Abstract
Taste is important in the selection of food and is orchestrated by a group of distinct receptors, the taste G protein-coupled receptors (GPCRs). Taste 1 receptors (Tas1rs in mice and TAS1Rs in humans; also known as T1Rs) detect sweet and umami tastes, and taste 2 receptors (Tas2rs in mice and TAS2Rs in humans; also known as T2Rs) detect bitterness. These receptors are also expressed in extraoral sites, including the gastrointestinal mucosa. Tas2rs/TAS2Rs have gained interest as potential targets to prevent or treat metabolic disorders. These bitter taste receptors are expressed in functionally distinct types of gastrointestinal mucosal cells, including enteroendocrine cells, which, upon stimulation, increase intracellular Ca2+ and release signalling molecules that regulate gut chemosensory processes critical for digestion and absorption of nutrients, for neutralization and expulsion of harmful substances, and for metabolic regulation. Expression of Tas2rs/TAS2Rs in gut mucosa is upregulated by high-fat diets, and intraluminal bitter ‘tastants’ affect gastrointestinal functions and ingestive behaviour through local and gut–brain axis signalling. Tas2rs/TAS2Rs are also found in Paneth and goblet cells, which release antimicrobial peptides and glycoproteins, and in tuft cells, which trigger type 2 immune response against parasites, thus providing a direct line of defence against pathogens. This Review will focus on gut Tas2r/TAS2R distribution, signalling and regulation in enteroendocrine cells, supporting their role as chemosensors of luminal content that serve distinct functions as regulators of body homeostasis and immune response.
Key points
-
Bitter taste receptors (type 2 taste receptors; Tas2rs/TAS2Rs) are G protein-coupled receptors (GPCRs) that detect bitter, potentially harmful substances, although bitterness does not predict toxicity and is not always aversive.
-
Functional genes exist for approximately 25 human bitter taste receptors (TAS2Rs) and ~36 rodent bitter taste receptors (Tas2rs); these genes detect a large number of natural and synthetic, structurally divergent compounds.
-
Tas2rs/TAS2Rs differ in their tuning broadness: some sense just a few or single ligands, and others are broadly tuned to recognize multiple tastants many of which activate multiple receptors.
-
Human TAS2Rs and mouse Tas2rs are found in many extraoral locations, where they serve various extragustatory functions, depending on the site of expression.
-
Multiple TAS2Rs/Tas2rs have been identified in the human and rodent gastrointestinal tract, where they are localized to distinct cell types, including enteroendocrine, goblet, Paneth and tuft cells.
-
Gut Tas2rs/TAS2Rs have been proposed as sensors of bile acids, bacteria, bacterial products, parasites and plant alkaloids; they might also serve as regulators of gut homeostasis in conditions of dysbiosis associated with obesity and metabolic syndrome and as defence mechanisms against infection.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$189.00 per year
only $15.75 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout






Similar content being viewed by others
References
Chaudhari, N. & Roper, S. D. The cell biology of taste. J. Cell Biol. 190, 285–296 (2010).
Roper, S. D. Taste buds as peripheral chemosensory processors. Semin. Cell Dev. Biol. 24, 71–79 (2013).
Kinnamon, S. & Finger, T. The role of ATP and purinergic receptors in taste signaling. Handb. Exp. Pharmacol. 275, 91–107 (2022).
Ma, Z., Tanis, J. E., Taruno, A. & Foskett, J. K. Calcium homeostasis modulator (CALHM) ion channels. Pflug. Arch. 468, 395–403 (2016).
Taruno, A. et al. CALHM1 ion channel mediates purinergic neurotransmission of sweet, bitter and umami tastes. Nature 495, 223–226 (2013).
Chen, X., Gabitto, M., Peng, Y., Ryba, N. J. & Zuker, C. S. A gustotopic map of taste qualities in the mammalian brain. Science 333, 1262–1266 (2011).
Scott, T. R. & Verhagen, J. V. Taste as a factor in the management of nutrition. Nutrition 16, 874–885 (2000).
Nissim, I., Dagan-Wiener, A. & Niv, M. Y. The taste of toxicity: a quantitative analysis of bitter and toxic molecules. IUBMB Life 69, 938–946 (2017).
Glendinning, J. I. Is the bitter rejection response always adaptive? Physiol. Behav. 56, 1217–1227 (1994).
Reed, D. R. & Knaapila, A. Genetics of taste and smell: poisons and pleasures. Prog. Mol. Biol. Transl. Sci. 94, 213–240 (2010).
Bartoshuk, L. M., Duffy, V. B. & Miller, I. J. PTC/PROP tasting: anatomy, psychophysics, and sex effects. Physiol. Behav. 56, 1165–1171 (1994).
Archer, N. et al. Obesity is associated with altered gene expression in human tastebuds. Int. J. Obes. 43, 1475–1484 (2019).
Kaufman, A., Kim, J., Noel, C. & Dando, R. Taste loss with obesity in mice and men. Int. J. Obes. 44, 739–743 (2020).
Ahart, Z. C. et al. Differential effects of diet and weight on taste responses in diet-induced obese mice. Obesity 28, 284–292 (2020).
Maliphol, A. B., Garth, D. J. & Medler, K. F. Diet-induced obesity reduces the responsiveness of the peripheral taste receptor cells. PLoS One 8, e79403 (2013).
Chaudhari, N., Pereira, E. & Roper, S. D. Taste receptors for umami: the case for multiple receptors. Am. J. Clin. Nutr. 90, 738S–742S (2009).
Nelson, G. et al. Mammalian sweet taste receptors. Cell 106, 381–390 (2001).
Chandrashekar, J. et al. T2Rs function as bitter taste receptors. Cell 100, 703–711 (2000).
Wooding, S. P., Ramirez, V. A. & Behrens, M. Bitter taste receptors: genes, evolution and health. Evol. Med. Public Health 9, 431–447 (2021).
Wu, S. V., Chen, M. C. & Rozengurt, E. Genomic organization, expression, and function of bitter taste receptors (T2R) in mouse and rat. Physiol. Genomics 22, 139–149 (2005).
Rozengurt, N. et al. Co-localization of the α-subunit of gustducin with PYY and GLP-1 in L cells of human colon. Am. J. Physiol. Gastrointest. Liver Physiol. 291, G792–G802 (2006).
Lang, T., Di Pizio, A., Risso, D., Drayna, D. & Behrens, M. Activation profile of TAS2R2, the 26th human bitter taste receptor. Mol. Nutr. Food Res. 67, e2200775 (2023).
Lossow, K. et al. Comprehensive analysis of mouse bitter taste receptors reveals different molecular receptive ranges for orthologous receptors in mice and humans. J. Biol. Chem. 291, 15358–15377 (2016).
Meyerhof, W. et al. The molecular receptive ranges of human TAS2R bitter taste receptors. Chem. Senses 35, 157–170 (2010).
Dagan-Wiener, A. et al. BitterDB: taste ligands and receptors database in 2019. Nucleic Acids Res. 47, D1179–D1185 (2019).
Bayer, S. et al. Chemoinformatics view on bitter taste receptor agonists in food. J. Agric. Food Chem. 69, 13916–13924 (2021).
Di Pizio, A. & Niv, M. Y. Promiscuity and selectivity of bitter molecules and their receptors. Bioorg. Med. Chem. 23, 4082–4091 (2015).
Yang, M. Y., Kim, S. K., Kim, D., Liggett, S. B. & Goddard, W. A. 3rd. Structures and agonist binding sites of bitter taste receptor TAS2R5 complexed with Gi protein and validated against experiment. J. Phys. Chem. Lett. 12, 9293–9300 (2021).
Kim, Y. et al. Bitter taste receptor activation by cholesterol and an intracellular tastant. Nature 628, 664–671 (2024).
Hu, X. et al. Bitter taste TAS2R14 activation by intracellular tastants and cholesterol. Nature 631, 459–466 (2024).
Avau, B. & Depoortere, I. The bitter truth about bitter taste receptors: beyond sensing bitter in the oral cavity. Acta Physiol. 216, 407–420 (2016).
Behrens, M. & Lang, T. Extra-oral taste receptors-function, disease, and perspectives. Front. Nutr. 9, 881177 (2022).
Behrens, M. & Meyerhof, W. Gustatory and extragustatory functions of mammalian taste receptors. Physiol. Behav. 105, 4–13 (2011).
Depoortere, I. Taste receptors of the gut: emerging roles in health and disease. Gut 63, 179–190 (2014).
Lee, S.-J., Depoortere, I. & Hatt, H. Therapeutic potential of ectopic olfactory and taste receptors. Nat. Rev. 18, 116–138 (2019).
Rozengurt, E. Taste receptors in the gastrointestinal tract. I. Bitter taste receptors and α-gustducin in the mammalian gut. Am. J. Physiol. Gastrointest. Liver Physiol. 291, G171–G177 (2006).
Sternini, C. Taste receptors in the gastrointestinal tract. IV. Functional implications of bitter taste receptors in gastrointestinal chemosensing. Am. J. Physiol. Gastrointest. Liver Physiol. 292, G457–G461 (2007).
Wang, Q., Liszt, K. I. & Depoortere, I. Extra-oral bitter taste receptors: new targets against obesity? Peptides 127, 170284 (2020).
Lu, P., Zhang, C. H., Lifshitz, L. M. & ZhuGe, R. Extraoral bitter taste receptors in health and disease. J. Gen. Physiol. 149, 181–197 (2017).
Bakar, R., Reimann, F. & Gribble, F. M. The intestine as an endocrine organ and the role of gut hormones in metabolic regulation. Nat. Rev. Gastroenterol. Hepatol. 20, 784–796 (2023).
Furness, J. B., Rivera, L. R., Cho, H. J., Bravo, D. M. & Callaghan, B. The gut as a sensory organ. Nat. Rev. Gastroenterol. Hepatol. 10, 729–740 (2013).
Steensels, S. & Depoortere, I. Chemoreceptors in the gut. Annu. Rev. Physiol. 80, 117–141 (2018).
Margolskee, R. F. et al. T1R3 and gustducin in gut sense sugars to regulate expression of Na+-glucose cotransporter 1. Proc. Natl Acad. Sci. USA 104, 15075–15080 (2007).
Young, R. L. et al. Disordered control of intestinal sweet taste receptor expression and glucose absorption in type 2 diabetes. Diabetes 62, 3532–3541 (2013).
Gorboulev, V. et al. Na+-D-glucose cotransporter SGLT1 is pivotal for intestinal glucose absorption and glucose-dependent incretin secretion. Diabetes 61, 187–196 (2012).
Gribble, F. M., Williams, L., Simpson, A. K. & Reimann, F. A novel glucose-sensing mechanism contributing to glucagon-like peptide-1 secretion from the GLUTag cell line. Diabetes 52, 1147–1154 (2003).
Kuhre, R. E., Frost, C. R., Svendsen, B. & Holst, J. J. Molecular mechanisms of glucose-stimulated GLP-1 secretion from perfused rat small intestine. Diabetes 64, 370–382 (2015).
Sternini, C., Anselmi, L. & Rozengurt, E. Enteroendocrine cells: a site of ‘taste’ in gastrointestinal chemosensing. Curr. Opin. Endocrinol. Diabetes Obes. 15, 73–78 (2008).
Ye, L. et al. Enteroendocrine cells sense bacterial tryptophan catabolites to activate enteric and vagal neuronal pathways. Cell Host Microbe 29, 179–196.e9 (2021).
Latorre, R., Sternini, C., De Giorgio, R. & Greenwood-Van Meerveld, B. Enteroendocrine cells: a review of their role in brain-gut communication. Neurogastroenterol. Motil. 28, 620–630 (2016).
Liddle, R. A. Interactions of gut endocrine cells with epithelium and neurons. Compr. Physiol. 8, 1019–1030 (2018).
Gerbe, F., Legraverend, C. & Jay, P. The intestinal epithelium tuft cells: specification and function. Cell Mol. Life Sci. 69, 2907–2917 (2012).
Howitt, M. R. et al. Tuft cells, taste-chemosensory cells, orchestrate parasite type 2 immunity in the gut. Science 351, 1329–1333 (2016).
Janssen, S. & Depoortere, I. Nutrient sensing in the gut: new roads to therapeutics? Trends Endocrinol. Metab. 24, 92–100 (2013).
Psichas, A., Reimann, F. & Gribble, F. M. Gut chemosensing mechanisms. J. Clin. Invest. 125, 908–917 (2015).
Bohorquez, D. V., Chandra, R., Samsa, L. A., Vigna, S. R. & Liddle, R. A. Characterization of basal pseudopod-like processes in ileal and colonic PYY cells. J. Mol. Histol. 42, 3–13 (2011).
Bohorquez, D. V. & Liddle, R. A. Axon-like basal processes in enteroendocrine cells: characteristics and potential targets. Clin. Transl. Sci. 4, 387–391 (2011).
Liddle, R. A. Neuropods. Cell Mol. Gastroenterol. Hepatol. 7, 739–747 (2019).
Bohorquez, D. V. et al. An enteroendocrine cell-enteric glia connection revealed by 3D electron microscopy. PLoS One 9, e89881 (2014).
Kaelberer, M. M., Rupprecht, L. E., Liu, W. W., Weng, P. & Bohorquez, D. V. Neuropod cells: the emerging biology of gut-brain sensory transduction. Annu. Rev. Neurosci. 43, 337–353 (2020).
Kaelberer, M. M. et al. A gut-brain neural circuit for nutrient sensory transduction. Science 361, eaat5236 (2018).
Bezencon, C., le Coutre, J. & Damak, S. Taste-signaling proteins are coexpressed in solitary intestinal epithelial cells. Chem. Senses 32, 41–49 (2007).
Hofer, D. & Drenckhahn, D. Identification of the taste cell G-protein, α-gustducin, in brush cells of the rat pancreatic duct system. Histochem. Cell Biol. 110, 303–309 (1998).
Hofer, D., Puschel, B. & Drenckhahn, D. Taste receptor-like cells in the rat gut identified by expression of alpha-gustducin. Proc. Natl Acad. Sci. USA 93, 6631–6634 (1996).
Sutherland, K., Young, R. L., Cooper, N. J., Horowitz, M. & Blackshaw, L. A. Phenotypic characterization of taste cells of the mouse intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 292, G1420–G1428 (2007).
Wu, S. V. et al. Expression of bitter taste receptors of the T2R family in the gastrointestinal tract and enteroendocrine STC-1 cells. Proc. Natl Acad. Sci. USA 99, 2392–2397 (2002).
Latorre, R. et al. Enteroendocrine profile of α-transducin immunoreactive cells in the gastrointestinal tract of the European sea bass (Dicentrarchus labrax). Fish Physiol. Biochem. 39, 1555–1565 (2013).
Mazzoni, M. et al. Expression and regulation of α-transducin in the pig gastrointestinal tract. J. Cell Mol. Med. 17, 466–474 (2013).
Mazzoni, M. et al. Distribution of α-transducin and α-gustducin immunoreactive cells in the chicken (Gallus domesticus) gastrointestinal tract. Poult. Sci. 95, 1624–1630 (2016).
Janssen, S. et al. Bitter taste receptors and a-gustducin regulate the secretion of ghrelin with functional effects on food intake and gastric emptying. Proc. Natl Acad. Sci. USA 108, 2094–2099 (2011).
De Giorgio, R. et al. Regulation of α-transducin and α-gustducin expression by a high protein diet in the pig gastrointestinal tract. PLoS One 11, e0148954 (2016).
Gaida, M. M. et al. Expression of the bitter receptor T2R38 in pancreatic cancer: localization in lipid droplets and activation by a bacteria-derived quorum-sensing molecule. Oncotarget 7, 12623–12632 (2016).
Liszt, K. I. et al. Caffeine induces gastric acid secretion via bitter taste signaling in gastric parietal cells. Proc. Natl Acad. Sci. USA 114, E6260–E6269 (2017).
Le Neve, B., Foltz, M., Daniel, H. & Gouka, R. The steroid glycoside H.g.-12 from Hoodia gordonii activates the human bitter receptor TAS2R14 and induces CCK release from HuTu-80 cells. Am. J. Physiol. Gastrointest. Liver Physiol. 299, G1368–G1375 (2010).
Gu, F. et al. Bitter taste receptor mTas2r105 is expressed in small intestinal villus and crypts. Biochem. Biophys. Res. Commun. 463, 934–941 (2015).
Prandi, S., Voigt, A., Meyerhof, W. & Behrens, M. Expression profiling of Tas2r genes reveals a complex pattern along the mouse GI tract and the presence of Tas2r131 in a subset of intestinal Paneth cells. Cell Mol. Life Sci. 75, 49–65 (2018).
Kurtz, R., Steinberg, L. G., Betcher, M., Fowler, D. & Shepard, B. D. The sensing liver: localization and ligands for hepatic murine olfactory and taste receptors. Front. Physiol. 11, 574082 (2020).
Vegezzi, G. et al. Diet-induced regulation of bitter taste receptor subtypes in the mouse gastrointestinal tract. PLoS One 9, e107732 (2014).
Caremoli, F. et al. Microbiota-dependent upregulation of bitter taste receptor subtypes in the mouse large intestine in high-fat diet-induced obesity. Nutrients 15, 4145 (2023).
Jeon, T. I., Zhu, B., Larson, J. L. & Osborne, T. F. SREBP-2 regulates gut peptide secretion through intestinal bitter taste receptor signaling in mice. J. Clin. Invest. 118, 3693–3700 (2008).
Latorre, R. et al. Expression of the bitter taste receptor, T2R38, in enteroendocrine cells of the colonic mucosa of overweight/obese vs. lean subjects. PLoS One 11, e0147468 (2016).
Kok, B. P. et al. Intestinal bitter taste receptor activation alters hormone secretion and imparts metabolic benefits. Mol. Metab. 16, 76–87 (2018).
Hayashi, M. et al. Expression of TAS2R14 in the intestinal endocrine cells of non-human primates. Genes Genomics 43, 259–267 (2021).
Widmayer, P. et al. Distinct cell types with the bitter receptor Tas2r126 in different compartments of the stomach. Front. Physiol. 11, 32 (2020).
Prandi, S. et al. A subset of mouse colonic goblet cells expresses the bitter taste receptor Tas2r131. PLoS One 8, e82820 (2013).
Liszt, K. I. et al. Human intestinal bitter taste receptors regulate innate immune responses and metabolic regulators in obesity. J. Clin. Invest. 132, e144828 (2022).
Chen, M. C., Wu, V., Reeve, J. R. & Rozengurt, E. Bitter stimuli induce Ca2+ signaling and CCK release in enteroendocrine STC-1 cells: role of L-type voltage-sensitive Ca2+ channels. Am. J. Physiol. Cell Physiol. 291, C726–C739 (2006).
Jang, H. J. et al. Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1. Proc. Natl Acad. Sci. USA 104, 15069–15074 (2007).
Luo, X. C. et al. Infection by the parasitic helminth Trichinella spiralis activates a Tas2r-mediated signaling pathway in intestinal tuft cells. Proc. Natl Acad. Sci. USA 116, 5564–5569 (2019).
Masuho, I., Tateyama, M. & Saitoh, O. Characterization of bitter taste responses of intestinal STC-1 cells. Chem. Senses 30, 281–290 (2005).
Catterall, W. A., Striessnig, J., Snutch, T. P. & Perez-Reyes, E. International Union of Pharmacology. XL. Compendium of voltage-gated ion channels: calcium channels. Pharmacol. Rev. 55, 579–581 (2003).
Mangel, A. W., Scott, L. & Liddle, R. A. Depolarization-stimulated cholecystokinin secretion is mediated by L-type calcium channels in STC-1 cells. Am. J. Physiol. 270, G287–G290 (1996).
Prawitt, D. et al. TRPM5 is a transient Ca2+-activated cation channel responding to rapid changes in [Ca2+]i. Proc. Natl Acad. Sci. USA 100, 15166–15171 (2003).
Dutta Banik, D., Martin, L. E., Freichel, M., Torregrossa, A. M. & Medler, K. F. TRPM4 and TRPM5 are both required for normal signaling in taste receptor cells. Proc. Natl Acad. Sci. USA 115, E772–E781 (2018).
Shah, B. P., Liu, P., Yu, T., Hansen, D. R. & Gilbertson, T. A. TRPM5 is critical for linoleic acid-induced CCK secretion from the enteroendocrine cell line, STC-1. Am. J. Physiol. Cell Physiol. 302, C210–C219 (2012).
Lu, V. B. et al. Adenosine triphosphate is co-secreted with glucagon-like peptide-1 to modulate intestinal enterocytes and afferent neurons. Nat. Commun. 10, 1029 (2019).
Moran, T. H. Gut peptides in the control of food intake. Int. J. Obes. 33, S7–S10 (2009).
Toshinai, K. et al. Upregulation of ghrelin expression in the stomach upon fasting, insulin-induced hypoglycemia, and leptin administration. Biochem. Biophys. Res. Commun. 281, 1220–1225 (2001).
Lee, R. J. et al. T2R38 taste receptor polymorphisms underlie susceptibility to upper respiratory infection. J. Clin. Invest. 122, 4145–4159 (2012).
Lee, R. J., Chen, B., Redding, K. M., Margolskee, R. F. & Cohen, N. A. Mouse nasal epithelial innate immune responses to Pseudomonas aeruginosa quorum-sensing molecules require taste signaling components. Innate Immun. 20, 606–617 (2014).
Tizzano, M., Cristofoletti, M., Sbarbati, A. & Finger, T. E. Expression of taste receptors in solitary chemosensory cells of rodent airways. BMC Pulm. Med. 11, 3 (2011).
Tizzano, M. et al. Nasal chemosensory cells use bitter taste signaling to detect irritants and bacterial signals. Proc. Natl Acad. Sci. USA 107, 3210–3215 (2010).
Cooley, M., Chhabra, S. R. & Williams, P. N-Acylhomoserine lactone-mediated quorum sensing: a twist in the tail and a blow for host immunity. Chem. Biol. 15, 1141–1147 (2008).
Deep, A., Chaudhary, U. & Gupta, V. Quorum sensing and bacterial pathogenicity: from molecules to disease. J. Lab. Physicians 3, 4–11 (2011).
Sbarbati, A. et al. Acyl homoserine lactones induce early response in the airway. Anat. Rec. 292, 439–448 (2009).
Kendall, M. M. & Sperandio, V. Quorum sensing by enteric pathogens. Curr. Opin. Gastroenterol. 23, 10–15 (2007).
Rubio-Gomez, J. M. et al. Full transcriptomic response of Pseudomonas aeruginosa to an inulin-derived fructooligosaccharide. Front. Microbiol. 11, 202 (2020).
Huynh, J. et al. Bitter taste receptor T2R138 in mouse enteroendocrine cells is a sensor for the quorum sensing molecule, acyl-homoserine lactone. Gastroenterology 152, S823 (2017).
Greene, T. A. et al. Probenecid inhibits the human bitter taste receptor TAS2R16 and suppresses bitter perception of salicin. PLoS One 6, e20123 (2011).
Kohl, S., Behrens, M., Dunkel, A., Hofmann, T. & Meyerhof, W. Amino acids and peptides activate at least five members of the human bitter taste receptor family. J. Agric. Food Chem. 61, 53–60 (2013).
Schaefer, S. et al. Membrane-bound chemoreception of bitter bile acids and peptides is mediated by the same subset of bitter taste receptors. Cell Mol. Life Sci. 81, 217 (2024).
Ziegler, F., Steuer, A., Di Pizio, A. & Behrens, M. Physiological activation of human and mouse bitter taste receptors by bile acids. Commun. Biol. 6, 612 (2023).
Albaugh, V. L. et al. Role of bile acids and GLP-1 in mediating the metabolic improvements of bariatric surgery. Gastroenterology 156, 1041–1051.e4 (2019).
Behrens, M., Di Pizio, A., Redel, U., Meyerhof, W. & Korsching, S. I. At the root of T2R gene evolution: recognition profiles of coelacanth and zebrafish bitter receptors. Genome Biol. Evol. 13, evaa264 (2021).
Rezaie, P., Bitarafan, V., Horowitz, M. & Feinle-Bisset, C. Effects of bitter substances on GI function, energy intake and glycaemia — do preclinical findings translate to outcomes in humans? Nutrients 13, 1317 (2021).
Xie, C. et al. Role of intestinal bitter sensing in enteroendocrine hormone secretion and metabolic control. Front. Endocrinol. 9, 576 (2018).
Pham, H. et al. A bitter pill for type 2 diabetes? The activation of bitter taste receptor TAS2R38 can stimulate GLP-1 release from enteroendocrine L-cells. Biochem. Biophys. Res. Commun. 475, 295–300 (2016).
Steinert, R. E., Beglinger, C. & Langhans, W. Intestinal GLP-1 and satiation: from man to rodents and back. Int. J. Obes. 40, 198–205 (2016).
Muller, T. D. et al. Glucagon-like peptide 1 (GLP-1). Mol. Metab. 30, 72–130 (2019).
Deacon, C. F., Mannucci, E. & Ahren, B. Glycaemic efficacy of glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors as add-on therapy to metformin in subjects with type 2 diabetes — a review and meta analysis. Diabetes Obes. Metab. 14, 762–767 (2012).
Drucker, D. J. & Nauck, M. A. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 368, 1696–1705 (2006).
Phillips, A. & Clements, J. N. Clinical review of subcutaneous semaglutide for obesity. J. Clin. Pharm. Ther. 47, 184–193 (2022).
Park, J. et al. GLP-1 secretion is stimulated by 1,10-phenanthroline via colocalized T2R5 signal transduction in human enteroendocrine L cell. Biochem. Biophys. Res. Commun. 468, 306–311 (2015).
Dotson, C. D. et al. Bitter taste receptors influence glucose homeostasis. PLoS One 3, e3974 (2008).
Kim, K. H. et al. Cucurbitacin B induces hypoglycemic effect in diabetic mice by regulation of AMP-activated protein kinase alpha and glucagon-like peptide-1 via bitter taste receptor signaling. Front. Pharmacol. 9, 1071 (2018).
Kim, K. S., Egan, J. M. & Jang, H. J. Denatonium induces secretion of glucagon-like peptide-1 through activation of bitter taste receptor pathways. Diabetologia 57, 2117–2125 (2014).
Saltiel, M. Y. et al. Sweet taste receptor activation in the gut is of limited importance for glucose-stimulated GLP-1 and GIP secretion. Nutrients 9, 418 (2017).
Di Pizio, A., Ben Shoshan-Galeczki, Y., Hayes, J. E. & Niv, M. Y. Bitter and sweet tasting molecules: It’s complicated. Neurosci. Lett. 700, 56–63 (2019).
Wang, Q. et al. Obesity alters adrenergic and chemosensory signaling pathways that regulate ghrelin secretion in the human gut. FASEB J. 33, 4907–4920 (2019).
Tschop, M. et al. Circulating ghrelin levels are decreased in human obesity. Diabetes 50, 707–709 (2001).
Lee, R. J. et al. Bitter and sweet taste receptors regulate human upper respiratory innate immunity. J. Clin. Invest. 124, 1393–1405 (2014).
Gershon, M. D. Review article: roles played by 5-hydroxytryptamine in the physiology of the bowel. Aliment. Pharmacol. Ther. 13, 15–30 (1999).
Kaji, I., Karaki, S., Fukami, Y., Terasaki, M. & Kuwahara, A. Secretory effects of a luminal bitter tastant and expressions of bitter taste receptors, T2Rs, in the human and rat large intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 296, G971–G981 (2009).
Glendinning, J. I., Yiin, Y. M., Ackroff, K. & Sclafani, A. Intragastric infusion of denatonium conditions flavor aversions and delays gastric emptying in rodents. Physiol. Behav. 93, 757–765 (2008).
Kim, Y. S. & Ho, S. B. Intestinal goblet cells and mucins in health and disease: recent insights and progress. Curr. Gastroenterol. Rep. 12, 319–330 (2010).
McGuckin, M. A., Linden, S. K., Sutton, P. & Florin, T. H. Mucin dynamics and enteric pathogens. Nat. Rev. Microbiol. 9, 265–278 (2011).
Clevers, H. C. & Bevins, C. L. Paneth cells: maestros of the small intestinal crypts. Annu. Rev. Physiol. 75, 289–311 (2013).
Vaishnava, S., Behrendt, C. L., Ismail, A. S., Eckmann, L. & Hooper, L. V. Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc. Natl Acad. Sci. USA 105, 20858–20863 (2008).
Gerbe, F. et al. Intestinal epithelial tuft cells initiate type 2 mucosal immunity to helminth parasites. Nature 529, 226–230 (2016).
Nadjsombati, M. S. et al. Detection of succinate by intestinal tuft cells triggers a type 2 innate immune circuit. Immunity 49, 33–41.e7 (2018).
Haber, A. L. et al. A single-cell survey of the small intestinal epithelium. Nature 551, 333–339 (2017).
Kratz, C. M., Levitsky, D. A. & Lustick, S. L. Long term effects of quinine on food intake and body weight in the rat. Physiol. Behav. 21, 321–324 (1978).
Leng, S. H., Lu, F. E. & Xu, L. J. Therapeutic effects of berberine in impaired glucose tolerance rats and its influence on insulin secretion. Acta Pharmacol. Sin. 25, 496–502 (2004).
van Heerden, F. R. et al. An appetite suppressant from Hoodia species. Phytochemistry 68, 2545–2553 (2007).
Nauck, M. A. et al. Normalization of fasting hyperglycaemia by exogenous glucagon-like peptide 1 (7-36 amide) in type 2 (non-insulin-dependent) diabetic patients. Diabetologia 36, 741–744 (1993).
Yajima, H. et al. Isohumulones, bitter acids derived from hops, activate both peroxisome proliferator-activated receptor α and γ and reduce insulin resistance. J. Biol. Chem. 279, 33456–33462 (2004).
Andreozzi, P. et al. The bitter taste receptor agonist quinine reduces calorie intake and increases the postprandial release of cholecystokinin in healthy subjects. J. Neurogastroenterol. Motil. 21, 511–519 (2015).
Iven, J. et al. Intragastric quinine administration decreases hedonic eating in healthy women through peptide-mediated gut-brain signaling mechanisms. Nutr. Neurosci. 22, 850–862 (2019).
Bitarafan, V. et al. Intragastric administration of the bitter tastant quinine lowers the glycemic response to a nutrient drink without slowing gastric emptying in healthy men. Am. J. Physiol. Regul. Integr. Comp. Physiol. 318, R263–R273 (2020).
Bitarafan, V. et al. Effects of intraduodenal infusion of the bitter tastant, quinine, on antropyloroduodenal motility, plasma cholecystokinin, and energy intake in healthy men. J. Neurogastroenterol. Motil. 25, 413–422 (2019).
Deloose, E. et al. Intragastric infusion of denatonium benzoate attenuates interdigestive gastric motility and hunger scores in healthy female volunteers. Am. J. Clin. Nutr. 105, 580–588 (2017).
van Avesaat, M. et al. Intraduodenal infusion of a combination of tastants decreases food intake in humans. Am. J. Clin. Nutr. 102, 729–735 (2015).
Huang, T. N., Lu, K. N., Pai, Y. P., Chin, H. & Huang, C. J. Role of GLP-1 in the hypoglycemic effects of wild bitter gourd. Evid. Based Complement. Altern. Med. 2013, 625892 (2013).
Suh, H. W. et al. A bitter herbal medicine Gentiana scabra root extract stimulates glucagon-like peptide-1 secretion and regulates blood glucose in db/db mouse. J. Ethnopharmacol. 172, 219–226 (2015).
Rose, B. D. et al. Comparative effects of intragastric and intraduodenal administration of quinine on the plasma glucose response to a mixed-nutrient drink in healthy men: relations with glucoregulatory hormones and gastric emptying. J. Nutr. 151, 1453–1461 (2021).
Mennella, I. et al. Microencapsulated bitter compounds (from Gentiana lutea) reduce daily energy intakes in humans. Br. J. Nutr. 116, 1841–1850 (2016).
Niethammer, A., Zheng, Z., Timmer, A. & Lee, T.-L. First-in-human evaluation of oral denatonium acetate (ARD-101), a potential bitter taste receptor agonist: a randomized, double-blind, placebo-controlled phase 1 trial in healthy adults. Clin. Pharmacol. Drug Dev. 11, 997–1006 (2022).
Behrens, M., Foerster, S., Staehler, F., Raguse, J. D. & Meyerhof, W. Gustatory expression pattern of the human TAS2R bitter receptor gene family reveals a heterogenous population of bitter responsive taste receptor cells. J. Neurosci. 27, 12630–12640 (2007).
Lu, P. et al. Genetic deletion of the Tas2r143/Tas2r135/Tas2r126 cluster reveals that TAS2Rs may not mediate bitter tastant-induced bronchodilation. J. Cell Physiol. 236, 6407–6423 (2021).
Zhang, C. H. et al. The cellular and molecular basis of bitter tastant-induced bronchodilation. PLoS Biol. 11, e1001501 (2013).
Bufe, B. et al. The molecular basis of individual differences in phenylthiocarbamide and propylthiouracil bitterness perception. Curr. Biol. 15, 322–327 (2005).
Kim, U., Wooding, S., Ricci, D., Jorde, L. B. & Drayna, D. Worldwide haplotype diversity and coding sequence variation at human bitter taste receptor loci. Hum. Mutat. 26, 199–204 (2005).
Soranzo, N. et al. Positive selection on a high-sensitivity allele of the human bitter-taste receptor TAS2R16. Curr. Biol. 15, 1257–1265 (2005).
Ueda, T. et al. Identification of coding single-nucleotide polymorphisms in human taste receptor genes involving bitter tasting. Biochem. Biophys. Res. Commun. 285, 147–151 (2001).
Roudnitzky, N. et al. Copy number variation in TAS2R bitter taste receptor genes: structure, origin, and population genetics. Chem. Senses 41, 649–659 (2016).
Dotson, C. D., Shaw, H. L., Mitchell, B. D., Munger, S. D. & Steinle, N. I. Variation in the gene TAS2R38 is associated with the eating behavior disinhibition in Old Order Amish women. Appetite 54, 93–99 (2009).
Tepper, B. J. Nutritional implications of genetic taste variation: the role of PROP sensitivity and other taste phenotypes. Annu. Rev. Nutr. 28, 367–388 (2008).
Behrens, M., Gunn, H. C., Ramos, P. C., Meyerhof, W. & Wooding, S. P. Genetic, functional, and phenotypic diversity in TAS2R38-mediated bitter taste perception. Chem. Senses 38, 475–484 (2013).
Garneau, N. L. et al. Crowdsourcing taste research: genetic and phenotypic predictors of bitter taste perception as a model. Front. Integr. Neurosci. 8, 33 (2014).
Risso, D. S. et al. Global diversity in the TAS2R38 bitter taste receptor: revisiting a classic evolutionary PROPosal. Sci. Rep. 6, 25506 (2016).
Mennella, J. A., Pepino, M. Y., Duke, F. F. & Reed, D. R. Age modifies the genotype-phenotype relationship for the bitter receptor TAS2R38. BMC Genet. 11, 60 (2010).
Anliker, J. A., Bartoshuk, L., Ferris, A. M. & Hooks, L. D. Children’s food preferences and genetic sensitivity to the bitter taste of 6-n-propylthiouracil (PROP). Am. J. Clin. Nutr. 54, 316–320 (1991).
Guo, S. W. & Reed, D. R. The genetics of phenylthiocarbamide perception. Ann. Hum. Biol. 28, 111–142 (2001).
Chupeerach, C. et al. The influence of TAS2R38 bitter taste gene polymorphisms on obesity risk in three racially diverse groups. Biomedicine 11, 43–49 (2021).
Duffy, V. B. et al. Bitter receptor gene (TAS2R38), 6-n-propylthiouracil (PROP) bitterness and alcohol intake. Alcohol Clin. Exp. Res. 28, 1629–1637 (2004).
Psichas, A. et al. The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents. Int. J. Obes. 39, 424–429 (2015).
Tolhurst, G. et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 61, 364–371 (2012).
Lin, H. V. et al. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS One7, e35240 (2012).
Canfora, E. E., Meex, R. C. R., Venema, K. & Blaak, E. E. Gut microbial metabolites in obesity, NAFLD and T2DM. Nat. Rev. Endocrinol. 15, 261–273 (2019).
Derrien, M., Vaughan, E. E., Plugge, C. M. & de Vos, W. M. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int. J. Syst. Evol. Microbiol. 54, 1469–1476 (2004).
Khan, A. S., Murtaza, B., Hichami, A. & Khan, N. A. A cross-talk between fat and bitter taste modalities. Biochimie 159, 3–8 (2019).
Lee, R. J. & Cohen, N. A. Taste receptors in innate immunity. Cell Mol. Life Sci. 72, 217–236 (2015).
Liu, C. L. & Shi, G. P. Calcium-activated chloride channel regulator 1 (CLCA1): more than a regulator of chloride transport and mucus production. World Allergy Organ. J. 12, 100077 (2019).
Yule, A., Sills, D., Smith, S., Spiller, R. & Smyth, A. R. Thinking outside the box: a review of gastrointestinal symptoms and complications in cystic fibrosis. Expert Rev. Respir. Med. 17, 547–561 (2023).
Di Pizio, A., Behrens, M. & Krautwurst, D. Beyond the flavour: the potential druggability of chemosensory G protein-coupled receptors. Int. J. Mol. Sci. 20, 1402 (2019).
Sternini, C. In search of a role for carbonation: is this a good or bad taste? Gastroenterology 145, 500–503 (2013).
Acknowledgements
The authors were in part funded by NIH DK09844 (C.S.) and P30 DK41301 (E.R.), Imaging and Stem Cell Biology Core (C.S.).
Author information
Authors and Affiliations
Contributions
C.S. researched data for the article and wrote the article. Both authors contributed substantially to discussion of content and reviewed/edited the manuscript before submission.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Gastroenterology & Hepatology thanks Antonella Di Pizio, who co-reviewed with Malgorzata Kogut-Günthel, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Sternini, C., Rozengurt, E. Bitter taste receptors as sensors of gut luminal contents. Nat Rev Gastroenterol Hepatol 22, 39–53 (2025). https://doi.org/10.1038/s41575-024-01005-z
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s41575-024-01005-z
This article is cited by
-
Integrated transcriptome and metabolome analyses unraveled critical roles of small intestine during the weaning period of Vespertilio sinensis
BMC Genomics (2025)
-
Gentian root bitters for the rapid suppression of post-propofol singultus: a case report
Wiener klinische Wochenschrift (2025)