Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Correspondence
  • Published:

Trustworthy AI for safe medicines

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Hines, P. A., Herold, R., Pinheiro, L., Frias, Z. & Arlett, P. Artificial intelligence in European medicines regulation. Nat. Rev. Drug Discov. 22, 81–82 (2023).

    Article  CAS  PubMed  Google Scholar 

  2. Bate, A. & Luo, Y. Artificial intelligence and machine learning for safe medicines. Drug Saf. 45, 403–405 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kassekert, R. et al. Industry perspective on artificial intelligence/machine learning in pharmacovigilance. Drug Saf. 45, 439–448 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bates, D. W. How to regulate evolving AI health algorithms. Nat. Med. 29, 26 (2023).

    Article  CAS  PubMed  Google Scholar 

  5. Gerke, S., Babic, B., Evgeniou, T. & Cohen, I. G. The need for a system view to regulate artificial intelligence/machine learning-based software as medical device. npj Digit. Med. 3, 53 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Liu, X. et al. The medical algorithmic audit. Lancet Digit. Health 4, e384–e397 (2022).

    Article  CAS  PubMed  Google Scholar 

  7. Beam, A. L., Manrai, A. K. & Ghassemi, M. Challenges to the reproducibility of machine learning models in health care. JAMA 323, 305–306 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wang, S. V., Sreedhara, S. K. & Schneeweiss, S., REPEAT Initiative. Reproducibility of real-world evidence studies using clinical practice data to inform regulatory and coverage decisions. Nat. Commun. 13, 5126 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Platt, R. et al. The FDA Sentinel Initiative – an evolving national resource. N. Engl. J. Med. 379, 2091–2093 (2018).

    Article  PubMed  Google Scholar 

  10. Gebru, T. et al. Datasheets for datasets. Commun. ACM 64, 86–92 (2021).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Bate.

Ethics declarations

Competing interests

All authors are employees of GSK and hold GSK stock and stock options.

Peer review

Peer review information

Nature Reviews Drug Discovery thanks David Bates and Rajesh Ghosh for their contribution to the peer review of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stegmann, JU., Littlebury, R., Trengove, M. et al. Trustworthy AI for safe medicines. Nat Rev Drug Discov 22, 855–856 (2023). https://doi.org/10.1038/s41573-023-00769-4

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41573-023-00769-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing