Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The gut microbiome as a modulator of healthy ageing

Abstract

The gut microbiome is a contributory factor in ageing-related health loss and in several non-communicable diseases in all age groups. Some age-linked and disease-linked compositional and functional changes overlap, while others are distinct. In this Review, we explore targeted studies of the gut microbiome of older individuals and general cohort studies across geographically distinct populations. We also address the promise of the targeted restoration of microorganisms associated with healthier ageing.

Key points

  • The gut microbiome is a transducer of environmental signals, modifies the risk of disease across all age groups and changes with host age.

  • Age-related alterations in the gut microbiome are influenced by personal factors, including progressive physiological deterioration, as well as by lifestyle-linked factors such as diet, medication and reduced social contact.

  • Age-related and disease-related deterioration in the gut microbiome of older people reflect overlapping interactive but distinct processes.

  • Resetting gut microbiome-derived signals of ‘unhealthy’ ageing through personalized or subpopulation-level microbiome-associated interventions is a new area of research informed by large shotgun metagenomics-based studies and data analytics.

  • Gut microbiome-based therapeutics for older people will need combined approaches, including dietary intervention with microbial restoration of lost strains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Microorganism–host signalling as a contributor to healthy or unhealthy ageing.
Fig. 2: Physiological, social and disease-related influences on the microbiome of older people.
Fig. 3: Microbiome alterations in ageing (and unhealthy ageing).
Fig. 4: Functional implications of microbiome alterations on host physiology in ageing.
Fig. 5: Microbiome-associated interventions to prevent unhealthy ageing.
Fig. 6: Strategies for the formulation of personalized microbiome reconstruction strategies in older people.

Similar content being viewed by others

References

  1. UN. World Population Ageing 2019: Highlights (ST/ESA/SER.A/430) (United Nations, 2019).

  2. Shanahan, F., Ghosh, T. S. & O’Toole, P. W. The healthy microbiome — what is the definition of a healthy gut microbiome? Gastroenterology 160, 483–494 (2021). This review investigates the concept of a ‘healthy’ gut microbiome and the factors that complicate the precise definition of a universal healthy gut microbiome.

    Article  PubMed  Google Scholar 

  3. Ley, R. E. et al. Evolution of mammals and their gut microbes. Science 320, 1647–1651 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Almeida, A. et al. A new genomic blueprint of the human gut microbiota. Nature 568, 499–504 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sender, R., Fuchs, S. & Milo, R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cell humans. Cell 164, 337–340 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Lynch, S. V. & Pedersen, O. The human intestinal microbiome in health and disease. N. Engl. J. Med. 375, 2369–2379 (2016). A comprehensive review that describes the role of the human intestinal microbiota in modulating various aspects of our physiology.

    Article  CAS  PubMed  Google Scholar 

  7. Brown, J. M. & Hazen, S. L. The gut microbial endocrine organ: bacterially derived signals driving cardiometabolic diseases. Annu. Rev. Med. 66, 343–359 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Valles-Colomer, M. et al. The neuroactive potential of the human gut microbiota in quality of life and depression. Nat. Microbiol. 4, 623–632 (2019). This study identified specific gut bacterial lineages and metabolites predicted to act upon the brain–gut axis.

    Article  CAS  PubMed  Google Scholar 

  9. Borrel, G. et al. Genomics and metagenomics of trimethylamine-utilizing Archaea in the human gut microbiome. ISME J. 11, 2059–2074 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Janney, A., Powrie, F. & Mann, E. H. Host-microbiota maladaptation in colorectal cancer. Nature 585, 509–517 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Flint, H. J., Scott, K. P., Louis, P. & Duncan, S. H. The role of the gut microbiota in nutrition and health. Nat. Rev. Gastroenterol. Hepatol. 9, 577–589 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Krautkramer, K. A., Fan, J. & Bäckhed, F. Gut microbial metabolites as multi-kingdom intermediates. Nat. Rev. Microbiol. 19, 77–94 (2021). This review provides an overview of the major classes of gut microbial metabolites with clinical and translational implications, an overview of available methodologies for profiling the gut microbial metabolome, and a framework for integrating this data with other multi-omics layers.

    Article  CAS  PubMed  Google Scholar 

  13. Fischbach, M. A. & Segre, J. A. Signaling in host-associated microbial communities. Cell 164, 1288–1300 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pedersen, H. K. et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 535, 376–381 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Scheithauer, T. P. M. et al. Gut microbiota as a trigger for metabolic inflammation in obesity and type 2 diabetes. Front. Immunol. 11, 571731 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Couto, M. R., Gonçalves, P., Magro, F. & Martel, F. Microbiota-derived butyrate regulates intestinal inflammation: focus on inflammatory bowel disease. Pharmacol. Res. 159, 104947 (2020).

    Article  CAS  PubMed  Google Scholar 

  17. Lebeer, S. et al. Identification of probiotic effector molecules: present state and future perspectives. Curr. Opin. Biotechnol. 49, 217–223 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Schiavi, E. et al. The surface-associated exopolysaccharide of bifidobacterium longum 35624 plays an essential role in dampening host proinflammatory responses and repressing local TH17 responses. Appl. Environ. Microbiol. 82, 7185–7196 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sokol, H. et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl Acad. Sci. USA 105, 16731–16736 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Quévrain, E. et al. Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn’s disease. Gut 65, 415–425 (2016).

    Article  PubMed  CAS  Google Scholar 

  21. Miquel, S. et al. Identification of metabolic signatures linked to anti-inflammatory effects of Faecalibacterium prausnitzii. mBio https://doi.org/10.1128/mBio.00300-15 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Landman, C. et al. Inter-kingdom effect on epithelial cells of the N-acyl homoserine lactone 3-oxo-C12:2, a major quorum-sensing molecule from gut microbiota. PLoS ONE 13, e0202587 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Burokas, A., Moloney, R. D., Dinan, T. G. & Cryan, J. F. Microbiota regulation of the Mammalian gut-brain axis. Adv. Appl. Microbiol. 91, 1–62 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Wang, H., Braun, C., Murphy, E. F. & Enck, P. Bifidobacterium longum 1714™ strain modulates brain activity of healthy volunteers during social stress. Am. J. Gastroenterol. 114, 1152–1162 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  25. López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013). A pioneering review that describes nine physiological hallmarks of biological ageing.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Pellanda, P., Ghosh, T. S. & O’Toole, P. W. Understanding the impact of age-related changes in the gut microbiome on chronic diseases and the prospect of elderly-specific dietary interventions. Curr. Opin. Biotechnol. 70, 48–55 (2020).

    Article  PubMed  CAS  Google Scholar 

  27. Cryan, J. F. et al. The microbiota-gut-brain axis. Physiol. Rev. 99, 1877–2013 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Claesson, M. J. et al. Gut microbiota composition correlates with diet and health in the elderly. Nature 488, 178–184 (2012). One of the earliest large-scale studies investigating the gut microbiome composition in older people.

    Article  CAS  PubMed  Google Scholar 

  29. Stein, M. M. et al. Innate immunity and asthma risk in Amish and Hutterite farm children. N. Engl. J. Med. 375, 411–421 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sarkar, A. et al. Microbial transmission in animal social networks and the social microbiome. Nat. Ecol. Evol. 4, 1020–1035 (2020).

    Article  PubMed  Google Scholar 

  31. Lax, S. et al. Longitudinal analysis of microbial interaction between humans and the indoor environment. Science 345, 1048–1052 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Brito, I. L. et al. Transmission of human-associated microbiota along family and social networks. Nat. Microbiol. 4, 964–971 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Song, S. J. et al. Cohabiting family members share microbiota with one another and with their dogs. eLife 2, e00458 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Johnson, K. V. A. Gut microbiome composition and diversity are related to human personality traits. Hum. Microbiome J. 15, 100069 (2020).

    Article  Google Scholar 

  35. Keohane, D. M. et al. Microbiome and health implications for ethnic minorities after enforced lifestyle changes. Nat. Med. https://doi.org/10.1038/s41591-020-0963-8 (2020).

    Article  PubMed  Google Scholar 

  36. Xu, C., Zhu, H. & Qiu, P. Aging progression of human gut microbiota. BMC Microbiol. 19, 236 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Odamaki, T. et al. Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study. BMC Microbiol. 16, 90 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Biagi, E. et al. Gut microbiota and extreme longevity. Curr. Biol. 26, 1480–1485 (2016). The first study to investigate the gut microbiome of semi-centenarians and identify an enrichment of sub-dominant species and specific health-associated taxa in centenarians.

    Article  CAS  PubMed  Google Scholar 

  39. Rampelli, S. et al. Shotgun metagenomics of gut microbiota in humans with up to extreme longevity and the increasing role of xenobiotic degradation. mSystems https://doi.org/10.1128/mSystems.00124-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wu, L. et al. A cross-sectional study of compositional and functional profiles of gut microbiota in Sardinian centenarians. mSystems https://doi.org/10.1128/mSystems.00325-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kong, F. et al. Gut microbiota signatures of longevity. Curr. Biol. 26, R832–R833 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Wang, N. et al. Enriched taxa were found among the gut microbiota of centenarians in East China. PLoS ONE 14, e0222763 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tuikhar, N. et al. Comparative analysis of the gut microbiota in centenarians and young adults shows a common signature across genotypically non-related populations. Mech. Ageing Dev. 179, 23–35 (2019).

    Article  PubMed  Google Scholar 

  44. Kashtanova, D. A. et al. A cross-sectional study of the gut microbiota composition in Moscow long-livers. Microorganisms https://doi.org/10.3390/microorganisms8081162 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Jeffery, I. B., Lynch, D. B. & O’Toole, P. W. Composition and temporal stability of the gut microbiota in older persons. ISME J. 10, 170–182 (2016). This study identified distinct microbiome configurations associated with community-dwelling older people and older individuals in residential care homes, with individuals in residential care homes demonstrating a gradual shift from their initial microbiome.

    Article  CAS  PubMed  Google Scholar 

  46. Ghosh, T. S., Das, M., Jeffery, I. B. & O’Toole, P. W. Adjusting for age improves identification of gut microbiome alterations in multiple diseases. eLife 9, e50240 (2020). A meta-analysis of gut microbiome compositions covering patients with five major diseases, the study observed distinct variations in gut microbiome alterations (for the same disease) in older people and younger individuals, in addition to distinct disease-shared microbiome alterations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jackson, M. A. et al. Signatures of early frailty in the gut microbiota. Genome Med. 8, 8 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Lim, M. Y., Hong, S., Kim, J. H. & Nam, Y. D. Association between gut microbiome and frailty in the older adult population in Korea. J. Gerontol. Ser. A Biol. Sci. Med. Sci. https://doi.org/10.1093/gerona/glaa319 (2021).

    Article  Google Scholar 

  49. Maffei, V. J. et al. Biological aging and the human gut microbiota. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 72, 1474–1482 (2017).

    Article  CAS  Google Scholar 

  50. Zhang, X. et al. Viral and host factors related to the clinical outcome of COVID-19. Nature https://doi.org/10.1038/s41586-020-2355-0 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Picca, A. et al. Gut microbial, inflammatory and metabolic signatures in older people with physical frailty and sarcopenia: results from the BIOSPHERE Study. Nutrients https://doi.org/10.3390/nu12010065 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Langsetmo, L. et al. The association between objectively measured physical activity and the gut microbiome among older community dwelling men. J. Nutr. Health Aging 23, 538–546 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fart, F. et al. Differences in gut microbiome composition between senior orienteering athletes and community-dwelling older adults. Nutrients https://doi.org/10.3390/nu12092610 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Taniguchi, H. et al. Effects of short-term endurance exercise on gut microbiota in elderly men. Physiol. Rep. 6, e13935 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Anderson, J. R. et al. A preliminary examination of gut microbiota, sleep, and cognitive flexibility in healthy older adults. Sleep Med. 38, 104–107 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Manderino, L. et al. Preliminary evidence for an association between the composition of the gut microbiome and cognitive function in neurologically healthy older adults. J. Int. Neuropsychol. Soc. 23, 700–705 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Haran, J. P. et al. Alzheimer’s disease microbiome is associated with dysregulation of the anti-inflammatory P-glycoprotein pathway. mBio https://doi.org/10.1128/mBio.00632-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Chen, J., Wang, Q., Wang, A. & Lin, Z. Structural and functional characterization of the gut microbiota in elderly women with migraine. Front. Cell. Infect. Microbiol. 9, 470 (2019).

    Article  CAS  PubMed  Google Scholar 

  59. Das, M. et al. Gut microbiota alterations associated with reduced bone mineral density in older adults. Rheumatology 58, 2295–2304 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Li, C. et al. Gut microbiota composition and bone mineral loss-epidemiologic evidence from individuals in Wuhan, China. Osteoporos. Int. 30, 1003–1013 (2019).

    Article  CAS  PubMed  Google Scholar 

  61. Le Roy, C. I. et al. Dissecting the role of the gut microbiota and diet on visceral fat mass accumulation. Sci. Rep. 9, 9758 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Zhong, X. et al. Gut microbiota associations with metabolic health and obesity status in older adults. Nutrients https://doi.org/10.3390/nu12082364 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Margiotta, E. et al. Gut microbiota composition and frailty in elderly patients with chronic kidney disease. PLoS ONE 15, e0228530 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Luan, Z. et al. Metagenomics study reveals changes in gut microbiota in centenarians: a cohort study of Hainan centenarians. Front. Microbiol. 11, 1474 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Duvallet, C., Gibbons, S. M., Gurry, T., Irizarry, R. A. & Alm, E. J. Meta-analysis of gut microbiome studies identifies disease-specific and shared responses. Nat. Commun. 8, 1784 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Pasolli, E., Truong, D. T., Malik, F., Waldron, L. & Segata, N. Machine learning meta-analysis of large metagenomic datasets: tools and biological insights. PLoS Comput. Biol. 12, e1004977 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. DeJong, E. N., Surette, M. G. & Bowdish, D. M. E. The gut microbiota and unhealthy aging: disentangling cause from consequence. Cell Host Microbe 28, 180–189 (2020).

    Article  CAS  PubMed  Google Scholar 

  68. Tomás-Barberán, F. A., García-Villalba, R., González-Sarrías, A., Selma, M. V. & Espín, J. C. Ellagic acid metabolism by human gut microbiota: consistent observation of three urolithin phenotypes in intervention trials, independent of food source, age, and health status. J. Agric. Food Chem. 62, 6535–6538 (2014).

    Article  PubMed  CAS  Google Scholar 

  69. Cortés-Martín, A. et al. The gut microbiota urolithin metabotypes revisited: the human metabolism of ellagic acid is mainly determined by aging. Food Funct. 9, 4100–4106 (2018).

    Article  PubMed  Google Scholar 

  70. Selma, M. V. et al. Isolation of human intestinal bacteria capable of producing the bioactive metabolite isourolithin a from ellagic acid. Front. Microbiol. 8, 1521 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  71. He, Z. et al. Campylobacter jejuni promotes colorectal tumorigenesis through the action of cytolethal distending toxin. Gut 68, 289–300 (2019).

    Article  CAS  PubMed  Google Scholar 

  72. Pleguezuelos-Manzano, C. et al. Mutational signature in colorectal cancer caused by genotoxic pks(+) E. coli. Nature 580, 269–273 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wu, J., Li, Q. & Fu, X. Fusobacterium nucleatum contributes to the carcinogenesis of colorectal cancer by inducing inflammation and suppressing host immunity. Transl. Oncol. 12, 846–851 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Sung, J. et al. Global metabolic interaction network of the human gut microbiota for context-specific community-scale analysis. Nat. Commun. 8, 15393 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Cani, P. D. et al. Microbial regulation of organismal energy homeostasis. Nat. Metab. 1, 34–46 (2019).

    Article  CAS  PubMed  Google Scholar 

  76. Boehme, M. et al. Microbiota from young mice counteracts selective age-associated behavioral deficits. Nat. Aging 1, 666–676 (2021).

    Article  Google Scholar 

  77. Marizzoni, M. et al. Short-chain fatty acids and lipopolysaccharide as mediators between gut dysbiosis and amyloid pathology in Alzheimer’s disease. J. Alzheimers Dis. 78, 683–697 (2020).

    Article  CAS  PubMed  Google Scholar 

  78. Getachew, B., Csoka, A. B., Bhatti, A., Copeland, R. L. & Tizabi, Y. Butyrate protects against salsolinol-induced toxicity in SH-SY5Y cells: implication for Parkinson’s disease. Neurotox. Res. 38, 596–602 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bodogai, M. et al. Commensal bacteria contribute to insulin resistance in aging by activating innate B1a cells. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aat4271 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Shao, Y., Gao, Z., Marks, P. A. & Jiang, X. Apoptotic and autophagic cell death induced by histone deacetylase inhibitors. Proc. Natl Acad. Sci. USA 101, 18030–18035 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sovran, B. et al. Age-associated impairment of the mucus barrier function is associated with profound changes in microbiota and immunity. Sci. Rep. 9, 1437 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. van Beek, A. A. et al. Frontline science: tryptophan restriction arrests B cell development and enhances microbial diversity in WT and prematurely aging Ercc1(-/Δ7) mice. J. Leukoc. Biol. 101, 811–821 (2017).

    Article  PubMed  Google Scholar 

  83. Fransen, F. et al. Aged gut microbiota contributes to systemical inflammaging after transfer to germ-free mice. Front. Immunol. 8, 1385 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Bárcena, C. et al. Healthspan and lifespan extension by fecal microbiota transplantation into progeroid mice. Nat. Med. 25, 1234–1242 (2019). This study showed the efficacy of FMT in modulating progeria in a mouse model.

    Article  PubMed  CAS  Google Scholar 

  85. Depommier, C. et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat. Med. 25, 1096–1103 (2019). This study linked supplementation with the health-associated Akkermansia muciniphila and improved insulin sensitivity and cardiometabolic health.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Cekanaviciute, E. et al. Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. Proc. Natl Acad. Sci. USA 114, 10713–10718 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Haikal, C., Chen, Q. Q. & Li, J. Y. Microbiome changes: an indicator of Parkinson’s disease? Transl. Neurodegener. 8, 38 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ansaldo, E. et al. Akkermansia muciniphila induces intestinal adaptive immune responses during homeostasis. Science 364, 1179–1184 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Siddharth, J. et al. Aging and sarcopenia associate with specific interactions between gut microbes, serum biomarkers and host physiology in rats. Aging 9, 1698–1720 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Fielding, R. A. et al. Muscle strength is increased in mice that are colonized with microbiota from high-functioning older adults. Exp. Gerontol. 127, 110722 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Conley, M. N. et al. Aging and serum MCP-1 are associated with gut microbiome composition in a murine model. PeerJ 4, e1854 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Hirose, M. et al. Mitochondrial gene polymorphism is associated with gut microbial communities in mice. Sci. Rep. 7, 15293 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Sato, Y. et al. Novel bile acid biosynthetic pathways are enriched in the microbiome of centenarians. Nature 599, 458–464 (2021).

    Article  CAS  PubMed  Google Scholar 

  94. Han, B. et al. Microbial genetic composition tunes host longevity. Cell 169, 1249–1262.e13 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. La-Ongkham, O., Nakphaichit, M., Nakayama, J., Keawsompong, S. & Nitisinprasert, S. Age-related changes in the gut microbiota and the core gut microbiome of healthy Thai humans. 3 Biotech 10, 276 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Park, S. H. et al. Comparative analysis of gut microbiota in elderly people of urbanized towns and longevity villages. BMC Microbiol. 15, 49 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Zhang, X. et al. Sex- and age-related trajectories of the adult human gut microbiota shared across populations of different ethnicities. Nat. Aging 1, 87–100 (2021).

    Article  Google Scholar 

  98. Rahayu, E. S. et al. Gut microbiota profile in healthy Indonesians. World J. Gastroenterol. 25, 1478–1491 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Wang, W. et al. Cholecystectomy damages aging-associated intestinal microbiota construction. Front. Microbiol. 9, 1402 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Bian, G. et al. The gut microbiota of healthy aged Chinese is similar to that of the healthy young. mSphere https://doi.org/10.1128/mSphere.00327-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  101. de la Cuesta-Zuluaga, J. et al. Age- and sex-dependent patterns of gut microbial diversity in human adults. mSystems https://doi.org/10.1128/mSystems.00261-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Zhang, S. et al. Gut microbiota in healthy and unhealthy long-living people. Gene 779, 145510 (2021).

    Article  CAS  PubMed  Google Scholar 

  103. Wilmanski, T. et al. Gut microbiome pattern reflects healthy ageing and predicts survival in humans. Nat. Metab. 3, 274–286 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Ghosh, T. S. et al. Mediterranean diet intervention alters the gut microbiome in older people reducing frailty and improving health status: the NU-AGE 1-year dietary intervention across five European countries. Gut 69, 1218–1228 (2020). One of the largest dietary intervention studies for older people that demonstrated the role of the gut microbiota in transducing the signals of a beneficial diet.

    Article  CAS  PubMed  Google Scholar 

  105. Ostan, R. et al. Impact of diet and nutraceutical supplementation on inflammation in elderly people. Results from the RISTOMED study, an open-label randomized control trial. Clin. Nutr. 35, 812–818 (2016).

    Article  CAS  PubMed  Google Scholar 

  106. Sanborn, V., Azcarate-Peril, M. A., Updegraff, J., Manderino, L. & Gunstad, J. Randomized clinical trial examining the impact of lactobacillus rhamnosus GG probiotic supplementation on cognitive functioning in middle-aged and older adults. Neuropsychiatr. Dis. Treat. 16, 2765–2777 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Shinkai, S. et al. Immunoprotective effects of oral intake of heat-killed Lactobacillus pentosus strain b240 in elderly adults: a randomised, double-blind, placebo-controlled trial. Br. J. Nutr. 109, 1856–1865 (2013).

    Article  CAS  PubMed  Google Scholar 

  108. Agrawal, M. et al. The long-term efficacy and safety of fecal microbiota transplant for recurrent, severe, and complicated Clostridium difficile infection in 146 elderly individuals. J. Clin. Gastroenterol. 50, 403–407 (2016).

    Article  PubMed  Google Scholar 

  109. Qu, H., Zhang, Y., Chai, H., Gao, Z. Y. & Shi, D. Z. Effects of microbiota-driven therapy on inflammatory responses in elderly individuals: a systematic review and meta-analysis. PLoS ONE 14, e0211233 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Macfarlane, S., Cleary, S., Bahrami, B., Reynolds, N. & Macfarlane, G. T. Synbiotic consumption changes the metabolism and composition of the gut microbiota in older people and modifies inflammatory processes: a randomised, double-blind, placebo-controlled crossover study. Aliment. Pharmacol. Ther. 38, 804–816 (2013).

    Article  CAS  PubMed  Google Scholar 

  111. Nyangale, E. P., Farmer, S., Keller, D., Chernoff, D. & Gibson, G. R. Effect of prebiotics on the fecal microbiota of elderly volunteers after dietary supplementation of Bacillus coagulans GBI-30, 6086. Anaerobe 30, 75–81 (2014).

    Article  CAS  PubMed  Google Scholar 

  112. Björklund, M. et al. Gut microbiota of healthy elderly NSAID users is selectively modified with the administration of Lactobacillus acidophilus NCFM and lactitol. Age 34, 987–999 (2012).

    Article  PubMed  CAS  Google Scholar 

  113. Spaiser, S. J. et al. Lactobacillus gasseri KS-13, Bifidobacterium bifidum G9-1, and Bifidobacterium longum MM-2 ingestion induces a less inflammatory cytokine profile and a potentially beneficial shift in gut microbiota in older adults: a randomized, double-blind, placebo-controlled, crossover study. J. Am. Coll. Nutr. 34, 459–469 (2015).

    Article  CAS  PubMed  Google Scholar 

  114. Leblhuber, F., Steiner, K., Schuetz, B., Fuchs, D. & Gostner, J. M. Probiotic supplementation in patients with Alzheimer’s dementia — an explorative intervention study. Curr. Alzheimer Res. 15, 1106–1113 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Nilsson, A. G., Sundh, D., Bäckhed, F. & Lorentzon, M. Lactobacillus reuteri reduces bone loss in older women with low bone mineral density: a randomized, placebo-controlled, double-blind, clinical trial. J. Intern. Med. 284, 307–317 (2018).

    Article  CAS  PubMed  Google Scholar 

  116. An, R. et al. Age-dependent changes in GI physiology and microbiota: time to reconsider? Gut 67, 2213–2222 (2018). This review describes age-related alterations in gastrointestinal physiology and function and gut microbiome changes during frailty.

    Article  CAS  PubMed  Google Scholar 

  117. Buigues, C. et al. Effect of a prebiotic formulation on frailty syndrome: a randomized, double-blind clinical trial. Int. J. Mol. Sci. https://doi.org/10.3390/ijms17060932 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Igwe, E. O. et al. Anthocyanin-rich plum juice reduces ambulatory blood pressure but not acute cognitive function in younger and older adults: a pilot crossover dose-timing study. Nutr. Res. 47, 28–43 (2017).

    Article  CAS  PubMed  Google Scholar 

  119. Przemska-Kosicka, A. et al. Effect of a synbiotic on the response to seasonal influenza vaccination is strongly influenced by degree of immunosenescence. Immun. Ageing 13, 6 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Enani, S. et al. Impact of ageing and a synbiotic on the immune response to seasonal influenza vaccination; a randomised controlled trial. Clin. Nutr. 37, 443–451 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Akatsu, H. et al. Lactobacillus in jelly enhances the effect of influenza vaccination in elderly individuals. J. Am. Geriatr. Soc. 61, 1828–1830 (2013).

    Article  PubMed  Google Scholar 

  122. Maruyama, M. et al. The effects of non-viable Lactobacillus on immune function in the elderly: a randomised, double-blind, placebo-controlled study. Int. J. Food Sci. Nutr. 67, 67–73 (2016).

    Article  CAS  PubMed  Google Scholar 

  123. Assisi, R. F. Combined butyric acid/mesalazine treatment in ulcerative colitis with mild-moderate activity. Results of a multicentre pilot study. Minerva Gastroenterol. Dietol. 54, 231–238 (2008).

    CAS  PubMed  Google Scholar 

  124. Govindarajan, N., Agis-Balboa, R. C., Walter, J., Sananbenesi, F. & Fischer, A. Sodium butyrate improves memory function in an Alzheimer’s disease mouse model when administered at an advanced stage of disease progression. J. Alzheimers Dis. 26, 187–197 (2011).

    Article  CAS  PubMed  Google Scholar 

  125. Bamba, S. et al. Successful treatment by fecal microbiota transplantation for Japanese patients with refractory Clostridium difficile infection: a prospective case series. J. Microbiol. Immunol. 52, 663–666 (2019).

    Google Scholar 

  126. Friedman-Korn, T. et al. Fecal transplantation for treatment of clostridium difficile infection in elderly and debilitated patients. Dig. Dis. Sci. 63, 198–203 (2018).

    Article  PubMed  Google Scholar 

  127. Cheng, Y. W. & Fischer, M. The present status of fecal microbiota transplantation and its value in the elderly. Curr. Treat. Options Gastroenterol. 15, 349–362 (2017).

    Article  PubMed  Google Scholar 

  128. Xie, W. R., Yang, X. Y., Xia, H. H., Wu, L. H. & He, X. X. Hair regrowth following fecal microbiota transplantation in an elderly patient with alopecia areata: a case report and review of the literature. World J. Clin. Cases 7, 3074–3081 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Ntemiri, A. et al. Whole blueberry and isolated polyphenol-rich fractions modulate specific gut microbes in an in vitro colon model and in a pilot study in human consumers. Nutrients https://doi.org/10.3390/nu12092800 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Del Bo, C. et al. A polyphenol-rich dietary pattern improves intestinal permeability, evaluated as serum zonulin levels, in older subjects: The MaPLE randomised controlled trial. Clin. Nutr. https://doi.org/10.1016/j.clnu.2020.12.014 (2020).

    Article  PubMed  Google Scholar 

  131. Tran, T. T. T. et al. Prebiotic supplementation in frail older people affects specific gut microbiota taxa but not global diversity. Microbiome 7, 39 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Alfa, M. J. et al. A randomized placebo controlled clinical trial to determine the impact of digestion resistant starch MSPrebiotic(®) on glucose, insulin, and insulin resistance in elderly and mid-age adults. Front. Med. 4, 260 (2017).

    Article  Google Scholar 

  133. Cancello, R. et al. Effect of short-term dietary intervention and probiotic mix supplementation on the gut microbiota of elderly obese women. Nutrients https://doi.org/10.3390/nu11123011 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Theou, O. et al. Can a prebiotic formulation reduce frailty levels in older people? J. Frailty Aging 8, 48–52 (2019).

    CAS  PubMed  Google Scholar 

  135. Hidalgo-Liberona, N. et al. Increased intestinal permeability in older subjects impacts the beneficial effects of dietary polyphenols by modulating their bioavailability. J. Agric. Food Chem. 68, 12476–12484 (2020).

    Article  CAS  PubMed  Google Scholar 

  136. Piggott, D. A. & Tuddenham, S. The gut microbiome and frailty. Transl. Res. 221, 23–43 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Sanders, M. Lactic Acid Bacteria as Promoters of Human Health 1st edn (Chapman & Hall, 1994).

  138. Picard, C. et al. Review article: bifidobacteria as probiotic agents – physiological effects and clinical benefits. Aliment. Pharmacol. Ther. 22, 495–512 (2005).

    Article  CAS  PubMed  Google Scholar 

  139. Fukuda, S., Toh, H., Taylor, T. D., Ohno, H. & Hattori, M. Acetate-producing bifidobacteria protect the host from enteropathogenic infection via carbohydrate transporters. Gut Microbes 3, 449–454 (2012).

    Article  PubMed  Google Scholar 

  140. Kumar, A., Alrefai, W. A., Borthakur, A. & Dudeja, P. K. Lactobacillus acidophilus counteracts enteropathogenic E. coli-induced inhibition of butyrate uptake in intestinal epithelial cells. Am. J. Physiol. Gastrointest. Liver Physiol. 309, G602–G607 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Alfa, M. J. et al. A randomized trial to determine the impact of a digestion resistant starch composition on the gut microbiome in older and mid-age adults. Clin. Nutr. 37, 797–807 (2018).

    Article  CAS  PubMed  Google Scholar 

  142. Kim, C. S. et al. Probiotic supplementation improves cognitive function and mood with changes in gut microbiota in community-dwelling older adults: a randomized, double-blind, placebo-controlled, multicenter trial. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 76, 32–40 (2021).

    Article  CAS  Google Scholar 

  143. Nyangale, E. P. et al. Bacillus coagulans GBI-30, 6086 modulates Faecalibacterium prausnitzii in older men and women. J. Nutr. 145, 1446–1452 (2015).

    Article  CAS  PubMed  Google Scholar 

  144. Costabile, A. et al. Effects of soluble corn fiber alone or in synbiotic combination with lactobacillus rhamnosus gg and the pilus-deficient derivative GG-PB12 on fecal microbiota, metabolism, and markers of immune function: a randomized, double-blind, placebo-controlled, crossover study in healthy elderly (Saimes Study). Front. Immunol. 8, 1443 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Nagpal, R., Neth, B. J., Wang, S., Craft, S. & Yadav, H. Modified Mediterranean-ketogenic diet modulates gut microbiome and short-chain fatty acids in association with Alzheimer’s disease markers in subjects with mild cognitive impairment. EBioMedicine 47, 529–542 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Kojima, G., Avgerinou, C., Iliffe, S. & Walters, K. Adherence to Mediterranean diet reduces incident frailty risk: systematic review and meta-analysis. J. Am. Geriatr. Soc. 66, 783–788 (2018).

    Article  PubMed  Google Scholar 

  147. Shanahan, F., van Sinderen, D., O’Toole, P. W. & Stanton, C. Feeding the microbiota: transducer of nutrient signals for the host. Gut 66, 1709–1717 (2017). This review describes the tripartite interaction between diet, gut microbiota, and human health and how it can be investigated to formulate interventions for addressing non-communicable inflammatory diseases.

    Article  CAS  PubMed  Google Scholar 

  148. Wang, D. D. et al. The gut microbiome modulates the protective association between a Mediterranean diet and cardiometabolic disease risk. Nat. Med. 27, 333–343 (2021). A key study showing how the baseline gut microbiome of the host influences the beneficial response to a Mediterranean diet.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Meslier, V. et al. Mediterranean diet intervention in overweight and obese subjects lowers plasma cholesterol and causes changes in the gut microbiome and metabolome independently of energy intake. Gut 69, 1258–1268 (2020).

    Article  CAS  PubMed  Google Scholar 

  150. Vitale, M. et al. Acute and chronic improvement in postprandial glucose metabolism by a diet resembling the traditional Mediterranean dietary pattern: can SCFAs play a role? Clin. Nutr. 40, 428–437 (2021).

    Article  CAS  PubMed  Google Scholar 

  151. Asnicar, F. et al. Microbiome connections with host metabolism and habitual diet from 1,098 deeply phenotyped individuals. Nat. Med. 27, 321–332 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Berry, S. E. et al. Human postprandial responses to food and potential for precision nutrition. Nat. Med. 26, 964–973 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Menni, C. et al. High intake of vegetables is linked to lower white blood cell profile and the effect is mediated by the gut microbiome. BMC Med. 19, 37 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. O’Toole, P. W. & Jeffery, I. B. Gut microbiota and aging. Science 350, 1214–1215 (2021).

    Article  CAS  Google Scholar 

  155. Marmot, M. Health Equity in England: The Marmot Review 10 Years On (Institute of Health Equity, Health Foundation, UK, 2020).

  156. The Food Foundation. The Broken Plate. The Food Foundation https://foodfoundation.org.uk/publication/broken-plate-2019 (2019).

  157. Rastelli, M., Knauf, C. & Cani, P. D. Gut microbes and health: a focus on the mechanisms linking microbes, obesity, and related disorders. Obesity 26, 792–800 (2018).

    Article  PubMed  Google Scholar 

  158. Régnier, M., Van Hul, M., Knauf, C. & Cani, P. D. Gut microbiome, endocrine control of gut barrier function and metabolic diseases. J. Endocrinol. https://doi.org/10.1530/joe-20-0473 (2020).

    Article  Google Scholar 

  159. Pittayanon, R. et al. Differences in gut microbiota in patients with vs without inflammatory bowel diseases: a systematic review. Gastroenterology 158, 930–946.e1 (2020).

    Article  PubMed  Google Scholar 

  160. Ni, J., Wu, G. D., Albenberg, L. & Tomov, V. T. Gut microbiota and IBD: causation or correlation? Nat. Rev. Gastroenterol. Hepatol. 14, 573–584 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Jeffery, I. B. et al. Differences in fecal microbiomes and metabolomes of people with vs without irritable bowel syndrome and bile acid malabsorption. Gastroenterology 158, 1016–1028.e1018 (2020).

    Article  CAS  PubMed  Google Scholar 

  162. Bhattarai, Y., Muniz Pedrogo, D. A. & Kashyap, P. C. Irritable bowel syndrome: a gut microbiota-related disorder? Am. J. Physiol. Gastrointest. Liver Physiol. https://doi.org/10.1152/ajpgi.00338.2016 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Pathak, P. et al. Small molecule inhibition of gut microbial choline trimethylamine lyase activity alters host cholesterol and bile acid metabolism. Am. J. Physiol. Heart Circ. Physiol. https://doi.org/10.1152/ajpheart.00584.2019 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Lach, G., Schellekens, H., Dinan, T. G. & Cryan, J. F. Anxiety, depression, and the microbiome: a role for gut peptides. Neurotherapeutics 15, 36–59 (2018).

    Article  CAS  PubMed  Google Scholar 

  165. Ruiz-Ruiz, S. et al. Functional microbiome deficits associated with ageing: chronological age threshold. Aging Cell 19, e13063 (2020).

    Article  CAS  PubMed  Google Scholar 

  166. Iwauchi, M. et al. Relationship between oral and gut microbiota in elderly people. Immun. Inflamm. Dis. 7, 229–236 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Collino, S. et al. Metabolic signatures of extreme longevity in Northern Italian centenarians reveal a complex remodeling of lipids, amino acids, and gut microbiota metabolism. PLoS ONE 8, e56564 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Ke, Y. et al. Gut flora-dependent metabolite trimethylamine-N-oxide accelerates endothelial cell senescence and vascular aging through oxidative stress. Free Radic. Biol. Med. 116, 88–100 (2018).

    Article  CAS  PubMed  Google Scholar 

  169. Kim, B. S. et al. Comparison of the gut microbiota of centenarians in longevity villages of South Korea with those of other age groups. J. Microbiol. Biotechnol. 29, 429–440 (2019).

    Article  PubMed  Google Scholar 

  170. Huang, S. et al. Human skin, oral, and gut microbiomes predict chronological age. mSystems https://doi.org/10.1128/mSystems.00630-19 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Galkin, F. et al. Human gut microbiome aging clock based on taxonomic profiling and deep learning. iScience 23, 101199 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Verdi, S. et al. An investigation into physical frailty as a link between the gut microbiome and cognitive health. Front. Aging Neurosci. 10, 398 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Heinzel, S. et al. Gut microbiome signatures of risk and prodromal markers of Parkinson disease. Ann. Neurol. 88, 320–331 (2020).

    Article  PubMed  Google Scholar 

  174. Singh, H. et al. Gastro-intestinal and oral microbiome signatures associated with healthy aging. GeroScience 41, 907–921 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Brunt, V. E. et al. Trimethylamine-N-oxide promotes age-related vascular oxidative stress and endothelial dysfunction in mice and healthy humans. Hypertension 76, 101–112 (2020).

    Article  CAS  PubMed  Google Scholar 

  176. He, W. et al. Trimethylamine N-oxide, a gut microbiota-dependent metabolite, is associated with frailty in older adults with cardiovascular disease. Clin. Interv. Aging 15, 1809–1820 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Brunt, V. E. et al. Suppression of the gut microbiome ameliorates age-related arterial dysfunction and oxidative stress in mice. J. Physiol. 597, 2361–2378 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Brunt, V. E. et al. The gut microbiome-derived metabolite trimethylamine N-oxide modulates neuroinflammation and cognitive function with aging. GeroScience https://doi.org/10.1007/s11357-020-00257-2 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Li, D. et al. Trimethylamine-N-oxide promotes brain aging and cognitive impairment in mice. Aging Cell 17, e12768 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Lin, H. et al. The role of gut microbiota metabolite trimethylamine N-oxide in functional impairment of bone marrow mesenchymal stem cells in osteoporosis disease. Ann. Transl. Med. 8, 1009 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Thomas, A. M. et al. Metagenomic analysis of colorectal cancer datasets identifies cross-cohort microbial diagnostic signatures and a link with choline degradation. Nat. Med. https://doi.org/10.1038/s41591-019-0405-7 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Pignanelli, M. et al. Moderate renal impairment and toxic metabolites produced by the intestinal microbiome: dietary implications. J. Ren. Nutr. 29, 55–64 (2019).

    Article  CAS  PubMed  Google Scholar 

  183. Gutiérrez-Díaz, I. et al. Could fecal phenylacetic and phenylpropionic acids be used as indicators of health status? J. Agric. Food Chem. 66, 10438–10446 (2018).

    Article  PubMed  CAS  Google Scholar 

  184. Pascucci, T. et al. P-cresol alters brain dopamine metabolism and exacerbates autism-like behaviors in the BTBR mouse. Brain Sci. https://doi.org/10.3390/brainsci10040233 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  185. MahmoudianDehkordi, S. et al. Altered bile acid profile associates with cognitive impairment in Alzheimer’s disease — an emerging role for gut microbiome. Alzheimers Dement. 15, 76–92 (2019).

    Article  PubMed  Google Scholar 

  186. Wirbel, J. et al. Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer. Nat. Med. https://doi.org/10.1038/s41591-019-0406-6 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Sears, C. L. & Garrett, W. S. Microbes, microbiota, and colon cancer. Cell Host Microbe 15, 317–328 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Awoyemi, A., Trøseid, M., Arnesen, H., Solheim, S. & Seljeflot, I. Markers of metabolic endotoxemia as related to metabolic syndrome in an elderly male population at high cardiovascular risk: a cross-sectional study. Diabetol. Metab. Syndr. 10, 59 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Lin, H. V. et al. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS ONE 7, e35240 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Jia, Y. et al. Butyrate stimulates adipose lipolysis and mitochondrial oxidative phosphorylation through histone hyperacetylation-associated β(3) -adrenergic receptor activation in high-fat diet-induced obese mice. Exp. Physiol. 102, 273–281 (2017).

    Article  PubMed  CAS  Google Scholar 

  191. Litvak, Y., Byndloss, M. X. & Bäumler, A. J. Colonocyte metabolism shapes the gut microbiota. Science https://doi.org/10.1126/science.aat9076 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Sahuri-Arisoylu, M. et al. Reprogramming of hepatic fat accumulation and ‘browning’ of adipose tissue by the short-chain fatty acid acetate. Int. J. Obes. 40, 955–963 (2016).

    Article  CAS  Google Scholar 

  193. Mitchell, S. M. et al. A period of 10 weeks of increased protein consumption does not alter faecal microbiota or volatile metabolites in healthy older men: a randomised controlled trial. J. Nutr. Sci. 9, e25 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Igwe, E. O. et al. Low anthocyanin plum nectar does not impact cognition, blood pressure and gut microbiota in healthy older adults: A randomized crossover trial. Nutr. Res. 82, 74–87 (2020).

    Article  CAS  PubMed  Google Scholar 

  195. Ruiz-Saavedra, S. et al. Comparison of different dietary indices as predictors of inflammation, oxidative stress and intestinal microbiota in middle-aged and elderly subjects. Nutrients https://doi.org/10.3390/nu12123828 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Zengul, A. G. et al. Associations between dietary fiber, the fecal microbiota and estrogen metabolism in postmenopausal women with breast cancer. Nutr. Cancer https://doi.org/10.1080/01635581.2020.1784444 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  197. An, R. et al. Sugar beet pectin supplementation did not alter profiles of fecal microbiota and exhaled breath in healthy young adults and healthy elderly. Nutrients https://doi.org/10.3390/nu11092193 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Chung, W. S. F. et al. Relative abundance of the Prevotella genus within the human gut microbiota of elderly volunteers determines the inter-individual responses to dietary supplementation with wheat bran arabinoxylan-oligosaccharides. BMC Microbiol. 20, 283 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  199. Watson, A. W. et al. Changes in stool frequency following chicory inulin consumption, and effects on stool consistency, quality of life and composition of gut microbiota. Food Hydrocoll. 96, 688–698 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Birkeland, E. et al. Prebiotic effect of inulin-type fructans on faecal microbiota and short-chain fatty acids in type 2 diabetes: a randomised controlled trial. Eur. J. Nutr. 59, 3325–3338 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Gao, R., Zhang, X., Huang, L., Shen, R. & Qin, H. Gut microbiota alteration after long-term consumption of probiotics in the elderly. Probiotics Antimicrob. Proteins 11, 655–666 (2019).

    Article  CAS  PubMed  Google Scholar 

  202. Eloe-Fadrosh, E. A. et al. Functional dynamics of the gut microbiome in elderly people during probiotic consumption. mBio https://doi.org/10.1128/mBio.00231-15 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Kotani, Y. et al. Oral intake of Lactobacillus pentosus strain b240 accelerates salivary immunoglobulin A secretion in the elderly: A randomized, placebo-controlled, double-blind trial. Immun. Ageing 7, 11 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  204. Andreux, P. A. et al. The mitophagy activator urolithin A is safe and induces a molecular signature of improved mitochondrial and cellular health in humans. Nat. Metab. 1, 595–603 (2019).

    Article  CAS  PubMed  Google Scholar 

  205. Cai, T., Shi, X., Yuan, L.-Z., Tang, D. & Wang, F. Fecal microbiota transplantation in an elderly patient with mental depression. Int. Psychogeriatr. 31, 1525–1526 (2019).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to all aspects of the manuscript.

Corresponding author

Correspondence to Paul W. O’Toole.

Ethics declarations

Competing interests

F.S. is a cofounder of three campus companies: Alimentary Health Ltd, Tucana Health Ltd (now named 4D Pharma Cork) and Atlantia Food Clinical Trials. P.W.O.T. is a cofounder of 4D Pharma Cork. T.S.G. declares no competing interests.

Peer review

Peer review information

Nature Reviews Gastroenterology and Hepatology thanks Silvia Turroni, Liping Zhao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Probiotics

Microbial species (or lineages) that have a beneficial effect on the host.

Psychobiotics

Subgroup of probiotic bacteria that have a beneficial impact on the gut–brain axis resulting in improved behaviour or cognitive function.

Internal transcribed spacer

A method of microbial community profiling similar to 16S profiling that relies on specific PCR-based amplification, sequencing and characterization of the internal spacer DNA regions between the small subunit rRNA components (16S for bacteria/archaea and 18S for eukaryotes) and the large subunit rRNA components, and is typically used for the characterization of the mycobiome of a given environment due to the superior phylogenetic granularity afforded by the sequence.

Inter-study variations

Variations in the patterns of gut microbiome alterations detected across different studies investigating the same (or similar) host trait or phenotype (for example, age, BMI, a disease or disorder, or specific dietary patterns).

Shotgun metagenomics

A method of community genomic profiling that involves the extraction and sequencing of the entire genomic content of all cells belonging to a given microbial community.

Prebiotic

Nutritional supplements designed to increase the abundance of specific target groups of beneficial microorganisms based on restricted catabolic ability in certain taxa.

Synbiotics

Single or consortia of beneficial microorganisms that are administered in combination with prebiotics.

Postbiotics

Deliberately inactivated (heat-killed) microbial cells, cell components or microbiota-derived metabolites that confer health benefits.

Quantitative polymerase chain reaction

(qPCR). A method of real-time microbial quantification in a given sample that relies on measuring the change in PCR amplicon copy number (in this context, amplified by primers designed against a phylogenetic marker gene corresponding to a given species or a microbial group) during the cycles of the PCR; copy numbers of phylogenetic marker gene regions belonging to microbial lineages in higher abundance are expected to be amplified faster, resulting in a faster increase in the strength of fluorescent oligonucleotide probes targeted at these lineages.

Fluorescence in situ hybridization

(FISH). A method of physically locating or enumerating the population of a specific microorganism or cell type by using fluorescent oligonucleotide probes that bind to specific genomic sequences in the target cells with high sequence complementarity; it can be used to measure either specific bacterial species or overall bacterial cell abundance (by using probes towards the universally conserved regions of the 16S rRNA gene).

16S profiling

(Also known as 16S rRNA sequencing). A method of microbial community profiling that relies on specific polymerase chain reaction (PCR)-based amplification, sequencing and phylogenetic profiling of either the full length or specific sub-regions of the 16S rRNA marker gene across all bacterial and archaeal cells present in a given sample.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, T.S., Shanahan, F. & O’Toole, P.W. The gut microbiome as a modulator of healthy ageing. Nat Rev Gastroenterol Hepatol 19, 565–584 (2022). https://doi.org/10.1038/s41575-022-00605-x

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41575-022-00605-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing