Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Exerkines in health, resilience and disease

Abstract

The health benefits of exercise are well-recognized and are observed across multiple organ systems. These beneficial effects enhance overall resilience, healthspan and longevity. The molecular mechanisms that underlie the beneficial effects of exercise, however, remain poorly understood. Since the discovery in 2000 that muscle contraction releases IL-6, the number of exercise-associated signalling molecules that have been identified has multiplied. Exerkines are defined as signalling moieties released in response to acute and/or chronic exercise, which exert their effects through endocrine, paracrine and/or autocrine pathways. A multitude of organs, cells and tissues release these factors, including skeletal muscle (myokines), the heart (cardiokines), liver (hepatokines), white adipose tissue (adipokines), brown adipose tissue (baptokines) and neurons (neurokines). Exerkines have potential roles in improving cardiovascular, metabolic, immune and neurological health. As such, exerkines have potential for the treatment of cardiovascular disease, type 2 diabetes mellitus and obesity, and possibly in the facilitation of healthy ageing. This Review summarizes the importance and current state of exerkine research, prevailing challenges and future directions.

Key points

  • Although the benefits of exercise in enhancing health and treating disease are well-acknowledged, the molecular mechanisms underlying exercise-associated benefits remain ill-defined and are actively being investigated.

  • ‘Exerkines’ encompass a broad variety of signalling moieties released in response to acute and/or chronic exercise that exert their effects through endocrine, paracrine and/or autocrine pathways.

  • Exerkines can come in many forms, such as hormones, metabolites, proteins and nucleic acids; interest is increasing in moving beyond singular changes of specific factors to profiling exerkine alterations using ‘omics’ platforms.

  • There is burgeoning interest in the role of extracellular vesicles, which are membranous structures released from cells, in serving as important carriers of molecular signals and drivers of inter-organ crosstalk related to exercise.

  • Multiple organ systems, including the cardiometabolic system, nervous system and immune system, produce exerkines and are influenced by exerkines, which probably contributes to the pleiotropic and variable response to exercise.

  • Emerging research on exerkines suggests multiple promising avenues for translational research and therapeutic modulation to capture exercise-associated benefits; enhanced rigour in experimental design will facilitate comparison between studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The systemic effects of exercise.
Fig. 2: Examples of exerkines that affect the cardiometabolic system.
Fig. 3: Effects of exercise on the immune system.
Fig. 4: Effects of exercise on the nervous system.

Similar content being viewed by others

References

  1. Piercy, K. L. et al. The physical activity guidelines for Americans. J. Am. Med. Assoc. 320, 2020–2028 (2018).

    Article  Google Scholar 

  2. Katzmarzyk, P. T., Church, T. S., Craig, C. L. & Bouchard, C. Sitting time and mortality from all causes, cardiovascular disease, and cancer. Med. Sci. Sports Exerc. 41, 998–1005 (2009).

    Article  PubMed  Google Scholar 

  3. Ding, D. et al. The economic burden of physical inactivity: a global analysis of major non-communicable diseases. Lancet 388, 1311–1324 (2016).

    Article  PubMed  Google Scholar 

  4. Trabelsi, K. et al. Globally altered sleep patterns and physical activity levels by confinement in 5056 individuals: ECLB COVID-19 international online survey. Biol. Sport. 38, 495–506 (2021).

    Article  PubMed  Google Scholar 

  5. Sallis, R. et al. Physical inactivity is associated with a higher risk for severe COVID-19 outcomes: a study in 48 440 adult patients. Br. J. Sports Med. 55, 1099–1105 (2021).

    Article  PubMed  Google Scholar 

  6. Cullen, T., Thomas, A. W., Webb, R. & Hughes, M. G. Interleukin-6 and associated cytokine responses to an acute bout of high-intensity interval exercise: the effect of exercise intensity and volume. Appl. Physiol. Nutr. Metab. 41, 803–808 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Nicolini, C. et al. A single bout of high-intensity interval exercise increases corticospinal excitability, brain-derived neurotrophic factor, and uncarboxylated osteolcalcin in sedentary, healthy males. Neuroscience 437, 242–255 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Pate, R. R. et al. Physical activity and public health. A recommendation from the Centers for Disease Control and Prevention and the American College of Sports Medicine. J. Am. Med. Assoc. 273, 402–407 (1995).

    Article  CAS  Google Scholar 

  9. Bull, F. C. et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 54, 1451–1462 (2020).

    Article  PubMed  Google Scholar 

  10. Troiano, R. P. et al. Physical activity in the United States measured by accelerometer. Med. Sci. Sports Exerc. 40, 181–188 (2008).

    Article  PubMed  Google Scholar 

  11. Safdar, A., Saleem, A. & Tarnopolsky, M. A. The potential of endurance exercise-derived exosomes to treat metabolic diseases. Nat. Rev. Endocrinol. 12, 504–517 (2016). This paper coined the concept of ‘exerkines’, molecules that are altered in response to acute and chronic exercise, and mediate the systemic adaptations to exercise.

    Article  CAS  PubMed  Google Scholar 

  12. Ransom, F. A contribution to the study of muscle-enzymes. J. Physiol. 40, 1–16 (1910).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Goldstein, M. S. Humoral nature of the hypoglycemic factor of muscular work. Diabetes 10, 232–234 (1961).

    Article  CAS  PubMed  Google Scholar 

  14. Janssen, I., Heymsfield, S. B., Wang, Z. & Ross, R. Skeletal muscle mass and distribution in 468 men and women aged 18–88 yr. J. Appl. Physiol. 89, 81–88 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Pedersen, B. K. Muscle as a secretory organ. Compr. Physiol. 3, 1337–1362 (2013).

    Article  PubMed  Google Scholar 

  16. Steensberg, A. et al. Production of interleukin-6 in contracting human skeletal muscles can account for the exercise-induced increase in plasma interleukin-6. J. Physiol. 529, 237–242 (2000). A key paper demonstrating that IL-6 is secreted by contracting muscle, identifying IL-6 as the first ‘myokine’.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Baggish, A. L. et al. Dynamic regulation of circulating microRNA during acute exhaustive exercise and sustained aerobic exercise training. J. Physiol. 589, 3983–3994 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vechetti, I. J. Jr, Valentino, T., Mobley, C. B. & McCarthy, J. J. The role of extracellular vesicles in skeletal muscle and systematic adaptation to exercise. J. Physiol. 599, 845–861 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Sanford, J. A. et al. Molecular Transducers of Physical Activity Consortium (MoTrPAC): mapping the dynamic responses to exercise. Cell 181, 1464–1474 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. National Heart, Lung, and Blood Institute. NHLBI and NIDDK Workshop: exerkines in health, resilience, and diseases executive summary, https://www.nhlbi.nih.gov/events/2020/nhlbi-and-niddk-workshop-exerkines-health-resilience-and-diseases-executive-summary (2020).

  21. Gabriel, B. M. & Zierath, J. R. Circadian rhythms and exercise–re-setting the clock in metabolic disease. Nat. Rev. Endocrinol. 15, 197–206 (2019).

    Article  PubMed  Google Scholar 

  22. Parr, E. B., Heilbronn, L. K. & Hawley, J. A. A time to eat and a time to exercise. Exerc. Sport. Sci. Rev. 48, 4–10 (2020).

    Article  PubMed  Google Scholar 

  23. van Loon, L. J. et al. Influence of prolonged endurance cycling and recovery diet on intramuscular triglyceride content in trained males. Am. J. Physiol. Endocrinol. Metab. 285, E804–E811 (2003).

    Article  PubMed  Google Scholar 

  24. Sato, S. et al. Atlas of exercise metabolism reveals time-dependent signatures of metabolic homeostasis. Cell Metab. 34, 329–345.e8 (2022). Using a mouse model, this paper presents a detailed atlas of the response to a single bout of exercise at different times, highlighting the influence of exercise timing on tissue changes and exerkine secretion.

    Article  CAS  PubMed  Google Scholar 

  25. Bouchard, C. et al. Familial aggregation of V˙O2max response to exercise training: results from the HERITAGE Family Study. J. Appl. Physiol. 87, 1003–1008 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Bouchard, C. et al. Adverse metabolic response to regular exercise: is it a rare or common occurrence? PLoS ONE 7, e37887 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Leuchtmann, A. B., Adak, V., Dilbaz, S. & Handschin, C. The role of the skeletal muscle secretome in mediating endurance and resistance training adaptations. Front. Physiol. 12, 709807 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wahren, J., Felig, P., Ahlborg, G. & Jorfeldt, L. Glucose metabolism during leg exercise in man. J. Clin. Invest. 50, 2715–2725 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Horowitz, J. F. & Klein, S. Lipid metabolism during endurance exercise. Am. J. Clin. Nutr. 72, 558s–563s (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Ostrowski, K., Rohde, T., Asp, S., Schjerling, P. & Pedersen, B. K. Pro- and anti-inflammatory cytokine balance in strenuous exercise in humans. J. Physiol. 515, 287–291 (1999). One of the earliest papers to examine the effect of acute strenuous exercise, marathon running, on plasma concentrations of pro-inflammatory and anti-inflammatory cytokines.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Contrepois, K. et al. Molecular choreography of acute exercise. Cell 181, 1112–1130.e16 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Keller, C. et al. Effect of exercise, training, and glycogen availability on IL-6 receptor expression in human skeletal muscle. J. Appl. Physiol. 99, 2075–2079 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Reuter, J. A., Spacek, D. V. & Snyder, M. P. High-throughput sequencing technologies. Mol. Cell 58, 586–597 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Safdar, A. & Tarnopolsky, M. A. Exosomes as mediators of the systemic adaptations to endurance exercise. Cold Spring Harb. Perspect. Med. 8, a029827 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Liangsupree, T., Multia, E. & Riekkola, M.-L. Modern isolation and separation techniques for extracellular vesicles. J. Chromatogr. A 1636, 461773 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. Artoni, A. et al. Residual platelets are the main determinants of microparticles count in frozen-thawed plasma. Thrombosis Res. 130, 561–562 (2012).

    Article  CAS  Google Scholar 

  37. Vanderboom, P. M. et al. A size-exclusion-based approach for purifying extracellular vesicles from human plasma. Cell Rep. Methods 1, 100055 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Giudice, J. & Taylor, J. M. Muscle as a paracrine and endocrine organ. Curr. Opin. Pharmacol. 34, 49–55 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Watt, M. J., Miotto, P. M., De Nardo, W. & Montgomery, M. K. The liver as an endocrine organ–linking NAFLD and insulin resistance. Endocr. Rev. 40, 1367–1393 (2019).

    Article  PubMed  Google Scholar 

  40. Kjær, M., Secher, N. H. & Galbo, H. Physical stress and catecholamine release. Baillières Clin. Endocrinol. Metab. 1, 279–298 (1987).

    Article  PubMed  Google Scholar 

  41. Nalbandian, M. & Takeda, M. Lactate as a signaling molecule that regulates exercise-induced adaptations. Biology 5, 38 (2016).

    Article  PubMed Central  Google Scholar 

  42. Takahashi, H. et al. TGF-β2 is an exercise-induced adipokine that regulates glucose and fatty acid metabolism. Nat. Metab. 1, 291–303 (2019). This paper demonstrated that TGFβ2 is secreted from adipose tissue in response to exercise and improves glucose tolerance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Subbotina, E. et al. Musclin is an activity-stimulated myokine that enhances physical endurance. Proc. Natl Acad. Sci. USA 112, 16042–16047 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. McPherron, A. C., Lawler, A. M. & Lee, S. J. Regulation of skeletal muscle mass in mice by a new TGF-p superfamily member. Nature 387, 83–90 (1997). This is a key paper describing myostatin (GDF8), which inhibits muscle growth.

    Article  CAS  PubMed  Google Scholar 

  45. Jensen, L., Bangsbo, J. & Hellsten, Y. Effect of high intensity training on capillarization and presence of angiogenic factors in human skeletal muscle. J. Physiol. 557, 571–582 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Richardson, R. S. et al. Exercise adaptation attenuates VEGF gene expression in human skeletal muscle. Am. J. Physiol. Heart Circ. Physiol. 279, H772–H778 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Kim, I. et al. Angiopoietin-1 regulates endothelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal transduction pathway. Circ. Res. 86, 24–29 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Frydelund-Larsen, L. et al. Exercise induces interleukin-8 receptor (CXCR2) expression in human skeletal muscle. Exp. Physiol. 92, 233–240 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Ding, Y. H. et al. Cerebral angiogenesis and expression of angiogenic factors in aging rats after exercise. Curr. Neurovasc Res. 3, 15–23 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Pedersen, B. K. Muscles and their myokines. J. Exp. Biol. 214, 337–346 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. McConell, G. K., Rattigan, S., Lee-Young, R. S., Wadley, G. D. & Merry, T. L. Skeletal muscle nitric oxide signaling and exercise: a focus on glucose metabolism. Am. J. Physiol. Endocrinol. Metab. 303, E301–E307 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Tejero, J., Shiva, S. & Gladwin, M. T. Sources of vascular nitric oxide and reactive oxygen species and their regulation. Physiol. Rev. 99, 311–379 (2019).

    Article  CAS  PubMed  Google Scholar 

  53. Koliatsos, V. E., Clatterbuck, R. E., Winslow, J. W., Cayouette, M. H. & Price, D. L. Evidence that brain-derived neurotrophic factor is a trophic factor for motor neurons in vivo. Neuron 10, 359–367 (1993).

    Article  CAS  PubMed  Google Scholar 

  54. Knudsen, J. G. et al. Skeletal muscle IL-6 regulates muscle substrate utilization and adipose tissue metabolism during recovery from an acute bout of exercise. PLoS ONE 12, e0189301 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Roberts, L. D. et al. β-Aminoisobutyric acid induces browning of white fat and hepatic β-oxidation and is inversely correlated with cardiometabolic risk factors. Cell Metab. 19, 96–108 (2014). Using a mouse model, this paper demonstrated that a myokine, BAIBA, can ‘brown’ WAT to improve glucose homeostasis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fisher, F. M. et al. FGF21 regulates PGC-1α and browning of white adipose tissues in adaptive thermogenesis. Genes Dev. 26, 271–281 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nielsen, A. R. et al. Association between interleukin-15 and obesity: interleukin-15 as a potential regulator of fat mass. J. Clin. Endocrinol. Metab. 93, 4486–4493 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Yamauchi, T. et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat. Med. 8, 1288–1295 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Kitase, Y. et al. β-aminoisobutyric Acid, l-BAIBA, is a muscle-derived osteocyte survival factor. Cell Rep. 22, 1531–1544 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Weitzmann, M. N., Roggia, C., Toraldo, G., Weitzmann, L. & Pacifici, R. Increased production of IL-7 uncouples bone formation from bone resorption during estrogen deficiency. J. Clin. Invest. 110, 1643–1650 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Dankbar, B. et al. Myostatin is a direct regulator of osteoclast differentiation and its inhibition reduces inflammatory joint destruction in mice. Nat. Med. 21, 1085–1090 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. Watanabe-Takano, H. et al. Mechanical load regulates bone growth via periosteal osteocrin. Cell Rep. 36, 109380 (2021).

    Article  CAS  PubMed  Google Scholar 

  63. Melouane, A., Yoshioka, M., Kanzaki, M. & St-Amand, J. Sparc, an EPS-induced gene, modulates the extracellular matrix and mitochondrial function via ILK/AMPK pathways in C2C12 cells. Life Sci. 229, 277–287 (2019).

    Article  CAS  PubMed  Google Scholar 

  64. Heinemeier, K. M., Bjerrum, S. S., Schjerling, P. & Kjaer, M. Expression of extracellular matrix components and related growth factors in human tendon and muscle after acute exercise. Scand. J. Med. Sci. Sports 23, e150–e161 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Kim, J. & Lee, J. Role of transforming growth factor-β in muscle damage and regeneration: focused on eccentric muscle contraction. J. Exerc. Rehabil. 13, 621–626 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Imai, T. et al. Identification and molecular characterization of fractalkine receptor CX(3)CR1, which mediates both leukocyte migration and adhesion. Cell 91, 521–530 (1997).

    Article  CAS  PubMed  Google Scholar 

  67. Gao, Y. & Galis, Z. S. Exploring the role of endothelial cell resilience in cardiovascular health and disease. Arterioscler. Thromb. Vasc. Biol. 41, 179–185 (2020).

    PubMed  Google Scholar 

  68. Cullberg, K. B. et al. Effect of weight loss and exercise on angiogenic factors in the circulation and in adipose tissue in obese subjects. Obesity 21, 454–460 (2013).

    Article  CAS  PubMed  Google Scholar 

  69. Gavin, T. P., Drew, J. L., Kubik, C. J., Pofahl, W. E. & Hickner, R. C. Acute resistance exercise increases skeletal muscle angiogenic growth factor expression. Acta Physiol. 191, 139–146 (2007).

    Article  CAS  Google Scholar 

  70. Catoire, M., Mensink, M., Kalkhoven, E., Schrauwen, P. & Kersten, S. Identification of human exercise-induced myokines using secretome analysis. Physiol. Genomics 46, 256–267 (2014).

    Article  CAS  PubMed  Google Scholar 

  71. Wong, B. W. C., Wong, D. & McManus, B. M. Characterization of fractalkine (CX3CL1) and CX3CR1 in human coronary arteries with native atherosclerosis, diabetes mellitus, and transplant vascular disease. Cardiovasc. Pathol. 11, 332–338 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Keihanian, A., Arazi, H. & Kargarfard, M. Effects of aerobic versus resistance training on serum fetuin-A, fetuin-B, and fibroblast growth factor-21 levels in male diabetic patients. Physiol. Int. 106, 70–80 (2019).

    Article  CAS  PubMed  Google Scholar 

  73. He, Z. et al. Myokine response to high-intensity interval vs. resistance exercise: an individual approach. Front. Physiol. 9, 1735 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Nieman, D. C. et al. Cytokine changes after a marathon race. J. Appl. Physiol. 91, 109–114 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Otaka, N. et al. Myonectin is an exercise-induced myokine that protects the heart from ischemia-reperfusion injury. Circ. Res. 123, 1326–1338 (2018).

    Article  CAS  PubMed  Google Scholar 

  76. Fabel, K. et al. VEGF is necessary for exercise-induced adult hippocampal neurogenesis. Eur. J. Neurosci. 18, 2803–2812 (2003).

    Article  PubMed  Google Scholar 

  77. Kim, K. H. et al. Acute exercise induces FGF21 expression in mice and in healthy humans. PLoS ONE 8, e63517 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Pedersen, B. K. & Febbraio, M. A. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat. Rev. Endocrinol. 8, 457–465 (2012).

    Article  CAS  PubMed  Google Scholar 

  79. Catoire, M. et al. Fatty acid-inducible ANGPTL4 governs lipid metabolic response to exercise. Proc. Natl Acad. Sci. USA 111, E1043–E1052 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Laurens, C. et al. Growth and differentiation factor 15 is secreted by skeletal muscle during exercise and promotes lipolysis in humans. JCI Insight 5, e131870 (2020).

    Article  PubMed Central  Google Scholar 

  81. Wedell-Neergaard, A.-S. et al. Exercise-induced changes in visceral adipose tissue mass are regulated by IL-6 signaling: a randomized controlled trial. Cell Metab. 29, 844–855.e3 (2019).

    Article  CAS  PubMed  Google Scholar 

  82. Little, H. C. et al. Myonectin deletion promotes adipose fat storage and reduces liver steatosis. FASEB J. 33, 8666–8687 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Becher, T. et al. Brown adipose tissue is associated with cardiometabolic health. Nat. Med. 27, 58–65 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Boström, P. et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481, 463–468 (2012). The first paper to describe irisin, a PGC1α-dependent myokine, that drives ‘browning’ of WAT in an animal model; the extent to which these results might apply to humans remains under investigation.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Terada, S. et al. Effects of low-intensity prolonged exercise on PGC-1 mRNA expression in rat epitrochlearis muscle. Biochem. Biophys. Res. Commun. 296, 350–354 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Pilegaard, H., Saltin, B. & Neufer, P. D. Exercise induces transient transcriptional activation of the PGC-1α gene in human skeletal muscle. J. Physiol. 546, 851–858 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Fox, J. et al. Effect of an acute exercise bout on immediate post-exercise irisin concentration in adults: a meta-analysis. Scand. J. Med. Sci. Sports 28, 16–28 (2018).

    Article  CAS  PubMed  Google Scholar 

  88. Qiu, S. et al. Chronic exercise training and circulating irisin in adults: a meta-analysis. Sports Med. 45, 1577–1588 (2015).

    Article  PubMed  Google Scholar 

  89. Vosselman, M. J. et al. Low brown adipose tissue activity in endurance-trained compared with lean sedentary men. Int. J. Obes. 39, 1696–1702 (2015).

    Article  CAS  Google Scholar 

  90. Tsiloulis, T. et al. No evidence of white adipocyte browning after endurance exercise training in obese men. Int. J. Obes. 42, 721–727 (2017).

    Article  Google Scholar 

  91. Stanford, K. I. et al. 12,13-diHOME: an exercise-induced lipokine that increases skeletal muscle fatty acid uptake. Cell Metab. 27, 1357–1357 (2018). This paper demonstrated that levels of a lipokine produced from brown adipose tissue increase with acute and chronic training to affect white adipose tissue lipolysis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Vasan, S. K. et al. The proposed systemic thermogenic metabolites succinate and 12,13-diHOME are inversely associated with adiposity and related metabolic traits: evidence from a large human cross-sectional study. Diabetologia 62, 2079–2087 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Pinckard, K. M. et al. A novel endocrine role for the BAT-released lipokine 12,13-diHOME to mediate cardiac function. Circulation 143, 145–159 (2021).

    Article  CAS  PubMed  Google Scholar 

  94. Besse-Patin, A. et al. Effect of endurance training on skeletal muscle myokine expression in obese men: identification of apelin as a novel myokine. Int. J. Obes. 38, 707–713 (2014).

    Article  CAS  Google Scholar 

  95. Kwak, S. E. et al. Effects of exercise-induced apelin on muscle function and cognitive function in aged mice. Exp. Gerontol. 127, 110710 (2019).

    Article  CAS  PubMed  Google Scholar 

  96. Vinel, C. et al. The exerkine apelin reverses age-associated sarcopenia. Nat. Med. 24, 1360–1371 (2018).

    Article  CAS  PubMed  Google Scholar 

  97. Sargeant, J. A. et al. The influence of adiposity and acute exercise on circulating hepatokines in normal-weight and overweight/obese men. Appl. Physiol. Nutr. Metab. 43, 482–490 (2018).

    Article  CAS  PubMed  Google Scholar 

  98. Seo, M. W. et al. Effects of 16 weeks of resistance training on muscle quality and muscle growth factors in older adult women with sarcopenia: a randomized controlled trial. Int. J. Env. Res. Public Health 18, 6762 (2021).

    Article  CAS  Google Scholar 

  99. Domin, R. et al. Effect of various exercise regimens on selected exercise-induced cytokines in healthy people. Int. J. Env. Res. Public Health 18, 1261 (2021).

    Article  CAS  Google Scholar 

  100. Peppler, W. T. et al. Regulation of hepatic follistatin expression at rest and during exercise in mice. Med. Sci. Sports Exerc. 51, 1116–1125 (2019).

    Article  CAS  PubMed  Google Scholar 

  101. Malin, S. K., del Rincon, J. P., Huang, H. & Kirwan, J. P. Exercise-induced lowering of fetuin-A may increase hepatic insulin sensitivity. Med. Sci. Sports Exerc. 46, 2085–2090 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Haugen, F. et al. IL-7 is expressed and secreted by human skeletal muscle cells. Am. J. Physiol. Cell Physiol. 298, C807–C816 (2010).

    Article  CAS  PubMed  Google Scholar 

  103. Broholm, C. et al. LIF is a contraction-induced myokine stimulating human myocyte proliferation. J. Appl. Physiol. 111, 251–259 (2011).

    Article  CAS  PubMed  Google Scholar 

  104. Rønning, S. B. et al. Syndecan-4 regulates muscle differentiation and is internalized from the plasma membrane during myogenesis. PLoS One 10, e0129288 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Takahashi, H., Kotani, K., Tanaka, K., Egucih, Y. & Anzai, K. Therapeutic approaches to nonalcoholic fatty liver disease: exercise intervention and related mechanisms. Front. Endocrinol. 9, 588 (2018).

    Article  Google Scholar 

  106. Keipert, S. et al. Skeletal muscle mitochondrial uncoupling drives endocrine cross-talk through the induction of FGF21 as a myokine. Am. J. Physiol. Endocrinol. Metab. 306, E469–E482 (2014).

    Article  CAS  PubMed  Google Scholar 

  107. Febbraio, M. A. et al. Exercise induces hepatosplanchnic release of heat shock protein 72 in humans. J. Physiol. 544, 957–962 (2002). Using sophisticated arterial-venous sampling techniques, this paper demonstrated that the splanchnic tissue bed, rather than the muscle, releases HSP72 during acute exercise in humans.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Mailing, L. J., Allen, J. M., Buford, T. W., Fields, C. J. & Woods, J. A. Exercise and the gut microbiome: a review of the evidence, potential mechanisms, and implications for human health. Exerc. Sport. Sci. Rev. 47, 75–85 (2019).

    Article  PubMed  Google Scholar 

  109. Allen, J. M. et al. Exercise alters gut microbiota composition and function in lean and obese humans. Med. Sci. Sports Exerc. 50, 747–757 (2018).

    Article  PubMed  Google Scholar 

  110. Packer, N. & Hoffman-Goetz, L. Exercise training reduces inflammatory mediators in the intestinal tract of healthy older adult mice. Can. J. Aging 31, 161–171 (2012).

    Article  PubMed  Google Scholar 

  111. van Wijck, K. et al. Exercise-induced splanchnic hypoperfusion results in gut dysfunction in healthy men. PLoS ONE 6, e22366 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Meissner, M. et al. Voluntary wheel running increases bile acid as well as cholesterol excretion and decreases atherosclerosis in hypercholesterolemic mice. Atherosclerosis 218, 323–329 (2011).

    Article  CAS  PubMed  Google Scholar 

  113. Jung, T. W. et al. BAIBA attenuates insulin resistance and inflammation induced by palmitate or a high fat diet via an AMPK–PPARδ-dependent pathway in mice. Diabetologia 58, 2096–2105 (2015).

    Article  CAS  PubMed  Google Scholar 

  114. Lee, Y. S. et al. The fractalkine/CX3CR1 system regulates β cell function and insulin secretion. Cell 153, 413–425 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Gerst, F. et al. Metabolic crosstalk between fatty pancreas and fatty liver: effects on local inflammation and insulin secretion. Diabetologia 60, 2240–2251 (2017).

    Article  CAS  PubMed  Google Scholar 

  116. Tao, R. et al. Inactivating hepatic follistatin alleviates hyperglycemia. Nat. Med. 24, 1058–1069 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Zhang, D., Xie, T. & Leung, P. S. Irisin ameliorates glucolipotoxicity-associated β-cell dysfunction and apoptosis via AMPK signaling and anti-inflammatory actions. Cell Physiol. Biochem. 51, 924–937 (2018).

    Article  CAS  PubMed  Google Scholar 

  118. Lang Lehrskov, L. et al. Interleukin-6 delays gastric emptying in humans with direct effects on glycemic control. Cell Metab. 27, 1201–1211.e3 (2018).

    Article  CAS  PubMed  Google Scholar 

  119. Ellingsgaard, H. et al. Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells. Nat. Med. 17, 1481–1489 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Carey, A. L. et al. Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase. Diabetes 55, 2688–2697 (2006).

    Article  CAS  PubMed  Google Scholar 

  121. van Hall, G. et al. Interleukin-6 stimulates lipolysis and fat oxidation in humans. J. Clin. Endocrinol. Metab. 88, 3005–3010 (2003).

    Article  PubMed  Google Scholar 

  122. Benatti, F. B. & Pedersen, B. K. Exercise as an anti-inflammatory therapy for rheumatic diseases–myokine regulation. Nat. Rev. Rheumatol. 11, 86–97 (2015).

    Article  CAS  PubMed  Google Scholar 

  123. Pedersen, L. et al. Voluntary running suppresses tumor growth through epinephrine- and IL-6-dependent NK cell mobilization and redistribution. Cell Metab. 23, 554–562 (2016).

    Article  CAS  PubMed  Google Scholar 

  124. Pedersen, B. K. & Toft, A. D. Effects of exercise on lymphocytes and cytokines. Br. J. Sports Med. 34, 246–251 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Steensberg, A., Fischer, C. P., Keller, C., Møller, K. & Pedersen, B. K. IL-6 enhances plasma IL-1ra, IL-10, and cortisol in humans. Am. J. Physiol. Endocrinol. Metab. 285, E433–E437 (2003).

    Article  CAS  PubMed  Google Scholar 

  126. Dinarello, C. A. The interleukin-1 family: 10 years of discovery. FASEB J. 8, 1314–1325 (1994).

    Article  CAS  PubMed  Google Scholar 

  127. de Waal Malefyt, R., Abrams, J., Bennett, B., Figdor, C. G. & de Vries, J. E. Interleukin 10 (IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes. J. Exp. Med. 174, 1209–1220 (1991).

    Article  PubMed  Google Scholar 

  128. Starkie, R., Ostrowski, S. R., Jauffred, S., Febbraio, M. & Pedersen, B. K. Exercise and IL-6 infusion inhibit endotoxin-induced TNF-α production in humans. FASEB J. 17, 884–886 (2003). An important paper demonstrating that increasing IL-6 either by exercise or by infusion blunts the inflammatory effect of TNF.

    Article  CAS  PubMed  Google Scholar 

  129. Moore, S. C. et al. Association of leisure-time physical activity with risk of 26 types of cancer in 1.44 million adults. JAMA Intern. Med. 176, 816–825 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Rundqvist, H. et al. Cytotoxic T-cells mediate exercise-induced reductions in tumor growth. eLife 9, e59996 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Matsuo, K. et al. A mechanism underlying preventive effect of high-intensity training on colon cancer. Med. Sci. Sports Exerc. 49, 1805–1816 (2017).

    Article  PubMed  Google Scholar 

  132. Aoi, W. et al. A novel myokine, secreted protein acidic and rich in cysteine (SPARC), suppresses colon tumorigenesis via regular exercise. Gut 62, 882–889 (2013).

    Article  CAS  PubMed  Google Scholar 

  133. Strömberg, A. et al. CX3CL1–a macrophage chemoattractant induced by a single bout of exercise in human skeletal muscle. Am. J. Physiol. Regul. Integr. Comp. Physiol. 310, R297–R304 (2016).

    Article  PubMed  Google Scholar 

  134. Rao, R. R. et al. Meteorin-like is a hormone that regulates immune-adipose interactions to increase beige fat thermogenesis. Cell 157, 1279–1291 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Kang, K. et al. Adipocyte-derived Th2 cytokines and myeloid PPARδ regulate macrophage polarization and insulin sensitivity. Cell Metab. 7, 485–495 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Knudsen, N. H. et al. Interleukin-13 drives metabolic conditioning of muscle to endurance exercise. Science 368, eaat3987 (2020). This paper showed that type 2 innate lymphoid cells (ILC2s) in skeletal muscle secrete IL-13 to affect the metabolic adaptation to exercise training.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Brestoff, J. R. et al. Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity. Nature 519, 242–246 (2015).

    Article  CAS  PubMed  Google Scholar 

  138. Valenzuela, P. L. et al. Exercise benefits on Alzheimer’s disease: state-of-the-science. Ageing Res. Rev. 62, 101108 (2020).

    Article  CAS  PubMed  Google Scholar 

  139. Etnier, J. L., Shih, C.-H. & Piepmeier, A. T. in Exercise-Cognition Interaction (ed. McMorris, T.) 29–42 (Academic Press, 2016).

  140. Voss, M. W. et al. Exercise and hippocampal memory systems. Trends Cogn. Sci. 23, 318–333 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Etnier, J. L. et al. The influence of physical fitness and exercise upon cognitive functioning: a meta-analysis. J. Sport. Exerc. Psychol. 19, 249–277 (1997).

    Article  Google Scholar 

  142. Colcombe, S. & Kramer, A. F. Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol. Sci. 14, 125–130 (2003).

    Article  PubMed  Google Scholar 

  143. Neylan, T. C. Memory and the medial temporal lobe. J. Neuropsychiatry Clin. Neurosci. 12, 103 (2000).

    Article  Google Scholar 

  144. Erickson, K. I. et al. Exercise training increases size of hippocampus and improves memory. Proc. Natl Acad. Sci. USA 108, 3017–3022 (2011). This was a randomized controlled trial in older adults that showed that chronic exercise training increases hippocampal size and improves memory function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Gaitán, J. M. et al. Effects of aerobic exercise training on systemic biomarkers and cognition in late middle-aged adults at risk for Alzheimer’s disease. Front. Endocrinol. 12, 660181 (2021).

    Article  Google Scholar 

  146. Liu, P. Z. & Nusslock, R. Exercise-mediated neurogenesis in the hippocampus via BDNF. Front. Neurosci. 12, 52 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Vivar, C. & van Praag, H. Running changes the brain: the long and the short of it. Physiology 32, 410–424 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Horowitz, A. M. et al. Blood factors transfer beneficial effects of exercise on neurogenesis and cognition to the aged brain. Science 369, 167–173 (2020). This paper demonstrated that transfer of plasma from exercised aged mice to sedentary aged mice can confer benefits on the ageing brain, including improvements in cognitive function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. De Miguel, Z. et al. Exercise plasma boosts memory and dampens brain inflammation via clusterin. Nature 600, 494–499 (2021). This paper demonstrated that plasma transfer from exercised young mice to sedentary young mice reduces brain inflammation and improves cognitive function, supporting the potential of transferable anti-inflammatory exerkines in improving brain function.

    Article  PubMed  Google Scholar 

  150. Agudelo, L. Z. et al. Skeletal muscle PGC-1α1 modulates kynurenine metabolism and mediates resilience to stress-induced depression. Cell 159, 33–45 (2014).

    Article  CAS  PubMed  Google Scholar 

  151. Yau, S. Y. et al. Physical exercise-induced hippocampal neurogenesis and antidepressant effects are mediated by the adipocyte hormone adiponectin. Proc. Natl Acad. Sci. USA 111, 15810–15815 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Wrann, C. D. et al. Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway. Cell Metab. 18, 649–659 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Fu, Y. C., Luo, N. L., Klein, R. L. & Garvey, W. T. Adiponectin promotes adipocyte differentiation, insulin sensitivity, and lipid accumulation. J. Lipid Res. 46, 1369–1379 (2005).

    Article  CAS  PubMed  Google Scholar 

  154. Schön, M. et al. Effects of running on adiponectin, insulin and cytokines in cerebrospinal fluid in healthy young individuals. Sci. Rep. 9, 1959 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Lourenco, M. V. et al. Exercise-linked FNDC5/irisin rescues synaptic plasticity and memory defects in Alzheimer’s models. Nat. Med. 25, 165–175 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Islam, M. R. et al. Exercise hormone irisin is a critical regulator of cognitive function. Nat. Metab. 3, 1058–1070 (2021).

    Article  CAS  PubMed  Google Scholar 

  157. Moon, H. Y. et al. Running-induced systemic cathepsin B secretion is associated with memory function. Cell Metab. 24, 332–340 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Naito, A. T. et al. Complement C1q activates canonical Wnt signaling and promotes aging-related phenotypes. Cell 149, 1298–1313 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Baker, S. K. et al. Blood-derived plasminogen drives brain inflammation and plaque deposition in a mouse model of Alzheimer’s disease. Proc. Natl Acad. Sci. USA 115, E9687–E9696 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Heinonen, A. et al. Bone mineral density of female athletes in different sports. Bone Min. 23, 1–14 (1993).

    Article  CAS  Google Scholar 

  161. Bergmann, P. et al. Loading and skeletal development and maintenance. J. Osteoporos. 2011, 786752 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Janssens, K., ten Dijke, P., Janssens, S. & Van Hul, W. Transforming growth factor-β1 to the bone. Endocr. Rev. 26, 743–774 (2005).

    Article  CAS  PubMed  Google Scholar 

  163. Amrein, K. et al. Sclerostin and its association with physical activity, age, gender, body composition, and bone mineral content in healthy adults. J. Clin. Endocrinol. Metab. 97, 148–154 (2012).

    Article  CAS  PubMed  Google Scholar 

  164. Silverman, S. L. Sclerostin. J. Osteoporos. 2010, 941419 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Li, G. et al. Muscle-bone crosstalk and potential therapies for sarco-osteoporosis. J. Cell Biochem. 120, 14262–14273 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Luo, J., Liu, W., Feng, F. & Chen, L. Apelin/APJ system: a novel therapeutic target for locomotor system diseases. Eur. J. Pharmacol. 906, 174286 (2021).

    Article  CAS  PubMed  Google Scholar 

  167. Kim, H. et al. Irisin mediates effects on bone and fat via αV integrin receptors. Cell 175, 1756–1768.e17 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Harmer, D., Falank, C. & Reagan, M. R. Interleukin-6 interweaves the bone marrow microenvironment, bone loss, and multiple myeloma. Front. Endocrinol. 9, 788 (2019).

    Article  Google Scholar 

  169. Lynes, M. D. et al. The cold-induced lipokine 12,13-diHOME promotes fatty acid transport into brown adipose tissue. Nat. Med. 23, 631–637 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Neeper, S. A., Gómez-Pinilla, F., Choi, J. & Cotman, C. Exercise and brain neurotrophins. Nature 373, 109 (1995).

    Article  CAS  PubMed  Google Scholar 

  171. Matthews, V. B. et al. Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase. Diabetologia 52, 1409–1418 (2009).

    Article  CAS  PubMed  Google Scholar 

  172. Lin, Z. et al. Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice. Cell Metab. 17, 779–789 (2013).

    Article  CAS  PubMed  Google Scholar 

  173. Chung, J. et al. HSP72 protects against obesity-induced insulin resistance. Proc. Natl Acad. Sci. USA 105, 1739–1744 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Fujimoto, T. et al. Overexpression of interleukin-15 exhibits improved glucose tolerance and promotes GLUT4 translocation via AMP-activated protein kinase pathway in skeletal muscle. Biochem. Biophys. Res. Commun. 509, 994–1000 (2019).

    Article  CAS  PubMed  Google Scholar 

  175. Willkomm, L. et al. Lactate regulates myogenesis in C2C12 myoblasts in vitro. Stem Cell Res. 12, 742–753 (2014).

    Article  CAS  PubMed  Google Scholar 

  176. Shimomura, M. et al. Decreased muscle-derived musclin by chronic resistance exercise is associated with improved insulin resistance in rats with type 2 diabetes. Physiol. Rep. 9, e14823 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Thomas, G. et al. Osteocrin, a novel bone-specific secreted protein that modulates the osteoblast phenotype. J. Biol. Chem. 278, 50563–50571 (2003).

    Article  CAS  PubMed  Google Scholar 

  178. Ataman, B. et al. Evolution of osteocrin as an activity-regulated factor in the primate brain. Nature 539, 242–247 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Palmer, R. M. J., Ferrige, A. G. & Moncada, S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327, 524–526 (1987). This paper described the vasodilatory role of nitric oxide.

    Article  CAS  PubMed  Google Scholar 

  180. Davies, K. J. A., Quintanilha, A. T., Brooks, G. A. & Packer, L. Free radicals and tissue damage produced by exercise. Biochem. Biophys. Res. Commun. 107, 1198–1205 (1982).

    Article  CAS  PubMed  Google Scholar 

  181. Aoi, W. et al. Secreted protein acidic and rich in cysteine (SPARC) improves glucose tolerance via AMP-activated protein kinase activation. FASEB J. 33, 10551–10562 (2019).

    Article  CAS  PubMed  Google Scholar 

  182. Li, Y. et al. Transforming growth factor-β1 induces the differentiation of myogenic cells into fibrotic cells in injured skeletal muscle: a key event in muscle fibrogenesis. Am. J. Pathol. 164, 1007–1019 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Hunt, L. C., Upadhyay, A., Jazayeri, J. A., Tudor, E. M. & White, J. D. An anti-inflammatory role for leukemia inhibitory factor receptor signaling in regenerating skeletal muscle. Histochem. Cell Biol. 139, 13–34 (2013).

    Article  CAS  PubMed  Google Scholar 

  184. Ito, Y. et al. Differential temporal expression of mRNAs for ciliary neurotrophic factor (CNTF), leukemia inhibitory factor (LIF), interleukin-6 (IL-6), and their receptors (CNTFRα, LIFRβ, IL-6Rα and gp130) in injured peripheral nerves. Brain Res. 793, 321–327 (1998).

    Article  CAS  PubMed  Google Scholar 

  185. Lee, S., Kolset, S. O., Birkeland, K. I., Drevon, C. A. & Reine, T. M. Acute exercise increases syndecan-1 and -4 serum concentrations. Glycoconj. J. 36, 113–125 (2019).

    Article  CAS  PubMed  Google Scholar 

  186. Bouassida, A. et al. Review on leptin and adiponectin responses and adaptations to acute and chronic exercise. Br. J. Sports Med. 44, 620–630 (2010).

    Article  CAS  PubMed  Google Scholar 

  187. Barlow, J. P. et al. Beta-aminoisobutyric acid is released by contracting human skeletal muscle and lowers insulin release from INS-1 832/3 cells by mediating mitochondrial energy metabolism. Metab. Open 7, 100053 (2020).

    Article  Google Scholar 

  188. Lin, W., Zhang, T., Zhou, Y., Zheng, J. & Lin, Z. Advances in biological functions and clinical studies of FGF21. Diabetes Metab. Syndr. Obes. 14, 3281–3290 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Lee, S. J. & McPherron, A. C. Regulation of myostatin activity and muscle growth. Proc. Natl Acad. Sci. USA 98, 9306–9311 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Kleinert, M. et al. Exercise increases circulating GDF15 in humans. Mol. Metab. 9, 187–191 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Andersson, H. et al. Differences in the inflammatory plasma cytokine response following two elite female soccer games separated by a 72-h recovery. Scand. J. Med. Sci. Sports 20, 740–747 (2010).

    Article  CAS  PubMed  Google Scholar 

  192. Irving, B. A. et al. Combined training enhances skeletal muscle mitochondrial oxidative capacity independent of age. J. Clin. Endocrinol. Metab. 100, 1654–1663 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Bae, J. Y. Aerobic exercise increases meteorin-like protein in muscle and adipose tissue of chronic high-fat diet-induced obese mice. Biomed. Res. Int. 2018, 6283932 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Pourranjbar, M., Arabnejad, N., Naderipour, K. & Rafie, F. Effects of aerobic exercises on serum levels of myonectin and insulin resistance in obese and overweight women. J. Med. Life 11, 381–386 (2018).

    PubMed  PubMed Central  Google Scholar 

  195. Nishizawa, H. et al. Musclin, a novel skeletal muscle-derived secretory factor. J. Biol. Chem. 279, 19391–19395 (2004).

    Article  CAS  PubMed  Google Scholar 

  196. Hjorth, M. et al. The effect of acute and long-term physical activity on extracellular matrix and serglycin in human skeletal muscle. Physiol. Rep. 3, e12473 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Gopal, S. Syndecans in Inflammation at a glance. Front. Immunol. 11, 227 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Breen, E. C. et al. Angiogenic growth factor mRNA responses in muscle to a single bout of exercise. J. Appl. Physiol. 81, 355–361 (1996). This paper demonstrated that a single bout of exercise can increase VEGF1 and TGFβ1 expression in muscle to promote the angiogenic response to exercise.

    Article  CAS  PubMed  Google Scholar 

  199. Smith, J. K., Dykes, R., Douglas, J. E., Krishnaswamy, G. & Berk, S. Long-term exercise and atherogenic activity of blood mononuclear cells in persons at risk of developing ischemic heart disease. JAMA 281, 1722–1727 (1999).

    Article  CAS  PubMed  Google Scholar 

  200. Klein, A. B. et al. Pharmacological but not physiological GDF15 suppresses feeding and the motivation to exercise. Nat. Commun. 12, 1041 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Boulé, N. G., Haddad, E., Kenny, G. P., Wells, G. A. & Sigal, R. J. Effects of exercise on glycemic control and body mass in type 2 diabetes mellitus: a meta-analysis of controlled clinical trials. JAMA 286, 1218–1227 (2001).

    Article  PubMed  Google Scholar 

  202. Pandey, A. et al. Metabolic effects of exercise training among fitness-nonresponsive patients with type 2 diabetes: the HART-D study. Diabetes Care 38, 1494–1501 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank A. Honkala (Stanford University) and N. C. Oldenburg (University of Minnesota) for their assistance with the manuscript. The workshop that set the foundation for this Review article was supported by the National Heart, Lung, and Blood Institute (NHLBI) and the National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH). The listed authors acknowledge the support of the following grants. L.S.C.: NIH grant R01DK098203; B.H.G.: NIH grant U01AR071133; A.L.: Spanish Ministry of Economy and Competitiveness and Fondos FEDER (PI18/00139); C.M.: European Federation of the Study of Diabetes/MSD, Occitanie Region/FEDER funds (DIABKINES, MP0021755 and Enterosys); B.K.P.: TrygFonden for the Centre for PA Research (CFAS); A.P.: Texas Health Resources Clinical Scholarship, Gilead Sciences Research Scholar Program, NIH National Institute of Aging GEMSSTAR grant (1R03AG067960-01), and Applied Therapeutics; J.M.R.: NIH grant HL150327-01A1; H.v.P.: NIH National Institute on Aging (NIA)/NIH IRP and the FDOH Ed and Ethel Moore Alzheimer’s Disease Research program; K.I.S.: NIH grants R01-HL138738 and R01-AG060542; A.E.T.: National Institute for Health Research (NIHR) Leicester Biomedical Research Centre; J.M.T.: NIH grant 1R01HL142879; S.T.: NIH grants U01AR071133; J.R.Z.: Swedish Research Council for Sport Science (P2018-0097), Swedish Research Council (Vetenskapsrådet) (2015-00165), and Novo Nordisk Foundation Center for Basic Metabolic Research at the University of Copenhagen (NNF18CC0034900); M.P.S.: NIH grants U24DK112348 and U54DK102556. The views expressed in this manuscript are those of the authors and do not necessarily represent the views of the National Heart, Lung, and Blood Institute; the National Institutes of Health; or the U.S. Department of Health and Human Services.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Lisa S. Chow, Bret H. Goodpaster or Michael P. Snyder.

Ethics declarations

Competing interests

L.S.C. has received a Dexcom investigator initiated grant (product only). C.J.L. is a consultant for PAIhealth on their Personalized Activity Intelligence applications. A.P. is on the advisory board of Roche Diagnostics. M.P.S. is a cofounder and scientific advisory board member of Personalis, SensOmics, Qbio, January, Filtricine, Protos, NiMo, Mirvie, and an advisor for Genapsys. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Endocrinology thanks P. Atherton who co-reviewed the manuscript with D. Wilkinson, M. Fukui and E. Ziemann for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Molecular Transducers of Physical Activity Consortium: https://www.motrpac.org/

Resilience: https://ods.od.nih.gov/Research/resilience.aspx#defining

Supplementary information

Glossary

Resilience

Resilience is the ability of the body to resist, adapt to, recover or grow in response to stressors.

High-intensity interval training

High-intensity interval training is a form of exercise training characterized by bursts of high-intensity activity followed by less intense recovery periods.

Exerkines

Exerkines encompass a broad variety of signalling moieties that are released in response to acute and/or chronic exercise that exert their effects through endocrine, paracrine and/or autocrine pathways.

Acute exercise

Acute exercise is typically considered a single episode of exercise (often resistant or aerobic exercise) that is completed during one visit.

Chronic exercise

Chronic exercise is typically described as multiple exercise episodes (often resistant or aerobic exercise) performed over the course of weeks to months.

MicroRNA

MicroRNAs are non-protein-coding RNA molecules that are regulated in a transcriptional or post-transcriptional fashion to affect mRNA transcription and/or degradation.

Exosomes

Exosomes are a type of extracellular vesicle released by parent cells, which contain RNAs, proteins and lipids, to facilitate crosstalk between tissues.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chow, L.S., Gerszten, R.E., Taylor, J.M. et al. Exerkines in health, resilience and disease. Nat Rev Endocrinol 18, 273–289 (2022). https://doi.org/10.1038/s41574-022-00641-2

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41574-022-00641-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing