Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Applications of single-cell RNA sequencing in drug discovery and development

Abstract

Single-cell technologies, particularly single-cell RNA sequencing (scRNA-seq) methods, together with associated computational tools and the growing availability of public data resources, are transforming drug discovery and development. New opportunities are emerging in target identification owing to improved disease understanding through cell subtyping, and highly multiplexed functional genomics screens incorporating scRNA-seq are enhancing target credentialling and prioritization. ScRNA-seq is also aiding the selection of relevant preclinical disease models and providing new insights into drug mechanisms of action. In clinical development, scRNA-seq can inform decision-making via improved biomarker identification for patient stratification and more precise monitoring of drug response and disease progression. Here, we illustrate how scRNA-seq methods are being applied in key steps in drug discovery and development, and discuss ongoing challenges for their implementation in the pharmaceutical industry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: How single-cell sequencing can inform decisions across the drug discovery and development pipeline.
Fig. 2: Computational methods used in single-cell data analysis for drug discovery and development.
Fig. 3: Single-cell RNA sequencing in disease understanding.
Fig. 4: Single-cell high-throughput screening.
Fig. 5: Biomarker discovery and patient stratification.

Similar content being viewed by others

References

  1. DiMasi, J. A., Grabowski, H. G. & Hansen, R. W. Innovation in the pharmaceutical industry: new estimates of R&D costs. J. Health Econ. 47, 20–33 (2016).

    Article  PubMed  Google Scholar 

  2. Wouters, O. J., McKee, M. & Luyten, J. Estimated research and development investment needed to bring a new medicine to market, 2009–2018. JAMA 323, 844–853 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Paul, S. M. et al. How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat. Rev. Drug Discov. 9, 203–214 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Nelson, M. R. et al. The support of human genetic evidence for approved drug indications. Nat. Genet. 47, 856–860 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. 1000 Genomes Project Consortium. An integrated map of genetic variation from 1,092 human genomes. Nature 491, 56–65 (2012).

    Article  Google Scholar 

  6. Sernoskie, S. C., Jee, A. & Uetrecht, J. P. The emerging role of the innate immune response in idiosyncratic drug reactions. Pharmacol. Rev. 73, 861–896 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Heid, C. A., Stevens, J., Livak, K. J. & Williams, P. M. Real time quantitative PCR. Genome Res. 6, 986–994 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Cheung, R. K. & Utz, P. J. CyTOF — the next generation of cell detection. Nat. Rev. Rheumatol. 7, 502–503 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bendall, S. C. et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332, 687–696 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nassar, A. F., Ogura, H. & Wisnewski, A. V. Impact of recent innovations in the use of mass cytometry in support of drug development. Drug. Discov. Today 20, 1169–1175 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wen, L. & Tang, F. Recent advances in single-cell sequencing technologies. Precis. Clin. Med. 5, pbac002 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Jovic, D. et al. Single‐cell RNA sequencing technologies and applications: a brief overview. Clin. Transl. Med. 12, e694 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kashima, Y. et al. Single-cell sequencing techniques from individual to multiomics analyses. Exp. Mol. Med. 52, 1419–1427 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Svensson, V., Vento-Tormo, R. & Teichmann, S. A. Exponential scaling of single-cell RNA-seq in the past decade. Nat. Protoc. 13, 599–604 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Aldridge, S. & Teichmann, S. A. Single cell transcriptomics comes of age. Nat. Commun. 11, 4307 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tang, F. et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat. Methods 6, 377–382 (2009). Successful attempt to sequence the full transcriptome of a single cell in an unbiased way.

    Article  CAS  PubMed  Google Scholar 

  17. Navin, N. E., Rozenblatt-Rosen, O. & Zhang, N. R. New frontiers in single-cell genomics. Genome Res. 31, ix–x (2021).

    Article  PubMed Central  Google Scholar 

  18. Zilionis, R. et al. Single-cell transcriptomics of human and mouse lung cancers reveals conserved myeloid populations across individuals and species. Immunity 50, 1317–1334.e10 (2019). A detailed study correlating immune cell populations in mouse and human lung cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sade-Feldman, M. et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 175, 998–1013.e20 (2018). Illustration of how scRNA-seq approaches can be used to identify new predictive biomarkers for the response or resistance to ICI therapies in cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jang, J. S. et al. Molecular signatures of multiple myeloma progression through single cell RNA-Seq. Blood Cancer J. 9, 2 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Tanaka, N. et al. Single-cell RNA-seq analysis reveals the platinum resistance gene COX7B and the surrogate marker CD63. Cancer Med. 7, 6193–6204 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jerby-Arnon, L. et al. A cancer cell program promotes T cell exclusion and resistance to checkpoint blockade. Cell 175, 984–997.e24 (2018). This work demonstrates the utility of scRNA-seq for the identification of an immune resistance programme associated with T cell exclusion and immune evasion. It also provides new therapeutic approaches to overcome resistance to ICI.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cohen, Y. C. et al. Identification of resistance pathways and therapeutic targets in relapsed multiple myeloma patients through single-cell sequencing. Nat. Med. 27, 491–503 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Villani, A.-C. et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science 356, eaah4573 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Park, J.-E. et al. A cell atlas of human thymic development defines T cell repertoire formation. Science 367, eaay3224 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. GTEx Consortium.Landscape of X chromosome inactivation across human tissues. Nature 550, 244–248 (2017).

    Article  PubMed Central  Google Scholar 

  27. Ramachandran, P. et al. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature 575, 512–518 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Song, H. et al. Single-cell analysis of human primary prostate cancer reveals the heterogeneity of tumor-associated epithelial cell states. Nat. Commun. 13, 141 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang, Q. et al. Single-cell chromatin accessibility landscape in kidney identifies additional cell-of-origin in heterogenous papillary renal cell carcinoma. Nat. Commun. 13, 31 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nowicki-Osuch, K. et al. Molecular phenotyping reveals the identity of Barrett’s esophagus and its malignant transition. Science 373, 760–767 (2021). Illustrative example of how SC studies can help to understand tumorigenesis.

    Article  CAS  PubMed  Google Scholar 

  31. Steen, C. B. et al. The landscape of tumor cell states and ecosystems in diffuse large B cell lymphoma. Cancer Cell 39, 1422–1437.e10 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wu, S. Z. et al. A single-cell and spatially resolved atlas of human breast cancers. Nat. Genet. 53, 1334–1347 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang, X. et al. Dissecting esophageal squamous-cell carcinoma ecosystem by single-cell transcriptomic analysis. Nat. Commun. 12, 5291 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pu, W. et al. Single-cell transcriptomic analysis of the tumor ecosystems underlying initiation and progression of papillary thyroid carcinoma. Nat. Commun. 12, 6058 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ursu, O. et al. Massively parallel phenotyping of coding variants in cancer with Perturb-seq. Nat. Biotechnol. 40, 896–905 (2022). High-throughput analysis of oncogene and tumour suppressor variant phenotypes at single-cell level.

    Article  CAS  PubMed  Google Scholar 

  36. Chaligne, R. et al. Epigenetic encoding, heritability and plasticity of glioma transcriptional cell states. Nat. Genet. 53, 1469–1479 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Johnson, K. C. et al. Single-cell multimodal glioma analyses identify epigenetic regulators of cellular plasticity and environmental stress response. Nat. Genet. 53, 1456–1468 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Croucher, D. C. et al. Longitudinal single-cell analysis of a myeloma mouse model identifies subclonal molecular programs associated with progression. Nat. Commun. 12, 6322 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Salehi, S. et al. Clonal fitness inferred from time-series modelling of single-cell cancer genomes. Nature 595, 585–590 (2021). SC-based study showing how TP53 mutations alter tumour clonal fitness in TNBC and the impact on resistance to cisplatin chemotherapy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Quinn, J. J. et al. Single-cell lineages reveal the rates, routes, and drivers of metastasis in cancer xenografts. Science 371, eabc1944 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yaddanapudi, K. et al. Single-cell immune mapping of melanoma sentinel lymph nodes reveals an actionable immunotolerant microenvironment. Clin. Cancer Res. 28, 2069–2081 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lund, A. W. Standing watch: immune activation and failure in melanoma sentinel lymph nodes. Clin. Cancer Res. 28, 1996–1998 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li, J. et al. Single-cell characterization of the cellular landscape of acral melanoma identifies novel targets for immunotherapy. Clin. Cancer Res. 28, 2131–2146 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Sun, Y.-F. et al. Dissecting spatial heterogeneity and the immune-evasion mechanism of CTCs by single-cell RNA-seq in hepatocellular carcinoma. Nat. Commun. 12, 4091 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Diamantopoulou, Z. et al. The metastatic spread of breast cancer accelerates during sleep. Nature 607, 156–162 (2022).

    Article  CAS  PubMed  Google Scholar 

  46. Rozenblatt-Rosen, O. et al. The Human Tumor Atlas Network: charting tumor transitions across space and time at single-cell resolution. Cell 181, 236–249 (2020). Description of the goals of the Human Tumor Atlas Network project — building a SC and spatially resolved pan-cancer atlas also covering the dynamics from cancer initiation to metastasis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Becker, W. R. et al. Single-cell analyses define a continuum of cell state and composition changes in the malignant transformation of polyps to colorectal cancer. Nat. Genet. 54, 985–995 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Arenas, E. Parkinson’s disease in the single-cell era. Nat. Neurosci. 25, 536–538 (2022).

    Article  CAS  PubMed  Google Scholar 

  49. Kamath, T. et al. Single-cell genomic profiling of human dopamine neurons identifies a population that selectively degenerates in Parkinson’s disease. Nat. Neurosci. 25, 588–595 (2022). Identification and characterization of a dopamine neuron subpopulation that selectively degenerates in Parkinson disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Miller, M. B. et al. Somatic genomic changes in single Alzheimer’s disease neurons. Nature 604, 714–722 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Keren-Shaul, H. et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169, 1276–1290.e17 (2017). Identification and characterization of a disease-associated microglia population in Alzheimer disease.

    Article  CAS  PubMed  Google Scholar 

  52. Wang, P. et al. Single-cell transcriptome and TCR profiling reveal activated and expanded T cell populations in Parkinson’s disease. Cell Discov. 7, 52 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Cadwell, C. R. et al. Electrophysiological, transcriptomic and morphologic profiling of single neurons using Patch-seq. Nat. Biotechnol. 34, 199–203 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. Fuzik, J. et al. Integration of electrophysiological recordings with single-cell RNA-seq data identifies neuronal subtypes. Nat. Biotechnol. 34, 175–183 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. Yang, A. C. et al. A human brain vascular atlas reveals diverse mediators of Alzheimer’s risk. Nature 603, 885–892 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Berg, J. et al. Human neocortical expansion involves glutamatergic neuron diversification. Nature 598, 151–158 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Simone, D. et al. Single cell analysis of spondyloarthritis regulatory T cells identifies distinct synovial gene expression patterns and clonal fates. Commun. Biol. 4, 1395 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Penkava, F. et al. Single-cell sequencing reveals clonal expansions of pro-inflammatory synovial CD8 T cells expressing tissue-homing receptors in psoriatic arthritis. Nat. Commun. 11, 4767 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wu, X. et al. Single-cell sequencing of immune cells from anticitrullinated peptide antibody positive and negative rheumatoid arthritis. Nat. Commun. 12, 4977 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Liu, Y. et al. Classification of human chronic inflammatory skin disease based on single-cell immune profiling. Sci. Immunol. 7, eabl9165 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ingelfinger, F. et al. Twin study reveals non-heritable immune perturbations in multiple sclerosis. Nature 603, 152–158 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bjornevik, K. et al. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science 375, 296–301 (2022).

    Article  CAS  PubMed  Google Scholar 

  63. Lanz, T. V. et al. Clonally expanded B cells in multiple sclerosis bind EBV EBNA1 and GlialCAM. Nature 603, 321–327 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Nathan, A. et al. Single-cell eQTL models reveal dynamic T cell state dependence of disease loci. Nature 606, 120–128 (2022). Describes the discovery of cell-state-specific and dynamic eQTL patterns in human memory T cells revealing new eQTL associations for non-coding variants linked to disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ma, K.-Y. et al. High-throughput and high-dimensional single-cell analysis of antigen-specific CD8+ T cells. Nat. Immunol. 22, 1590–1598 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wauters, E. et al. Discriminating mild from critical COVID-19 by innate and adaptive immune single-cell profiling of bronchoalveolar lavages. Cell Res. 31, 272–290 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Stephenson, E. et al. Single-cell multi-omics analysis of the immune response in COVID-19. Nat. Med. 27, 904–916 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lee, J. W. et al. Integrated analysis of plasma and single immune cells uncovers metabolic changes in individuals with COVID-19. Nat. Biotechnol. 40, 110–120 (2022).

    Article  CAS  PubMed  Google Scholar 

  69. Georg, P. et al. Complement activation induces excessive T cell cytotoxicity in severe COVID-19. Cell 185, 493–512.e25 (2022).

    Article  CAS  PubMed  Google Scholar 

  70. Wang, S. et al. A single-cell transcriptomic landscape of the lungs of patients with COVID-19. Nat. Cell Biol. 23, 1314–1328 (2021). Study using SC sequencing to better understand severe COVID-19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Delorey, T. M. et al. COVID-19 tissue atlases reveal SARS-CoV-2 pathology and cellular targets. Nature 595, 107–113 (2021). Study using SC sequencing to better understand severe COVID-19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tian, Y. et al. Single-cell immunology of SARS-CoV-2 infection. Nat. Biotechnol. 40, 30–41 (2022).

    Article  CAS  PubMed  Google Scholar 

  73. Dar, D., Dar, N., Cai, L. & Newman, D. K. Spatial transcriptomics of planktonic and sessile bacterial populations at single-cell resolution. Science 373, eabi4882 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gideon, H. P. et al. Multimodal profiling of lung granulomas in macaques reveals cellular correlates of tuberculosis control. Immunity 55, 827–846.e10 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Abdelfattah, N. et al. Single-cell analysis of human glioma and immune cells identifies S100A4 as an immunotherapy target. Nat. Commun. 13, 767 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lareau, C. A., Parker, K. R. & Satpathy, A. T. Charting the tumor antigen maps drawn by single-cell genomics. Cancer Cell 39, 1553–1557 (2021).

    Article  CAS  PubMed  Google Scholar 

  77. Gladka, M. M. et al. Single-cell sequencing of the healthy and diseased heart reveals cytoskeleton-associated protein 4 as a new modulator of fibroblasts activation. Circulation 138, 166–180 (2018). Illustrative example of how SC approaches can help to identify candidate targets. Here, CKAP4 for cardiac fibrosis.

    Article  CAS  PubMed  Google Scholar 

  78. Kuppe, C. et al. Decoding myofibroblast origins in human kidney fibrosis. Nature 589, 281–286 (2021).

    Article  CAS  PubMed  Google Scholar 

  79. Li, Z. et al. Chromatin-accessibility estimation from single-cell ATAC-seq data with scOpen. Nat. Commun. 12, 6386 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Cano-Gamez, E. & Trynka, G. From GWAS to function: using functional genomics to identify the mechanisms underlying complex diseases. Front. Genet. 11, 424 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Jagadeesh, K. A. et al. Identifying disease-critical cell types and cellular processes by integrating single-cell RNA-sequencing and human genetics. Nat. Genet. 54, 1479–1492 (2022). The method scLinker combines GWAS summary statistics with scRNA-seq data sets and thereby enables the discovery of cell types (and biological processes) linked to disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Muslu, O., Hoyt, C. T., Lacerda, M., Hofmann-Apitius, M. & Frohlich, H. Guiltytargets: prioritization of novel therapeutic targets with network representation learning. IEEE/ACM Trans. Comput. Biol. Bioinform. 19, 491–500 (2022).

    Article  CAS  PubMed  Google Scholar 

  83. Gawel, D. R. et al. A validated single-cell-based strategy to identify diagnostic and therapeutic targets in complex diseases. Genome Med. 11, 47 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Dixit, A. et al. Perturb-seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167, 1853–1866.e17 (2016). Technique for pooled CRISPR screening with scRNA-seq readouts.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Adamson, B. et al. A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response. Cell 167, 1867–1882.e21 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Datlinger, P. et al. Pooled CRISPR screening with single-cell transcriptome readout. Nat. Methods 14, 297–301 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Shifrut, E. et al. Genome-wide CRISPR screens in primary human T cells reveal key regulators of immune function. Cell 175, 1958–1971.e15 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Jin, X. et al. In vivo Perturb-Seq reveals neuronal and glial abnormalities associated with autism risk genes. Science 370, eaaz6063 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lazo, J. S. et al. Credentialing and pharmacologically targeting PTP4A3 phosphatase as a molecular target for ovarian cancer. Biomolecules 11, 969 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wang, W. et al. MAPK4 promotes triple negative breast cancer growth and reduces tumor sensitivity to PI3K blockade. Nat. Commun. 13, 245 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Wang, P.-X. et al. Targeting CASP8 and FADD-like apoptosis regulator ameliorates nonalcoholic steatohepatitis in mice and nonhuman primates. Nat. Med. 23, 439–449 (2017).

    Article  CAS  PubMed  Google Scholar 

  92. Bertin, S. et al. Dual-specificity phosphatase 6 regulates CD4+ T-cell functions and restrains spontaneous colitis in IL-10-deficient mice. Mucosal Immunol. 8, 505–515 (2015).

    Article  CAS  PubMed  Google Scholar 

  93. Ruan, J.-W. et al. Dual-specificity phosphatase 6 deficiency regulates gut microbiome and transcriptome response against diet-induced obesity in mice. Nat. Microbiol. 2, 16220 (2016).

    Article  CAS  PubMed  Google Scholar 

  94. Chang, C.-S. et al. Single-cell RNA sequencing uncovers the individual alteration of intestinal mucosal immunocytes in Dusp6 knockout mice. iScience 25, 103738 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Llewellyn, H. P. et al. T cells and monocyte-derived myeloid cells mediate immunotherapy-related hepatitis in a mouse model. J. Hepatol. 75, 1083–1095 (2021).

    Article  CAS  PubMed  Google Scholar 

  96. Chen, S.-H. et al. Dual checkpoint blockade of CD47 and PD-L1 using an affinity-tuned bispecific antibody maximizes antitumor immunity. J. Immunother. Cancer 9, e003464 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Mimitou, E. P. et al. Multiplexed detection of proteins, transcriptomes, clonotypes and CRISPR perturbations in single cells. Nat. Methods 16, 409–412 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Katzenelenbogen, Y. et al. Coupled scRNA-Seq and intracellular protein activity reveal an immunosuppressive role of TREM2 in cancer. Cell 182, 872–885.e19 (2020).

    Article  CAS  PubMed  Google Scholar 

  99. Frangieh, C. J. et al. Multimodal pooled Perturb-CITE-seq screens in patient models define mechanisms of cancer immune evasion. Nat. Genet. 53, 332–341 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Schütte, M. et al. Molecular dissection of colorectal cancer in pre-clinical models identifies biomarkers predicting sensitivity to EGFR inhibitors. Nat. Commun. 8, 14262 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Kinker, G. S. et al. Pan-cancer single-cell RNA-seq identifies recurring programs of cellular heterogeneity. Nat. Genet. 52, 1208–1218 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Mead, B. E. et al. Screening for modulators of the cellular composition of gut epithelia via organoid models of intestinal stem cell differentiation. Nat. Biomed. Eng. 6, 476–494 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bock, C. et al. The organoid cell atlas. Nat. Biotechnol. 39, 13–17 (2021).

    Article  CAS  PubMed  Google Scholar 

  104. Shinozawa, T. et al. High-fidelity drug-induced liver injury screen using human pluripotent stem cell-derived organoids. Gastroenterology 160, 831–846.e10 (2021). Characterization of organoid preclinical models for liver injury drug screening using scRNA-seq.

    Article  CAS  PubMed  Google Scholar 

  105. Krieger, T. G. et al. Single-cell analysis of patient-derived PDAC organoids reveals cell state heterogeneity and a conserved developmental hierarchy. Nat. Commun. 12, 5826 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Bondoc, A. et al. Identification of distinct tumor cell populations and key genetic mechanisms through single cell sequencing in hepatoblastoma. Commun. Biol. 4, 1049 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kim, K.-T. et al. Single-cell mRNA sequencing identifies subclonal heterogeneity in anti-cancer drug responses of lung adenocarcinoma cells. Genome Biol. 16, 127 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Hosein, A. N. et al. Cellular heterogeneity during mouse pancreatic ductal adenocarcinoma progression at single-cell resolution. JCI Insight 5, 129212 (2019).

    Article  PubMed  Google Scholar 

  109. Tabula Muris Consortium. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature 562, 367–372 (2018). The Tabula Muris project generated a SC multi-tissue atlas at SC resolution for the frequently used Mus musculus animal model in preclinical research.

    Article  Google Scholar 

  110. Kumar, M. P. et al. Analysis of single-cell RNA-Seq identifies cell-cell communication associated with tumor characteristics. Cell Rep. 25, 1458–1468.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Taukulis, I. A. et al. Single-cell RNA-Seq of cisplatin-treated adult stria vascularis identifies cell type-specific regulatory networks and novel therapeutic gene targets. Front. Mol. Neurosci. 14, 718241 (2021). Illustrative example of how SC approaches can be used to explain toxic undesirable effects of therapies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Yofe, I., Dahan, R. & Amit, I. Single-cell genomic approaches for developing the next generation of immunotherapies. Nat. Med. 26, 171–177 (2020).

    Article  CAS  PubMed  Google Scholar 

  113. McFarland, J. M. et al. Multiplexed single-cell transcriptional response profiling to define cancer vulnerabilities and therapeutic mechanism of action. Nat. Commun. 11, 4296 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Shin, D., Lee, W., Lee, J. H. & Bang, D. Multiplexed single-cell RNA-seq via transient barcoding for simultaneous expression profiling of various drug perturbations. Sci. Adv. 5, eaav2249 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Srivatsan, S. R. et al. Massively multiplex chemical transcriptomics at single-cell resolution. Science 367, 45–51 (2020). Illustration of how a high-content screening method that uses scRNA-seq as readout can provide new hints on HDAC inhibitor MoA in cancer.

    Article  CAS  PubMed  Google Scholar 

  116. Ji, Y., Lotfollahi, M., Wolf, F. A. & Theis, F. J. Machine learning for perturbational single-cell omics. Cell Syst. 12, 522–537 (2021).

    Article  CAS  PubMed  Google Scholar 

  117. Lotfollahi, M. J., Wolf, F. A. & Theis, F.J. scGen predicts single-cell perturbation responses. Nat. Methods 16, 715–721 (2019).

    Article  CAS  PubMed  Google Scholar 

  118. Lotfollahi, M. et al. Learning interpretable cellular responses to complex perturbations in high-throughput screens. Preprint at bioRxiv https://doi.org/10.1101/2021.04.14.439903 (2021).

    Article  Google Scholar 

  119. Brewer, R. C. et al. BNT162b2 vaccine induces divergent B cell responses to SARS-CoV-2 S1 and S2. Nat. Immunol. 23, 33–39 (2022).

    Article  CAS  PubMed  Google Scholar 

  120. Andreano, E. et al. Hybrid immunity improves B cells and antibodies against SARS-CoV-2 variants. Nature 600, 530–535 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Hall, V. et al. Protection against SARS-CoV-2 after Covid-19 vaccination and previous infection. N. Engl. J. Med. 386, 1207–1220 (2022).

    Article  CAS  PubMed  Google Scholar 

  122. RECOVERY Collaborative Group. Dexamethasone in hospitalized patients with Covid-19. N. Engl. J. Med. 384, 693–704 (2021).

    Article  Google Scholar 

  123. Sinha, S. et al. Dexamethasone modulates immature neutrophils and interferon programming in severe COVID-19. Nat. Med. 28, 201–211 (2022).

    Article  CAS  PubMed  Google Scholar 

  124. Aissa, A. F. et al. Single-cell transcriptional changes associated with drug tolerance and response to combination therapies in cancer. Nat. Commun. 12, 1628 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Guinney, J. et al. The consensus molecular subtypes of colorectal cancer. Nat. Med. 21, 1350–1356 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Mehrvarz Sarshekeh, A. et al. Consensus molecular subtype (CMS) as a novel integral biomarker in colorectal cancer: a phase II trial of bintrafusp alfa in CMS4 metastatic CRC. JCO 38, 4084–4084 (2020).

    Article  Google Scholar 

  127. Khaliq, A. M. et al. Refining colorectal cancer classification and clinical stratification through a single-cell atlas. Genome Biol. 23, 113 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Joanito, I. et al. Single-cell and bulk transcriptome sequencing identifies two epithelial tumor cell states and refines the consensus molecular classification of colorectal cancer. Nat. Genet. 54, 963–975 (2022). Novel classification of CRC for biomarker prognosis proposed by using SC approaches and the tumour environment.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Litchfield, K. et al. Meta-analysis of tumor- and T cell-intrinsic mechanisms of sensitization to checkpoint inhibition. Cell 184, 596–614.e14 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Li, H., van der Merwe, P. A. & Sivakumar, S. Biomarkers of response to PD-1 pathway blockade. Br. J. Cancer 126, 1663–1675 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Leader, A. M. et al. Single-cell analysis of human non-small cell lung cancer lesions refines tumor classification and patient stratification. Cancer Cell 39, 1594–1609.e12 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Xiong, D., Wang, Y. & You, M. A gene expression signature of TREM2hi macrophages and γδ T cells predicts immunotherapy response. Nat. Commun. 11, 5084 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Kieffer, Y. et al. Single-cell analysis reveals fibroblast clusters linked to immunotherapy resistance in cancer. Cancer Discov. 10, 1330–1351 (2020).

    Article  CAS  PubMed  Google Scholar 

  134. Dominguez, C. X. et al. Single-cell RNA sequencing reveals stromal evolution into LRRC15+ myofibroblasts as a determinant of patient response to cancer immunotherapy. Cancer Discov. 10, 232–253 (2020).

    Article  CAS  PubMed  Google Scholar 

  135. Guo, X. et al. Global characterization of T cells in non-small-cell lung cancer by single-cell sequencing. Nat. Med. 24, 978–985 (2018).

    Article  CAS  PubMed  Google Scholar 

  136. Zheng, C. et al. Landscape of infiltrating T cells in liver cancer revealed by single-cell sequencing. Cell 169, 1342–1356.e16 (2017).

    Article  CAS  PubMed  Google Scholar 

  137. Pittet, M. J., Michielin, O. & Migliorini, D. Clinical relevance of tumour-associated macrophages. Nat. Rev. Clin. Oncol. 19, 402–421 (2022).

    Article  PubMed  Google Scholar 

  138. Färkkilä, A. et al. Immunogenomic profiling determines responses to combined PARP and PD-1 inhibition in ovarian cancer. Nat. Commun. 11, 1459 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Jansen, C. S. et al. An intra-tumoral niche maintains and differentiates stem-like CD8 T cells. Nature 576, 465–470 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Vanhersecke, L. et al. Mature tertiary lymphoid structures predict immune checkpoint inhibitor efficacy in solid tumors independently of PD-L1 expression. Nat. Cancer 2, 794–802 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Zhang, K. et al. Longitudinal single-cell RNA-seq analysis reveals stress-promoted chemoresistance in metastatic ovarian cancer. Sci. Adv. 8, eabm1831 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Candelli, T. et al. Identification and characterization of relapse-initiating cells in MLL-rearranged infant ALL by single-cell transcriptomics. Leukemia 36, 58–67 (2022).

    Article  CAS  PubMed  Google Scholar 

  143. Pieters, R. et al. A treatment protocol for infants younger than 1 year with acute lymphoblastic leukaemia (Interfant-99): an observational study and a multicentre randomised trial. Lancet 370, 240–250 (2007).

    Article  CAS  PubMed  Google Scholar 

  144. Martin, J. C. et al. Single-cell analysis of Crohn’s disease lesions identifies a pathogenic cellular module associated with resistance to anti-TNF therapy. Cell 178, 1493–1508.e20 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Smillie, C. S. et al. Intra- and inter-cellular rewiring of the human colon during ulcerative colitis. Cell 178, 714–730.e22 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Wang, Z. et al. Single-cell RNA sequencing of peripheral blood mononuclear cells from acute Kawasaki disease patients. Nat. Commun. 12, 5444 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Zhang, Y. et al. Single-cell analyses of renal cell cancers reveal insights into tumor microenvironment, cell of origin, and therapy response. Proc. Natl Acad. Sci. USA 118, e2103240118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Tyner, J. W. et al. Functional genomic landscape of acute myeloid leukaemia. Nature 562, 526–531 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Schuurhuis, G. J. et al. Minimal/measurable residual disease in AML: a consensus document from the European LeukemiaNet MRD Working Party. Blood 131, 1275–1291 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Ediriwickrema, A. et al. Single-cell mutational profiling enhances the clinical evaluation of AML MRD. Blood Adv. 4, 943–952 (2020). Minimal residual disease in acute myeloid leukaemia can be better assessed by using SC mutational profiling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Oren, Y. et al. Cycling cancer persister cells arise from lineages with distinct programs. Nature 596, 576–582 (2021). Shows that SC approaches are key for the identification of cancer persister cells induced in response to treatment.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Kim, C. et al. Chemoresistance evolution in triple-negative breast cancer delineated by single-cell sequencing. Cell 173, 879–893.e13 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Yost, K. E. et al. Clonal replacement of tumor-specific T cells following PD-1 blockade. Nat. Med. 25, 1251–1259 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Zhang, Y. et al. Single-cell analyses reveal key immune cell subsets associated with response to PD-L1 blockade in triple-negative breast cancer. Cancer Cell 39, 1578–1593.e8 (2021).

    Article  CAS  PubMed  Google Scholar 

  155. Bassez, A. et al. A single-cell map of intratumoral changes during anti-PD1 treatment of patients with breast cancer. Nat. Med. 27, 820–832 (2021).

    Article  CAS  PubMed  Google Scholar 

  156. Wu, T. D. et al. Peripheral T cell expansion predicts tumour infiltration and clinical response. Nature 579, 274–278 (2020).

    Article  CAS  PubMed  Google Scholar 

  157. Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14, 865–868 (2017). Explains the CITE-seq technique, which enables researchers to simultaneously assess the full transcriptome at SC resolution with the protein expression of selected cell surface markers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Peterson, V. M. et al. Multiplexed quantification of proteins and transcripts in single cells. Nat. Biotechnol. 35, 936–939 (2017).

    Article  CAS  PubMed  Google Scholar 

  159. Chen, S., Lake, B. B. & Zhang, K. High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell. Nat. Biotechnol. 37, 1452–1457 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Ma, S. et al. Chromatin potential identified by shared single-cell profiling of RNA and chromatin. Cell 183, 1103–1116.e20 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Clark, S. J. et al. scNMT-seq enables joint profiling of chromatin accessibility DNA methylation and transcription in single cells. Nat. Commun. 9, 781 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Ren, X. et al. COVID-19 immune features revealed by a large-scale single-cell transcriptome atlas. Cell 184, 1895–1913.e19 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Mathys, H. et al. Single-cell transcriptomic analysis of Alzheimer’s disease. Nature 570, 332–337 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Melms, J. C. et al. A molecular single-cell lung atlas of lethal COVID-19. Nature 595, 114–119 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Ding, J. et al. Systematic comparison of single-cell and single-nucleus RNA-sequencing methods. Nat. Biotechnol. 38, 737–746 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Thrupp, N. et al. Single-nucleus RNA-Seq is not suitable for detection of microglial activation genes in humans. Cell Rep. 32, 108189 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Der, E. et al. Tubular cell and keratinocyte single-cell transcriptomics applied to lupus nephritis reveal type I IFN and fibrosis relevant pathways. Nat. Immunol. 20, 915–927 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Haque, A., Engel, J., Teichmann, S. A. & Lönnberg, T. A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications. Genome Med. 9, 75 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Ding, J., Sharon, N. & Bar-Joseph, Z. Temporal modelling using single-cell transcriptomics. Nat. Rev. Genet. 23, 355–368 (2022). An excellent review on how to design and analyse SC time-series experiments.

    Article  CAS  PubMed  Google Scholar 

  170. Guillaumet-Adkins, A. et al. Single-cell transcriptome conservation in cryopreserved cells and tissues. Genome Biol. 18, 45 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Wilkinson, M. D. et al. The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Svensson, V., da Veiga Beltrame, E. & Pachter, L. A curated database reveals trends in single-cell transcriptomics. Database 2020, baaa073 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Han, X. et al. Construction of a human cell landscape at single-cell level. Nature 581, 303–309 (2020).

    Article  CAS  PubMed  Google Scholar 

  174. Tabula Sapiens Consortium. The Tabula Sapiens: a multiple-organ, single-cell transcriptomic atlas of humans. Science 376, eabl4896 (2022). The Tabula Sapiens consortium created and publicly released a multi-tissue transcriptome SC atlas covering 15 human donors.

    Article  Google Scholar 

  175. Füllgrabe, A. et al. Guidelines for reporting single-cell RNA-seq experiments. Nat. Biotechnol. 38, 1384–1386 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Meghill, C. et al. Cellxgene: a performant, scalable exploration platform for high dimensional sparse matrices. Preprint at bioRxiv https://doi.org/10.1101/2021.04.05.438318 (2021).

    Article  Google Scholar 

  177. Li, B. et al. Cumulus provides cloud-based data analysis for large-scale single-cell and single-nucleus RNA-seq. Nat. Methods 17, 793–798 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Papatheodorou, I. et al. Expression Atlas update: from tissues to single cells. Nucleic Acids Res. 48, D77–D83 (2020). EMBL-EBI SCEA is a valuable public SC resource used by industry.

    CAS  PubMed  Google Scholar 

  179. Moreno, P. et al. User-friendly, scalable tools and workflows for single-cell RNA-seq analysis. Nat. Methods 18, 327–328 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Lähnemann, D. et al. Eleven grand challenges in single-cell data science. Genome Biol. 21, 31 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Angerer, P. et al. Single cells make big data: new challenges and opportunities in transcriptomics. Curr. Opin. Syst. Biol. 4, 85–91 (2017).

    Article  Google Scholar 

  182. Zhang, M. J. et al. Polygenic enrichment distinguishes disease associations of individual cells in single-cell RNA-seq data. Nat. Genet. 54, 1572–1580 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Efremova, M., Vento-Tormo, M., Teichmann, S. A. & Vento-Tormo, R. CellPhoneDB: inferring cell–cell communication from combined expression of multi-subunit ligand–receptor complexes. Nat. Protoc. 15, 1484–1506 (2020).

    Article  CAS  PubMed  Google Scholar 

  184. Fu, Y. et al. Pan-cancer computational histopathology reveals mutations, tumor composition and prognosis. Nat. Cancer 1, 800–810 (2020).

    Article  CAS  PubMed  Google Scholar 

  185. Warnat-Herresthal, S. et al. Swarm Learning as a privacy-preserving machine learning approach for disease classification. Preprint at bioRxiv https://doi.org/10.1101/2020.06.25.171009 (2020).

    Article  Google Scholar 

  186. Regev, A. et al. The human cell atlas. eLife 6, e27041 (2017). Clearly explains the idea and goals of the HCA project.

    Article  PubMed  PubMed Central  Google Scholar 

  187. Han, L. et al. Cell transcriptomic atlas of the non-human primate Macaca fascicularis. Nature 604, 723–731 (2022).

    Article  CAS  PubMed  Google Scholar 

  188. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e29 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Domínguez Conde, C. et al. Cross-tissue immune cell analysis reveals tissue-specific features in humans. Science 376, eabl5197 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Qian, J. et al. A pan-cancer blueprint of the heterogeneous tumor microenvironment revealed by single-cell profiling. Cell Res. 30, 745–762 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Zheng, L. et al. Pan-cancer single-cell landscape of tumor-infiltrating T cells. Science 374, abe6474 (2021).

    Article  PubMed  Google Scholar 

  192. Sun, D. et al. TISCH: a comprehensive web resource enabling interactive single-cell transcriptome visualization of tumor microenvironment. Nucleic Acids Res. 49, D1420–D1430 (2021).

    Article  CAS  PubMed  Google Scholar 

  193. Nieto, P. et al. A single-cell tumor immune atlas for precision oncology. Genome Res. 31, 1913–1926 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Zhang, F. et al. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry. Nat. Immunol. 20, 928–942 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Cao, J. et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature 566, 496–502 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Cusanovich, D. A. et al. A single-cell atlas of in vivo mammalian chromatin accessibility. Cell 174, 1309–1324.e18 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Cao, J. et al. Comprehensive single-cell transcriptional profiling of a multicellular organism. Science 357, 661–667 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Cusanovich, D. A. et al. The cis-regulatory dynamics of embryonic development at single-cell resolution. Nature 555, 538–542 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Zhang, K. et al. A single-cell atlas of chromatin accessibility in the human genome. Cell 184, 5985–6001.e19 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Cheng, J., Liao, J., Shao, X., Lu, X. & Fan, X. Multiplexing methods for simultaneous large‐scale transcriptomic profiling of samples at single‐cell resolution. Adv. Sci. 8, 2101229 (2021).

    Article  CAS  Google Scholar 

  201. Picelli, S. et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat. Methods 10, 1096–1098 (2013).

    Article  CAS  PubMed  Google Scholar 

  202. Hwang, B., Lee, J. H. & Bang, D. Single-cell RNA sequencing technologies and bioinformatics pipelines. Exp. Mol. Med. 50, 1–14 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  204. Kaminow, B., Yunusov, D. & Dobin, A. STARsolo: accurate, fast and versatile mapping/quantification of single-cell and single-nucleus RNA-seq data. Preprint at bioRxiv https://doi.org/10.1101/2021.05.05.442755 (2021).

    Article  Google Scholar 

  205. Srivastava, A., Malik, L., Smith, T., Sudbery, I. & Patro, R. Alevin efficiently estimates accurate gene abundances from dscRNA-seq data. Genome Biol. 20, 65 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527 (2016).

    Article  CAS  PubMed  Google Scholar 

  207. Melsted, P., Ntranos, V. & Pachter, L. The barcode, UMI, set format and BUStools. Bioinformatics 35, 4472–4473 (2019).

    Article  CAS  PubMed  Google Scholar 

  208. Lun, A. T. L. et al. EmptyDrops: distinguishing cells from empty droplets in droplet-based single-cell RNA sequencing data. Genome Biol. 20, 63 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Muskovic, W. & Powell, J. E. DropletQC: improved identification of empty droplets and damaged cells in single-cell RNA-seq data. Genome Biol. 22, 329 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Yang, S. et al. Decontamination of ambient RNA in single-cell RNA-seq with DecontX. Genome Biol. 21, 57 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Young, M. D. & Behjati, S. SoupX removes ambient RNA contamination from droplet-based single-cell RNA sequencing data. GigaScience 9, giaa151 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Wolock, S. L., Lopez, R. & Klein, A. M. Scrublet: computational identification of cell doublets in single-cell transcriptomic data. Cell Syst. 8, 281–291.e9 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. McGinnis, C. S., Murrow, L. M. & Gartner, Z. J. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst. 8, 329–337.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. DePasquale, E. A. K. et al. DoubletDecon: deconvoluting doublets from single-cell RNA-sequencing data. Cell Rep. 29, 1718–1727.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Lun, A. T. L., McCarthy, D. J. & Marioni, J. C. A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor. F1000Res 5, 2122 (2016).

    PubMed  PubMed Central  Google Scholar 

  216. Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 20, 296 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Bacher, R. et al. SCnorm: robust normalization of single-cell RNA-seq data. Nat. Methods 14, 584–586 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Duò, A., Robinson, M. D. & Soneson, C. A systematic performance evaluation of clustering methods for single-cell RNA-seq data. F1000Res 7, 1141 (2020).

    Article  PubMed Central  Google Scholar 

  219. Kobak, D. & Berens, P. The art of using t-SNE for single-cell transcriptomics. Nat. Commun. 10, 5416 (2019). Best practices on applying tSNE non-linear projections on scRNA-seq data sets.

    Article  PubMed  PubMed Central  Google Scholar 

  220. Becht, E. et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. 37, 38–44 (2019). Comparison of UMAP with respect to other non-linear projection methods when applied to scRNA-seq data sets.

    Article  CAS  Google Scholar 

  221. Jaitin, D. A. et al. Dissecting immune circuits by linking CRISPR-pooled screens with single-cell RNA-Seq. Cell 167, 1883–1896.e15 (2016).

    Article  CAS  PubMed  Google Scholar 

  222. Papalexi, E. et al. Characterizing the molecular regulation of inhibitory immune checkpoints with multimodal single-cell screens. Nat. Genet. 53, 322–331 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Yang, L. et al. scMAGeCK links genotypes with multiple phenotypes in single-cell CRISPR screens. Genome Biol. 21, 19 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Duan, B. et al. Model-based understanding of single-cell CRISPR screening. Nat. Commun. 10, 2233 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  225. Wang, R., Lin, D.-Y. & Jiang, Y. SCOPE: a normalization and copy-number estimation method for single-cell DNA sequencing. Cell Syst. 10, 445–452.e6 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  226. Zaccaria, S. & Raphael, B. J. Characterizing allele- and haplotype-specific copy numbers in single cells with CHISEL. Nat. Biotechnol. 39, 207–214 (2021).

    Article  CAS  PubMed  Google Scholar 

  227. Zafar, H., Wang, Y., Nakhleh, L., Navin, N. & Chen, K. Monovar: single-nucleotide variant detection in single cells. Nat. Methods 13, 505–507 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Dong, X. et al. Accurate identification of single-nucleotide variants in whole-genome-amplified single cells. Nat. Methods 14, 491–493 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Luquette, L. J., Bohrson, C. L., Sherman, M. A. & Park, P. J. Identification of somatic mutations in single cell DNA-seq using a spatial model of allelic imbalance. Nat. Commun. 10, 3908 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Singer, J., Kuipers, J., Jahn, K. & Beerenwinkel, N. Single-cell mutation identification via phylogenetic inference. Nat. Commun. 9, 5144 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  231. Mallory, X. F., Edrisi, M., Navin, N. & Nakhleh, L. Methods for copy number aberration detection from single-cell DNA-sequencing data. Genome Biol. 21, 208 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Gao, R. et al. Delineating copy number and clonal substructure in human tumors from single-cell transcriptomes. Nat. Biotechnol. 39, 599–608 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Patel, A. P. et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344, 1396–1401 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Petti, A. A. et al. A general approach for detecting expressed mutations in AML cells using single cell RNA-sequencing. Nat. Commun. 10, 3660 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  235. Vu, T. N. et al. Cell-level somatic mutation detection from single-cell RNA sequencing. Bioinformatics 35, 4679–4687 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Cuomo, A. S. E. et al. Optimizing expression quantitative trait locus mapping workflows for single-cell studies. Genome Biol. 22, 188 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Stubbington, M. J. T. et al. T cell fate and clonality inference from single-cell transcriptomes. Nat. Methods 13, 329–332 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  238. Lindeman, I. et al. BraCeR: B-cell-receptor reconstruction and clonality inference from single-cell RNA-seq. Nat. Methods 15, 563–565 (2018).

    Article  CAS  PubMed  Google Scholar 

  239. Song, L. et al. TRUST4: immune repertoire reconstruction from bulk and single-cell RNA-seq data. Nat. Methods 18, 627–630 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Upadhyay, A. A. et al. BALDR: a computational pipeline for paired heavy and light chain immunoglobulin reconstruction in single-cell RNA-seq data. Genome Med. 10, 20 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  241. Rizzetto, S. et al. B-cell receptor reconstruction from single-cell RNA-seq with VDJPuzzle. Bioinformatics 34, 2846–2847 (2018).

    Article  CAS  PubMed  Google Scholar 

  242. Borcherding, N., Bormann, N. L. & Kraus, G. scRepertoire: an R-based toolkit for single-cell immune receptor analysis. F1000Res 9, 47 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. McDavid, A., Gu, Y. & VonKaenel, E. CellaRepertorium: data structures, clustering and testing for single cell immune receptor repertoires (scRNAseq RepSeq/AIRR-seq). https://rdrr.io/bioc/CellaRepertorium (2021).

  244. Zhang, Z., Xiong, D., Wang, X., Liu, H. & Wang, T. Mapping the functional landscape of T cell receptor repertoires by single-T cell transcriptomics. Nat. Methods 18, 92–99 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Buenrostro, J. D. et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523, 486–490 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Wu, S. J. et al. Single-cell CUT&Tag analysis of chromatin modifications in differentiation and tumor progression. Nat. Biotechnol. 39, 819–824 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Grosselin, K. et al. High-throughput single-cell ChIP-seq identifies heterogeneity of chromatin states in breast cancer. Nat. Genet. 51, 1060–1066 (2019).

    Article  CAS  PubMed  Google Scholar 

  248. Clark, S. J. et al. Genome-wide base-resolution mapping of DNA methylation in single cells using single-cell bisulfite sequencing (scBS-seq). Nat. Protoc. 12, 534–547 (2017).

    Article  CAS  PubMed  Google Scholar 

  249. Slavov, N. Learning from natural variation across the proteomes of single cells. PLoS Biol. 20, e3001512 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Vistain, L. F. & Tay, S. Single-cell proteomics. Trends Biochem. Sci. 46, 661–672 (2021).

    Article  CAS  PubMed  Google Scholar 

  251. Perkel, J. M. Single-cell proteomics takes centre stage. Nature 597, 580–582 (2021).

    Article  CAS  PubMed  Google Scholar 

  252. Brinkerhoff, H., Kang, A. S. W., Liu, J., Aksimentiev, A. & Dekker, C. Multiple rereads of single proteins at single–amino acid resolution using nanopores. Science 374, 1509–1513 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Mimitou, E. P. et al. Scalable, multimodal profiling of chromatin accessibility, gene expression and protein levels in single cells. Nat. Biotechnol. 10, 1246–1258 (2021).

    Article  Google Scholar 

  254. Hücker, S. M. et al. Single-cell microRNA sequencing method comparison and application to cell lines and circulating lung tumor cells. Nat. Commun. 12, 4316 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  255. Gawronski, K. A. B. & Kim, J. Single cell transcriptomics of noncoding RNAs and their cell-specificity: Single cell transcriptomics of noncoding RNAs. WIREs RNA 8, e1433 (2017).

    Article  Google Scholar 

  256. Seydel, C. Single-cell metabolomics hits its stride. Nat. Methods 18, 1452–1456 (2021).

    Article  CAS  PubMed  Google Scholar 

  257. VanInsberghe, M., van den Berg, J., Andersson-Rolf, A., Clevers, H. & van Oudenaarden, A. Single-cell Ribo-seq reveals cell cycle-dependent translational pausing. Nature 597, 561–565 (2021).

    Article  CAS  PubMed  Google Scholar 

  258. Arrastia, M. V. et al. Single-cell measurement of higher-order 3D genome organization with scSPRITE. Nat. Biotechnol. 40, 64–73 (2022).

    Article  CAS  PubMed  Google Scholar 

  259. Zhang, R., Zhou, T. & Ma, J. Multiscale and integrative single-cell Hi-C analysis with Higashi. Nat. Biotechnol. 40, 254–261 (2022).

    Article  CAS  PubMed  Google Scholar 

  260. Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348, aaa6090 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  261. Rodriques, S. G. et al. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Vickovic, S. et al. High-definition spatial transcriptomics for in situ tissue profiling. Nat. Methods 16, 987–990 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Liu, B., Li, Y. & Zhang, L. Analysis and visualization of spatial transcriptomic data. Front. Genet. 12, 785290 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  264. Hu, J. et al. Statistical and machine learning methods for spatially resolved transcriptomics with histology. Comput. Struct. Biotechnol. J. 19, 3829–3841 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Zeng, Z., Li, Y., Li, Y. & Luo, Y. Statistical and machine learning methods for spatially resolved transcriptomics data analysis. Genome Biol. 23, 83 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  266. Palla, G., Fischer, D. S., Regev, A. & Theis, F. J. Spatial components of molecular tissue biology. Nat. Biotechnol. 40, 308–318 (2022).

    Article  CAS  PubMed  Google Scholar 

  267. Jiang, R., Sun, T., Song, D. & Li, J. J. Statistics or biology: the zero-inflation controversy about scRNA-seq data. Genome Biol. 23, 31 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Luecken, M. D. et al. Benchmarking atlas-level data integration in single-cell genomics. Nat. Methods 19, 41–50 (2022). Benchmark of data integration methods of scRNA-seq data sets.

    Article  CAS  PubMed  Google Scholar 

  269. Tran, H. T. N. et al. A benchmark of batch-effect correction methods for single-cell RNA sequencing data. Genome Biol. 21, 12 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Song, F., Chan, G. M. A. & Wei, Y. Flexible experimental designs for valid single-cell RNA-sequencing experiments allowing batch effects correction. Nat. Commun. 11, 3274 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902.e21 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Pliner, H. A., Shendure, J. & Trapnell, C. Supervised classification enables rapid annotation of cell atlases. Nat. Methods 16, 983–986 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Kiselev, V. Y., Yiu, A. & Hemberg, M. scmap: projection of single-cell RNA-seq data across data sets. Nat. Methods 15, 359–362 (2018).

    Article  CAS  PubMed  Google Scholar 

  274. Aran, D. et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat. Immunol. 20, 163–172 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Cortal, A., Martignetti, L., Six, E. & Rausell, A. Gene signature extraction and cell identity recognition at the single-cell level with Cell-ID. Nat. Biotechnol. 39, 1095–1102 (2021).

    Article  CAS  PubMed  Google Scholar 

  276. Qiu, X. et al. Reversed graph embedding resolves complex single-cell trajectories. Nat. Methods 14, 979–982 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Wolf, F. A. et al. PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome Biol. 20, 59 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  278. Street, K. et al. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genomics 19, 477 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  279. Velten, L. et al. Human haematopoietic stem cell lineage commitment is a continuous process. Nat. Cell Biol. 19, 271–281 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Schlitzer, A. et al. Identification of cDC1- and cDC2-committed DC progenitors reveals early lineage priming at the common DC progenitor stage in the bone marrow. Nat. Immunol. 16, 718–728 (2015).

    Article  CAS  PubMed  Google Scholar 

  281. La Manno, G. et al. RNA velocity of single cells. Nature 560, 494–498 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  282. Bergen, V., Lange, M., Peidli, S., Wolf, F. A. & Theis, F. J. Generalizing RNA velocity to transient cell states through dynamical modeling. Nat. Biotechnol. 38, 1408–1414 (2020).

    Article  CAS  PubMed  Google Scholar 

  283. Lange, M. et al. CellRank for directed single-cell fate mapping. Nat. Methods 19, 159–170 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Hänzelmann, S., Castelo, R. & Guinney, J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinforma. 14, 7 (2013).

    Article  Google Scholar 

  285. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Fan, J. et al. Characterizing transcriptional heterogeneity through pathway and gene set overdispersion analysis. Nat. Methods 13, 241–244 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. DeTomaso, D. et al. Functional interpretation of single cell similarity maps. Nat. Commun. 10, 4376 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  288. Wei, C.-J., Xu, X. & Lo, C. W. Connexins and cell signaling in development and disease. Annu. Rev. Cell Dev. Biol. 20, 811–838 (2004).

    Article  CAS  PubMed  Google Scholar 

  289. Noël, F. et al. Dissection of intercellular communication using the transcriptome-based framework ICELLNET. Nat. Commun. 12, 1089 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  290. Browaeys, R., Saelens, W. & Saeys, Y. NicheNet: modeling intercellular communication by linking ligands to target genes. Nat. Methods 17, 159–162 (2020).

    Article  CAS  PubMed  Google Scholar 

  291. Jin, S. et al. Inference and analysis of cell-cell communication using CellChat. Nat. Commun. 12, 1088 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Cabello-Aguilar, S. et al. SingleCellSignalR: inference of intercellular networks from single-cell transcriptomics. Nucleic Acids Res. 48, e55–e55 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Wang, S., Karikomi, M., MacLean, A. L. & Nie, Q. Cell lineage and communication network inference via optimization for single-cell transcriptomics. Nucleic Acids Res. 47, e66 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Dimitrov, D. et al. Comparison of methods and resources for cell-cell communication inference from single-cell RNA-Seq data. Nat. Commun. 13, 3224 (2022). A review of methods for inferring intercellular interactions from SC transcriptomics data sets.

    Article  PubMed  PubMed Central  Google Scholar 

  295. Zhang, Q. et al. Landscape and dynamics of single immune cells in hepatocellular carcinoma. Cell 179, 829–845.e20 (2019).

    Article  CAS  PubMed  Google Scholar 

  296. Wang, X., Park, J., Susztak, K., Zhang, N. R. & Li, M. Bulk tissue cell type deconvolution with multi-subject single-cell expression reference. Nat. Commun. 10, 380 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Erdmann-Pham, D. D., Fischer, J., Hong, J. & Song, Y. S. Likelihood-based deconvolution of bulk gene expression data using single-cell references. Genome Res. 31, 1794–1806 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  298. Wang, J., Roeder, K. & Devlin, B. Bayesian estimation of cell type-specific gene expression with prior derived from single-cell data. Genome Res. 31, 1807–1818 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  299. Sokolowski, D. J. et al. Single-cell mapper (scMappR): using scRNA-seq to infer the cell-type specificities of differentially expressed genes. NAR Genom. Bioinform. 3, lqab011 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  300. Newman, A. M. et al. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat. Biotechnol. 37, 773–782 (2019). This paper presents CIBERSORTx — a method to computationally infer cell-type-specific gene expression profiles and their relative proportions from bulk RNA-seq samples relying on scRNA-seq data sets as the reference for relevant cell types and their markers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Luca, B. A. et al. Atlas of clinically distinct cell states and ecosystems across human solid tumors. Cell 184, 5482–5496.e28 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Goldstein, L. D. et al. Massively parallel single-cell B-cell receptor sequencing enables rapid discovery of diverse antigen-reactive antibodies. Commun. Biol. 2, 304 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  303. Marks, C. & Deane, C. M. How repertoire data are changing antibody science. J. Biol. Chem. 295, 9823–9837 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Setliff, I. et al. High-throughput mapping of B cell receptor sequences to antigen specificity. Cell 179, 1636–1646.e15 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. Peng, L. et al. Monospecific and bispecific monoclonal SARS-CoV-2 neutralizing antibodies that maintain potency against B.1.617. Nat. Commun. 13, 1638 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Castellanos-Rueda, R., Di Roberto, R. B., Schlatter, F. S. & Reddy, S. T. Leveraging single-cell sequencing for chimeric antigen receptor T cell therapies. Trends Biotechnol. 39, 1308–1320 (2021). Review paper on how SC sequencing is helping to characterize and identify CAR-T cells.

    Article  CAS  PubMed  Google Scholar 

  307. Li, X. et al. Single-cell transcriptomic analysis reveals BCMA CAR-T cell dynamics in a patient with refractory primary plasma cell leukemia. Mol. Ther. 29, 645–657 (2021). Illustrative example of how scRNA-seq can be used to analyse the dynamics of CAR-T cells in a clinically successful case of relapsed or refractory primary plasma cell leukaemia.

    Article  CAS  PubMed  Google Scholar 

  308. Deng, Q. et al. Characteristics of anti-CD19 CAR T cell infusion products associated with efficacy and toxicity in patients with large B cell lymphomas. Nat. Med. 26, 1878–1887 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Chen, G. M. et al. Integrative bulk and single-cell profiling of premanufacture T-cell populations reveals factors mediating long-term persistence of CAR T-cell therapy. Cancer Discov. 11, 2186–2199 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Parker, K. R. et al. Single-cell analyses identify brain mural cells expressing CD19 as potential off-tumor targets for CAR-T immunotherapies. Cell 183, 126–142.e17 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. Jing, Y. et al. Expression of chimeric antigen receptor therapy targets detected by single-cell sequencing of normal cells may contribute to off-tumor toxicity. Cancer Cell 39, 1558–1559 (2021).

    Article  CAS  PubMed  Google Scholar 

  312. Wang, D. et al. CRISPR screening of CAR T cells and cancer stem cells reveals critical dependencies for cell-based therapies. Cancer Discov. 11, 1192–1211 (2021).

    Article  CAS  PubMed  Google Scholar 

  313. Legut, M. et al. A genome-scale screen for synthetic drivers of T cell proliferation. Nature 603, 728–735 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Kumar, N. et al. Rapid single cell evaluation of human disease and disorder targets using REVEAL: SingleCellTM. BMC Genomics 22, 5 (2021). Illustrative example of how the pharmaceutical industry is using publicly available SC resources internally.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. Lachmann, A. et al. Massive mining of publicly available RNA-seq data from human and mouse. Nat. Commun. 9, 1366 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  316. Collado-Torres, L. et al. Reproducible RNA-seq analysis using recount2. Nat. Biotechnol. 35, 319–321 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  317. Vivian, J. et al. Toil enables reproducible, open source, big biomedical data analyses. Nat. Biotechnol. 35, 314–316 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. Soneson, C. & Robinson, M. D. Bias, robustness and scalability in single-cell differential expression analysis. Nat. Methods 15, 255–261 (2018).

    Article  CAS  PubMed  Google Scholar 

  319. Stuart, T. & Satija, R. Integrative single-cell analysis. Nat. Rev. Genet. 20, 257–272 (2019).

    Article  CAS  PubMed  Google Scholar 

  320. Luecken, M. D. & Theis, F. J. Current best practices in single-cell RNA-seq analysis: a tutorial. Mol. Syst. Biol. 15, e8746 (2019). Provides best practices on analysing SC transcriptomics data sets.

    Article  PubMed  PubMed Central  Google Scholar 

  321. Cannoodt, R., Saelens, W., Deconinck, L. & Saeys, Y. Spearheading future omics analyses using dyngen, a multi-modal simulator of single cells. Nat. Commun. 12, 3942 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  322. Treppner, M. et al. Synthetic single cell RNA sequencing data from small pilot studies using deep generative models. Sci. Rep. 11, 9403 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  323. Zappia, L., Phipson, B. & Oshlack, A. Splatter: simulation of single-cell RNA sequencing data. Genome Biol. 18, 174 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  324. Saelens, W., Cannoodt, R., Todorov, H. & Saeys, Y. A comparison of single-cell trajectory inference methods. Nat. Biotechnol. 37, 547–554 (2019). A comprehensive review that compares trajectory inference methods for SC data sets and provides guidance on their limitations and usage.

    Article  CAS  PubMed  Google Scholar 

  325. Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  326. Mayr, C. H. et al. Integrative analysis of cell state changes in lung fibrosis with peripheral protein biomarkers. EMBO Mol. Med. 13, e12871 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  327. Nguyen, Q. H., Pervolarakis, N., Nee, K. & Kessenbrock, K. Experimental considerations for single-cell RNA sequencing approaches. Front. Cell Dev. Biol. 6, 108 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  328. Dal Molin, A. & Di Camillo, B. How to design a single-cell RNA-sequencing experiment: pitfalls, challenges and perspectives. Brief. Bioinform. 20, 1384–1394 (2019).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank I. Papatheodorou (Research Group Leader, EMBL-EBI), B. Kidd (Director, Bristol Myers Squibb (BMS)), R. Loos (Director, BMS) and M. Hall (Senior Scientific Officer, EMBL-EBI) for constructive criticism and proofreading of the original article before this revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Euphemia Mutasa-Gottgens.

Ethics declarations

Competing interests

N.K. is an employee and shareholder of BMS. M.M. is an employee and shareholder of GSK. B.V.d.S. is an employee and shareholder of UCB Pharma. M.K. is an employee and shareholder of GSK. J.H. is an employee of Boehringer Ingelheim Pharmaceuticals, Inc. B.N. is an employee of Eisai, Inc. J.S.L. is an employee and shareholder of Sanofi. Y.W. was previously a shareholder of BMS. J.P. was previously an employee and shareholder of Sanofi. J.W. is an employee of Pfizer. E.F. is a shareholder of Sanofi and Board Director of Pulmobiotics. A.L. is a GSK shareholder, has consulted for Astex Therapeutics, LifeArc and Syncona and has received research funding from Novo Nordisk and AstraZeneca. X.C. is a former employee and shareholder of AbbVie. E.M.-G., W.B. and J.M. declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Barcode

A short DNA sequence ‘tag’ to identify reads that originate from the same cell.

Biomarkers

Readouts used to classify biological states, often in the context of patient stratification.

Cell-type deconvolution

Estimation of the proportion of particular cell types in a bulk RNA sequencing sample, based on cell markers or a labelled single-cell expression matrix.

CRISPR screening

A pooled or arrayed screen of cells harbouring CRISPR-mediated gene edits.

Doublets

Sets of two (or more) cells mistakenly considered as single cells, owing to being captured and processed in the same droplet and thus with the same barcode in data.

Hashing

A labelling technique that attaches barcoded antibodies to cell surface proteins, allowing multiplexing of samples for single-cell sequencing, and subsequent disambiguation of sample of origin during analysis.

Metadata

A set of data that describe and give information about other data (Oxford dictionary). For example, patient or sample characteristics in an RNA sequencing experiment.

Seurat

A popular R package for the quality control, analysis and exploration of single-cell RNA sequencing data.

Target credentialling

Also called target qualification. Exploration of target quality more expansively than a straightforward target validation. May include contextually informed enquiries into biological characteristics such as network, pathway or interactome mapping, regulatory landscape or other investigations intended to either help rank target quality or inform on-target biology.

t-Distributed stochastic neighbour embedding

(t-SNE). A popular dimensionality reduction technique for the visualization of single-cell experiments.

Trajectory inference

Inference from single-cell data of the order of cells along a dynamic biological process (for example, developmental trajectory). Relies on the fact that a heterogeneous sample provides a snapshot view on a mixture of cells in different phases along the developmental or dynamic biological process. Also called ‘pseudo-time analysis’.

Uniform manifold approximation and projection

(UMAP). A popular dimensionality reduction technique for the visualization of single-cell experiments, with some advantages in preservation of global data structure and performance compared with t-distributed stochastic neighbour embedding.

Unique molecular identifier

(UMI). Reads with the same UMI are from the same mRNA molecule. UMIs help in the assessment of sequencing accuracy and precision.

Unsupervised clustering

Analysis grouping of similar samples together that does not require labelling or prior knowledge.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van de Sande, B., Lee, J.S., Mutasa-Gottgens, E. et al. Applications of single-cell RNA sequencing in drug discovery and development. Nat Rev Drug Discov 22, 496–520 (2023). https://doi.org/10.1038/s41573-023-00688-4

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41573-023-00688-4

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research