Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Harnessing cellular therapeutics for type 1 diabetes mellitus: progress, challenges, and the road ahead

Abstract

Type 1 diabetes mellitus (T1DM) is a growing global health concern that affects approximately 8.5 million individuals worldwide. T1DM is characterized by an autoimmune destruction of pancreatic β cells, leading to a disruption in glucose homeostasis. Therapeutic intervention for T1DM requires a complex regimen of glycaemic monitoring and the administration of exogenous insulin to regulate blood glucose levels. Advances in continuous glucose monitoring and algorithm-driven insulin delivery devices have improved the quality of life of patients. Despite this, mimicking islet function and complex physiological feedback remains challenging. Pancreatic islet transplantation represents a potential functional cure for T1DM but is hindered by donor scarcity, variability in harvested cells, aggressive immunosuppressive regimens and suboptimal clinical outcomes. Current research is directed towards generating alternative cell sources, improving transplantation methods, and enhancing cell survival without chronic immunosuppression. This Review maps the progress in cell replacement therapies for T1DM and outlines the remaining challenges and future directions. We explore the state-of-the-art strategies for generating replenishable β cells, cell delivery technologies and local targeted immune modulation. Finally, we highlight relevant animal models and the regulatory aspects for advancing these technologies towards clinical deployment.

Key points

  • Stem cell-derived islets have advanced as a viable renewable source of cells for transplantation in type 1 diabetes mellitus (T1DM). Although these cells are being tested in the clinical setting, challenges remain to be addressed regarding cell safety, composition and function.

  • Genetic engineering of renewable β cells can reduce immunogenicity, lower metabolic needs and bolster hypoxia resistance. However, the effect on β cell performance requires further elucidation.

  • Local immunomodulation via in situ delivery of immunomodulatory molecules and adjuvant cells is emerging as a promising approach for abrogating the need for systemic immunosuppression in β cell transplantation.

  • Current preclinical results suggest that immunoprotected islet cell grafts in a retrievable subcutaneous site could restore normoglycaemia for at least 1 year or longer without systemic immunosuppression.

  • Despite the potential of new technologies, the development of cell therapy treatments must pragmatically focus on generating therapies that are not only effective and safe but also align with the real-world dynamics of patients’ lives and the capabilities of health-care systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pluripotent stem cell differentiation into stem cell-derived islets through modulation of different genes.
Fig. 2: Microencapsulation approaches for islet transplantation.
Fig. 3: Direct vascularization scaffolds and open devices.

Similar content being viewed by others

References

  1. International Diabetes Federation. IDF Diabetes Atlas Reports: Type 1 Diabetes Estimates in Children and Adults (International Diabetes Federation, 2022).

  2. US Centers for Disease Control and Prevention. National Diabetes Statistics Report (CDC, 2024).

  3. Tonnies, T. et al. Projections of type 1 and type 2 diabetes burden in the U.S. population aged <20 years through 2060: the SEARCH for diabetes in youth study. Diabetes Care 46, 313–320 (2023).

    Article  PubMed  Google Scholar 

  4. Syed, F. Z. Type 1 diabetes mellitus. Ann. Intern. Med. 175, ITC33–ITC48 (2022).

    Article  PubMed  Google Scholar 

  5. Ebekozien, O. et al. Longitudinal trends in glycemic outcomes and technology use for over 48,000 people with type 1 diabetes (2016-2022) from the T1D exchange quality improvement collaborative. Diabetes Technol. Ther. 25, 765–773 (2023).

    Article  CAS  PubMed  Google Scholar 

  6. Wilson, L. M., Jacobs, P. G., Riddell, M. C., Zaharieva, D. P. & Castle, J. R. Opportunities and challenges in closed-loop systems in type 1 diabetes. Lancet Diabetes Endocrinol. 10, 6–8 (2022).

    Article  PubMed  Google Scholar 

  7. Marfil-Garza, B. A. et al. Pancreatic islet transplantation in type 1 diabetes: 20-year experience from a single-centre cohort in Canada. Lancet Diabetes Endocrinol. 10, 519–532 (2022).

    Article  CAS  PubMed  Google Scholar 

  8. Vantyghem, M. C., de Koning, E. J. P., Pattou, F. & Rickels, M. R. Advances in beta-cell replacement therapy for the treatment of type 1 diabetes. Lancet 394, 1274–1285 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Butler, P. C. & Gale, E. A. Reversing type 1 diabetes with stem cell-derived islets: a step closer to the dream? J. Clin. Invest. 132, e158305 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Paez-Mayorga, J. et al. Emerging strategies for beta cell transplantation to treat diabetes. Trends Pharmacol. Sci. 43, 221–233 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. Roberts, M. B. & Fishman, J. A. Immunosuppressive agents and infectious risk in transplantation: managing the “net state of Immunosuppression”. Clin. Infect. Dis. 73, e1302–e1317 (2021).

    Article  PubMed  Google Scholar 

  12. Wehner, M. R. et al. Risks of multiple skin cancers in organ transplant recipients: a cohort study in 2 administrative data sets. JAMA Dermatol. 157, 1447–1455 (2021).

    Article  PubMed  Google Scholar 

  13. Shapiro, A. M. J. & Verhoeff, K. A spectacular year for islet and stem cell transplantation. Nat. Rev. Endocrinol. 19, 68–69 (2023).

    Article  PubMed  Google Scholar 

  14. Pagliuca, F. W. et al. Generation of functional human pancreatic beta cells in vitro. Cell 159, 428–439 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rezania, A. et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat. Biotechnol. 32, 1121–1133 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. US National Library of Medicine. CinicalTrials.gov www.clinicaltrials.gov/study/NCT04786262 (2024).

  17. Businesswire. Vertex presents positive, updated VX-880 results from ongoing phase 1/2 study in type 1 diabetes at the European Association for the Study of Diabetes 59th Annual Meeting. Businesswire www.businesswire.com/news/home/20231003786678/en/Vertex-Presents-Positive-Updated-VX-880-Results-From-Ongoing-Phase-12-Study-in-Type-1-Diabetes-at-the-European-Association-for-the-Study-of-Diabetes-59th-Annual-Meeting (2023).

  18. Vertex Pharmaceuticals. Vertex provides pipeline and business updates in advance of upcoming investor meetings. Vertex news.vrtx.com/news-releases/news-release-details/vertex-provides-pipeline-and-business-updates-advance-upcoming (2024).

  19. Hogrebe, N. J., Ishahak, M. & Millman, J. R. Developments in stem cell-derived islet replacement therapy for treating type 1 diabetes. Cell Stem Cell 30, 530–548 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Augsornworawat, P. et al. Single-nucleus multi-omics of human stem cell-derived islets identifies deficiencies in lineage specification. Nat. Cell Biol. 25, 904–916 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhu, H. et al. Understanding cell fate acquisition in stem-cell-derived pancreatic islets using single-cell multiome-inferred regulomes. Dev. Cell 58, 727–743.e11 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Veres, A. et al. Charting cellular identity during human in vitro β-cell differentiation. Nature 569, 368–373 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Balboa, D. et al. Functional, metabolic and transcriptional maturation of human pancreatic islets derived from stem cells. Nat. Biotechnol. 40, 1042–1055 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Augsornworawat, P., Velazco-Cruz, L., Song, J. & Millman, J. R. A hydrogel platform for in vitro three dimensional assembly of human stem cell-derived islet cells and endothelial cells. Acta Biomater. 97, 272–280 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mahaddalkar, P. U. et al. Generation of pancreatic β cells from CD177+ anterior definitive endoderm. Nat. Biotechnol. 38, 1061–1072 (2020).

    Article  CAS  PubMed  Google Scholar 

  26. Aghazadeh, Y. et al. GP2-enriched pancreatic progenitors give rise to functional beta cells in vivo and eliminate the risk of teratoma formation. Stem Cell Rep. 17, 964–978 (2022).

    Article  CAS  Google Scholar 

  27. Maxwell, K. G., Kim, M. H., Gale, S. E. & Millman, J. R. Differential function and maturation of human stem cell-derived islets after transplantation. Stem Cell Transl. Med. 11, 322–331 (2022).

    Article  CAS  Google Scholar 

  28. Ryan, E. A. et al. Successful islet transplantation: continued insulin reserve provides long-term glycemic control. Diabetes 51, 2148–2157 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Markmann, J. F. et al. Insulin independence following isolated islet transplantation and single islet infusions. Ann. Surg. 237, 741–749 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Niebruegge, S. et al. Generation of human embryonic stem cell-derived mesoderm and cardiac cells using size-specified aggregates in an oxygen-controlled bioreactor. Biotechnol. Bioeng. 102, 493–507 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Ismadi, M. Z. et al. Flow characterization of a spinner flask for induced pluripotent stem cell culture application. PLoS ONE 9, e106493 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hogrebe, N. J., Augsornworawat, P., Maxwell, K. G., Velazco-Cruz, L. & Millman, J. R. Targeting the cytoskeleton to direct pancreatic differentiation of human pluripotent stem cells. Nat. Biotechnol. 38, 460–470 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Paull, D. et al. Automated, high-throughput derivation, characterization and differentiation of induced pluripotent stem cells. Nat. Methods 12, 885–892 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Millman, J. R., Tan, J. H. & Colton, C. K. Mouse pluripotent stem cell differentiation under physiological oxygen reduces residual teratomas. Cell Mol. Bioeng. 14, 555–567 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fong, C. Y., Gauthaman, K. & Bongso, A. Teratomas from pluripotent stem cells: a clinical hurdle. J. Cell Biochem. 111, 769–781 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Laurent, L. C. et al. Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell 8, 106–118 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Garber, K. RIKEN suspends first clinical trial involving induced pluripotent stem cells. Nat. Biotechnol. 33, 890–891 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Taapken, S. M. et al. Karotypic abnormalities in human induced pluripotent stem cells and embryonic stem cells. Nat. Biotechnol. 29, 313–314 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Merkle, F. T. et al. Human pluripotent stem cells recurrently acquire and expand dominant negative P53 mutations. Nature 545, 229–233 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rouhani, F. J. et al. Substantial somatic genomic variation and selection for BCOR mutations in human induced pluripotent stem cells. Nat. Genet. 54, 1406–1416 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Roschke, A. V. & Kirsch, I. R. Targeting karyotypic complexity and chromosomal instability of cancer cells. Curr. Drug. Targets 11, 1341–1350 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Muller, P. A. & Vousden, K. H. p53 mutations in cancer. Nat. Cell Biol. 15, 2–8 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Astolfi, A. et al. BCOR involvement in cancer. Epigenomics 11, 835–855 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hirai, T., Yasuda, S., Umezawa, A. & Sato, Y. Country-specific regulation and international standardization of cell-based therapeutic products derived from pluripotent stem cells. Stem Cell Rep. 18, 1573–1591 (2023).

    Article  CAS  Google Scholar 

  45. International Society for Stem Cell Research. Guidelines for Stem Cell Research and Clinical Translation (International Society for Stem Cell Research, 2022).

  46. US Food and Drug Administration. Regulatory Considerations for Human Cells, Tissues, and Cellular and Tissue-based Products: Minimal Manipulation and Homologous Use (FDA, 2020).

  47. Yamamoto, T. et al. Quality control for clinical islet transplantation: organ procurement and preservation, the islet processing facility, isolation, and potency tests. J. Hepatobiliary Pancreat. Surg. 16, 131–136 (2009).

    Article  PubMed  Google Scholar 

  48. Ricordi, C. et al. Improved human islet isolation outcome from marginal donors following addition of oxygenated perfluorocarbon to the cold-storage solution. Transplantation 75, 1524–1527 (2003).

    Article  PubMed  Google Scholar 

  49. Walker, S., Appari, M. & Forbes, S. Considerations and challenges of islet transplantation and future therapies on the horizon. Am. J. Physiol. Endocrinol. Metab. 322, E109–E117 (2022).

    Article  CAS  PubMed  Google Scholar 

  50. Lee, K. Y. & Mooney, D. J. Alginate: properties and biomedical applications. Prog. Polym. Sci. 37, 106–126 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hu, S. et al. Toll-like receptor 2-modulating pectin-polymers in alginate-based microcapsules attenuate immune responses and support islet-xenograft survival. Biomaterials 266, 120460 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. Bennet, W., Groth, C. G., Larsson, R., Nilsson, B. & Korsgren, O. Isolated human islets trigger an instant blood mediated inflammatory reaction: implications for intraportal islet transplantation as a treatment for patients with type 1 diabetes. Ups. J. Med. Sci. 105, 125–133 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. van der Windt, D. J., Bottino, R., Casu, A., Campanile, N. & Cooper, D. K. Rapid loss of intraportally transplanted islets: an overview of pathophysiology and preventive strategies. Xenotransplantation 14, 288–297 (2007).

    Article  PubMed  Google Scholar 

  54. Matsumoto, S. et al. Clinical porcine islet xenotransplantation under comprehensive regulation. Transpl. Proc. 46, 1992–1995 (2014).

    Article  CAS  Google Scholar 

  55. Huang, L. et al. Regulation of blood glucose using islets encapsulated in a melanin-modified immune-shielding hydrogel. ACS Appl. Mater. Interfaces 13, 12877–12887 (2021).

    Article  CAS  PubMed  Google Scholar 

  56. Schaschkow, A. et al. Glycaemic control in diabetic rats treated with islet transplantation using plasma combined with hydroxypropylmethyl cellulose hydrogel. Acta Biomater. 102, 259–272 (2020).

    Article  CAS  PubMed  Google Scholar 

  57. Kuwabara, R. et al. Extracellular matrix inclusion in immunoisolating alginate-based microcapsules promotes longevity, reduces fibrosis, and supports function of islet allografts in vivo. Acta Biomater. 158, 151–162 (2023).

    Article  CAS  PubMed  Google Scholar 

  58. Elliott, R. B. et al. Live encapsulated porcine islets from a type 1 diabetic patient 9.5 yr after xenotransplantation. Xenotransplantation 14, 157–161 (2007).

    Article  PubMed  Google Scholar 

  59. Harrington, S., Williams, J., Rawal, S., Ramachandran, K. & Stehno-Bittel, L. Hyaluronic acid/collagen hydrogel as an alternative to alginate for long-term immunoprotected islet transplantation. Tissue Eng. Part. A 23, 1088–1099 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Medina, J. D. et al. Functionalization of alginate with extracellular matrix peptides enhances viability and function of encapsulated porcine islets. Adv. Healthc. Mater. 9, e2000102 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Alagpulinsa, D. A. et al. Alginate-microencapsulation of human stem cell-derived β cells with CXCL12 prolongs their survival and function in immunocompetent mice without systemic immunosuppression. Am. J. Transpl. 19, 1930–1940 (2019).

    Article  CAS  Google Scholar 

  62. Chen, T. et al. Alginate encapsulant incorporating CXCL12 supports long-term allo- and xenoislet transplantation without systemic immune suppression. Am. J. Transpl. 15, 618–627 (2015).

    Article  CAS  Google Scholar 

  63. Sremac, M. et al. Preliminary studies of the impact of CXCL12 on the foreign body reaction to pancreatic islets microencapsulated in alginate in nonhuman primates. Transpl. Direct 5, e447 (2019).

    Article  CAS  Google Scholar 

  64. Zhang, Q. et al. Islet encapsulation: new developments for the treatment of type 1 diabetes. Front. Immunol. 13, 869984 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lew, B., Kim, I. Y., Choi, H. & Kim, K. K. Sustained exenatide delivery via intracapsular microspheres for improved survival and function of microencapsulated porcine islets. Drug. Deliv. Transl. Res. 8, 857–862 (2018).

    Article  CAS  PubMed  Google Scholar 

  66. Vaithilingam, V. et al. Co-encapsulation and co-transplantation of mesenchymal stem cells reduces pericapsular fibrosis and improves encapsulated islet survival and function when allografted. Sci. Rep. 7, 10059 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Cheng, Y., Liu, Y. F., Zhang, J. L., Li, T. M. & Zhao, N. Elevation of vascular endothelial growth factor production and its effect on revascularization and function of graft islets in diabetic rats. World J. Gastroenterol. 13, 2862–2866, (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tomei, A. A. et al. Device design and materials optimization of conformal coating for islets of Langerhans. Proc. Natl Acad. Sci. USA 111, 10514–10519 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Manzoli, V. et al. Immunoisolation of murine islet allografts in vascularized sites through conformal coating with polyethylene glycol. Am. J. Transpl. 18, 590–603 (2018).

    Article  CAS  Google Scholar 

  70. Stock, A. A. et al. Conformal coating of stem cell-derived islets for β cell replacement in type 1 diabetes. Stem Cell Rep. 14, 91–104 (2020).

    Article  CAS  Google Scholar 

  71. Desai, T. A. & Tang, Q. Islet encapsulation therapy – racing towards the finish line? Nat. Rev. Endocrinol. 14, 630–632 (2018).

    Article  PubMed  Google Scholar 

  72. Scharp, D. W. & Marchetti, P. Encapsulated islets for diabetes therapy: history, current progress, and critical issues requiring solution. Adv. Drug. Deliv. Rev. 67-68, 35–73 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Scharp, D. W. et al. Protection of encapsulated human islets implanted without immunosuppression in patients with type I or type II diabetes and in nondiabetic control subjects. Diabetes 43, 1167–1170 (1994).

    Article  CAS  PubMed  Google Scholar 

  74. Chang, R. et al. Nanoporous immunoprotective device for stem-cell-derived β-cell replacement therapy. ACS Nano 11, 7747–7757 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ludwig, B. et al. Transplantation of human islets without immunosuppression. Proc. Natl Acad. Sci. USA 110, 19054–19058 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. An, D. et al. Designing a retrievable and scalable cell encapsulation device for potential treatment of type 1 diabetes. Proc. Natl Acad. Sci. USA 115, E263–E272 (2018).

    Article  CAS  PubMed  Google Scholar 

  77. Hwang, D. G. et al. A 3D bioprinted hybrid encapsulation system for delivery of human pluripotent stem cell-derived pancreatic islet-like aggregates. Biofabrication 14, 014101 (2021).

    Article  Google Scholar 

  78. Yang, K. et al. A therapeutic convection-enhanced macroencapsulation device for enhancing β cell viability and insulin secretion. Proc. Natl Acad. Sci. USA 118, e2101258118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kharbikar, B. N., Chendke, G. S. & Desai, T. A. Modulating the foreign body response of implants for diabetes treatment. Adv. Drug. Deliv. Rev. 174, 87–113 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Capuani, S., Malgir, G., Chua, C. Y. X. & Grattoni, A. Advanced strategies to thwart foreign body response to implantable devices. Bioeng. Transl. Med. 7, e10300 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Avgoustiniatos, E. & Colton, C. in Principles of Tissue Engineering 1st edn (eds Lanza, R. P. et al.) 333–346 (Academic, 1997).

  82. Colton, C. K. Oxygen supply to encapsulated therapeutic cells. Adv. Drug. Deliv. Rev. 67-68, 93–110 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. Papas, K. K., De Leon, H., Suszynski, T. M. & Johnson, R. C. Oxygenation strategies for encapsulated islet and beta cell transplants. Adv. Drug. Deliv. Rev. 139, 139–156 (2019).

    Article  CAS  PubMed  Google Scholar 

  84. Wang, L. H. et al. An inverse-breathing encapsulation system for cell delivery. Sci. Adv. 7, eabd5835 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Carlsson, P. O. et al. Transplantation of macroencapsulated human islets within the bioartificial pancreas βAir to patients with type 1 diabetes mellitus. Am. J. Transpl. 18, 1735–1744 (2018).

    Article  CAS  Google Scholar 

  86. Qin, T., Smink, A. M. & de Vos, P. Enhancing longevity of immunoisolated pancreatic islet grafts by modifying both the intracapsular and extracapsular environment. Acta Biomater. 167, 38–53 (2023).

    Article  CAS  PubMed  Google Scholar 

  87. Valdes-Gonzalez, R. A. et al. Xenotransplantation of porcine neonatal islets of Langerhans and Sertoli cells: a 4-year study. Eur. J. Endocrinol. 153, 419–427 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Birmingham, K. Skepticism surrounds diabetes xenograft experiment. Nat. Med. 8, 1047 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Dufrane, D., Goebbels, R. M. & Gianello, P. Alginate macroencapsulation of pig islets allows correction of streptozotocin-induced diabetes in primates up to 6 months without immunosuppression. Transplantation 90, 1054–1062 (2010).

    Article  PubMed  Google Scholar 

  90. Veriter, S. et al. Islets and mesenchymal stem cells co-encapsulation can improve subcutaneous bioartificial pancreas survival in diabetic primates. Xenotransplantation 18, 276–276 (2011).

    Google Scholar 

  91. Chendke, G. S. et al. Supporting survival of transplanted stem-cell-derived insulin-producing cells in an encapsulation device augmented with controlled release of amino acids. Adv. Biosyst. 3, 1900086 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Lottes, A. E. et al. Navigating the regulatory pathway for medical devices – a conversation with the FDA, clinicians, researchers, and industry experts. J. Cardiovasc. Transl. Res. 15, 927–943 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Businesswire. Vertex announces positive day 90 data for the first patient in the phase 1/2 clinical trial dosed with VX-880, a novel investigational stem cell-derived therapy for the treatment of type 1 diabetes. Businesswire www.businesswire.com/news/home/20211018005226/en/ (2021).

  94. US National Library of Medicine. ClinicalTrials.gov clinicaltrials.gov/study/NCT02239354 (2022).

  95. US National Library of Medicine. ClinicalTrials.gov clinicaltrials.gov/study/NCT05791201 (2024).

  96. Moruzzi, N., Leibiger, B., Barker, C. J., Leibiger, I. B. & Berggren, P. O. Novel aspects of intra-islet communication: primary cilia and filopodia. Adv. Biol. Regul. 87, 100919 (2023).

    Article  CAS  PubMed  Google Scholar 

  97. Burganova, G., Bridges, C., Thorn, P. & Landsman, L. The role of vascular cells in pancreatic beta-cell function. Front. Endocrinol. 12, 667170 (2021).

    Article  Google Scholar 

  98. Almaca, J., Weitz, J., Rodriguez-Diaz, R., Pereira, E. & Caicedo, A. The pericyte of the pancreatic islet regulates capillary diameter and local blood flow. Cell Metab. 27, 630–644.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Bowers, D. T., Song, W., Wang, L. H. & Ma, M. Engineering the vasculature for islet transplantation. Acta Biomater. 95, 131–151 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Yu, M. et al. Islet transplantation in the subcutaneous space achieves long-term euglycaemia in preclinical models of type 1 diabetes. Nat. Metab. 2, 1013–1020 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Chua, C. Y. X. et al. Emerging immunomodulatory strategies for cell therapeutics. Trends Biotechnol. 41, 358–373 (2023).

    Article  CAS  PubMed  Google Scholar 

  102. Forbes, S. et al. Human umbilical cord perivascular cells improve human pancreatic islet transplant function by increasing vascularization. Sci. Transl. Med. 12, eaan5907 (2020).

    Article  PubMed  Google Scholar 

  103. Kinney, S. M., Ortaleza, K., Vlahos, A. E. & Sefton, M. V. Degradable methacrylic acid-based synthetic hydrogel for subcutaneous islet transplantation. Biomaterials 281, 121342 (2022).

    Article  CAS  PubMed  Google Scholar 

  104. Weaver, J. D. et al. Vasculogenic hydrogel enhances islet survival, engraftment, and function in leading extrahepatic sites. Sci. Adv. 3, e1700184 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Davalli, A. M. et al. A selective decrease in the beta cell mass of human islets transplanted into diabetic nude mice. Transplantation 59, 817–820 (1995).

    Article  CAS  PubMed  Google Scholar 

  106. Aghazadeh, Y. et al. Microvessels support engraftment and functionality of human islets and hESC-derived pancreatic progenitors in diabetes models. Cell Stem Cell 28, 1936–1949.e8 (2021).

    Article  CAS  PubMed  Google Scholar 

  107. Wrublewsky, S. et al. Co-transplantation of pancreatic islets and microvascular fragments effectively restores normoglycemia in diabetic mice. NPJ Regen. Med. 7, 67 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wang, D. et al. Hyaluronic acid methacrylate/pancreatic extracellular matrix as a potential 3D printing bioink for constructing islet organoids. Acta Biomater. 165, 86–101 (2023).

    Article  CAS  PubMed  Google Scholar 

  109. Tremmel, D. M. et al. A human pancreatic ECM hydrogel optimized for 3-D modeling of the islet microenvironment. Sci. Rep. 12, 7188 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Citro, A. et al. Directed self-assembly of a xenogeneic vascularized endocrine pancreas for type 1 diabetes. Nat. Commun. 14, 878 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Guyette, J. P. et al. Perfusion decellularization of whole organs. Nat. Protoc. 9, 1451–1468 (2014).

    Article  CAS  PubMed  Google Scholar 

  112. Citro, A. et al. Biofabrication of a vascularized islet organ for type 1 diabetes. Biomaterials 199, 40–51 (2019).

    Article  CAS  PubMed  Google Scholar 

  113. Song, W. et al. Engineering transferrable microvascular meshes for subcutaneous islet transplantation. Nat. Commun. 10, 4602 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Salg, G. A. et al. Toward 3D-bioprinting of an endocrine pancreas: a building-block concept for bioartificial insulin-secreting tissue. J. Tissue Eng. 13, 20417314221091033 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Liang, J. P. et al. Engineering a macroporous oxygen-generating scaffold for enhancing islet cell transplantation within an extrahepatic site. Acta Biomater. 130, 268–280 (2021).

    Article  CAS  PubMed  Google Scholar 

  116. Dolgin, E. Diabetes cell therapies take evasive action. Nat. Biotechnol. 40, 291–295 (2022).

    Article  CAS  PubMed  Google Scholar 

  117. Velazco-Cruz, L. et al. Acquisition of dynamic function in human stem cell-derived β cells. Stem Cell Rep. 12, 351–365 (2019).

    Article  CAS  Google Scholar 

  118. Capuani, S., Campa-Carranza, J. N., Hernandez, N., Chua, C. Y. X. & Grattoni, A. Modeling of a bioengineered immunomodulating microenvironment for cell therapy. Adv. Healthc. Mater. https://doi.org/10.1002/adhm.202304003 (2024).

    Article  PubMed  Google Scholar 

  119. Jang, S. B. et al. DAMP-modulating nanoparticle for successful pancreatic islet and stem cell transplantation. Biomaterials 287, 121679 (2022).

    Article  CAS  PubMed  Google Scholar 

  120. Shapiro, A. M. J. et al. Insulin expression and C-peptide in type 1 diabetes subjects implanted with stem cell-derived pancreatic endoderm cells in an encapsulation device. Cell Rep. Med. 2, 100466 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Goswami, D. et al. Design considerations for macroencapsulation devices for stem cell derived islets for the treatment of type 1 diabetes. Adv. Sci. 8, e2100820 (2021).

    Article  Google Scholar 

  122. Pepper, A. R. et al. A prevascularized subcutaneous device-less site for islet and cellular transplantation. Nat. Biotechnol. 33, 518–523 (2015).

    Article  CAS  PubMed  Google Scholar 

  123. Farina, M. et al. Transcutaneously refillable, 3D-printed biopolymeric encapsulation system for the transplantation of endocrine cells. Biomaterials 177, 125–138 (2018).

    Article  CAS  PubMed  Google Scholar 

  124. Paez-Mayorga, J. et al. Implantable niche with local immunosuppression for islet allotransplantation achieves type 1 diabetes reversal in rats. Nat. Commun. 13, 7951 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Pepper, A. R. et al. Transplantation of human pancreatic endoderm cells reverses diabetes post transplantation in a prevascularized subcutaneous site. Stem Cell Rep. 8, 1689–1700 (2017).

    Article  CAS  Google Scholar 

  126. Pepper, A. R. et al. Posttransplant characterization of long-term functional hESC-derived pancreatic endoderm grafts. Diabetes 68, 953–962 (2019).

    Article  CAS  PubMed  Google Scholar 

  127. Sernova Corp. Sernova provides recap of 2023 accomplishments and anticipated 2024 milestones. Sernova Corp www.sernova.com/press/release/?id=388 (2024).

  128. Paez-Mayorga, J. et al. Enhanced in vivo vascularization of 3D-printed cell encapsulation device using platelet-rich plasma and mesenchymal stem cells. Adv. Healthc. Mater. 9, e2000670 (2020).

    Article  PubMed  Google Scholar 

  129. Kuppan, P. et al. Co-transplantation of human adipose-derived mesenchymal stem cells with neonatal porcine islets within a prevascularized subcutaneous space augments the xenograft function. Xenotransplantation 27, e12581 (2020).

    Article  PubMed  Google Scholar 

  130. Wassmer, C. H. et al. Bio-engineering of pre-vascularized islet organoids for the treatment of type 1 diabetes. Transpl. Int. 35, 10214 (2021).

    Article  PubMed  Google Scholar 

  131. Rickels, M. R. & Robertson, R. P. Pancreatic islet transplantation in humans: recent progress and future directions. Endocr. Rev. 40, 631–668 (2019).

    Article  PubMed  Google Scholar 

  132. Chang, C. A. et al. Curative islet and hematopoietic cell transplantation in diabetic mice without toxic bone marrow conditioning. Cell Rep. 41, 111615 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Eledon Pharmaceuticals. Eledon reports updated data from ongoing phase 1b trial evaluating tegoprubart for prevention of rejection in kidney transplantation. Eledon Pharmaceuticals ir.eledon.com/news-releases/news-release-details/eledon-reports-updated-data-ongoing-phase-1b-trial-evaluating (2023).

  134. Wisel, S. A. et al. A multi-modal approach to islet and pancreas transplantation with calcineurin-sparing immunosuppression maintains long-term insulin independence in patients with type I diabetes. Transpl. Int. 36, 11367 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Anwar, I. J. et al. The anti-CD40L monoclonal antibody AT-1501 promotes islet and kidney allograft survival and function in nonhuman primates. Sci. Transl. Med. 15, eadf6376 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Lee, K., Nguyen, V., Lee, K. M., Kang, S. M. & Tang, Q. Attenuation of donor-reactive T cells allows effective control of allograft rejection using regulatory T cell therapy. Am. J. Transpl. 14, 27–38 (2014).

    Article  CAS  Google Scholar 

  137. Cabello-Kindelan, C. et al. Immunomodulation followed by antigen-specific Treg infusion controls islet autoimmunity. Diabetes 69, 215–227 (2020).

    Article  CAS  PubMed  Google Scholar 

  138. Yang, S. J. et al. Pancreatic islet-specific engineered Tregs exhibit robust antigen-specific and bystander immune suppression in type 1 diabetes models. Sci. Transl. Med. 14, eabn1716 (2022).

    Article  CAS  PubMed  Google Scholar 

  139. Marshall, G. P. et al. Biomaterials-based nanoparticles conjugated to regulatory T cells provide a modular system for localized delivery of pharmacotherapeutic agents. J. Biomed. Mater. Res. A 111, 185–197 (2023).

    Article  CAS  PubMed  Google Scholar 

  140. Sicard, A. et al. Donor-specific chimeric antigen receptor Tregs limit rejection in naive but not sensitized allograft recipients. Am. J. Transpl. 20, 1562–1573 (2020).

    Article  CAS  Google Scholar 

  141. Pierini, A. et al. T cells expressing chimeric antigen receptor promote immune tolerance. JCI Insight 2, e92865 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Hu, M. et al. Low-dose interleukin-2 combined with rapamycin led to an expansion of CD4+CD25+FOXP3+ regulatory T cells and prolonged human islet allograft survival in humanized mice. Diabetes 69, 1735–1748 (2020).

    Article  PubMed  Google Scholar 

  143. Yu, A. et al. Selective IL-2 responsiveness of regulatory T cells through multiple intrinsic mechanisms supports the use of low-dose IL-2 therapy in type 1 diabetes. Diabetes 64, 2172–2183 (2015).

    Article  CAS  PubMed  Google Scholar 

  144. Hering, B. J. et al. Factors associated with favourable 5 year outcomes in islet transplant alone recipients with type 1 diabetes complicated by severe hypoglycaemia in the Collaborative Islet Transplant Registry. Diabetologia 66, 163–173 (2023).

    Article  CAS  PubMed  Google Scholar 

  145. Citro, A., Cantarelli, E., Pellegrini, S., Dugnani, E. & Piemonti, L. Anti-inflammatory strategies in intrahepatic islet transplantation: a comparative study in preclinical models. Transplantation 102, 240–248 (2018).

    Article  CAS  PubMed  Google Scholar 

  146. Bachul, P. J. et al. Post-hoc analysis of a randomized, double blind, prospective study at the University of Chicago: additional standardizations of trial protocol are needed to evaluate the effect of a CXCR1/2 inhibitor in islet allotransplantation. Cell Transpl. 30, 9636897211001774 (2021).

    Article  Google Scholar 

  147. Ge, J. et al. Adjuvant conditioning induces an immunosuppressive milieu that delays alloislet rejection through the expansion of myeloid-derived suppressor cells. Am. J. Transpl. 23, 935–945 (2023).

    Article  Google Scholar 

  148. Velluto, D., Bojadzic, D., De Toni, T., Buchwald, P. & Tomei, A. A. Drug-integrating amphiphilic nanomaterial assemblies: 1. spatiotemporal control of cyclosporine delivery and activity using nanomicelles and nanofibrils. J. Control. Rel. 329, 955–970 (2021).

    Article  CAS  Google Scholar 

  149. Jamison, B. L. et al. Tolerogenic delivery of a hybrid insulin peptide markedly prolongs islet graft survival in the NOD mouse. Diabetes 71, 483–496 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Kuppan, P. et al. Co-localized immune protection using dexamethasone-eluting micelles in a murine islet allograft model. Am. J. Transpl. 20, 714–725 (2020).

    Article  CAS  Google Scholar 

  151. Nguyen, T. T. et al. The impact of locally-delivered tacrolimus-releasing microspheres and polyethylene glycol-based islet surface modification on xenogeneic islet survival. J. Control. Rel. 336, 274–284 (2021).

    Article  CAS  Google Scholar 

  152. Nguyen, T. T. et al. Engineering “cell-particle hybrids” of pancreatic islets and bioadhesive FK506-loaded polymeric microspheres for local immunomodulation in xenogeneic islet transplantation. Biomaterials 221, 119415 (2019).

    Article  CAS  PubMed  Google Scholar 

  153. Pathak, S. et al. Particulate-based single-dose local immunosuppressive regimen for inducing tolerogenic dendritic cells in xenogeneic islet transplantation. Adv. Healthc. Mater. 10, e2001157 (2021).

    Article  PubMed  Google Scholar 

  154. Fan, Y., Zheng, X., Ali, Y., Berggren, P. O. & Loo, S. C. J. Local release of rapamycin by microparticles delays islet rejection within the anterior chamber of the eye. Sci. Rep. 9, 3918 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Barra, J. M. et al. Localized cytotoxic T cell-associated antigen 4 and antioxidant islet encapsulation alters macrophage signaling and induces regulatory and anergic T cells to enhance allograft survival. Am. J. Transpl. 23, 498–511 (2023).

    Article  Google Scholar 

  156. Sremac, M. et al. Short-term function and immune-protection of microencapsulated adult porcine islets with alginate incorporating CXCL12 in healthy and diabetic non-human primates without systemic immune suppression: a pilot study. Xenotransplantation 30, e12826 (2023).

    Article  PubMed  Google Scholar 

  157. Medina, J. D. et al. A hydrogel platform for co-delivery of immunomodulatory proteins for pancreatic islet allografts. J. Biomed. Mater. Res. A 110, 1728–1737 (2022).

    Article  CAS  PubMed  Google Scholar 

  158. Li, Y. et al. Immunosuppressive PLGA TGF-β1 microparticles induce polyclonal and antigen-specific regulatory T cells for local immunomodulation of allogeneic islet transplants. Front. Immunol. 12, 653088 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Skoumal, M. et al. Localized immune tolerance from FasL-functionalized PLG scaffolds. Biomaterials 192, 271–281 (2019).

    Article  CAS  PubMed  Google Scholar 

  160. Coronel, M. M. et al. Immunotherapy via PD-L1-presenting biomaterials leads to long-term islet graft survival. Sci. Adv. 6, eaba5573 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Polishevska, K. et al. Nanothin conformal coating with poly(N-vinylpyrrolidone) and tannic acid (PVPON/TA) preserves murine and human pancreatic islets function. Pharmaceutics 15, 1137 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Gammon, J. M. et al. Engineering the lymph node environment promotes antigen-specific efficacy in type 1 diabetes and islet transplantation. Nat. Commun. 14, 681 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Gooch, A. M., Chowdhury, S. S., Zhang, P. M., Hu, Z. M. & Westenfelder, C. Significant expansion of the donor pool achieved by utilizing islets of variable quality in the production of allogeneic “neo-islets”, 3-D organoids of mesenchymal stromal and islet cells, a novel immune-isolating biotherapy for type I diabetes. PLoS ONE 18, e0290460 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Navaei-Nigjeh, M. et al. Microfluidically fabricated fibers containing pancreatic islets and mesenchymal stromal cells improve longevity and sustained normoglycemia in diabetic rats. Biofabrication 15, 015013 (2022).

    Article  Google Scholar 

  165. Lachaud, C. C. et al. Umbilical cord mesenchymal stromal cells transplantation delays the onset of hyperglycemia in the RIP-B7.1 mouse model of experimental autoimmune diabetes through multiple immunosuppressive and anti-inflammatory responses. Front. Cell Dev. Biol. 11, 1089817 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Kenyon, N. S. et al. Extended survival versus accelerated rejection of nonhuman primate islet allografts: effect of mesenchymal stem cell source and timing. Am. J. Transpl. 21, 3524–3537 (2021).

    Article  CAS  Google Scholar 

  167. Wei, L. et al. Protective effect of mesenchymal stem cells on isolated islets survival and against hypoxia associated with the HIF-1α/PFKFB3 pathway. Cell Transpl. 31, 9636897211073127 (2022).

    Article  Google Scholar 

  168. Wang, X. et al. Engineered immunomodulatory accessory cells improve experimental allogeneic islet transplantation without immunosuppression. Sci. Adv. 8, eabn0071 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Nguyen, T. T. et al. Engineering of hybrid spheroids of mesenchymal stem cells and drug depots for immunomodulating effect in islet xenotransplantation. Sci. Adv. 8, eabn8614 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Sohni, A. & Verfaillie, C. M. Mesenchymal stem cells migration homing and tracking. Stem Cell Int. 2013, 130763 (2013).

    Google Scholar 

  171. Mohammadi, M. R. et al. Exosome loaded immunomodulatory biomaterials alleviate local immune response in immunocompetent diabetic mice post islet xenotransplantation. Commun. Biol. 4, 685 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Wang, L. et al. Engineered cytokine-primed extracellular vesicles with high PD-L1 expression ameliorate type 1 diabetes. Small 19, e2301019 (2023).

    Article  PubMed  Google Scholar 

  173. Neshat, S. Y. et al. Improvement of islet engrafts via Treg induction using immunomodulating polymeric tolerogenic microparticles. ACS Biomater. Sci. Eng. 9, 3522–3534 (2023).

    Article  CAS  PubMed  Google Scholar 

  174. Lebreton, F. et al. Mechanisms of immunomodulation and cytoprotection conferred to pancreatic islet by human amniotic epithelial cells. Stem Cell Rev. Rep. 18, 346–359 (2022).

    Article  CAS  PubMed  Google Scholar 

  175. Huang, Q. et al. IL-10 producing type 2 innate lymphoid cells prolong islet allograft survival. EMBO Mol. Med. 12, e12305 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Sackett, S. D. et al. Genetic engineering of immune evasive stem cell-derived islets. Transpl. Int. 35, 10817 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Sackett, S. D., Rodriguez, A. & Odorico, J. S. The nexus of stem cell-derived beta-cells and genome engineering. Rev. Diabet. Stud. 14, 39–50 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Forbes, S. et al. Islet transplantation outcomes in type 1 diabetes and transplantation of HLA-DQ8/DR4: results of a single-centre retrospective cohort in Canada. EClinicalMedicine 67, 102333 (2024).

    Article  PubMed  Google Scholar 

  179. Hu, X. et al. Hypoimmune islets achieve insulin independence after allogeneic transplantation in a fully immunocompetent non-human primate. Cell Stem Cell 31, 334–340.e5 (2024).

    Article  CAS  PubMed  Google Scholar 

  180. Parent, A. V. et al. Selective deletion of human leukocyte antigens protects stem cell-derived islets from immune rejection. Cell Rep. 36, 109538 (2021).

    Article  CAS  PubMed  Google Scholar 

  181. Castro-Gutierrez, R., Alkanani, A., Mathews, C. E., Michels, A. & Russ, H. A. Protecting stem cell derived pancreatic beta-like cells from diabetogenic T cell recognition. Front. Endocrinol. 12, 707881 (2021).

    Article  Google Scholar 

  182. Santini-Gonzalez, J. et al. Human stem cell derived beta-like cells engineered to present PD-L1 improve transplant survival in NOD mice carrying human HLA class I. Front. Endocrinol. 13, 989815 (2022).

    Article  Google Scholar 

  183. Woodward, K. B. et al. Pancreatic islets engineered with a FasL protein induce systemic tolerance at the induction phase that evolves into long-term graft-localized immune privilege. Am. J. Transpl. 20, 1285–1295 (2020).

    Article  CAS  Google Scholar 

  184. Hu, X. et al. Hypoimmune induced pluripotent stem cells survive long term in fully immunocompetent, allogeneic rhesus macaques. Nat. Biotechnol. 42, 413–423 (2024).

    Article  CAS  PubMed  Google Scholar 

  185. Shrestha, P. et al. Immune checkpoint CD47 molecule engineered islets mitigate instant blood-mediated inflammatory reaction and show improved engraftment following intraportal transplantation. Am. J. Transpl. 20, 2703–2714 (2020).

    Article  CAS  Google Scholar 

  186. Hu, X. et al. Human hypoimmune primary pancreatic islets avoid rejection and autoimmunity and alleviate diabetes in allogeneic humanized mice. Sci. Transl. Med. 15, eadg5794 (2023).

    Article  CAS  PubMed  Google Scholar 

  187. Rao, J. S. et al. HLA-G1+ expression in GGTA1KO pigs suppresses human and monkey anti-pig T, B and NK cell responses. Front. Immunol. 12, 730545 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Paul, P. K. et al. Islet allografts expressing a PD-L1 and IDO fusion protein evade immune rejection and reverse preexisting diabetes in immunocompetent mice without systemic immunosuppression. Am. J. Transpl. 22, 2571–2585 (2022).

    Article  CAS  Google Scholar 

  189. Yoshihara, E. et al. Immune-evasive human islet-like organoids ameliorate diabetes. Nature 586, 606–611 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Lei, Y. et al. Neonatal islets from human PD-L1 transgenic pigs reduce immune cell activation and cellular rejection in humanized nonobese diabetic-scid IL2rγnull mice. Am. J. Transpl. 24, 20–29 (2024).

    Article  Google Scholar 

  191. Carvalho Oliveira, M. et al. Generating low immunogenic pig pancreatic islet cell clusters for xenotransplantation. J. Cell Mol. Med. 24, 5070–5081 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Lorberbaum, D. S., Sarbaugh, D. & Sussel, L. Leveraging the strengths of mice, human stem cells, and organoids to model pancreas development and diabetes. Front. Endocrinol. 13, 1042611 (2022).

    Article  Google Scholar 

  193. Khosravi-Maharlooei, M. et al. Modeling human T1D-associated autoimmune processes. Mol. Metab. 56, 101417 (2022).

    Article  CAS  PubMed  Google Scholar 

  194. Kottaisamy, C. P. D., Raj, D. S., Prasanth Kumar, V. & Sankaran, U. Experimental animal models for diabetes and its related complications – a review. Lab. Anim. Res. 37, 23 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Walsh, N. C. et al. Humanized mouse models of clinical disease. Annu. Rev. Pathol. 12, 187–215 (2017).

    Article  CAS  PubMed  Google Scholar 

  196. King, M., Pearson, T., Rossini, A. A., Shultz, L. D. & Greiner, D. L. Humanized mice for the study of type 1 diabetes and beta cell function. Ann. N. Y. Acad. Sci. 1150, 46–53 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Shultz, L. D., Ishikawa, F. & Greiner, D. L. Humanized mice in translational biomedical research. Nat. Rev. Immunol. 7, 118–130 (2007).

    Article  CAS  PubMed  Google Scholar 

  198. Gerace, D. et al. Engineering human stem cell-derived islets to evade immune rejection and promote localized immune tolerance. Cell Rep. Med. 4, 100879 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Vegas, A. J. et al. Long-term glycemic control using polymer-encapsulated human stem cell-derived beta cells in immune-competent mice. Nat. Med. 22, 306–311 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Chen, Y. G., Mathews, C. E. & Driver, J. P. The role of NOD mice in type 1 diabetes research: lessons from the past and recommendations for the future. Front. Endocrinol. 9, 51 (2018).

    Article  CAS  Google Scholar 

  201. Burrack, A. L., Martinov, T. & Fife, B. T. T cell-mediated beta cell destruction: autoimmunity and alloimmunity in the context of type 1 diabetes. Front. Endocrinol. 8, 343 (2017).

    Article  Google Scholar 

  202. Serreze, D. V., Niens, M., Kulik, J. & DiLorenzo, T. P. in Mouse Models for Drug Discovery (Series Ed. Walker, J. M. Methods in Molecular Biology Vol. 1438) (eds Proetzel, G. & Wiles, M. V.) 137–151 (Springer, 2016).

  203. Takaki, T. et al. HLA-A*0201-restricted T cells from humanized NOD mice recognize autoantigens of potential clinical relevance to type 1 diabetes. J. Immunol. 176, 3257–3265 (2006).

    Article  CAS  PubMed  Google Scholar 

  204. Radenković, M., Stojanović, M. & Prostran, M. Experimental diabetes induced by alloxan and streptozotocin: the current state of the art. J. Pharmacol. Toxicol. Methods 78, 13–31 (2016).

    Article  PubMed  Google Scholar 

  205. Furman, B. L. Streptozotocin-induced diabetic models in mice and rats. Curr. Protoc. 1, e78 (2021).

    Article  CAS  PubMed  Google Scholar 

  206. Gvazava, I. G., Rogovaya, O. S., Borisov, M. A., Vorotelyak, E. A. & Vasiliev, A. V. Pathogenesis of type 1 diabetes mellitus and rodent experimental models. Acta Nat. 10, 24–33 (2018).

    Article  CAS  Google Scholar 

  207. Bortel, R. et al. Levels of Art2+ cells but not soluble Art2 protein correlate with expression of autoimmune diabetes in the BB rat. Autoimmunity 33, 199–211 (2001).

    Article  CAS  PubMed  Google Scholar 

  208. Mordes, J. P., Bortell, R., Blankenhorn, E. P., Rossini, A. A. & Greiner, D. L. Rat models of type 1 diabetes: genetics, environment, and autoimmunity. ILAR J. 45, 278–291 (2004).

    Article  CAS  PubMed  Google Scholar 

  209. Woda, B. A. & Padden, C. BioBreeding/Worcester (BB/Wor) rats are deficient in the generation of functional cytotoxic T cells. J. Immunol. 139, 1514–1517 (1987).

    Article  CAS  PubMed  Google Scholar 

  210. Brehm, M. A., Powers, A. C., Shultz, L. D. & Greiner, D. L. Advancing animal models of human type 1 diabetes by engraftment of functional human tissues in immunodeficient mice. Cold Spring Harb. Perspect. Med. 2, a007757 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Gonzalez, B. J., Creusot, R. J., Sykes, M. & Egli, D. How safe are universal pluripotent stem cells? Cell Stem Cell 26, 307–308 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Rongvaux, A. et al. Human hemato-lymphoid system mice: current use and future potential for medicine. Annu. Rev. Immunol. 31, 635–674 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Brehm, M. A. et al. Human immune system development and rejection of human islet allografts in spontaneously diabetic NOD-Rag1null IL2rγnull Ins2Akita mice. Diabetes 59, 2265–2270 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Tan, S. et al. Type 1 diabetes induction in humanized mice. Proc. Natl Acad. Sci. USA 114, 10954–10959 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Ellis, C. E. et al. Human A2-CAR T cells reject HLA-A2+ human islets transplanted into mice without inducing graft-versus-host disease. Transplantation 107, e222–e233 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Balboa, D., Iworima, D. G. & Kieffer, T. J. Human pluripotent stem cells to model islet defects in diabetes. Front. Endocrinol. 12, 642152 (2021).

    Article  Google Scholar 

  217. Doloff, J. C. et al. Identification of a humanized mouse model for functional testing of immune-mediated biomaterial foreign body response. Sci. Adv. 9, eade9488 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Li, Y. et al. Humanized mice reveal new insights into the thymic selection of human autoreactive CD8+ T cells. Front. Immunol. 10, 63 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Renner, S. et al. Permanent neonatal diabetes in INSC94Y transgenic pigs. Diabetes 62, 1505–1511 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Pabst, R. The pig as a model for immunology research. Cell Tissue Res. 380, 287–304 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Casu, A. et al. Metabolic aspects of pig-to-monkey (Macaca fascicularis) islet transplantation: implications for translation into clinical practice. Diabetologia 51, 120–129 (2008).

    Article  CAS  PubMed  Google Scholar 

  222. Pepper, A. R. et al. Establishment of a stringent large animal model of insulin-dependent diabetes for islet autotransplantation: combination of pancreatectomy and streptozotocin. Pancreas 42, 329–338 (2013).

    Article  PubMed  Google Scholar 

  223. Kin, T., Korbutt, G. S., Kobayashi, T., Dufour, J. M. & Rajotte, R. V. Reversal of diabetes in pancreatectomized pigs after transplantation of neonatal porcine islets. Diabetes 54, 1032–1039 (2005).

    Article  CAS  PubMed  Google Scholar 

  224. Smink, A. M. et al. Successful islet transplantation into a subcutaneous polycaprolactone scaffold in mice and pigs. Transpl. Direct 9, e1417 (2023).

    Article  CAS  Google Scholar 

  225. Gibly, R. F. et al. Extrahepatic islet transplantation with microporous polymer scaffolds in syngeneic mouse and allogeneic porcine models. Biomaterials 32, 9677–9684 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Kim, S. et al. Molecular and genetic regulation of pig pancreatic islet cell development. Development 147, dev186213 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Knechtle, S. J., Shaw, J. M., Hering, B. J., Kraemer, K. & Madsen, J. C. Translational impact of NIH-funded nonhuman primate research in transplantation. Sci. Transl. Med. 11, eaau0143 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Dehoux, J. P. & Gianello, P. The importance of large animal models in transplantation. Front. Biosci. 12, 4864–4880 (2007).

    Article  CAS  PubMed  Google Scholar 

  229. Graham, M. L. & Schuurman, H. J. Validity of animal models of type 1 diabetes, and strategies to enhance their utility in translational research. Eur. J. Pharmacol. 759, 221–230 (2015).

    Article  CAS  PubMed  Google Scholar 

  230. Fitch, Z. et al. Transplant research in nonhuman primates to evaluate clinically relevant immune strategies in organ transplantation. Transpl. Rev. 33, 115–129 (2019).

    Article  Google Scholar 

  231. Brennan, F. R. et al. Safety testing of monoclonal antibodies in non-human primates: case studies highlighting their impact on human risk assessment. MAbs 10, 1–17 (2018).

    Article  CAS  PubMed  Google Scholar 

  232. Coe, T. M., Markmann, J. F. & Rickert, C. G. Current status of porcine islet xenotransplantation. Curr. Opin. Organ. Transpl. 25, 449–456 (2020).

    Article  Google Scholar 

  233. Graham, M. L. et al. Clinically available immunosuppression averts rejection but not systemic inflammation after porcine islet xenotransplant in cynomolgus macaques. Am. J. Transpl. 22, 745–760 (2022).

    Article  CAS  Google Scholar 

  234. Sykes, M. & Sachs, D. H. Progress in xenotransplantation: overcoming immune barriers. Nat. Rev. Nephrol. 18, 745–761 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Kirk, A. D. Crossing the bridge: large animal models in translational transplantation research. Immunol. Rev. 196, 176–196 (2003).

    Article  CAS  PubMed  Google Scholar 

  236. D’Amour, K. A. et al. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat. Biotechnol. 23, 1534–1541 (2005).

    Article  PubMed  Google Scholar 

  237. D’Amour, K. A. et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat. Biotechnol. 24, 1392–1401 (2006).

    Article  PubMed  Google Scholar 

  238. Nair, G. G. et al. Recapitulating endocrine cell clustering in culture promotes maturation of human stem-cell-derived β cells. Nat. Cell Biol. 21, 263–274 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Breakthrough T1D. Cures program research strategy. BreakthroughT1D.org https://www.breakthrought1d.org/wp-content/uploads/2024/05/Breakthrough-T1D-Research-Strategy-Cures-1.pdf (2024).

  240. Lu, K., Brauns, T., Sluder, A. E., Poznansky, M. C. & Dogan, F. Combinatorial islet protective therapeutic approaches in β-cell transplantation: rationally designed solutions using a target product profile. FASEB Bioadv 5, 287–304 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. European Commission. Diabetes Reversing Implants with Enhanced Viability and Long-term Efficacy (CORDIS, 2015).

  242. European Commission. Beta Cell Generation By Stem Cell-derived Implants In Diabetes (CORDIS, 2015).

  243. Breakthrough T1D. Breakthrough T1D Beta Cell Replacement Consortium: sharing data and resources, saving time and money. BreakthroughT1D.org https://www.breakthrought1d.org/news-and-updates/jdrf-beta-cell-replacement-consortium-sharing-data-resources-saving-time-money/ (2019).

  244. US Food and Drug Administration. FDA approves first cellular therapy to treat patients with type 1 diabetes. FDA www.fda.gov/news-events/press-announcements/fda-approves-first-cellular-therapy-treat-patients-type-1-diabetes (2023).

Download references

Acknowledgements

A.G. is supported by NIH NIDDK R01DK132104, R01DK133610, JDRF 2-SRA-2022-1224-S-B, JDRF 2-SRA-2021-1078-S-B, Vivian Smith Foundation and Men of Distinction. A.R.P. is supported through a JDRF Career Development Award (5-CDA-2020-945-A-N) and is a Canada Research Chair in Cell Therapies for Diabetes thanks to funding from the Canada Research Chairs Program. A.C. is supported by a grant from JDRF (3-SRA-2022-1155-S-B) and the Italian Ministry of Health (GR-2018-12366399). M.B. is a consultant for The Jackson Laboratory. J.R.M. was supported by the NIH (R01DK114233), JDRF (3-SRA-2023-1295-S-B), and the Edward J Mallinckrodt Foundation. H.A.R. is or was supported by NIDDK R01DK12044, NIDDK R01DK132387, NINDS 1R01NS122911, NIDDK/HIRN RRID: SCR_014393; UC24 DK104162, JDRF SRA 2-SRA-2023-1313-S-B and 3-SRA-2023-1367-S-B, and the Diabetes Research Connection. M.C.P. is supported by JDRF grants 2-SRA 2021 1075-S-B and 3-SRA 2023 1365-S-B, the VIC Innovation Fund and The Hill Family Foundation. F. Dogan helped to create Fig. 2. The authors thank S. P. Rodgers and R. E. Whitehead for their support in finalizing the manuscript and figures.

Author information

Authors and Affiliations

Authors

Contributions

A.G., N.E.M., J.G., M.C.P. and P.deV. researched data for the article, made a substantial contribution to discussion of content, wrote, and reviewed/edited the manuscript before submission. G.K., A.A.T., A.J.G., A.R.P., C.S., M.B., K.P., A.C., H.S., J.R.M., J.M.-M., M.G., M. Sefton, M. Ma, N.K., O.V., T.A.D., M.C.N., M. Marinac, M. Sykes, H.A.R., J.O. and Q.T. researched data for the article, made a substantial contribution to discussion of content and wrote the article. C.R. and E.L. wrote, and reviewed/edited the manuscript before submission.

Corresponding authors

Correspondence to Alessandro Grattoni, Jaime Giraldo, Mark C. Poznansky or Paul de Vos.

Ethics declarations

Competing interests

A.G. is a co-founder of Continuity Biosciences LLC, and an inventor of intellectual property licensed by the same company. A.J.G. is an inventor of intellectual property related to technologies for cell therapy in T1DM owned in part by the Georgia Tech Research Corporation, is a co-founder, sits on the Board of Directors, and owns equity interest in iTolerance Inc. H.S. is an inventor on a patent licensed by iTolerance Inc, is a co-founder of the Company, and serves on the scientific advisory board of the Company. M. Ma is a co-founder and equity holder of AvantGuard and Persista Bio. J.O. is co-founder, owns stock equity, and serves on the scientific advisory board of Regenerative Medical Solutions Inc., is a clinical trial investigator for Vertex Pharmaceuticals Inc., and is a member of DSMB for Sernova Corp. J.R.M. is an inventor on related patents and patent applications, was employed at Sana Biotechnology, and has stocks and options in Sana Biotechnology. T.A.D. is a scientific founder of Encellin Inc., a cell therapy device company. K.P. discloses interest in Procyon Technologies LLC. M.C.N. has a sponsored research agreement with Universal Cells Inc., and a patent licensed to Sernova Corp. H.A.R. holds patents in the regenerative medicine space and served as SAB member of Sigilon Therapeutics, Prellis Biologics and consults or consulted for Sigilon Therapeutics, Eli Lilly, Minutia, Guidepoint Global, Axon Advisors and Tolerance Bio. C.R. is scientific adviser to Novo Nordisk, Vertex Pharma and iTolerance, and is a founding scientist of Lipogems International and AION Healthspan. M.C.P. is scientific founder of Vicapsys Life Sciences Inc. All other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Endocrinology thanks Emmanuel Opara, Adrian Teo, Shareen Forbes for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grattoni, A., Korbutt, G., Tomei, A.A. et al. Harnessing cellular therapeutics for type 1 diabetes mellitus: progress, challenges, and the road ahead. Nat Rev Endocrinol 21, 14–30 (2025). https://doi.org/10.1038/s41574-024-01029-0

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41574-024-01029-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing