Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neuro–immuno–endocrinology of the skin: how environment regulates body homeostasis

A Publisher Correction to this article was published on 02 May 2025

This article has been updated

Abstract

The skin, including the hypodermis, is the largest organ of the body. The epidermis, the uppermost layer, is in direct contact with the environment and is exposed to environmental stressors, including solar radiation and biological, chemical and physical factors. These environmental factors trigger local responses within the skin that modulate homeostasis on both the cutaneous and systemic levels. Using mediators in common with brain pathways, immune and neuroendocrine systems within the skin regulate these responses to activate various signal transduction pathways and influence the systemic endocrine and immune systems in a context-dependent manner. This skin neuro–immuno–endocrine system is compartmentalized through the formation of epidermal, dermal, hypodermal and adnexal regulatory units. These units can act separately or in concert to preserve skin integrity, allow for adaptation to a changing environment and prevent the development of pathological processes. Through activation of peripheral nerve endings, the release of neurotransmitters, hormones, neuropeptides, and cytokines and/or chemokines into the circulation, or by priming circulating and resident immune cells, this system affects central coordinating centres and global homeostasis, thus adjusting the body’s homeostasis and allostasis to optimally respond to the changing environment.

Key points

  • The skin separates the internal milieu from the environment and is composed of the predominantly neuroectoderm-derived epidermis, an adjacent, predominantly mesoderm-derived dermis with hypodermis largely composed of fibroadipose tissue.

  • Skin is exposed to a variety of environmental signals, including solar radiation of different wavelengths, biological, physical and chemical insults, and pollutants.

  • Locally produced mediators, including classic pituitary and hypothalamic hormones, neuropeptides, cytokines and chemokines, biogenic amines, serotonin, melatonin, cannabinoids, steroids, and secosteroids, supported by a cutaneous neural network, regulate protective responses against environmental insults.

  • The skin neuro–immuno–endocrine system communicates with the local microbiome, neural, endocrine and immune systems through the production of soluble factors, priming circulating immune cells or neural transmission.

  • Environmental changes are detected and analysed locally and are transmitted to the central coordinating centres to regulate local and central homeostasis.

  • Selective activation of the skin neuro–immuno–endocrine system can have a role in protection against skin pathologies and in the prevention and treatment of systemic disorders, including autoimmune, neurodegenerative and cardiovascular disorders or carcinogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Skin homeostasis and allostasis are regulated by the local neuro–immuno–endocrine system in response to environmental factors.
Fig. 2: Cutaneous equivalents of the central HPA axis.
Fig. 3: Skin can regulate global body homeostasis and allostasis.

Similar content being viewed by others

Change history

References

  1. Bolognia, J. L., Schaffer, J. V. & Cerroni, L. Dermatology 5th edn, Vol. 1-2 (Elsevier, 2024).

  2. Slominski, A. T. et al. Sensing the environment: regulation of local and global homeostasis by the skin’s neuroendocrine system. Adv. Anat. Embryol. Cell Biol. 212, 1–115 (2012).

    Article  Google Scholar 

  3. Slominski, R. M., Chen, J. Y., Raman, C. & Slominski, A. T. Photo-neuro-immuno-endocrinology: how the ultraviolet radiation regulates the body, brain, and immune system. Proc. Natl Acad. Sci. USA 121, e2308374121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Plikus, M. V. & Chuong, C.-M. Understanding skin morphogenesis across developmental, regenerative and evolutionary levels. Exp. Dermatol. 28, 327–331 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Akat, E. et al. Comparison of vertebrate skin structure at class level: a review. Anat. Rec. 305, 3543–3608 (2022).

    Article  Google Scholar 

  6. Slominski, A. T., Zmijewski, M. A., Plonka, P. M., Szaflarski, J. P. & Paus, R. How UV light touches the brain and endocrine system through skin, and why. Endocrinology 159, 1992–2007 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zwick, R. K., Guerrero-Juarez, C. F., Horsley, V. & Plikus, M. V. Anatomical, physiological, and functional diversity of adipose tissue. Cell Metab. 27, 68–83 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Slominski, A. et al. Hair follicle pigmentation. J. Invest. Dermatol. 124, 13–21 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tobin, D. J., Slominski, A., Botchkarev, V. & Paus, R. The fate of hair follicle melanocytes during the hair growth cycle. J. Invest. Dermatol. Symp. Proc. 4, 323–332 (1999).

    Article  CAS  Google Scholar 

  10. Bocheva, G., Slominski, R. M. & Slominski, A. T. Environmental air pollutants affecting skin functions with systemic implications. Int. J. Mol. Sci. 24, 10502 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gu, X., Li, Z. & Su, J. Air pollution and skin diseases: a comprehensive evaluation of the associated mechanism. Ecotoxicol. Env. Saf. 278, 116429 (2024).

    Article  CAS  Google Scholar 

  12. Bernard, J. J., Gallo, R. L. & Krutmann, J. Photoimmunology: how ultraviolet radiation affects the immune system. Nat. Rev. Immunol. 19, 688–701 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Jablonski, N. G. The evolution of human skin pigmentation involved the interactions of genetic, environmental, and cultural variables. Pigment. Cell Melanoma Res. 34, 707–729 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Slominski, A., Tobin, D. J., Shibahara, S. & Wortsman, J. Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol. Rev. 84, 1155–1228 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. O’Sullivan, J. D. B. et al. The biology of human hair greying. Biol. Rev. Camb. Philos. Soc. 96, 107–128 (2021).

    Article  PubMed  Google Scholar 

  16. Clayton, R. W. et al. Neuroendocrinology and neurobiology of sebaceous glands. Biol. Rev. Camb. Philos. Soc. 95, 592–624 (2020).

    Article  PubMed  Google Scholar 

  17. Slominski, A. & Wortsman, J. Neuroendocrinology of the skin. Endocr. Rev. 21, 457–487 (2000).

    CAS  PubMed  Google Scholar 

  18. Slominski, A. T. et al. Neuroendocrine signaling in the skin with a special focus on the epidermal neuropeptides. Am. J. Physiol. Cell Physiol. 323, C1757–C1776 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Harris-Tryon, T. A. & Grice, E. A. Microbiota and maintenance of skin barrier function. Science 376, 940–945 (2022).

    Article  CAS  PubMed  Google Scholar 

  20. Almoughrabie, S. et al. Commensal Cutibacterium acnes induce epidermal lipid synthesis important for skin barrier function. Sci. Adv. 9, eadg6262 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Nakatsuji, T., Cheng, J. Y. & Gallo, R. L. Mechanisms for control of skin immune function by the microbiome. Curr. Opin. Immunol. 72, 324–330 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Hernández-Bule, M. L., Naharro-Rodríguez, J., Bacci, S. & Fernández-Guarino, M. Unlocking the power of light on the skin: a comprehensive review on photobiomodulation. Int. J. Mol. Sci. 25, 4483 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mineroff, J. et al. Photobiomodulation CME part II: clinical applications in dermatology. J. Am. Acad. Dermatol. 91, 805–815 (2024).

    Article  PubMed  Google Scholar 

  24. Parrado, C. et al. Environmental stressors on skin aging. Mechanistic insights. Front. Pharmacol. 10, 759 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dantzer, R. Neuroimmune interactions: from the brain to the immune system and vice versa. Physiol. Rev. 98, 477–504 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Jin, H., Li, M., Jeong, E., Castro-Martinez, F. & Zuker, C. S. A body–brain circuit that regulates body inflammatory responses. Nature 630, 695–703 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Slominski, A. A nervous breakdown in the skin: stress and the epidermal barrier. J. Clin. Invest. 117, 3166–3169 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Aburto, M. R. & Cryan, J. F. Gastrointestinal and brain barriers: unlocking gates of communication across the microbiota–gut–brain axis. Nat. Rev. Gastroenterol. Hepatol. 21, 222–247 (2024).

    Article  PubMed  Google Scholar 

  29. Mayer, E. A., Nance, K. & Chen, S. The gut-brain axis. Annu. Rev. Med. 73, 439–453 (2022).

    Article  CAS  PubMed  Google Scholar 

  30. Merk, V. M., Phan, T. S. & Brunner, T. Regulation of tissue immune responses by local glucocorticoids at epithelial barriers and their impact on interorgan crosstalk. Front. Immunol. 12, 672808 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Trompette, A. & Ubags, N. D. Skin barrier immunology from early life to adulthood. Mucosal Immunol. 16, 194–207 (2023).

    Article  CAS  PubMed  Google Scholar 

  32. Salvador, A. F., de Lima, K. A. & Kipnis, J. Neuromodulation by the immune system: a focus on cytokines. Nat. Rev. Immunol. 21, 526–541 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. Paus, R., Nickoloff, B. J. & Ito, T. A ‘hairy’ privilege. Trends Immunol. 26, 32–40 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Harries, M. J., Meyer, K. C. & Paus, R. Hair loss as a result of cutaneous autoimmunity: frontiers in the immunopathogenesis of primary cicatricial alopecia. Autoimmun. Rev. 8, 478–483 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Slominski, R. M. et al. Extra-adrenal glucocorticoid biosynthesis: implications for autoimmune and inflammatory disorders. Genes Immun. 21, 150–168 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Feng, X., Zhan, H. & Sokol, C. L. Sensory neuronal control of skin barrier immunity. Trends Immunol. 45, 371–380 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Saraiva-Santos, T., Zaninelli, T. H. & Pinho-Ribeiro, F. A. Modulation of host immunity by sensory neurons. Trends Immunol. 45, 381–396 (2024).

    Article  CAS  PubMed  Google Scholar 

  38. Kulalert, W. et al. The neuroimmune CGRP-RAMP1 axis tunes cutaneous adaptive immunity to the microbiota. Proc. Natl Acad. Sci. USA 121, e2322574121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Marek-Jozefowicz, L. et al. The brain-skin axis in psoriasis-psychological, psychiatric, hormonal, and dermatological aspects. Int. J. Mol. Sci. 23, 669 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cevikbas, F. & Lerner, E. A. Physiology and pathophysiology of itch. Physiol. Rev. 100, 945–982 (2020).

    Article  PubMed  Google Scholar 

  41. Belkaid, Y. & Tamoutounour, S. The influence of skin microorganisms on cutaneous immunity. Nat. Rev. Immunol. 16, 353–366 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Racine, P. J. et al. Dialog between skin and its microbiota: emergence of “Cutaneous Bacterial Endocrinology”. Exp. Dermatol. 29, 790–800 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Kim, T. K. et al. Evolutionary formation of melatonin and vitamin D in early life forms: insects take centre stage. Biol. Rev. Camb. Philos. Soc. 99, 1772–1790 (2024).

    Article  CAS  PubMed  Google Scholar 

  44. Duarte, M., Pedrosa, S. S., Khusial, P. R. & Madureira, A. R. Exploring the interplay between stress mediators and skin microbiota in shaping age-related hallmarks: a review. Mech. Ageing Dev. 220, 111956 (2024).

    Article  CAS  PubMed  Google Scholar 

  45. Slominski, A., Wortsman, J., Luger, T., Paus, R. & Solomon, S. Corticotropin releasing hormone and proopiomelanocortin involvement in the cutaneous response to stress. Physiol. Rev. 80, 979–1020 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Tobin, D. J. Biochemistry of human skin-our brain on the outside. Chem. Soc. Rev. 35, 52–67 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Ramot, Y., Bohm, M. & Paus, R. Translational neuroendocrinology of human skin: concepts and perspectives. Trends Mol. Med. 27, 60–74 (2021).

    Article  CAS  PubMed  Google Scholar 

  48. Grando, S. A., Pittelkow, M. R. & Schallreuter, K. U. Adrenergic and cholinergic control in the biology of epidermis: physiological and clinical significance. J. Invest. Dermatol. 126, 1948–1965 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Grando, S. A. Cholinergic control of epidermal cohesion. Exp. Dermatol. 15, 265–282 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Quarta, C. et al. POMC neuronal heterogeneity in energy balance and beyond: an integrated view. Nat. Metab. 3, 299–308 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Toda, C., Santoro, A., Kim, J. D. & Diano, S. POMC neurons: from birth to death. Annu. Rev. Physiol. 79, 209–236 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Harno, E., Gali Ramamoorthy, T., Coll, A. P. & White, A. POMC: the physiological power of hormone processing. Physiol. Rev. 98, 2381–2430 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chrousos, G. P. Stress and disorders of the stress system. Nat. Rev. Endocrinol. 5, 374–381 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Brzoska, T., Luger, T. A., Maaser, C., Abels, C. & Bohm, M. α-Melanocyte-stimulating hormone and related tripeptides: biochemistry, antiinflammatory and protective effects in vitro and in vivo, and future perspectives for the treatment of immune-mediated inflammatory diseases. Endocr. Rev. 29, 581–602 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Bohm, M., Luger, T. A., Tobin, D. J. & Garcia-Borron, J. C. Melanocortin receptor ligands: new horizons for skin biology and clinical dermatology. J. Invest. Dermatol. 126, 1966–1975 (2006).

    Article  PubMed  Google Scholar 

  56. Tobin, D. J. & Kauser, S. β-Endorphin: the forgotten hair follicle melanotropin. J. Invest. Dermatol. Symp. Proc. 10, 212–216 (2005).

    Article  CAS  Google Scholar 

  57. Mazurkiewicz, J. E., Corliss, D. & Slominski, A. Spatiotemporal expression, distribution, and processing of POMC and POMC-derived peptides in murine skin. J. Histochem. Cytochem. 48, 905–914 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Slominski, A. T. et al. Key role of CRF in the skin stress response system. Endocr. Rev. 34, 827–884 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Upadhyay, P. R., Swope, V. B., Starner, R. J., Koikov, L. & Abdel-Malek, Z. A. Journey through the spectacular landscape of melanocortin 1 receptor. Pigment. Cell Melanoma Res. 37, 667–680 (2024).

    Article  CAS  PubMed  Google Scholar 

  60. Bigliardi, P. L., Tobin, D. J., Gaveriaux-Ruff, C. & Bigliardi-Qi, M. Opioids and the skin-where do we stand? Exp. Dermatol. 18, 424–430 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Bigliardi, P. L., Dancik, Y., Neumann, C. & Bigliardi-Qi, M. Opioids and skin homeostasis, regeneration and ageing — what’s the evidence? Exp. Dermatol. 25, 586–591 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Singh, M. & Mukhopadhyay, K. Alpha-melanocyte stimulating hormone: an emerging anti-inflammatory antimicrobial peptide. Biomed. Res. Int. 2014, 874610 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Charnley, M., Moir, A. J., Douglas, C. W. & Haycock, J. W. Anti-microbial action of melanocortin peptides and identification of a novel X-Pro-D/L-Val sequence in Gram-positive and Gram-negative bacteria. Peptides 29, 1004–1009 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Eves, P. C. & Haycock, J. W. Melanocortin signalling mechanisms. Adv. Exp. Med. Biol. 681, 19–28 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. Eves, P. C., MacNeil, S. & Haycock, J. W. α-Melanocyte stimulating hormone, inflammation and human melanoma. Peptides 27, 444–452 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Bohm, M. et al. α-Melanocyte-stimulating hormone protects from ultraviolet radiation-induced apoptosis and DNA damage. J. Biol. Chem. 280, 5795–5802 (2005).

    Article  PubMed  Google Scholar 

  67. Besedovsky, H. O. & del Rey, A. Immune-neuro-endocrine interactions: facts and hypotheses. Endocr. Rev. 17, 64–102 (1996).

    Article  CAS  PubMed  Google Scholar 

  68. Hill, R. P., MacNeil, S. & Haycock, J. W. Melanocyte stimulating hormone peptides inhibit TNF-α signaling in human dermal fibroblast cells. Peptides 27, 421–430 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Nix, M. A. et al. Molecular and functional analysis of human β-defensin 3 action at melanocortin receptors. Chem. Biol. 20, 784–795 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Jackson, P. J. et al. Structural and molecular evolutionary analysis of Agouti and Agouti-related proteins. Chem. Biol. 13, 1297–1305 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Slominski, A. et al. Preservation of eumelanin hair pigmentation in proopiomelanocortin-deficient mice on a nonagouti (a/a) genetic background. Endocrinology 146, 1245–1253 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Skobowiat, C., Postlethwaite, A. E. & Slominski, A. T. Skin exposure to ultraviolet B rapidly activates systemic neuroendocrine and immunosuppressive responses. Photochem. Photobiol. 93, 1008–1015 (2017).

    Article  CAS  PubMed  Google Scholar 

  73. Skobowiat, C. & Slominski, A. T. Ultraviolet B stimulates proopiomelanocortin signalling in the arcuate nucleus of the hypothalamus in mice. Exp. Dermatol. 25, 120–123 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Skobowiat, C. & Slominski, A. T. UVB activates hypothalamic-pituitary-adrenal axis in C57BL/6 mice. J. Invest. Dermatol. 135, 1638–1648 (2015).

    Article  CAS  PubMed  Google Scholar 

  75. Fell, G. L., Robinson, K. C., Mao, J., Woolf, C. J. & Fisher, D. E. Skin β-endorphin mediates addiction to UV light. Cell 157, 1527–1534 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Millington, G. W. M. & Palmer, H. E. Proopiomelanocortin (POMC) and psychodermatology. Skin Health Dis. 3, e201 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Skobowiat, C., Dowdy, J. C., Sayre, R. M., Tuckey, R. C. & Slominski, A. Cutaneous hypothalamic-pituitary-adrenal axis homolog: regulation by ultraviolet radiation. Am. J. Physiol. Endocrinol. Metab. 301, E484–E493 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Schiller, M. et al. Solar-simulated ultraviolet radiation-induced upregulation of the melanocortin-1 receptor, proopiomelanocortin, and α-melanocyte-stimulating hormone in human epidermis in vivo. J. Invest. Dermatol. 122, 468–476 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Slominski, R. M., Raman, C., Chen, J. Y. & Slominski, A. T. How cancer hijacks the body’s homeostasis through the neuroendocrine system. Trends Neurosci. 46, 263–275 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Theoharides, T. C. Neuroendocrinology of mast cells: challenges and controversies. Exp. Dermatol. 26, 751–759 (2017).

    Article  CAS  PubMed  Google Scholar 

  81. Slominski, R. M. et al. Malignant melanoma: an overview, new perspectives, and vitamin D signaling. Cancers 16, 2262 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Chrousos, G. P. & Zoumakis, E. Milestones in CRH research. Curr. Mol. Pharmacol. 10, 259–263 (2017).

    Article  CAS  PubMed  Google Scholar 

  83. Grammatopoulos, D. K. & Ourailidou, S. CRH receptor signalling: potential roles in pathophysiology. Curr. Mol. Pharmacol. 10, 296–310 (2017).

    Article  CAS  PubMed  Google Scholar 

  84. Seres, J. et al. Corticotropin-releasing hormone system in human adipose tissue. J. Clin. Endocrinol. Metab. 89, 965–970 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Slominski, A., Pisarchik, A., Tobin, D. J., Mazurkiewicz, J. E. & Wortsman, J. Differential expression of a cutaneous corticotropin-releasing hormone system. Endocrinology 145, 941–950 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Roloff, B. et al. Hair cycle-dependent expression of corticotropin-releasing factor (CRF) and CRF receptors in murine skin. FASEB J. 12, 287–297 (1998).

    CAS  PubMed  Google Scholar 

  87. Kauser, S., Slominski, A., Wei, E. T. & Tobin, D. J. Modulation of the human hair follicle pigmentary unit by corticotropin-releasing hormone and urocortin peptides. FASEB J. 20, 882–895 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Slominski, A. et al. CRH functions as a growth factor/cytokine in the skin. J. Cell Physiol. 206, 780–791 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zouboulis, C. C. et al. Corticotropin-releasing hormone: an autocrine hormone that promotes lipogenesis in human sebocytes. Proc. Natl Acad. Sci. USA 99, 7148–7153 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Slominski, A. et al. The skin produces urocortin. J. Clin. Endocrinol. Metab. 85, 815–823 (2000).

    CAS  PubMed  Google Scholar 

  91. Slominski, A. et al. Corticotropin releasing hormone and the skin. Front. Biosci. 11, 2230–2248 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Fischer, T. W. et al. New effects of caffeine on corticotropin-releasing hormone (CRH)-induced stress along the intrafollicular classical hypothalamic-pituitary-adrenal (HPA) axis (CRH-R1/2, IP(3) -R, ACTH, MC-R2) and the neurogenic non-HPA axis (substance P, p75(NTR) and TrkA) in ex vivo human male androgenetic scalp hair follicles. Br. J. Dermatol. 184, 96–110 (2021).

    Article  CAS  PubMed  Google Scholar 

  93. Rassouli, O., Liapakis, G. & Venihaki, M. Role of central and peripheral CRH in skin. Curr. Mol. Pharmacol. 11, 72–80 (2018).

    Article  CAS  PubMed  Google Scholar 

  94. Zmijewski, M. A. & Slominski, A. T. CRF1 receptor splicing in epidermal keratinocytes: potential biological role and environmental regulations. J. Cell Physiol. 218, 593–602 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Slominski, A. et al. Cutaneous expression of corticotropin-releasing hormone (CRH), urocortin, and CRH receptors. FASEB J. 15, 1678–1693 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. Zbytek, B., Wortsman, J. & Slominski, A. Characterization of a ultraviolet B-induced corticotropin-releasing hormone-proopiomelanocortin system in human melanocytes. Mol. Endocrinol. 20, 2539–2547 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Zbytek, B. & Slominski, A. T. CRH mediates inflammation induced by lipopolysaccharide in human adult epidermal keratinocytes. J. Invest. Dermatol. 127, 730–732 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Isard, O. et al. Cutaneous induction of corticotropin releasing hormone by Propionibacterium acnes extracts. Dermatoendocrinol 1, 96–99 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zmijewski, M. A. & Slominski, A. T. Emerging role of alternative splicing of CRF1 receptor in CRF signaling. Acta Biochim. Pol. 57, 1–13 (2010).

    Article  CAS  PubMed  Google Scholar 

  100. Pisarchik, A. & Slominski, A. T. Alternative splicing of CRH-R1 receptors in human and mouse skin: identification of new variants and their differential expression. FASEB J. 15, 2754–2756 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Turnbull, A. V. & Rivier, C. L. Regulation of the hypothalamic-pituitary-adrenal axis by cytokines: actions and mechanisms of action. Physiol. Rev. 79, 1–71 (1999).

    Article  CAS  PubMed  Google Scholar 

  102. Slominski, A. et al. CRH stimulation of corticosteroids production in melanocytes is mediated by ACTH. Am. J. Physiol. Endocrinol. Metab. 288, E701–E706 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Slominski, A., Zbytek, B., Semak, I., Sweatman, T. & Wortsman, J. CRH stimulates POMC activity and corticosterone production in dermal fibroblasts. J. Neuroimmunol. 162, 97–102 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Ito, N. et al. Human hair follicles display a functional equivalent of the hypothalamic-pituitary-adrenal axis and synthesize cortisol. FASEB J. 19, 1332–1334 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Chakraborty, S., Pramanik, J. & Mahata, B. Revisiting steroidogenesis and its role in immune regulation with the advanced tools and technologies. Genes Immun. 22, 125–140 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Karalis, K. et al. Autocrine or paracrine inflammatory actions of corticotropin-releasing hormone in vivo. Science 254, 421–423 (1991).

    Article  CAS  PubMed  Google Scholar 

  107. Zbytek, B., Pfeffer, L. M. & Slominski, A. T. Corticotropin-releasing hormone stimulates NF-κB in human epidermal keratinocytes. J. Endocrinol. 181, R1–R7 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zbytek, B., Pfeffer, L. M. & Slominski, A. T. CRH inhibits NF-κB signaling in human melanocytes. Peptides 27, 3276–3283 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Slominski, A. et al. Expression of hypothalamic-pituitary-thyroid axis related genes in the human skin. J. Invest. Dermatol. 119, 1449–1455 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Paus, R. Exploring the “thyroid-skin connection”: concepts, questions, and clinical relevance. J. Invest. Dermatol. 130, 7–10 (2010).

    Article  CAS  PubMed  Google Scholar 

  111. Vidali, S. et al. Hypothalamic-pituitary-thyroid axis hormones stimulate mitochondrial function and biogenesis in human hair follicles. J. Invest. Dermatol. 134, 33–42 (2014).

    Article  CAS  PubMed  Google Scholar 

  112. Bodo, E. et al. Thyroid-stimulating hormone, a novel, locally produced modulator of human epidermal functions, is regulated by thyrotropin-releasing hormone and thyroid hormones. Endocrinology 151, 1633–1642 (2010).

    Article  CAS  PubMed  Google Scholar 

  113. Gaspar, E. et al. Thyrotropin releasing hormone (TRH): a new player in human hair-growth control. FASEB J. 24, 393–403 (2010).

    Article  CAS  PubMed  Google Scholar 

  114. Deing, V. et al. Oxytocin modulates proliferation and stress responses of human skin cells: implications for atopic dermatitis. Exp. Dermatol. 22, 399–405 (2013).

    Article  CAS  PubMed  Google Scholar 

  115. Fujimoto, K., Inada, K., Oka, K. & Ito, E. Revisiting oxytocin generation in keratinocytes. Biophys. Physicobiol. 20, e200003 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Harvey, S., Martínez-Moreno, C. G., Luna, M. & Arámburo, C. Autocrine/paracrine roles of extrapituitary growth hormone and prolactin in health and disease: an overview. Gen. Comp. Endocrinol. 220, 103–111 (2015).

    Article  CAS  PubMed  Google Scholar 

  117. Taghizadeh, B. et al. The protection role of human growth hormone on skin cells following ultraviolet B exposure. J. Photochem. Photobiol. B Biol. 257, 112961 (2024).

    Article  CAS  Google Scholar 

  118. Kanaka-Gantenbein, C., Kogia, C., Abdel-Naser, M. B. & Chrousos, G. P. Skin manifestations of growth hormone-induced diseases. Rev. Endocr. Metab. Disord. 17, 259–267 (2016).

    Article  CAS  PubMed  Google Scholar 

  119. Horesh, E. J., Cheret, J. & Paus, R. Growth hormone and the human hair follicle. Int. J. Mol. Sci. 22, 13205 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Horesh, E. J. et al. Human hair follicles operate a functional peripheral equivalent of the hypothalamic-pituitary-somatotropic axis ex vivo. J. Invest. Dermatol. 143, 868–871.e7 (2023).

    Article  CAS  PubMed  Google Scholar 

  121. Breitkopf, T. et al. Somatostatin expression in human hair follicles and its potential role in immune privilege. J. Invest. Dermatol. 133, 1722–1730 (2013).

    Article  CAS  PubMed  Google Scholar 

  122. Choi, J. E. & Di Nardo, A. Skin neurogenic inflammation. Semin. Immunopathol. 40, 249–259 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Lee, E. Y. et al. PACAP is a pathogen-inducible resident antimicrobial neuropeptide affording rapid and contextual molecular host defense of the brain. Proc. Natl Acad. Sci. USA 118, e1917623117 (2021).

    Article  CAS  PubMed  Google Scholar 

  124. Anderson, Z. T., Dawson, A. D., Slominski, A. T. & Harris, M. L. Current insights into the role of neuropeptide Y in skin physiology and pathology. Front. Endocrinol. 13, 838434 (2022).

    Article  Google Scholar 

  125. Bigliardi, P. et al. The opioid receptor influences circadian rhythms in human keratinocytes through the β-arrestin pathway. Cells 13, 232 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Slominski, A. T. et al. Regulated proenkephalin expression in human skin and cultured skin cells. J. Invest. Dermatol. 131, 613–622 (2011).

    Article  CAS  PubMed  Google Scholar 

  127. Shime, H. et al. Proenkephalin+ regulatory T cells expanded by ultraviolet B exposure maintain skin homeostasis with a healing function. Proc. Natl Acad. Sci. USA 117, 20696–20705 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Cirillo, N. The local neuropeptide system of keratinocytes. Biomedicines 9, 1854 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Truzzi, F., Marconi, A. & Pincelli, C. Neurotrophins in healthy and diseased skin. Dermatoendocrinology 3, 32–36 (2011).

    Article  CAS  Google Scholar 

  130. Botchkarev, V. A. et al. Neurotrophins in skin biology and pathology. J. Invest. Dermatol. 126, 1719–1727 (2006).

    Article  CAS  PubMed  Google Scholar 

  131. Poeggeler, B. et al. Leptin and the skin: a new frontier. Exp. Dermatol. 19, 12–18 (2010).

    Article  CAS  PubMed  Google Scholar 

  132. Quan, Q. L. et al. UV irradiation increases appetite and prevents body weight gain through the upregulation of norepinephrine in mice. J. Invest. Dermatol. 144, 2273–2284 (2024).

    Article  CAS  PubMed  Google Scholar 

  133. Slominski, A. et al. Steroidogenesis in the skin: implications for local immune functions. J. Steroid Biochem. Mol. Biol. 137, 107–123 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Nikolakis, G., Stratakis, C. A., Kanaki, T., Slominski, A. & Zouboulis, C. C. Skin steroidogenesis in health and disease. Rev. Endocr. Metab. Disord. 17, 247–258 (2016).

    Article  CAS  PubMed  Google Scholar 

  135. Slominski, R. M. et al. The significance of CYP11A1 expression in skin physiology and pathology. Mol. Cell Endocrinol. 530, 111238 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Phan, T. S. et al. Keratinocytes control skin immune homeostasis through de novo-synthesized glucocorticoids. Sci. Adv. 7, eabe0337 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Hannen, R. et al. Dysfunctional skin-derived glucocorticoid synthesis is a pathogenic mechanism of psoriasis. J. Invest. Dermatol. 137, 1630–1637 (2017).

    Article  CAS  PubMed  Google Scholar 

  138. Cirillo, N. & Prime, S. S. Keratinocytes synthesize and activate cortisol. J. Cell Biochem. 112, 1499–1505 (2011).

    Article  CAS  PubMed  Google Scholar 

  139. Vukelic, S. et al. Cortisol synthesis in epidermis is induced by IL-1 and tissue injury. J. Biol. Chem. 286, 10265–10275 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Jia, Y. et al. Steroidogenic enzyme Cyp11a1 regulates Type 2 CD8+ T cell skewing in allergic lung disease. Proc. Natl Acad. Sci. USA 110, 8152–8157 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Chi, L. et al. Sexual dimorphism in skin immunity is mediated by an androgen-ILC2-dendritic cell axis. Science 384, eadk6200 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Slominski, A. T. et al. Cytochrome P450scc-dependent metabolism of 7-dehydrocholesterol in placenta and epidermal keratinocytes. Int. J. Biochem. Cell Biol. 44, 2003–2018 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Slominski, A. T. et al. Biological effects of CYP11A1-derived vitamin D and lumisterol metabolites in the skin. J. Invest. Dermatol. 144, 2145–2161 (2024).

    Article  CAS  PubMed  Google Scholar 

  144. Slominski, A. T. Tuckey, R. C., Jenkinson, C., Li, W. & Jetten, A. M. in Feldman and Pike's Vitamin D 5th edn, Vol. 1, Ch. 6 (eds Hewison, M. et al.) 85–109 (Academic Press, 2023).

  145. Holick, M. F. Vitamin D deficiency. N. Engl. J. Med. 357, 266–281 (2007).

    Article  CAS  PubMed  Google Scholar 

  146. Hewison, M. et al. in Feldman and Pike’s Vitamin D 5th edn (Academic Press, 2023).

  147. Slominski, A. T. et al. Metabolic activation of tachysterol3 to biologically active hydroxyderivatives that act on VDR, AhR, LXRs, and PPARγ receptors. FASEB J. 36, e22451 (2022).

    Article  CAS  PubMed  Google Scholar 

  148. Slominski, A. et al. Serotoninergic and melatoninergic systems are fully expressed in human skin. FASEB J. 16, 896–898 (2002).

    Article  CAS  PubMed  Google Scholar 

  149. Slominski, A., Wortsman, J. & Tobin, D. J. The cutaneous serotoninergic/melatoninergic system: securing a place under the sun. FASEB J. 19, 176–194 (2005).

    Article  CAS  PubMed  Google Scholar 

  150. Slominski, A. T. et al. Characterization of serotonin and N-acetylserotonin systems in the human epidermis and skin cells. J. Pineal Res. 68, e12626 (2020).

    Article  CAS  PubMed  Google Scholar 

  151. Kobayashi, H. et al. A role of melatonin in neuroectodermal-mesodermal interactions: the hair follicle synthesizes melatonin and expresses functional melatonin receptors. FASEB J. 19, 1710–1712 (2005).

    Article  CAS  PubMed  Google Scholar 

  152. Slominski, A. T. et al. Melatonin and the skin: current progress and perspectives for human health. J. Invest. Dermatol. https://doi.org/10.1016/j.jid.2024.11.012 (2025).

    Article  PubMed  Google Scholar 

  153. Reiter, R. J. et al. Dual sources of melatonin and evidence for different primary functions. Front. Endocrinol. 15, 1414463 (2024).

    Article  Google Scholar 

  154. Kim, T. K. et al. Metabolism of melatonin and biological activity of intermediates of melatoninergic pathway in human skin cells. FASEB J. 27, 2742–2755 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Fischer, T. W. et al. Constitutive and UV-induced metabolism of melatonin in keratinocytes and cell-free systems. FASEB J. 20, 1564–1566 (2006).

    Article  CAS  PubMed  Google Scholar 

  156. Slominski, A. et al. Functional activity of serotoninergic and melatoninergic systems expressed in the skin. J. Cell Physiol. 196, 144–153 (2003).

    Article  CAS  PubMed  Google Scholar 

  157. Slominski, R. M., Reiter, R. J., Schlabritz-Loutsevitch, N., Ostrom, R. S. & Slominski, A. T. Melatonin membrane receptors in peripheral tissues: distribution and functions. Mol. Cell Endocrinol. 351, 152–166 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Slominski, A. T. et al. Melatonin and its metabolites can serve as agonists on the aryl hydrocarbon receptor and peroxisome proliferator-activated receptor gamma. Int. J. Mol. Sci. 24, 15496 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Sanidad, K. Z. et al. Gut bacteria-derived serotonin promotes immune tolerance in early life. Sci. Immunol. 9, eadj4775 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Sivamani, R. K., Lam, S. T. & Isseroff, R. R. Beta adrenergic receptors in keratinocytes. Dermatol. Clin. 25, 643–653 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Slominski, A., Zmijewski, M. A. & Pawelek, J. L-tyrosine and L-dihydroxyphenylalanine as hormone-like regulators of melanocyte functions. Pigment. Cell Melanoma Res. 25, 14–27 (2012).

    Article  CAS  PubMed  Google Scholar 

  162. Slominski, R. M. et al. Melanoma, melanin, and melanogenesis: the yin and yang relationship. Front. Oncol. 12, 842496 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Doepner, M. et al. Endogenous DOPA inhibits melanoma through suppression of CHRM1 signaling. Sci. Adv. 8, eabn4007 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Kurzen, H., Wessler, I., Kirkpatrick, C. J., Kawashima, K. & Grando, S. A. The non-neuronal cholinergic system of human skin. Horm. Metab. Res. 39, 125–135 (2007).

    Article  CAS  PubMed  Google Scholar 

  165. Grando, S. A., Kawashima, K. & Wessler, I. Introduction: the non-neuronal cholinergic system in humans. Life Sci. 72, 2009–2012 (2003).

    Article  CAS  PubMed  Google Scholar 

  166. Biro, T., Toth, B. I., Hasko, G., Paus, R. & Pacher, P. The endocannabinoid system of the skin in health and disease: novel perspectives and therapeutic opportunities. Trends Pharmacol. Sci. 30, 411–420 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Ständer, S. & Schmelz, M. Skin innervation. J. Invest. Dermatol. 144, 1716–1723 (2024).

    Article  PubMed  Google Scholar 

  168. Erbacher, C. et al. Interaction of human keratinocytes and nerve fiber terminals at the neuro-cutaneous unit. eLife 13, e77761 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Misery, L., Loser, K. & Stander, S. Sensitive skin. J. Eur. Acad. Dermatol. Venereol. 30, 2–8 (2016).

    Article  PubMed  Google Scholar 

  170. Bennett-Kennett, R. et al. Sensory neuron activation from topical treatments modulates the sensorial perception of human skin. PNAS Nexus 2, pgad292 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Baumbauer, K. M. et al. Keratinocytes can modulate and directly initiate nociceptive responses. eLife 4, e09674 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Riol-Blanco, L. et al. Nociceptive sensory neurons drive interleukin-23-mediated psoriasiform skin inflammation. Nature 510, 157–161 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Wu, M. et al. Innervation of nociceptor neurons in the spleen promotes germinal center responses and humoral immunity. Cell 187, 2935–2951.e19 (2024).

    Article  CAS  PubMed  Google Scholar 

  174. Deng, L., Gillis, J. E., Chiu, I. M. & Kaplan, D. H. Sensory neurons: an integrated component of innate immunity. Immunity 57, 815–831 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Sua-Cespedes, C. et al. Melanopsin (OPN4) is a novel player in skin homeostasis and attenuates UVA-induced effects. J. Photochem. Photobiol. B Biol. 242, 112702 (2023).

    Article  CAS  Google Scholar 

  176. de Assis, L. V. M., Moraes, M. N., Magalhaes-Marques, K. K. & Castrucci, A. M. L. Melanopsin and rhodopsin mediate UVA-induced immediate pigment darkening: unravelling the photosensitive system of the skin. Eur. J. Cell Biol. 97, 150–162 (2018).

    Article  PubMed  Google Scholar 

  177. Castellano-Pellicena, I. et al. Does blue light restore human epidermal barrier function via activation of Opsin during cutaneous wound healing? Lasers Surg. Med. 51, 370–382 (2019).

    Article  PubMed  Google Scholar 

  178. de Assis, L. V. M., Tonolli, P. N., Moraes, M. N., Baptista, M. S. & de Lauro Castrucci, A. M. How does the skin sense sun light? An integrative view of light sensing molecules. J. Photochem. Photobiol. C Photochem. Rev. 47, 100403 (2021).

    Article  Google Scholar 

  179. Holick, M. F. & Slominski, A. T. in Feldman and Pike’s Vitamin D 5th edn, Vol. 1, Ch. 3 (eds Hewison, M. et al.) 27–45 (Academic Press, 2023).

  180. Muzaffar, S., Khan, J., Srivastava, R., Gorbatyuk, M. S. & Athar, M. Mechanistic understanding of the toxic effects of arsenic and warfare arsenicals on human health and environment. Cell Biol. Toxicol. 39, 85–110 (2023).

    Article  CAS  PubMed  Google Scholar 

  181. Plikus, M. V., Guerrero-Juarez, C. F., Treffeisen, E. & Gay, D. L. Epigenetic control of skin and hair regeneration after wounding. Exp. Dermatol. 24, 167–170 (2015).

    Article  PubMed  Google Scholar 

  182. Tiganescu, A. et al. Increased glucocorticoid activation during mouse skin wound healing. J. Endocrinol. 221, 51–61 (2014).

    Article  CAS  PubMed  Google Scholar 

  183. Pullar, C. E., Rizzo, A. & Isseroff, R. R. β-Adrenergic receptor antagonists accelerate skin wound healing: evidence for a catecholamine synthesis network in the epidermis. J. Biol. Chem. 281, 21225–21235 (2006).

    Article  CAS  PubMed  Google Scholar 

  184. Slominski, A. T. & Zmijewski, M. A. Glucocorticoids inhibit wound healing: novel mechanism of action. J. Invest. Dermatol. 137, 1012–1014 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Jozic, I. et al. Stress signals, mediated by membranous glucocorticoid receptor, activate PLC/PKC/GSK-3β/β-catenin pathway to inhibit wound closure. J. Invest. Dermatol. 137, 1144–1154 (2017).

    Article  CAS  PubMed  Google Scholar 

  186. Yang, D. J. et al. Leucine-enkephalin promotes wound repair through the regulation of hemidesmosome dynamics and matrix metalloprotease. Peptides 76, 57–64 (2016).

    Article  CAS  PubMed  Google Scholar 

  187. Nguyen, V. T. et al. Re-epithelialization of pathological cutaneous wounds is improved by local mineralocorticoid receptor antagonism. J. Invest. Dermatol. 136, 2080–2089 (2016).

    Article  CAS  PubMed  Google Scholar 

  188. Giampazolias, E. et al. Vitamin D regulates microbiome-dependent cancer immunity. Science 384, 428–437 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Schulkin, J. Allostasis, Homeostasis, and the Costs of Physiological Adaptation (Cambridge University Press, 2004).

  190. Geyfman, M., Plikus, M. V., Treffeisen, E., Andersen, B. & Paus, R. Resting no more: re-defining telogen, the maintenance stage of the hair growth cycle. Biol. Rev. Camb. Philos. Soc. 90, 1179–1196 (2015).

    Article  PubMed  Google Scholar 

  191. Bikle, D. D. Vitamin D: newer concepts of its metabolism and function at the basic and clinical level. J. Endocr. Soc. 4, bvz038 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Regazzetti, C. et al. Melanocytes sense blue light and regulate pigmentation through opsin-3. J. Invest. Dermatol. 138, 171–178 (2018).

    Article  CAS  PubMed  Google Scholar 

  193. Olinski, L. E., Lin, E. M. & Oancea, E. Illuminating insights into opsin 3 function in the skin. Adv. Biol. Regul. 75, 100668 (2020).

    Article  CAS  PubMed  Google Scholar 

  194. Gribonika, I. et al. Skin autonomous antibody production regulates host-microbiota interactions. Nature 638, 1043–1053 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Ito, Y. & Amagai, M. Dissecting skin microbiota and microenvironment for the development of therapeutic strategies. Curr. Opin. Microbiol. 74, 102311 (2023).

    Article  CAS  PubMed  Google Scholar 

  196. Voigt, A. Y. et al. Skin microbiome variation with cancer progression in human cutaneous squamous cell carcinoma. J. Invest. Dermatol. 142, 2773–2782.e16 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Lei, J. et al. Involvement of skin TRPV3 in temperature detection regulated by TMEM79 in mice. Nat. Commun. 14, 4104 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Slominski, A. T. et al. Detection of novel CYP11A1-derived secosteroids in the human epidermis and serum and pig adrenal gland. Sci. Rep. 5, 14875 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors were supported by National Institutes of Health (NIH) grants 1R01AR073004, R01AR071189 and R21AI149267, VA Merit grant 2I01BX004293, and US Department of Defense grant #W81XWH2210689 and by the Intramural Research Program of the National Institute of Environmental Health Sciences, NIH Z01-ES-101586. We thank T.-K. Kim for his help in the preparation of the original versions of Figs. 1 and 2. Previous support by National Science Foundation grants IOS-0918934, IBN-9604364, 9896030 and 049087 and NIH grants RO1AR052190, 1R01AR056666, R21AR0665051 and AR-047079 to A.T.S., which contributed to the development of the presented concepts, is acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Andrzej T. Slominski.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Endocrinology thanks Sergei Grando and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slominski, R.M., Raman, C., Jetten, A.M. et al. Neuro–immuno–endocrinology of the skin: how environment regulates body homeostasis. Nat Rev Endocrinol 21, 495–509 (2025). https://doi.org/10.1038/s41574-025-01107-x

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41574-025-01107-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing