral lesions on ultra-widefield imaging and the risk of diabetic retinopathy worsening over time. JAMA Ophthalmol. 140, 946–954 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Sun, Z., Yang, D., Tang, Z., Ng, D. S. & Cheung, C. Y. Optical coherence tomography angiography in diabetic retinopathy: an updated review. EYE 35, 149–161 (2021).

    Article  PubMed  Google Scholar 

  151. Jampol, L. M., Tadayoni, R. & Ip, M. Need for a new classification of diabetic retinopathy. Retina 41, 459–460 (2021).

    Article  PubMed  Google Scholar 

  152. Kazantzis, D., Holmes, C., Wijesingha, N. & Sivaprasad, S. Changes in foveal avascular zone parameters in individuals with prediabetes compared to normoglycemic controls: a systematic review and meta-analysis. EYE 38, 1855–1860 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  153. DaCosta, J., Bhatia, D. & Talks, J. The use of optical coherence tomography angiography and optical coherence tomography to predict visual acuity in diabetic retinopathy. EYE 34, 942–947 (2020).

    Article  CAS  PubMed  Google Scholar 

  154. Abdelshafy, M. & Abdelshafy, A. Correlations between optical coherence tomography angiography parameters and the visual acuity in patients with diabetic retinopathy. Clin. Ophthalmol. 14, 1107–1115 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Tsai, W.-S. et al. Correlation of optical coherence tomography angiography characteristics with visual function to define vision-threatening diabetic macular ischemia. Diagnostics 12, 1050 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Szeto, S. K. et al. Optical coherence tomography in the management of diabetic macular oedema. Prog. Retin. Eye Res. 98, 101220 (2024).

    Article  CAS  PubMed  Google Scholar 

  157. Bressler, S. B. et al. Factors associated with changes in visual acuity and central subfield thickness at 1 year after treatment for diabetic macular edema with ranibizumab. Arch. Ophthalmol. 130, 1153–1161 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Dugel, P. U. et al. Baseline visual acuity strongly predicts visual acuity gain in patients with diabetic macular edema following anti-vascular endothelial growth factor treatment across trials. Clin. Ophthalmol. 10, 1103–1110 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Bressler, N. M. et al. Association between change in visual acuity and change in central subfield thickness during treatment of diabetic macular edema in participants randomized to aflibercept, bevacizumab, or ranibizumab: a post hoc analysis of the protocol T randomized clinical trial: a post hoc analysis of the protocol T randomized clinical trial. JAMA Ophthalmol. 137, 977–985 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Kur, J., Newman, E. A. & Chan-Ling, T. Cellular and physiological mechanisms underlying blood flow regulation in the retina and choroid in health and disease. Prog. Retin. Eye Res. 31, 377–406 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Lott, M. E. J. et al. Comparison of retinal vasodilator and constrictor responses in type 2 diabetes. Acta Ophthalmol. 90, e434–e441 (2012).

    Article  PubMed  Google Scholar 

  162. Pemp, B. et al. Reduced retinal vessel response to flicker stimulation but not to exogenous nitric oxide in type 1 diabetes. Invest. Ophthalmol. Vis. Sci. 50, 4029–4032 (2009).

    Article  PubMed  Google Scholar 

  163. van Dijk, H. W. et al. Decreased retinal ganglion cell layer thickness in patients with type 1 diabetes. Invest. Ophthalmol. Vis. Sci. 51, 3660–3665 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Park, H. Y.-L., Kim, I. T. & Park, C. K. Early diabetic changes in the nerve fibre layer at the macula detected by spectral domain optical coherence tomography. Br. J. Ophthalmol. 95, 1223–1228 (2011).

    Article  PubMed  Google Scholar 

  165. Ng, J. S., Bearse, M. A. Jr, Schneck, M. E., Barez, S. & Adams, A. J. Local diabetic retinopathy prediction by multifocal ERG delays over 3 years. Invest. Ophthalmol. Vis. Sci. 49, 1622–1628 (2008).

    Article  PubMed  Google Scholar 

  166. Gualtieri, M. et al. Contrast sensitivity mediated by inferred magno- and parvocellular pathways in type 2 diabetics with and without nonproliferative retinopathy. Invest. Ophthalmol. Vis. Sci. 52, 1151–1155 (2011).

    Article  PubMed  Google Scholar 

  167. Greenstein, V. C., Thomas, S. R., Blaustein, H., Koenig, K. & Carr, R. E. Effects of early diabetic retinopathy on rod system sensitivity. Optom. Vis. Sci. 70, 18–23 (1993).

    Article  CAS  PubMed  Google Scholar 

  168. Jackson, G. R., Scott, I. U., Quillen, D. A., Walter, L. E. & Gardner, T. W. Inner retinal visual dysfunction is a sensitive marker of non-proliferative diabetic retinopathy. Br. J. Ophthalmol. 96, 699–703 (2012).

    Article  PubMed  Google Scholar 

  169. Parravano, M. et al. The role of Humphrey matrix testing in the early diagnosis of retinopathy in type 1 diabetes. Br. J. Ophthalmol. 92, 1656–1660 (2008).

    Article  CAS  PubMed  Google Scholar 

  170. Stitt, A. W. et al. The progress in understanding and treatment of diabetic retinopathy. Prog. Retin. Eye Res. 51, 156–186 (2016).

    Article  PubMed  Google Scholar 

  171. Santos, A. R. et al. Functional and structural findings of neurodegeneration in early stages of diabetic retinopathy: cross-sectional analyses of baseline data of the EUROCONDOR project. Diabetes 66, 2503–2510 (2017).

    Article  CAS  PubMed  Google Scholar 

  172. Gross, J. G. et al. Five-year outcomes of panretinal photocoagulation vs intravitreous ranibizumab for proliferative diabetic retinopathy: a randomized clinical trial: a randomized clinical trial. JAMA Ophthalmol. 136, 1138–1148 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Joyal, J.-S. et al. Ischemic neurons prevent vascular regeneration of neural tissue by secreting semaphorin 3A. Blood 117, 6024–6035 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Cheung, C. M. G. et al. Diabetic macular ischaemia- a new therapeutic target? Prog. Retin. Eye Res. 89, 101033 (2022).

    Article  CAS  PubMed  Google Scholar 

  175. Scanlon, P. H. Update on screening for sight-threatening diabetic retinopathy. Ophthalmic Res. 62, 218–224 (2019).

    Article  PubMed  Google Scholar 

  176. Estil, S., Steinarsson, A. Þ, Einarsson, S., Aspelund, T. & Stefánsson, E. Diabetic eye screening with variable screening intervals based on individual risk factors is safe and effective in ophthalmic practice: acta ophthalmologica 2020. Acta Ophthalmol. 98, 343–346 (2020).

    Article  PubMed  Google Scholar 

  177. Aravindhan, A. et al. Extending the diabetic retinopathy screening intervals in Singapore: methodology and preliminary findings of a cohort study. BMC Public. Health 24, 786 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Wong, T. Y. et al. Guidelines on diabetic eye care: the International council of ophthalmology recommendations for screening, follow-up, referral, and treatment based on resource settings. Ophthalmology 125, 1608–1622 (2018). This review summarizes consensus from the International Council of Ophthalmology on management of diabetic retinopathy, including control of risk factors, screening, referral and treatment.

    Article  PubMed  Google Scholar 

  179. Diabetes-related retinopathy risk test. ADA https://diabetes.org/diabetes/eye-health/retinopathy-risk (2025).

  180. Gandhi, M., Daskivich, L. P. & Ogunyemi, O. I. DRRisk: a web-based tool to assess the risk of diabetic retinopathy through machine learning on electronic health records. AMIA Annu. Symp. Proc. 2022, 452–460 (2022).

    PubMed  Google Scholar 

  181. Gulshan, V. et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 13, 2402–2410 (2016). This is a major study on the use of deep learning to detect diabetic retinopathy from retinal photographs, paving the way for the use of AI for screening of diabetic retinopathy.

    Article  Google Scholar 

  182. Ting, D. S. W. et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA 12, 2211–2223 (2017). This study demonstrates the broad generalizability of deep learning algorithms to be used in different ethnic groups in real-world setting for diabetic retinopathy screening.

    Article  Google Scholar 

  183. Rajalakshmi, R. et al. Leveraging artificial intelligence for diabetic retinopathy screening and management: history and current advances. Semin. Ophthalmol. https://doi.org/10.1080/08820538.2024.2432902 (2024).

  184. Palermo, B. J., D’Amico, S. L., Kim, B. Y. & Brady, C. J. Sensitivity and specificity of handheld fundus cameras for eye disease: a systematic review and pooled analysis. Surv. Ophthalmol. 67, 1531–1539 (2022).

    Article  PubMed  Google Scholar 

  185. Kubin, A.-M. et al. Comparison of 21 artificial intelligence algorithms in automated diabetic retinopathy screening using handheld fundus camera. Ann. Med. 56, 2352018 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  186. De Fauw, J. et al. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat. Med. 24, 1342–1350 (2018). This is a key study on the use of deep learning applied to OCT images to detect diabetic macular oedema and other retinal conditions.

    Article  PubMed  Google Scholar 

  187. Sheng, B. et al. Large language models for diabetes care: potentials and prospects. Sci. Bull. 69, 583–588 (2024).

    Article  Google Scholar 

  188. Oniani, D. et al. Adopting and expanding ethical principles for generative artificial intelligence from military to healthcare. npj Digit. Med. 6, 225 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Cervera, D. R. et al. Identifying peripheral neuropathy in colour fundus photographs based on deep learning. Diagnostics 11, 1943 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Tan, T. F. et al. Artificial intelligence and digital health in global eye health: opportunities and challenges. Lancet Glob. Health 11, e1432–e1443 (2023).

    Article  CAS  PubMed  Google Scholar 

  191. Sadanandan, R. & Sivaprasad, S. Adding screening for ‘end organ damage’ to the noncommunicable disease package in primary care. Indian. J. Ophthalmol. 69, 3064–3067 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Gunasekeran, D. V., Ting, D. S. W., Tan, G. S. W. & Wong, T. Y. Artificial intelligence for diabetic retinopathy screening, prediction and management. Curr. Opin. Ophthalmol. 31, 357–365 (2020).

    Article  PubMed  Google Scholar 

  193. Gurudas, S. et al. Multicenter evaluation of diagnostic circulating biomarkers to detect sight-threatening diabetic retinopathy. JAMA Ophthalmol. 140, 587–597 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Dai, L. et al. A deep learning system for predicting time to progression of diabetic retinopathy. Nat. Med. 30, 584–594 (2024). This study shows the use of deep learning to predict future risk of progression of diabetic retinopathy, allowing for personalized screening intervals for persons with diabetes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Rajalakshmi, R. et al. Tele-ophthalmology versus face-to-face retinal consultation for assessment of diabetic retinopathy in diabetes care centers in India: a multicenter cross-sectional study. Diabetes Technol. Ther. 24, 556–563 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Subramanian, B., Rajalakshmi, R., Sivaprasad, S., Rao, C. & Raman, R. Assessing the appropriateness and completeness of ChatGPT-4’s AI-generated responses for queries related to diabetic retinopathy. Indian. J. Ophthalmol. 72, S684–S687 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Rajalakshmi, R. et al. Burden of undiagnosed and suboptimally controlled diabetes in selected regions of India: results from the SMART India population-level diabetes screening study. Diabet. Med. 40, e15165 (2023).

    Article  CAS  PubMed  Google Scholar 

  198. Effect of intensive diabetes treatment on the development and progression of long-term complications in adolescents with insulin-dependent diabetes mellitus: diabetes control and complications trial. Diabetes control and complications trial research group. J. Pediatr. 125, 177–188 (1994).

  199. Stratton, I. M. et al. UKPDS 50: risk factors for incidence and progression of retinopathy in type II diabetes over 6 years from diagnosis. Diabetologia 44, 156–163 (2001).

    Article  CAS  PubMed  Google Scholar 

  200. Simó, R. & Hernández, C. What else can we do to prevent diabetic retinopathy? Diabetologia 66, 1614–1621 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Vujosevic, S. et al. Screening for diabetic retinopathy: new perspectives and challenges. Lancet Diabetes Endocrinol. 8, 337–347 (2020).

    Article  PubMed  Google Scholar 

  202. Seo, H., Park, S.-J. & Song, M. Diabetic retinopathy (DR): mechanisms, current therapies, and emerging strategies. Cells 14, 376 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Le, R. et al. Cardiovascular protective properties of GLP-1 receptor agonists: more than just diabetic and weight loss drugs. J. Clin. Med. 13, 4674 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Tauqeer, Z. et al. Glucagon-like peptide-1 receptor agonists are not associated with an increased risk of progressing to vision-threatening diabetic retinopathy. Ophthalmic Epidemiol. 32, 390–393 (2024).

    Article  PubMed  Google Scholar 

  205. Simó, R. et al. Rapid reduction of HbA1c and early worsening of diabetic retinopathy: a real-world population-based study in subjects with type 2 diabetes. Diabetes Care 46, 1633–1639 (2023).

    Article  PubMed  Google Scholar 

  206. A research study to look at how semaglutide compared to placebo affects diabetic eye disease in people with type 2 diabetes (FOCUS). ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03811561 (2019).

  207. Estacio, R. O., Jeffers, B. W., Gifford, N. & Schrier, R. W. Effect of blood pressure control on diabetic microvascular complications in patients with hypertension and type 2 diabetes. Diabetes Care 23, B54–B64 (2000).

    PubMed  Google Scholar 

  208. Do, D. V. et al. Blood pressure control for diabetic retinopathy. Cochrane Database Syst. Rev. 1, CD006127 (2015).

    PubMed  Google Scholar 

  209. Chew, E. Y. et al. The effects of medical management on the progression of diabetic retinopathy in persons with type 2 diabetes: the action to control cardiovascular risk in diabetes (ACCORD) eye study. Ophthalmology 121, 2443–2451 (2014).

    Article  PubMed  Google Scholar 

  210. Keech, A. C. et al. Effect of fenofibrate on the need for laser treatment for diabetic retinopathy (FIELD study): a randomised controlled trial. Lancet 370, 1687–1697 (2007).

    Article  CAS  PubMed  Google Scholar 

  211. Preiss, D. et al. Effect of fenofibrate on progression of diabetic retinopathy. NEJM Evid. 3, EVIDoa2400179 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Maturi, R. K. et al. Effect of intravitreous anti-vascular endothelial growth factor vs sham treatment for prevention of vision-threatening complications of diabetic retinopathy: the protocol W randomized clinical trial: the protocol W randomized clinical trial. JAMA Ophthalmol. 139, 701–712 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Brown, D. M. et al. Evaluation of intravitreal aflibercept for the treatment of severe nonproliferative diabetic retinopathy: results from the PANORAMA randomized clinical trial: results from the PANORAMA randomized clinical trial. JAMA Ophthalmol. 139, 946–955 (2021).

    Article  PubMed  Google Scholar 

  214. Early Treatment Diabetic Retinopathy Study Research Group. Photocoagulation for diabetic macular edema: early treatment diabetic retinopathy study report no. 4. The early treatment diabetic retinopathy study research group. Int. Ophthalmol. Clin. 27, 265–272 (1987).

    Article  Google Scholar 

  215. Everett, L. A. & Paulus, Y. M. Laser therapy in the treatment of diabetic retinopathy and diabetic macular edema. Curr. Diab. Rep. 21, 35 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Lois, N. et al. Diabetic macular edema and diode subthreshold micropulse laser: a randomized double-masked noninferiority clinical trial. Ophthalmology 130, 14–27 (2023).

    Article  PubMed  Google Scholar 

  217. Diabetic Retinopathy Clinical Research Network. A randomized trial comparing intravitreal triamcinolone acetonide and focal/grid photocoagulation for diabetic macular edema. Ophthalmology 115, 1447–1449 (2008).

    Article  Google Scholar 

  218. Elman, M. J. et al. Expanded 2-year follow-up of ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema. Ophthalmology 118, 609–614 (2011).

    Article  PubMed  Google Scholar 

  219. Boyer, D. S. et al. Three-year, randomized, sham-controlled trial of dexamethasone intravitreal implant in patients with diabetic macular edema. Ophthalmology 121, 1904–1914 (2014).

    Article  PubMed  Google Scholar 

  220. Campochiaro, P. A. et al. Sustained delivery fluocinolone acetonide vitreous inserts provide benefit for at least 3 years in patients with diabetic macular edema. Ophthalmology 119, 2125–2132 (2012).

    Article  PubMed  Google Scholar 

  221. Sun, J. K. & Jampol, L. M. The diabetic retinopathy clinical research network (Drcr.net) and its contributions to the treatment of diabetic retinopathy. Ophthalmic Res. 62, 225–230 (2019). The Diabetic Retinopathy Clinical Research Network (Drcr.net) has provided substantial robust evidence especially through clinical trials on the clinical management of diabetic retinopathy and diabetic macular oedema and this manuscript summarizes key findings.

    Article  PubMed  Google Scholar 

  222. Krick, T. W. & Bressler, N. M. Recent clinically relevant highlights from the diabetic retinopathy clinical research network. Curr. Opin. Ophthalmol. 29, 199–205 (2018).

    Article  PubMed  Google Scholar 

  223. Le, J. T. et al. Setting priorities for diabetic retinopathy clinical research and identifying evidence gaps. Ophthalmol. Retin. 1, 94–102 (2017).

    Article  Google Scholar 

  224. Brown, D. M. et al. Long-term outcomes of ranibizumab therapy for diabetic macular edema: the 36-month results from two phase III trials: RISE and RIDE. Ophthalmology 120, 2013–2022 (2013).

    Article  PubMed  Google Scholar 

  225. Bressler, S. B. et al. Five-year outcomes of ranibizumab with prompt or deferred laser versus laser or triamcinolone plus deferred ranibizumab for diabetic macular edema. Am. J. Ophthalmol. 164, 57–68 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Heier, J. S. et al. Intravitreal aflibercept for diabetic macular edema: 148-week results from the VISTA and VIVID studies. Ophthalmology 123, 2376–2385 (2016).

    Article  PubMed  Google Scholar 

  227. Wells, J. A. et al. Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema: two-year results from a comparative effectiveness randomized clinical trial. Ophthalmology 123, 1351–1359 (2016).

    Article  PubMed  Google Scholar 

  228. Baker, C. W. et al. Effect of initial management with aflibercept vs laser photocoagulation vs observation on vision loss among patients with diabetic macular edema involving the center of the macula and good visual acuity: a randomized clinical trial: a randomized clinical trial. JAMA 321, 1880–1894 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Wykoff, C. C. et al. Efficacy, durability, and safety of intravitreal faricimab with extended dosing up to every 16 weeks in patients with diabetic macular oedema (YOSEMITE and RHINE): two randomised, double-masked, phase 3 trials. Lancet 399, 741–755 (2022).

    Article  CAS  PubMed  Google Scholar 

  230. Brown, D. M. et al. Intravitreal aflibercept 8 mg in diabetic macular oedema (PHOTON): 48-week results from a randomised, double-masked, non-inferiority, phase 2/3 trial. Lancet 403, 1153–1163 (2024).

    Article  CAS  PubMed  Google Scholar 

  231. Chandra, S., Tan, E. Y., Empeslidis, T. & Sivaprasad, S. Tyrosine kinase inhibitors and their role in treating neovascular age-related macular degeneration and diabetic macular oedema. EYE 37, 3725–3733 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  232. Liang, H. et al. KSI-301: an anti-VEGF antibody biopolymer conjugate with extended half-life for treatment of neovascular retinal diseases. Investig. Ophthalmol. Vis. Sci. 59, 211 (2018).

    Google Scholar 

  233. Wang, J.-H., Roberts, G. E. & Liu, G.-S. Updates on gene therapy for diabetic retinopathy. Curr. Diab. Rep. 20, 22 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  234. Bhatwadekar, A. D., Kansara, V. S. & Ciulla, T. A. Investigational plasma kallikrein inhibitors for the treatment of diabetic macular edema: an expert assessment. Expert. Opin. Investig. Drugs 29, 237–244 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Yang, J. Y., Goldberg, D. & Sobrin, L. Interleukin-6 and macular edema: a review of outcomes with inhibition. Int. J. Mol. Sci. 24, 4676 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Gote, V., Sikder, S., Sicotte, J. & Pal, D. Ocular drug delivery: present innovations and future challenges. J. Pharmacol. Exp. Ther. 370, 602–624 (2019). This review presents the various ways novel drugs and devices may be delivered in the eye in future and highlight both the benefits and challenges associated with them.

    Article  CAS  PubMed  Google Scholar 

  237. Holekamp, N. M. et al. Archway randomized phase 3 trial of the port delivery system with ranibizumab for neovascular age-related macular degeneration. Ophthalmology 129, 295–307 (2022).

    Article  PubMed  Google Scholar 

  238. Vujosevic, S. & Simó, R. Local and systemic inflammatory biomarkers of diabetic retinopathy: an integrative approach. Invest. Ophthalmol. Vis. Sci. 58, BIO68–BIO75 (2017).

    Article  CAS  PubMed  Google Scholar 

  239. Photocoagulation treatment of proliferative diabetic retinopathy. Clinical application of diabetic retinopathy study (DRS) findings, DRS report number 8. The diabetic retinopathy study research group. Ophthalmology 88, 583–600 (1981).

    Google Scholar 

  240. Early photocoagulation for diabetic retinopathy. ETDRS report number 9. Early treatment diabetic retinopathy study research group. Ophthalmology 98, 766–785 (1991).

    Google Scholar 

  241. Writing Committee for the Diabetic Retinopathy Clinical Research Network. et al. Panretinal photocoagulation vs intravitreous ranibizumab for proliferative diabetic retinopathy: a randomized clinical trial. JAMA 314, 2137 (2015).

    Article  Google Scholar 

  242. Sivaprasad, S. et al. Clinical efficacy of intravitreal aflibercept versus panretinal photocoagulation for best corrected visual acuity in patients with proliferative diabetic retinopathy at 52 weeks (CLARITY): a multicentre, single-blinded, randomised, controlled, phase 2b, non-inferiority trial. Lancet 389, 2193–2203 (2017).

    Article  CAS  PubMed  Google Scholar 

  243. Figueira, J. et al. Ranibizumab plus panretinal photocoagulation versus panretinal photocoagulation alone for high-risk proliferative diabetic retinopathy (PROTEUS study). Ophthalmology 125, 691–700 (2018).

    Article  PubMed  Google Scholar 

  244. Hutton, D. W. et al. Five-year cost-effectiveness of intravitreous ranibizumab therapy vs panretinal photocoagulation for treating proliferative diabetic retinopathy: a secondary analysis of a randomized clinical trial: a secondary analysis of a randomized clinical trial. JAMA Ophthalmol. 137, 1424–1432 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  245. De Maria, M., Panchal, B. & Coassin, M. Update on indications for diabetic vitrectomy and management of complications. Ann. Eye Sci. 3, 51–61 (2018).

    Article  Google Scholar 

  246. Shaikh, N. et al. Vitrectomy for cases of diabetic retinopathy. Indian. J. Ophthalmol. 72, 1704–1713 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  247. Kelkar, A., Kelkar, J., Mehta, H. & Amoaku, W. Cataract surgery in diabetes mellitus: a systematic review. Indian. J. Ophthalmol. 66, 1401–1410 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  248. Diabetes Canada Clinical Practice Guidelines Expert Working Group. et al. Diabetes and mental health. Can. J. Diabetes 47, 308–344 (2023).

    Article  Google Scholar 

  249. Khoo, K. et al. The relationship between diabetic retinopathy and psychosocial functioning: a systematic review. Qual. Life Res. 28, 2017–2039 (2019).

    Article  PubMed  Google Scholar 

  250. Tecce, N., Cennamo, G., Rinaldi, M., Costagliola, C. & Colao, A. Exploring the impact of glycemic control on diabetic retinopathy: emerging models and prognostic implications. J. Clin. Med. 13, 831 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  251. Zayed, M. G. et al. Diabetic retinopathy and quality of life: a systematic review and meta-analysis: a systematic review and meta-analysis. JAMA Ophthalmol. 142, 199–207 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  252. Brown, M. M., Brown, G. C., Sharma, S., Landy, J. & Bakal, J. Quality of life with visual acuity loss from diabetic retinopathy and age-related macular degeneration. Arch. Ophthalmol. 120, 481–484 (2002).

    Article  PubMed  Google Scholar 

  253. Sharma, S. et al. Utilities associated with diabetic retinopathy: results from a Canadian sample. Br. J. Ophthalmol. 87, 259–261 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Huang, E. S., Brown, S. E. S., Ewigman, B. G., Foley, E. C. & Meltzer, D. O. Patient perceptions of quality of life with diabetes-related complications and treatments. Diabetes Care 30, 2478–2483 (2007).

    Article  PubMed  Google Scholar 

  255. Lloyd, A. et al. Health utility values associated with diabetic retinopathy: original article. Diabet. Med. 25, 618–624 (2008).

    Article  CAS  PubMed  Google Scholar 

  256. Torrance, G. W., Thomas, W. H. & Sackett, D. L. A utility maximization model for evaluation of health care programs. Health Serv. Res. 7, 118–133 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  257. Brown, M. M., Brown, G. C., Sharma, S. & Shah, G. Utility values and diabetic retinopathy. Am. J. Ophthalmol. 128, 324–330 (1999).

    Article  CAS  PubMed  Google Scholar 

  258. Visual Function Questionnaire (VFQ-25). Rand Health Care https://www.rand.org/health-care/surveys_tools/vfq.html (2025).

  259. Burr, J. M., Cooper, D., Ramsay, C. R., Che Hamzah, J. & Azuara-Blanco, A. Interpretation of change scores for the National eye institute visual function questionnaire-25: the minimally important difference. Br. J. Ophthalmol. 106, 1514–1519 (2022).

    Article  PubMed  Google Scholar 

  260. Brooks, R. EuroQol: the current state of play. Health Policy 37, 53–72 (1996).

    Article  CAS  PubMed  Google Scholar 

  261. Pennington, B. M. et al. Mapping from visual acuity to EQ-5D, EQ-5D with vision bolt-on, and VFQ-UI in patients with macular edema in the LEAVO trial. Value Health 23, 928–935 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  262. Ferris, F. L. 3rd How effective are treatments for diabetic retinopathy? JAMA 269, 1290–1291 (1993).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Introduction (S.S.); Epidemiology (T.Y.W.); Mechanisms/pathophysiology (T.W.G.); Diagnosis, screening and prevention (T.Y.W. and S.S.); Management (N.M.B.); Quality of life (S.S.); Outlook (J.K.S.); overview of the Primer (S.S.).

Corresponding author

Correspondence to Sobha Sivaprasad.

Ethics declarations

Competing interests

S.S. is the editor-in-chief of EYE; has been a consultant for AbbVie Pte Ltd., Amgen, Adverum, Apellis, Bayer, Biogen, Boehringer Ingelheim, Novartis, Eyebiotech, Eyepoint Pharmaceuticals, Janssen Pharmaceuticals, Ocular Therapeutix, Kriya Therapeutics, OcuTerra, Roche, Stealth Biotherapeutics and Sanofi; has received research support from Boehringer Ingelheim, Roche, Optos and Bayer; and is a Trial Steering Committee member for Novo Nordisk. T.Y.W. is a consultant for Abbvie Pte Ltd., Aldropika Therapeutics, Bayer, Boehringer Ingelheim, Carl Zeiss, Genentech, Iveric Bio, Novartis, Opthea Limited, Plano, Quaerite Biopharm Research Ltd., Roche, Sanofi and Shanghai Henlius. He is an inventor, holds patents and is a cofounder of start-up companies EyRiS and Visre, which have interests in, and develop digital solutions for eye diseases. T.W.G. has had research support from Breakthrough T1D, the Mary Tyler Moore Vision Initiative, the Taubman Medical Research Institute and the Jaeb Center for Health Research and is a cofounder of OcularDx, Inc. J.K.S. has had research support from Adaptive Sensory Technologies, Boehringer Ingelheim, Breakthrough T1D, Genentech/Roche, Jaeb Center for Health Research, Janssen, Mary Tyler Moore Vision Initiative, Massachusetts Lions Eye Research Fund, Novartis, Novo Nordisk, Optovue and Physical Sciences, Inc; and has received travel/food expenses from the Mary Tyler Moore Vision Initiative and Boehringer Ingelheim. N.M.B. is the editor-in-chief of JAMA Ophthalmology; has received grants to Johns Hopkins University from Regeneron, Bayer, and Samsung Bioepis; and is on the board of directors of the JAEB Center for Health Research Foundation, Inc. and the JAEB Center Research Trust, Inc.

Peer review

Peer review information

Nature Reviews Disease Primers thanks F. Bandello, T. Bek, P. Massin and R. Simó for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivaprasad, S., Wong, T.Y., Gardner, T.W. et al. Diabetic retinal disease. Nat Rev Dis Primers 11, 62 (2025). https://doi.org/10.1038/s41572-025-00646-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-025-00646-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing