Abstract
The skin, including the hypodermis, is the largest organ of the body. The epidermis, the uppermost layer, is in direct contact with the environment and is exposed to environmental stressors, including solar radiation and biological, chemical and physical factors. These environmental factors trigger local responses within the skin that modulate homeostasis on both the cutaneous and systemic levels. Using mediators in common with brain pathways, immune and neuroendocrine systems within the skin regulate these responses to activate various signal transduction pathways and influence the systemic endocrine and immune systems in a context-dependent manner. This skin neuro–immuno–endocrine system is compartmentalized through the formation of epidermal, dermal, hypodermal and adnexal regulatory units. These units can act separately or in concert to preserve skin integrity, allow for adaptation to a changing environment and prevent the development of pathological processes. Through activation of peripheral nerve endings, the release of neurotransmitters, hormones, neuropeptides, and cytokines and/or chemokines into the circulation, or by priming circulating and resident immune cells, this system affects central coordinating centres and global homeostasis, thus adjusting the body’s homeostasis and allostasis to optimally respond to the changing environment.
Key points
-
The skin separates the internal milieu from the environment and is composed of the predominantly neuroectoderm-derived epidermis, an adjacent, predominantly mesoderm-derived dermis with hypodermis largely composed of fibroadipose tissue.
-
Skin is exposed to a variety of environmental signals, including solar radiation of different wavelengths, biological, physical and chemical insults, and pollutants.
-
Locally produced mediators, including classic pituitary and hypothalamic hormones, neuropeptides, cytokines and chemokines, biogenic amines, serotonin, melatonin, cannabinoids, steroids, and secosteroids, supported by a cutaneous neural network, regulate protective responses against environmental insults.
-
The skin neuro–immuno–endocrine system communicates with the local microbiome, neural, endocrine and immune systems through the production of soluble factors, priming circulating immune cells or neural transmission.
-
Environmental changes are detected and analysed locally and are transmitted to the central coordinating centres to regulate local and central homeostasis.
-
Selective activation of the skin neuro–immuno–endocrine system can have a role in protection against skin pathologies and in the prevention and treatment of systemic disorders, including autoimmune, neurodegenerative and cardiovascular disorders or carcinogenesis.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$189.00 per year
only $15.75 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
Change history
02 May 2025
A Correction to this paper has been published: https://doi.org/10.1038/s41574-025-01126-8
References
Bolognia, J. L., Schaffer, J. V. & Cerroni, L. Dermatology 5th edn, Vol. 1-2 (Elsevier, 2024).
Slominski, A. T. et al. Sensing the environment: regulation of local and global homeostasis by the skin’s neuroendocrine system. Adv. Anat. Embryol. Cell Biol. 212, 1–115 (2012).
Slominski, R. M., Chen, J. Y., Raman, C. & Slominski, A. T. Photo-neuro-immuno-endocrinology: how the ultraviolet radiation regulates the body, brain, and immune system. Proc. Natl Acad. Sci. USA 121, e2308374121 (2024).
Plikus, M. V. & Chuong, C.-M. Understanding skin morphogenesis across developmental, regenerative and evolutionary levels. Exp. Dermatol. 28, 327–331 (2019).
Akat, E. et al. Comparison of vertebrate skin structure at class level: a review. Anat. Rec. 305, 3543–3608 (2022).
Slominski, A. T., Zmijewski, M. A., Plonka, P. M., Szaflarski, J. P. & Paus, R. How UV light touches the brain and endocrine system through skin, and why. Endocrinology 159, 1992–2007 (2018).
Zwick, R. K., Guerrero-Juarez, C. F., Horsley, V. & Plikus, M. V. Anatomical, physiological, and functional diversity of adipose tissue. Cell Metab. 27, 68–83 (2018).
Slominski, A. et al. Hair follicle pigmentation. J. Invest. Dermatol. 124, 13–21 (2005).
Tobin, D. J., Slominski, A., Botchkarev, V. & Paus, R. The fate of hair follicle melanocytes during the hair growth cycle. J. Invest. Dermatol. Symp. Proc. 4, 323–332 (1999).
Bocheva, G., Slominski, R. M. & Slominski, A. T. Environmental air pollutants affecting skin functions with systemic implications. Int. J. Mol. Sci. 24, 10502 (2023).
Gu, X., Li, Z. & Su, J. Air pollution and skin diseases: a comprehensive evaluation of the associated mechanism. Ecotoxicol. Env. Saf. 278, 116429 (2024).
Bernard, J. J., Gallo, R. L. & Krutmann, J. Photoimmunology: how ultraviolet radiation affects the immune system. Nat. Rev. Immunol. 19, 688–701 (2019).
Jablonski, N. G. The evolution of human skin pigmentation involved the interactions of genetic, environmental, and cultural variables. Pigment. Cell Melanoma Res. 34, 707–729 (2021).
Slominski, A., Tobin, D. J., Shibahara, S. & Wortsman, J. Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol. Rev. 84, 1155–1228 (2004).
O’Sullivan, J. D. B. et al. The biology of human hair greying. Biol. Rev. Camb. Philos. Soc. 96, 107–128 (2021).
Clayton, R. W. et al. Neuroendocrinology and neurobiology of sebaceous glands. Biol. Rev. Camb. Philos. Soc. 95, 592–624 (2020).
Slominski, A. & Wortsman, J. Neuroendocrinology of the skin. Endocr. Rev. 21, 457–487 (2000).
Slominski, A. T. et al. Neuroendocrine signaling in the skin with a special focus on the epidermal neuropeptides. Am. J. Physiol. Cell Physiol. 323, C1757–C1776 (2022).
Harris-Tryon, T. A. & Grice, E. A. Microbiota and maintenance of skin barrier function. Science 376, 940–945 (2022).
Almoughrabie, S. et al. Commensal Cutibacterium acnes induce epidermal lipid synthesis important for skin barrier function. Sci. Adv. 9, eadg6262 (2023).
Nakatsuji, T., Cheng, J. Y. & Gallo, R. L. Mechanisms for control of skin immune function by the microbiome. Curr. Opin. Immunol. 72, 324–330 (2021).
Hernández-Bule, M. L., Naharro-Rodríguez, J., Bacci, S. & Fernández-Guarino, M. Unlocking the power of light on the skin: a comprehensive review on photobiomodulation. Int. J. Mol. Sci. 25, 4483 (2024).
Mineroff, J. et al. Photobiomodulation CME part II: clinical applications in dermatology. J. Am. Acad. Dermatol. 91, 805–815 (2024).
Parrado, C. et al. Environmental stressors on skin aging. Mechanistic insights. Front. Pharmacol. 10, 759 (2019).
Dantzer, R. Neuroimmune interactions: from the brain to the immune system and vice versa. Physiol. Rev. 98, 477–504 (2018).
Jin, H., Li, M., Jeong, E., Castro-Martinez, F. & Zuker, C. S. A body–brain circuit that regulates body inflammatory responses. Nature 630, 695–703 (2024).
Slominski, A. A nervous breakdown in the skin: stress and the epidermal barrier. J. Clin. Invest. 117, 3166–3169 (2007).
Aburto, M. R. & Cryan, J. F. Gastrointestinal and brain barriers: unlocking gates of communication across the microbiota–gut–brain axis. Nat. Rev. Gastroenterol. Hepatol. 21, 222–247 (2024).
Mayer, E. A., Nance, K. & Chen, S. The gut-brain axis. Annu. Rev. Med. 73, 439–453 (2022).
Merk, V. M., Phan, T. S. & Brunner, T. Regulation of tissue immune responses by local glucocorticoids at epithelial barriers and their impact on interorgan crosstalk. Front. Immunol. 12, 672808 (2021).
Trompette, A. & Ubags, N. D. Skin barrier immunology from early life to adulthood. Mucosal Immunol. 16, 194–207 (2023).
Salvador, A. F., de Lima, K. A. & Kipnis, J. Neuromodulation by the immune system: a focus on cytokines. Nat. Rev. Immunol. 21, 526–541 (2021).
Paus, R., Nickoloff, B. J. & Ito, T. A ‘hairy’ privilege. Trends Immunol. 26, 32–40 (2005).
Harries, M. J., Meyer, K. C. & Paus, R. Hair loss as a result of cutaneous autoimmunity: frontiers in the immunopathogenesis of primary cicatricial alopecia. Autoimmun. Rev. 8, 478–483 (2009).
Slominski, R. M. et al. Extra-adrenal glucocorticoid biosynthesis: implications for autoimmune and inflammatory disorders. Genes Immun. 21, 150–168 (2020).
Feng, X., Zhan, H. & Sokol, C. L. Sensory neuronal control of skin barrier immunity. Trends Immunol. 45, 371–380 (2024).
Saraiva-Santos, T., Zaninelli, T. H. & Pinho-Ribeiro, F. A. Modulation of host immunity by sensory neurons. Trends Immunol. 45, 381–396 (2024).
Kulalert, W. et al. The neuroimmune CGRP-RAMP1 axis tunes cutaneous adaptive immunity to the microbiota. Proc. Natl Acad. Sci. USA 121, e2322574121 (2024).
Marek-Jozefowicz, L. et al. The brain-skin axis in psoriasis-psychological, psychiatric, hormonal, and dermatological aspects. Int. J. Mol. Sci. 23, 669 (2022).
Cevikbas, F. & Lerner, E. A. Physiology and pathophysiology of itch. Physiol. Rev. 100, 945–982 (2020).
Belkaid, Y. & Tamoutounour, S. The influence of skin microorganisms on cutaneous immunity. Nat. Rev. Immunol. 16, 353–366 (2016).
Racine, P. J. et al. Dialog between skin and its microbiota: emergence of “Cutaneous Bacterial Endocrinology”. Exp. Dermatol. 29, 790–800 (2020).
Kim, T. K. et al. Evolutionary formation of melatonin and vitamin D in early life forms: insects take centre stage. Biol. Rev. Camb. Philos. Soc. 99, 1772–1790 (2024).
Duarte, M., Pedrosa, S. S., Khusial, P. R. & Madureira, A. R. Exploring the interplay between stress mediators and skin microbiota in shaping age-related hallmarks: a review. Mech. Ageing Dev. 220, 111956 (2024).
Slominski, A., Wortsman, J., Luger, T., Paus, R. & Solomon, S. Corticotropin releasing hormone and proopiomelanocortin involvement in the cutaneous response to stress. Physiol. Rev. 80, 979–1020 (2000).
Tobin, D. J. Biochemistry of human skin-our brain on the outside. Chem. Soc. Rev. 35, 52–67 (2006).
Ramot, Y., Bohm, M. & Paus, R. Translational neuroendocrinology of human skin: concepts and perspectives. Trends Mol. Med. 27, 60–74 (2021).
Grando, S. A., Pittelkow, M. R. & Schallreuter, K. U. Adrenergic and cholinergic control in the biology of epidermis: physiological and clinical significance. J. Invest. Dermatol. 126, 1948–1965 (2006).
Grando, S. A. Cholinergic control of epidermal cohesion. Exp. Dermatol. 15, 265–282 (2006).
Quarta, C. et al. POMC neuronal heterogeneity in energy balance and beyond: an integrated view. Nat. Metab. 3, 299–308 (2021).
Toda, C., Santoro, A., Kim, J. D. & Diano, S. POMC neurons: from birth to death. Annu. Rev. Physiol. 79, 209–236 (2017).
Harno, E., Gali Ramamoorthy, T., Coll, A. P. & White, A. POMC: the physiological power of hormone processing. Physiol. Rev. 98, 2381–2430 (2018).
Chrousos, G. P. Stress and disorders of the stress system. Nat. Rev. Endocrinol. 5, 374–381 (2009).
Brzoska, T., Luger, T. A., Maaser, C., Abels, C. & Bohm, M. α-Melanocyte-stimulating hormone and related tripeptides: biochemistry, antiinflammatory and protective effects in vitro and in vivo, and future perspectives for the treatment of immune-mediated inflammatory diseases. Endocr. Rev. 29, 581–602 (2008).
Bohm, M., Luger, T. A., Tobin, D. J. & Garcia-Borron, J. C. Melanocortin receptor ligands: new horizons for skin biology and clinical dermatology. J. Invest. Dermatol. 126, 1966–1975 (2006).
Tobin, D. J. & Kauser, S. β-Endorphin: the forgotten hair follicle melanotropin. J. Invest. Dermatol. Symp. Proc. 10, 212–216 (2005).
Mazurkiewicz, J. E., Corliss, D. & Slominski, A. Spatiotemporal expression, distribution, and processing of POMC and POMC-derived peptides in murine skin. J. Histochem. Cytochem. 48, 905–914 (2000).
Slominski, A. T. et al. Key role of CRF in the skin stress response system. Endocr. Rev. 34, 827–884 (2013).
Upadhyay, P. R., Swope, V. B., Starner, R. J., Koikov, L. & Abdel-Malek, Z. A. Journey through the spectacular landscape of melanocortin 1 receptor. Pigment. Cell Melanoma Res. 37, 667–680 (2024).
Bigliardi, P. L., Tobin, D. J., Gaveriaux-Ruff, C. & Bigliardi-Qi, M. Opioids and the skin-where do we stand? Exp. Dermatol. 18, 424–430 (2009).
Bigliardi, P. L., Dancik, Y., Neumann, C. & Bigliardi-Qi, M. Opioids and skin homeostasis, regeneration and ageing — what’s the evidence? Exp. Dermatol. 25, 586–591 (2016).
Singh, M. & Mukhopadhyay, K. Alpha-melanocyte stimulating hormone: an emerging anti-inflammatory antimicrobial peptide. Biomed. Res. Int. 2014, 874610 (2014).
Charnley, M., Moir, A. J., Douglas, C. W. & Haycock, J. W. Anti-microbial action of melanocortin peptides and identification of a novel X-Pro-D/L-Val sequence in Gram-positive and Gram-negative bacteria. Peptides 29, 1004–1009 (2008).
Eves, P. C. & Haycock, J. W. Melanocortin signalling mechanisms. Adv. Exp. Med. Biol. 681, 19–28 (2010).
Eves, P. C., MacNeil, S. & Haycock, J. W. α-Melanocyte stimulating hormone, inflammation and human melanoma. Peptides 27, 444–452 (2006).
Bohm, M. et al. α-Melanocyte-stimulating hormone protects from ultraviolet radiation-induced apoptosis and DNA damage. J. Biol. Chem. 280, 5795–5802 (2005).
Besedovsky, H. O. & del Rey, A. Immune-neuro-endocrine interactions: facts and hypotheses. Endocr. Rev. 17, 64–102 (1996).
Hill, R. P., MacNeil, S. & Haycock, J. W. Melanocyte stimulating hormone peptides inhibit TNF-α signaling in human dermal fibroblast cells. Peptides 27, 421–430 (2006).
Nix, M. A. et al. Molecular and functional analysis of human β-defensin 3 action at melanocortin receptors. Chem. Biol. 20, 784–795 (2013).
Jackson, P. J. et al. Structural and molecular evolutionary analysis of Agouti and Agouti-related proteins. Chem. Biol. 13, 1297–1305 (2006).
Slominski, A. et al. Preservation of eumelanin hair pigmentation in proopiomelanocortin-deficient mice on a nonagouti (a/a) genetic background. Endocrinology 146, 1245–1253 (2005).
Skobowiat, C., Postlethwaite, A. E. & Slominski, A. T. Skin exposure to ultraviolet B rapidly activates systemic neuroendocrine and immunosuppressive responses. Photochem. Photobiol. 93, 1008–1015 (2017).
Skobowiat, C. & Slominski, A. T. Ultraviolet B stimulates proopiomelanocortin signalling in the arcuate nucleus of the hypothalamus in mice. Exp. Dermatol. 25, 120–123 (2016).
Skobowiat, C. & Slominski, A. T. UVB activates hypothalamic-pituitary-adrenal axis in C57BL/6 mice. J. Invest. Dermatol. 135, 1638–1648 (2015).
Fell, G. L., Robinson, K. C., Mao, J., Woolf, C. J. & Fisher, D. E. Skin β-endorphin mediates addiction to UV light. Cell 157, 1527–1534 (2014).
Millington, G. W. M. & Palmer, H. E. Proopiomelanocortin (POMC) and psychodermatology. Skin Health Dis. 3, e201 (2023).
Skobowiat, C., Dowdy, J. C., Sayre, R. M., Tuckey, R. C. & Slominski, A. Cutaneous hypothalamic-pituitary-adrenal axis homolog: regulation by ultraviolet radiation. Am. J. Physiol. Endocrinol. Metab. 301, E484–E493 (2011).
Schiller, M. et al. Solar-simulated ultraviolet radiation-induced upregulation of the melanocortin-1 receptor, proopiomelanocortin, and α-melanocyte-stimulating hormone in human epidermis in vivo. J. Invest. Dermatol. 122, 468–476 (2004).
Slominski, R. M., Raman, C., Chen, J. Y. & Slominski, A. T. How cancer hijacks the body’s homeostasis through the neuroendocrine system. Trends Neurosci. 46, 263–275 (2023).
Theoharides, T. C. Neuroendocrinology of mast cells: challenges and controversies. Exp. Dermatol. 26, 751–759 (2017).
Slominski, R. M. et al. Malignant melanoma: an overview, new perspectives, and vitamin D signaling. Cancers 16, 2262 (2024).
Chrousos, G. P. & Zoumakis, E. Milestones in CRH research. Curr. Mol. Pharmacol. 10, 259–263 (2017).
Grammatopoulos, D. K. & Ourailidou, S. CRH receptor signalling: potential roles in pathophysiology. Curr. Mol. Pharmacol. 10, 296–310 (2017).
Seres, J. et al. Corticotropin-releasing hormone system in human adipose tissue. J. Clin. Endocrinol. Metab. 89, 965–970 (2004).
Slominski, A., Pisarchik, A., Tobin, D. J., Mazurkiewicz, J. E. & Wortsman, J. Differential expression of a cutaneous corticotropin-releasing hormone system. Endocrinology 145, 941–950 (2004).
Roloff, B. et al. Hair cycle-dependent expression of corticotropin-releasing factor (CRF) and CRF receptors in murine skin. FASEB J. 12, 287–297 (1998).
Kauser, S., Slominski, A., Wei, E. T. & Tobin, D. J. Modulation of the human hair follicle pigmentary unit by corticotropin-releasing hormone and urocortin peptides. FASEB J. 20, 882–895 (2006).
Slominski, A. et al. CRH functions as a growth factor/cytokine in the skin. J. Cell Physiol. 206, 780–791 (2006).
Zouboulis, C. C. et al. Corticotropin-releasing hormone: an autocrine hormone that promotes lipogenesis in human sebocytes. Proc. Natl Acad. Sci. USA 99, 7148–7153 (2002).
Slominski, A. et al. The skin produces urocortin. J. Clin. Endocrinol. Metab. 85, 815–823 (2000).
Slominski, A. et al. Corticotropin releasing hormone and the skin. Front. Biosci. 11, 2230–2248 (2006).
Fischer, T. W. et al. New effects of caffeine on corticotropin-releasing hormone (CRH)-induced stress along the intrafollicular classical hypothalamic-pituitary-adrenal (HPA) axis (CRH-R1/2, IP(3) -R, ACTH, MC-R2) and the neurogenic non-HPA axis (substance P, p75(NTR) and TrkA) in ex vivo human male androgenetic scalp hair follicles. Br. J. Dermatol. 184, 96–110 (2021).
Rassouli, O., Liapakis, G. & Venihaki, M. Role of central and peripheral CRH in skin. Curr. Mol. Pharmacol. 11, 72–80 (2018).
Zmijewski, M. A. & Slominski, A. T. CRF1 receptor splicing in epidermal keratinocytes: potential biological role and environmental regulations. J. Cell Physiol. 218, 593–602 (2009).
Slominski, A. et al. Cutaneous expression of corticotropin-releasing hormone (CRH), urocortin, and CRH receptors. FASEB J. 15, 1678–1693 (2001).
Zbytek, B., Wortsman, J. & Slominski, A. Characterization of a ultraviolet B-induced corticotropin-releasing hormone-proopiomelanocortin system in human melanocytes. Mol. Endocrinol. 20, 2539–2547 (2006).
Zbytek, B. & Slominski, A. T. CRH mediates inflammation induced by lipopolysaccharide in human adult epidermal keratinocytes. J. Invest. Dermatol. 127, 730–732 (2007).
Isard, O. et al. Cutaneous induction of corticotropin releasing hormone by Propionibacterium acnes extracts. Dermatoendocrinol 1, 96–99 (2009).
Zmijewski, M. A. & Slominski, A. T. Emerging role of alternative splicing of CRF1 receptor in CRF signaling. Acta Biochim. Pol. 57, 1–13 (2010).
Pisarchik, A. & Slominski, A. T. Alternative splicing of CRH-R1 receptors in human and mouse skin: identification of new variants and their differential expression. FASEB J. 15, 2754–2756 (2001).
Turnbull, A. V. & Rivier, C. L. Regulation of the hypothalamic-pituitary-adrenal axis by cytokines: actions and mechanisms of action. Physiol. Rev. 79, 1–71 (1999).
Slominski, A. et al. CRH stimulation of corticosteroids production in melanocytes is mediated by ACTH. Am. J. Physiol. Endocrinol. Metab. 288, E701–E706 (2005).
Slominski, A., Zbytek, B., Semak, I., Sweatman, T. & Wortsman, J. CRH stimulates POMC activity and corticosterone production in dermal fibroblasts. J. Neuroimmunol. 162, 97–102 (2005).
Ito, N. et al. Human hair follicles display a functional equivalent of the hypothalamic-pituitary-adrenal axis and synthesize cortisol. FASEB J. 19, 1332–1334 (2005).
Chakraborty, S., Pramanik, J. & Mahata, B. Revisiting steroidogenesis and its role in immune regulation with the advanced tools and technologies. Genes Immun. 22, 125–140 (2021).
Karalis, K. et al. Autocrine or paracrine inflammatory actions of corticotropin-releasing hormone in vivo. Science 254, 421–423 (1991).
Zbytek, B., Pfeffer, L. M. & Slominski, A. T. Corticotropin-releasing hormone stimulates NF-κB in human epidermal keratinocytes. J. Endocrinol. 181, R1–R7 (2004).
Zbytek, B., Pfeffer, L. M. & Slominski, A. T. CRH inhibits NF-κB signaling in human melanocytes. Peptides 27, 3276–3283 (2006).
Slominski, A. et al. Expression of hypothalamic-pituitary-thyroid axis related genes in the human skin. J. Invest. Dermatol. 119, 1449–1455 (2002).
Paus, R. Exploring the “thyroid-skin connection”: concepts, questions, and clinical relevance. J. Invest. Dermatol. 130, 7–10 (2010).
Vidali, S. et al. Hypothalamic-pituitary-thyroid axis hormones stimulate mitochondrial function and biogenesis in human hair follicles. J. Invest. Dermatol. 134, 33–42 (2014).
Bodo, E. et al. Thyroid-stimulating hormone, a novel, locally produced modulator of human epidermal functions, is regulated by thyrotropin-releasing hormone and thyroid hormones. Endocrinology 151, 1633–1642 (2010).
Gaspar, E. et al. Thyrotropin releasing hormone (TRH): a new player in human hair-growth control. FASEB J. 24, 393–403 (2010).
Deing, V. et al. Oxytocin modulates proliferation and stress responses of human skin cells: implications for atopic dermatitis. Exp. Dermatol. 22, 399–405 (2013).
Fujimoto, K., Inada, K., Oka, K. & Ito, E. Revisiting oxytocin generation in keratinocytes. Biophys. Physicobiol. 20, e200003 (2023).
Harvey, S., Martínez-Moreno, C. G., Luna, M. & Arámburo, C. Autocrine/paracrine roles of extrapituitary growth hormone and prolactin in health and disease: an overview. Gen. Comp. Endocrinol. 220, 103–111 (2015).
Taghizadeh, B. et al. The protection role of human growth hormone on skin cells following ultraviolet B exposure. J. Photochem. Photobiol. B Biol. 257, 112961 (2024).
Kanaka-Gantenbein, C., Kogia, C., Abdel-Naser, M. B. & Chrousos, G. P. Skin manifestations of growth hormone-induced diseases. Rev. Endocr. Metab. Disord. 17, 259–267 (2016).
Horesh, E. J., Cheret, J. & Paus, R. Growth hormone and the human hair follicle. Int. J. Mol. Sci. 22, 13205 (2021).
Horesh, E. J. et al. Human hair follicles operate a functional peripheral equivalent of the hypothalamic-pituitary-somatotropic axis ex vivo. J. Invest. Dermatol. 143, 868–871.e7 (2023).
Breitkopf, T. et al. Somatostatin expression in human hair follicles and its potential role in immune privilege. J. Invest. Dermatol. 133, 1722–1730 (2013).
Choi, J. E. & Di Nardo, A. Skin neurogenic inflammation. Semin. Immunopathol. 40, 249–259 (2018).
Lee, E. Y. et al. PACAP is a pathogen-inducible resident antimicrobial neuropeptide affording rapid and contextual molecular host defense of the brain. Proc. Natl Acad. Sci. USA 118, e1917623117 (2021).
Anderson, Z. T., Dawson, A. D., Slominski, A. T. & Harris, M. L. Current insights into the role of neuropeptide Y in skin physiology and pathology. Front. Endocrinol. 13, 838434 (2022).
Bigliardi, P. et al. The opioid receptor influences circadian rhythms in human keratinocytes through the β-arrestin pathway. Cells 13, 232 (2024).
Slominski, A. T. et al. Regulated proenkephalin expression in human skin and cultured skin cells. J. Invest. Dermatol. 131, 613–622 (2011).
Shime, H. et al. Proenkephalin+ regulatory T cells expanded by ultraviolet B exposure maintain skin homeostasis with a healing function. Proc. Natl Acad. Sci. USA 117, 20696–20705 (2020).
Cirillo, N. The local neuropeptide system of keratinocytes. Biomedicines 9, 1854 (2021).
Truzzi, F., Marconi, A. & Pincelli, C. Neurotrophins in healthy and diseased skin. Dermatoendocrinology 3, 32–36 (2011).
Botchkarev, V. A. et al. Neurotrophins in skin biology and pathology. J. Invest. Dermatol. 126, 1719–1727 (2006).
Poeggeler, B. et al. Leptin and the skin: a new frontier. Exp. Dermatol. 19, 12–18 (2010).
Quan, Q. L. et al. UV irradiation increases appetite and prevents body weight gain through the upregulation of norepinephrine in mice. J. Invest. Dermatol. 144, 2273–2284 (2024).
Slominski, A. et al. Steroidogenesis in the skin: implications for local immune functions. J. Steroid Biochem. Mol. Biol. 137, 107–123 (2013).
Nikolakis, G., Stratakis, C. A., Kanaki, T., Slominski, A. & Zouboulis, C. C. Skin steroidogenesis in health and disease. Rev. Endocr. Metab. Disord. 17, 247–258 (2016).
Slominski, R. M. et al. The significance of CYP11A1 expression in skin physiology and pathology. Mol. Cell Endocrinol. 530, 111238 (2021).
Phan, T. S. et al. Keratinocytes control skin immune homeostasis through de novo-synthesized glucocorticoids. Sci. Adv. 7, eabe0337 (2021).
Hannen, R. et al. Dysfunctional skin-derived glucocorticoid synthesis is a pathogenic mechanism of psoriasis. J. Invest. Dermatol. 137, 1630–1637 (2017).
Cirillo, N. & Prime, S. S. Keratinocytes synthesize and activate cortisol. J. Cell Biochem. 112, 1499–1505 (2011).
Vukelic, S. et al. Cortisol synthesis in epidermis is induced by IL-1 and tissue injury. J. Biol. Chem. 286, 10265–10275 (2011).
Jia, Y. et al. Steroidogenic enzyme Cyp11a1 regulates Type 2 CD8+ T cell skewing in allergic lung disease. Proc. Natl Acad. Sci. USA 110, 8152–8157 (2013).
Chi, L. et al. Sexual dimorphism in skin immunity is mediated by an androgen-ILC2-dendritic cell axis. Science 384, eadk6200 (2024).
Slominski, A. T. et al. Cytochrome P450scc-dependent metabolism of 7-dehydrocholesterol in placenta and epidermal keratinocytes. Int. J. Biochem. Cell Biol. 44, 2003–2018 (2012).
Slominski, A. T. et al. Biological effects of CYP11A1-derived vitamin D and lumisterol metabolites in the skin. J. Invest. Dermatol. 144, 2145–2161 (2024).
Slominski, A. T. Tuckey, R. C., Jenkinson, C., Li, W. & Jetten, A. M. in Feldman and Pike's Vitamin D 5th edn, Vol. 1, Ch. 6 (eds Hewison, M. et al.) 85–109 (Academic Press, 2023).
Holick, M. F. Vitamin D deficiency. N. Engl. J. Med. 357, 266–281 (2007).
Hewison, M. et al. in Feldman and Pike’s Vitamin D 5th edn (Academic Press, 2023).
Slominski, A. T. et al. Metabolic activation of tachysterol3 to biologically active hydroxyderivatives that act on VDR, AhR, LXRs, and PPARγ receptors. FASEB J. 36, e22451 (2022).
Slominski, A. et al. Serotoninergic and melatoninergic systems are fully expressed in human skin. FASEB J. 16, 896–898 (2002).
Slominski, A., Wortsman, J. & Tobin, D. J. The cutaneous serotoninergic/melatoninergic system: securing a place under the sun. FASEB J. 19, 176–194 (2005).
Slominski, A. T. et al. Characterization of serotonin and N-acetylserotonin systems in the human epidermis and skin cells. J. Pineal Res. 68, e12626 (2020).
Kobayashi, H. et al. A role of melatonin in neuroectodermal-mesodermal interactions: the hair follicle synthesizes melatonin and expresses functional melatonin receptors. FASEB J. 19, 1710–1712 (2005).
Slominski, A. T. et al. Melatonin and the skin: current progress and perspectives for human health. J. Invest. Dermatol. https://doi.org/10.1016/j.jid.2024.11.012 (2025).
Reiter, R. J. et al. Dual sources of melatonin and evidence for different primary functions. Front. Endocrinol. 15, 1414463 (2024).
Kim, T. K. et al. Metabolism of melatonin and biological activity of intermediates of melatoninergic pathway in human skin cells. FASEB J. 27, 2742–2755 (2013).
Fischer, T. W. et al. Constitutive and UV-induced metabolism of melatonin in keratinocytes and cell-free systems. FASEB J. 20, 1564–1566 (2006).
Slominski, A. et al. Functional activity of serotoninergic and melatoninergic systems expressed in the skin. J. Cell Physiol. 196, 144–153 (2003).
Slominski, R. M., Reiter, R. J., Schlabritz-Loutsevitch, N., Ostrom, R. S. & Slominski, A. T. Melatonin membrane receptors in peripheral tissues: distribution and functions. Mol. Cell Endocrinol. 351, 152–166 (2012).
Slominski, A. T. et al. Melatonin and its metabolites can serve as agonists on the aryl hydrocarbon receptor and peroxisome proliferator-activated receptor gamma. Int. J. Mol. Sci. 24, 15496 (2023).
Sanidad, K. Z. et al. Gut bacteria-derived serotonin promotes immune tolerance in early life. Sci. Immunol. 9, eadj4775 (2024).
Sivamani, R. K., Lam, S. T. & Isseroff, R. R. Beta adrenergic receptors in keratinocytes. Dermatol. Clin. 25, 643–653 (2007).
Slominski, A., Zmijewski, M. A. & Pawelek, J. L-tyrosine and L-dihydroxyphenylalanine as hormone-like regulators of melanocyte functions. Pigment. Cell Melanoma Res. 25, 14–27 (2012).
Slominski, R. M. et al. Melanoma, melanin, and melanogenesis: the yin and yang relationship. Front. Oncol. 12, 842496 (2022).
Doepner, M. et al. Endogenous DOPA inhibits melanoma through suppression of CHRM1 signaling. Sci. Adv. 8, eabn4007 (2022).
Kurzen, H., Wessler, I., Kirkpatrick, C. J., Kawashima, K. & Grando, S. A. The non-neuronal cholinergic system of human skin. Horm. Metab. Res. 39, 125–135 (2007).
Grando, S. A., Kawashima, K. & Wessler, I. Introduction: the non-neuronal cholinergic system in humans. Life Sci. 72, 2009–2012 (2003).
Biro, T., Toth, B. I., Hasko, G., Paus, R. & Pacher, P. The endocannabinoid system of the skin in health and disease: novel perspectives and therapeutic opportunities. Trends Pharmacol. Sci. 30, 411–420 (2009).
Ständer, S. & Schmelz, M. Skin innervation. J. Invest. Dermatol. 144, 1716–1723 (2024).
Erbacher, C. et al. Interaction of human keratinocytes and nerve fiber terminals at the neuro-cutaneous unit. eLife 13, e77761 (2024).
Misery, L., Loser, K. & Stander, S. Sensitive skin. J. Eur. Acad. Dermatol. Venereol. 30, 2–8 (2016).
Bennett-Kennett, R. et al. Sensory neuron activation from topical treatments modulates the sensorial perception of human skin. PNAS Nexus 2, pgad292 (2023).
Baumbauer, K. M. et al. Keratinocytes can modulate and directly initiate nociceptive responses. eLife 4, e09674 (2015).
Riol-Blanco, L. et al. Nociceptive sensory neurons drive interleukin-23-mediated psoriasiform skin inflammation. Nature 510, 157–161 (2014).
Wu, M. et al. Innervation of nociceptor neurons in the spleen promotes germinal center responses and humoral immunity. Cell 187, 2935–2951.e19 (2024).
Deng, L., Gillis, J. E., Chiu, I. M. & Kaplan, D. H. Sensory neurons: an integrated component of innate immunity. Immunity 57, 815–831 (2024).
Sua-Cespedes, C. et al. Melanopsin (OPN4) is a novel player in skin homeostasis and attenuates UVA-induced effects. J. Photochem. Photobiol. B Biol. 242, 112702 (2023).
de Assis, L. V. M., Moraes, M. N., Magalhaes-Marques, K. K. & Castrucci, A. M. L. Melanopsin and rhodopsin mediate UVA-induced immediate pigment darkening: unravelling the photosensitive system of the skin. Eur. J. Cell Biol. 97, 150–162 (2018).
Castellano-Pellicena, I. et al. Does blue light restore human epidermal barrier function via activation of Opsin during cutaneous wound healing? Lasers Surg. Med. 51, 370–382 (2019).
de Assis, L. V. M., Tonolli, P. N., Moraes, M. N., Baptista, M. S. & de Lauro Castrucci, A. M. How does the skin sense sun light? An integrative view of light sensing molecules. J. Photochem. Photobiol. C Photochem. Rev. 47, 100403 (2021).
Holick, M. F. & Slominski, A. T. in Feldman and Pike’s Vitamin D 5th edn, Vol. 1, Ch. 3 (eds Hewison, M. et al.) 27–45 (Academic Press, 2023).
Muzaffar, S., Khan, J., Srivastava, R., Gorbatyuk, M. S. & Athar, M. Mechanistic understanding of the toxic effects of arsenic and warfare arsenicals on human health and environment. Cell Biol. Toxicol. 39, 85–110 (2023).
Plikus, M. V., Guerrero-Juarez, C. F., Treffeisen, E. & Gay, D. L. Epigenetic control of skin and hair regeneration after wounding. Exp. Dermatol. 24, 167–170 (2015).
Tiganescu, A. et al. Increased glucocorticoid activation during mouse skin wound healing. J. Endocrinol. 221, 51–61 (2014).
Pullar, C. E., Rizzo, A. & Isseroff, R. R. β-Adrenergic receptor antagonists accelerate skin wound healing: evidence for a catecholamine synthesis network in the epidermis. J. Biol. Chem. 281, 21225–21235 (2006).
Slominski, A. T. & Zmijewski, M. A. Glucocorticoids inhibit wound healing: novel mechanism of action. J. Invest. Dermatol. 137, 1012–1014 (2017).
Jozic, I. et al. Stress signals, mediated by membranous glucocorticoid receptor, activate PLC/PKC/GSK-3β/β-catenin pathway to inhibit wound closure. J. Invest. Dermatol. 137, 1144–1154 (2017).
Yang, D. J. et al. Leucine-enkephalin promotes wound repair through the regulation of hemidesmosome dynamics and matrix metalloprotease. Peptides 76, 57–64 (2016).
Nguyen, V. T. et al. Re-epithelialization of pathological cutaneous wounds is improved by local mineralocorticoid receptor antagonism. J. Invest. Dermatol. 136, 2080–2089 (2016).
Giampazolias, E. et al. Vitamin D regulates microbiome-dependent cancer immunity. Science 384, 428–437 (2024).
Schulkin, J. Allostasis, Homeostasis, and the Costs of Physiological Adaptation (Cambridge University Press, 2004).
Geyfman, M., Plikus, M. V., Treffeisen, E., Andersen, B. & Paus, R. Resting no more: re-defining telogen, the maintenance stage of the hair growth cycle. Biol. Rev. Camb. Philos. Soc. 90, 1179–1196 (2015).
Bikle, D. D. Vitamin D: newer concepts of its metabolism and function at the basic and clinical level. J. Endocr. Soc. 4, bvz038 (2020).
Regazzetti, C. et al. Melanocytes sense blue light and regulate pigmentation through opsin-3. J. Invest. Dermatol. 138, 171–178 (2018).
Olinski, L. E., Lin, E. M. & Oancea, E. Illuminating insights into opsin 3 function in the skin. Adv. Biol. Regul. 75, 100668 (2020).
Gribonika, I. et al. Skin autonomous antibody production regulates host-microbiota interactions. Nature 638, 1043–1053 (2024).
Ito, Y. & Amagai, M. Dissecting skin microbiota and microenvironment for the development of therapeutic strategies. Curr. Opin. Microbiol. 74, 102311 (2023).
Voigt, A. Y. et al. Skin microbiome variation with cancer progression in human cutaneous squamous cell carcinoma. J. Invest. Dermatol. 142, 2773–2782.e16 (2022).
Lei, J. et al. Involvement of skin TRPV3 in temperature detection regulated by TMEM79 in mice. Nat. Commun. 14, 4104 (2023).
Slominski, A. T. et al. Detection of novel CYP11A1-derived secosteroids in the human epidermis and serum and pig adrenal gland. Sci. Rep. 5, 14875 (2015).
Acknowledgements
The authors were supported by National Institutes of Health (NIH) grants 1R01AR073004, R01AR071189 and R21AI149267, VA Merit grant 2I01BX004293, and US Department of Defense grant #W81XWH2210689 and by the Intramural Research Program of the National Institute of Environmental Health Sciences, NIH Z01-ES-101586. We thank T.-K. Kim for his help in the preparation of the original versions of Figs. 1 and 2. Previous support by National Science Foundation grants IOS-0918934, IBN-9604364, 9896030 and 049087 and NIH grants RO1AR052190, 1R01AR056666, R21AR0665051 and AR-047079 to A.T.S., which contributed to the development of the presented concepts, is acknowledged.
Author information
Authors and Affiliations
Contributions
The authors contributed equally to all aspects of the article.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Endocrinology thanks Sergei Grando and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Slominski, R.M., Raman, C., Jetten, A.M. et al. Neuro–immuno–endocrinology of the skin: how environment regulates body homeostasis. Nat Rev Endocrinol 21, 495–509 (2025). https://doi.org/10.1038/s41574-025-01107-x
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s41574-025-01107-x
This article is cited by
-
Exosome mediated delivery of Epigallocatechin 3 gallate as a novel approach to alleviate psoriasis symptoms through cytokine and apoptotic pathway modulation
Scientific Reports (2025)
-
Beneficial health effects of ultraviolet radiation: expert review and conference report
Photochemical & Photobiological Sciences (2025)
-
The Role of Solute Carriers in the Metabolic Reprogramming of Skin Diseases
Clinical Reviews in Allergy & Immunology (2025)
-
Combined treatment of melatonin and alpha-lipoic acid facilitates wound healing in rat palate: A macroscopic, histological, and immunohistochemical study
Histochemistry and Cell Biology (2025)