Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The gut–brain axis and pain signalling mechanisms in the gastrointestinal tract

Abstract

Visceral pain is a major clinical problem and one of the most common reasons patients with gastrointestinal disorders seek medical help. Peripheral sensory neurons that innervate the gut can detect noxious stimuli and send signals to the central nervous system that are perceived as pain. There is a bidirectional communication network between the gastrointestinal tract and the nervous system that mediates pain through the gut–brain axis. Sensory neurons detect mechanical and chemical stimuli within the intestinal tissues, and receive signals from immune cells, epithelial cells and the gut microbiota, which results in peripheral sensitization and visceral pain. This Review focuses on molecular communication between these non-neuronal cell types and neurons in visceral pain. These bidirectional interactions can be dysregulated during gastrointestinal diseases to exacerbate visceral pain. We outline the anatomical pathways involved in pain processing in the gut and how cell–cell communication is integrated into this gut–brain axis. Understanding how bidirectional communication between the gut and nervous system is altered during disease could provide new therapeutic targets for treating visceral pain.

Key Points

  • Visceral pain is a substantial clinical issue associated with several visceral diseases and one of the primary reasons why patients with gastrointestinal disorders seek medical assistance.

  • Sensory neurons originating from the dorsal root ganglia innervate the gut and are responsible for detecting noxious stimuli and transmitting signals to the central nervous system, which are perceived as pain.

  • The bidirectional communication network between the gastrointestinal tract and the nervous system is known as the gut–brain axis; this network has a crucial role in mediating pain in the context of visceral disorders.

  • Immune cells, epithelial cells and the gut microbiota all communicate with sensory neurons; this communication can lead to peripheral sensitization and modulation of visceral pain processing.

  • Dysregulation of the interactions between non-neuronal cell types and neurons can contribute to visceral hypersensitivity in gastrointestinal diseases, and understanding these alterations could open new therapeutic targets for the treatment of visceral pain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Extrinsic neuronal innervation of the gastrointestinal tract.
Fig. 2: Neuroimmune interactions that modulate or induce visceral pain.
Fig. 3: Neuroepithelial interactions in visceral pain and gut barrier protection.
Fig. 4: Microbial direct and indirect interactions with sensory neurons in visceral pain.

Similar content being viewed by others

References

  1. Alemi, F. et al. The receptor TGR5 mediates the prokinetic actions of intestinal bile acids and is required for normal defecation in mice. Gastroenterology 144, 145–154 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Cervero, F. & Laird, J. M. Visceral pain. Lancet 353, 2145–2148 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Collett, B. Visceral pain: the importance of pain management services. Br. J. Pain. 7, 6–7 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Fass, R. & Navarro-Rodriguez, T. Noncardiac chest pain. J. Clin. Gastroenterol. 42, 636–646 (2008).

    Article  PubMed  Google Scholar 

  5. Gasbarrini, A. et al. Small intestinal bacterial overgrowth: diagnosis and treatment. Dig. Dis. 25, 237–240 (2007).

    Article  PubMed  Google Scholar 

  6. Kappelman, M. D. et al. The prevalence and geographic distribution of Crohn’s disease and ulcerative colitis in the United States. Clin. Gastroenterol. Hepatol. 5, 1424–1429 (2007).

    Article  PubMed  Google Scholar 

  7. Lee, R. W., Hodgson, L. E., Jackson, M. B. & Adams, N. Problem based review: pleuritic chest pain. Acute Med. 11, 172–182 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Sikandar, S. & Dickenson, A. H. Visceral pain – the ins and outs, the ups and downs. Curr. Opin. Support. Palliat. Care 6, 17–26 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Drewes, A. M. et al. Gastrointestinal pain. Nat. Rev. Dis. Prim. 6, 1 (2020).

    Article  PubMed  Google Scholar 

  10. Grundy, L., Erickson, A. & Brierley, S. M. Visceral pain. Annu. Rev. Physiol. 81, 261–284 (2019).

    Article  PubMed  Google Scholar 

  11. Beery, A. K. & Zucker, I. Sex bias in neuroscience and biomedical research. Neurosci. Biobehav. Rev. 35, 565–572 (2011).

    Article  PubMed  Google Scholar 

  12. Cervero, F. Visceral pain: mechanisms of peripheral and central sensitization. Ann. Med. 27, 235–239 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Basbaum, A. I., Bautista, D. M., Scherrer, G. & Julius, D. Cellular and molecular mechanisms of pain. Cell 139, 267–284 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dubin, A. E. & Patapoutian, A. Nociceptors: the sensors of the pain pathway. J. Clin. Invest. 120, 3760–3772 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Phillips, R. J. & Powley, T. L. Innervation of the gastrointestinal tract: patterns of aging. Auton. Neurosci. 136, 1–19 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Uesaka, T., Young, H. M., Pachnis, V. & Enomoto, H. Development of the intrinsic and extrinsic innervation of the gut. Dev. Biol. 417, 158–167 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Altschuler, S. M., Escardo, J., Lynn, R. B. & Miselis, R. R. The central organization of the vagus nerve innervating the colon of the rat. Gastroenterology 104, 502–509 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Berthoud, H. R. & Neuhuber, W. L. Functional and chemical anatomy of the afferent vagal system. Auton. Neurosci. 85, 1–17 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Grundy, D. Neuroanatomy of visceral nociception: vagal and splanchnic afferent. Gut 51, 2–5 (2002).

    Article  Google Scholar 

  20. Sengupta, J. N. in Sensory Nerves. Handbook of Experimental Pharmacology Vol. 194 (eds Canning, B. & Spina, D.) 31–74 (Springer, 2009).

  21. Yu, S., Kollarik, M., Ouyang, A., Myers, A. C. & Undem, B. J. Mast cell-mediated long-lasting increases in excitability of vagal C fibers in guinea pig esophagus. Am. J. Physiol. Gastrointest. Liver Physiol. 293, G850–G856 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Kollarik, M., Ru, F. & Brozmanova, M. Vagal afferent nerves with the properties of nociceptors. Auton. Neurosci. 153, 12–20 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Yu, S., Undem, B. J. & Kollarik, M. Vagal afferent nerves with nociceptive properties in guinea-pig oesophagus. J. Physiol. 563, 831–842 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yu, S., Ru, F., Ouyang, A. & Kollarik, M. 5-Hydroxytryptamine selectively activates the vagal nodose C-fibre subtype in the guinea-pig oesophagus. Neurogastroenterol. Motil. 20, 1042–1050 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Bielefeldt, K. & Davis, B. M. Differential effects of ASIC3 and TRPV1 deletion on gastroesophageal sensation in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 294, G130–G138 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Bielefeldt, K., Zhong, F., Koerber, H. R. & Davis, B. M. Phenotypic characterization of gastric sensory neurons in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 291, G987–G997 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Kang, Y.-M., Bielefeldt, K. & Gebhart, G. F. Sensitization of mechanosensitive gastric vagal afferent fibers in the rat by thermal and chemical stimuli and gastric ulcers. J. Neurophysiol. 91, 1981–1989 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Ozaki, N. & Gebhart, G. F. Characterization of mechanosensitive splanchnic nerve afferent fibers innervating the rat stomach. Am. J. Physiol. Gastrointest. Liver Physiol. 281, G1449–G1459 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Sengupta, J. N., Saha, J. K. & Goyal, R. K. Stimulus-response function studies of esophageal mechanosensitive nociceptors in sympathetic afferents of opossum. J. Neurophysiol. 64, 796–812 (1990).

    Article  CAS  PubMed  Google Scholar 

  30. Sengupta, J. N., Saha, J. K. & Goyal, R. K. Differential sensitivity to bradykinin of esophageal distension-sensitive mechanoreceptors in vagal and sympathetic afferents of the opossum. J. Neurophysiol. 68, 1053–1067 (1992).

    Article  CAS  PubMed  Google Scholar 

  31. Charney, K. J., Juler, G. L. & Comarr, A. E. General surgery problems in patients with spinal cord injuries. Arch. Surg. 110, 1083–1088 (1975).

    Article  CAS  PubMed  Google Scholar 

  32. Finnerup, N. B., Faaborg, P., Krogh, K. & Jensen, T. S. Abdominal pain in long-term spinal cord injury. Spinal Cord. 46, 198–203 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Levinthal, D. J. & Bielefeldt, K. Pain without nociception? Eur. J. Gastroenterol. Hepatol. 24, 336–339 (2012).

    Article  PubMed  Google Scholar 

  34. Yung, J. C. & Groah, S. L. Crohn’s disease in a patient with acute spinal cord injury: a case report of diagnostic challenges in the rehabilitation setting. Arch. Phys. Med. Rehabil. 82, 1274–1278 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Fink, R. Pain assessment: the cornerstone to optimal pain management. Proc. Bayl. Univ. Med. Cent. 13, 236–239 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schuligoi, R. et al. Gastric acid-evoked c-fos messenger RNA expression in rat brainstem is signaled by capsaicin-resistant vagal afferents. Gastroenterology 115, 649–660 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Lamb, K., Kang, Y.-M., Gebhart, G. F. & Bielefeldt, K. Gastric inflammation triggers hypersensitivity to acid in awake rats. Gastroenterology 125, 1410–1418 (2003).

    Article  PubMed  Google Scholar 

  38. Kamp, E. H., Jones, R. C. W., Tillman, S. R. & Gebhart, G. F. Quantitative assessment and characterization of visceral nociception and hyperalgesia in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 284, G434–G444 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Grundy, D. Speculations on the structure/function relationship for vagal and splanchnic afferent endings supplying the gastrointestinal tract. J. Autonomic Nerv. Syst. 22, 175–180 (1988).

    Article  CAS  Google Scholar 

  40. Kirkup, A. J., Brunsden, A. M. & Grundy, D. I. Receptors on visceral afferents. Am. J. Physiol. Gastrointest. Liver Physiol. 280, G787–G794 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Traub, R. J., Herdegen, T. & Gebhart, G. F. Differential expression of c-fos and c-jun in two regions of the rat spinal cord following noxious colorectal distention. Neurosci. Lett. 160, 121–125 (1993).

    Article  CAS  PubMed  Google Scholar 

  42. Traub, R. J., Lim, F., Sengupta, J. N., Meller, S. T. & Gebhart, G. F. Noxious distention of viscera results in differential c-Fos expression in second order sensory neurons receiving ‘sympathetic’ or ‘parasympathetic’ input. Neurosci. Lett. 180, 71–75 (1994).

    Article  CAS  PubMed  Google Scholar 

  43. Wang, G., Tang, B. & Traub, R. J. Differential processing of noxious colonic input by thoracolumbar and lumbosacral dorsal horn neurons in the rat. J. Neurophysiol. 94, 3788–3794 (2005).

    Article  PubMed  Google Scholar 

  44. Traub, R. J. Evidence for thoracolumbar spinal cord processing of inflammatory, but not acute colonic pain. Neuroreport 11, 2113–2116 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Morteau, O., Hachet, T., Caussette, M. & Bueno, L. Experimental colitis alters visceromotor response to colorectal distension in awake rats. Dig. Dis. Sci. 39, 1239–1248 (1994).

    Article  CAS  PubMed  Google Scholar 

  46. Hunt, S. & Mantyh, P. The molecular dynamics of pain control. Nat. Rev. Neurosci. 2, 83–91 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Cervero, F. & Connell, L. A. Distribution of somatic and visceral primary afferent fibres within the thoracic spinal cord of the cat. J. Comp. Neurol. 230, 88–98 (1984).

    Article  CAS  PubMed  Google Scholar 

  48. Bester, H., Menendez, L., Besson, J. M. & Bernard, J. F. Spino (trigemino) parabrachiohypothalamic pathway: electrophysiological evidence for an involvement in pain processes. J. Neurophysiol. 73, 568–585 (1995).

    Article  CAS  PubMed  Google Scholar 

  49. Hodge, C. J. & Apkarian, A. The spinothalamic tract. Crit. Rev. Neurobiol. 5, 363–397 (1990).

    PubMed  Google Scholar 

  50. Nauta, H. J. W., Hewitt, E., Westlund, K. N. & Willis, W. D. Surgical interruption of a midline dorsal column visceral pain pathway: case report and review of the literature. J. Neurosurg. 86, 538–542 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Palecek, J. & Willis, D. W. The dorsal column pathway facilitates visceromotor responses to colorectal distention after colon inflammation in rats. Pain 104, 501–507 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Hirshberg, R. M., AI-Chaer, E. D., Lawand, N. B., Westlund, K. N. & Willis, W. D. Is there a pathway in the posterior funiculus that signals visceral pain? Pain 67, 291–305 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nauta, H. J. et al. Punctate midline myelotomy for the relief of visceral cancer pain. J. Neurosurg. 92, 125–130 (2000).

    CAS  PubMed  Google Scholar 

  54. Becker, R., Sure, U. & Bertalanffy, H. Punctate midline myelotomy. A new approach in the management of visceral pain. Acta Neurochir. 141, 881–883 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Kim, Y. S. & Kwon, S. J. High thoracic midline dorsal column myelotomy for severe visceral pain due to advanced stomach cancer. Neurosurgery 46, 85–90 (2000). discussion 90-92.

    Article  CAS  PubMed  Google Scholar 

  56. Angaut-Petit, D. The dorsal column system: II. Functional properties and bulbar relay of the postsynaptic fibres of the cat’s fasciculus gracilis. Exp. Brain Res. 22, 471–493 (1975).

    CAS  PubMed  Google Scholar 

  57. Giesler, G. J. & Cliffer, K. D. Postsynaptic dorsal column pathway of the rat. II. Evidence against an important role in nociception. Brain Res. 326, 347–356 (1985).

    Article  PubMed  Google Scholar 

  58. Cliffer, K. & Giesler, G. Postsynaptic dorsal column pathway of the rat. III. Distribution of ascending afferent fibers. J. Neurosci. 9, 3146–3168 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang, C.-C., Willis, W. D. & Westlund, K. N. Ascending projections from the area around the spinal cord central canal: a Phaseolus vulgaris leucoagglutinin study in rats. J. Comp. Neurol. 415, 341–367 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Willis, W. D., Al-Chaer, E. D., Quast, M. J. & Westlund, K. N. A visceral pain pathway in the dorsal column of the spinal cord. Proc. Natl Acad. Sci. USA 96, 7675–7679 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Al-Chaer, E. D., Lawand, N. B., Westlund, K. N. & Willis, W. D. Visceral nociceptive input into the ventral posterolateral nucleus of the thalamus: a new function for the dorsal column pathway. J. Neurophysiol. 76, 2661–2674 (1996).

    Article  CAS  PubMed  Google Scholar 

  62. Feng, Y., Cui, M., Al-Chaer, E. D. & Willis, W. D. Epigastric antinociception by cervical dorsal column lesions in rats. Anesthesiology 89, 411–420 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Houghton, A. K., Wang, C. C. & Westlund, K. N. Do nociceptive signals from the pancreas travel in the dorsal column? Pain 89, 207–220 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Houghton, A. K., Kadura, S. & Westlund, K. N. Dorsal column lesions reverse the reduction of homecage activity in rats with pancreatitis. Neuroreport 8, 3795–3800 (1997).

    Article  CAS  PubMed  Google Scholar 

  65. Al-Chaer, E. D., Lawand, N. B., Westlund, K. N. & Willis, W. D. Pelvic visceral input into the nucleus gracilis is largely mediated by the postsynaptic dorsal column pathway. J. Neurophysiol. 76, 2675–2690 (1996).

    Article  CAS  PubMed  Google Scholar 

  66. Al-Chaer, E. D., Westlund, K. N. & Willis, W. D. Nucleus gracilis: an integrator for visceral and somatic information. J. Neurophysiol. 78, 521–527 (1997).

    Article  CAS  PubMed  Google Scholar 

  67. Vizzard, M., Brisson, M. & Groat, W. Transneuronal labeling of neurons in the adult rat central nervous system following inoculation of pseudorabies virus into the colon. Cell Tissue Res. 299, 9–26 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Cameron, O. G. Interoception: the inside story – a model for psychosomatic processes. Psychosom. Med. 63, 697–710 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Critchley, H. D. & Harrison, N. A. Visceral influences on brain and behavior. Neuron 77, 624–638 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Dunn, B. D. et al. Listening to your heart. How interoception shapes emotion experience and intuitive decision making. Psychol. Sci. 21, 1835–1844 (2010).

    Article  PubMed  Google Scholar 

  71. Shah, P., Catmur, C. & Bird, G. From heart to mind: linking interoception, emotion, and theory of mind. Cortex 93, 220–223 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Ghacibeh, G. A., Shenker, J. I., Shenal, B., Uthman, B. M. & Heilman, K. M. The influence of vagus nerve stimulation on memory. Cogn. Behav. Neurol. 19, 119–122 (2006).

    Article  PubMed  Google Scholar 

  73. Porges, S. W., Doussard-Roosevelt, J. A. & Maiti, A. K. Vagal tone and the physiological regulation of emotion. Monogr. Soc. Res. Child. Dev. 59, 167–186 (1994).

    Article  CAS  PubMed  Google Scholar 

  74. Lai, J. & David, S. V. Short-term effects of vagus nerve stimulation on learning and evoked activity in auditory cortex. eNeuro https://doi.org/10.1523/ENEURO.0522-20.2021 (2021).

  75. Johnson, R. L. & Wilson, C. G. A review of vagus nerve stimulation as a therapeutic intervention. J. Inflamm. Res. 11, 203–213 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Shao, P. et al. Role of vagus nerve stimulation in the treatment of chronic pain. Neuroimmunomodulation 30, 167–183 (2023).

    Article  CAS  PubMed  Google Scholar 

  77. Pertovaara, A. Noradrenergic pain modulation. Prog. Neurobiol. 80, 53–83 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Dogrul, A., Ossipov, M. H. & Porreca, F. Differential mediation of descending pain facilitation and inhibition by spinal 5HT-3 and 5HT-7 receptors. Brain Res. 1280, 52–59 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Miron, D., Duncan, G. H. & Bushnell, C. M. Effects of attention on the intensity and unpleasantness of thermal pain. Pain 39, 345–352 (1989).

    Article  PubMed  Google Scholar 

  80. Bantick, S. J. et al. Imaging how attention modulates pain in humans using functional MRI. Brain 125, 310–319 (2002).

    Article  PubMed  Google Scholar 

  81. Schaible, H.-G., Ebersberger, A. & Natura, G. Update on peripheral mechanisms of pain: beyond prostaglandins and cytokines. Arthritis Res. Ther. 13, 210 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Cenac, N. et al. Quantification and potential functions of endogenous agonists of transient receptor potential channels in patients with irritable bowel syndrome. Gastroenterology 149, 433–444.e7 (2015).

    Article  CAS  PubMed  Google Scholar 

  83. Michaelis, M., Häbler, H. J. & Jäenig, W. Silent afferents: a separate class of primary afferents? Clin. Exp. Pharmacol. Physiol. 23, 99–105 (1996).

    Article  CAS  PubMed  Google Scholar 

  84. Stakenborg, N., Viola, M. F. & Boeckxstaens, G. E. Intestinal neuro-immune interactions: focus on macrophages, mast cells and innate lymphoid cells. Curr. Opin. Neurobiol. 62, 68–75 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yu, X. et al. Dorsal root ganglion macrophages contribute to both the initiation and persistence of neuropathic pain. Nat. Commun. 11, 264 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Shaw, T. N. et al. Tissue-resident macrophages in the intestine are long lived and defined by Tim-4 and CD4 expression. J. Exp. Med. 215, 1507–1518 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Muller, P. A. et al. Crosstalk between muscularis macrophages and enteric neurons regulates gastrointestinal motility. Cell 158, 300–313 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. De Schepper, S. et al. Self-maintaining gut macrophages are essential for intestinal homeostasis. Cell 175, 400–415.e13 (2018).

    Article  PubMed  Google Scholar 

  89. Viola, M. F. et al. Dedicated macrophages organize and maintain the enteric nervous system. Nature 618, 818–826 (2023).

    Article  CAS  PubMed  Google Scholar 

  90. Hughes, P., Brierley, S. & Blackshaw, L. Post-inflammatory modification of colonic afferent mechanosensitivity. Clin. Exp. Pharmacol. Physiol. 36, 1034–1040 (2009).

    Article  CAS  PubMed  Google Scholar 

  91. Hughes, P. A. et al. Sensory neuro-immune interactions differ between irritable bowel syndrome subtypes. Gut 62, 1456–1465 (2013).

    Article  CAS  PubMed  Google Scholar 

  92. Hughes, P. A. et al. Immune derived opioidergic inhibition of viscerosensory afferents is decreased in irritable bowel syndrome patients. Brain Behav. Immun. 42, 191–203 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. Grubišić, V. et al. Enteric glia modulate macrophage phenotype and visceral sensitivity following inflammation. Cell Rep. 32, 108100 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Kwon, M. J. et al. Contribution of macrophages to enhanced regenerative capacity of dorsal root ganglia sensory neurons by conditioning injury. J. Neurosci. 33, 15095–15108 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Qiao, L. Y. & Tiwari, N. Spinal neuron-glia-immune interaction in cross-organ sensitization. Am. J. Physiol. Gastrointest. Liver Physiol. 319, G748–G760 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Albert-Bayo, M. et al. Intestinal mucosal mast cells: key modulators of barrier function and homeostasis. Cells 8, 135 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Forsythe, P. & Bienenstock, J. The mast cell-nerve functional unit: a key component of physiologic and pathophysiologic responses. Chem. Immunol. Allergy 98, 196–221 (2012).

    Article  CAS  PubMed  Google Scholar 

  98. Barbara, G. et al. Activated mast cells in proximity to colonic nerves correlate with abdominal pain in irritable bowel syndrome. Gastroenterology 126, 693–702 (2004).

    Article  PubMed  Google Scholar 

  99. Cremon, C. et al. Mucosal immune activation in irritable bowel syndrome: gender-dependence and association with digestive symptoms. Am. J. Gastroenterol. 104, 392–400 (2009).

    Article  CAS  PubMed  Google Scholar 

  100. Akbar, A. et al. Increased capsaicin receptor TRPV1-expressing sensory fibres in irritable bowel syndrome and their correlation with abdominal pain. Gut 57, 923–929 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Bashashati, M. et al. Colonic immune cells in irritable bowel syndrome: a systematic review and meta-analysis. Neurogastroenterol. Motil. 30, e13192 (2018).

    Article  Google Scholar 

  102. Barbara, G. et al. Mast cell-dependent excitation of visceral-nociceptive sensory neurons in irritable bowel syndrome. Gastroenterology 132, 26–37 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Buhner, S. et al. Activation of human enteric neurons by supernatants of colonic biopsy specimens from patients with irritable bowel syndrome. Gastroenterology 137, 1425–1434 (2009).

    Article  CAS  PubMed  Google Scholar 

  104. Cenac, N. et al. Role for protease activity in visceral pain in irritable bowel syndrome. J. Clin. Invest. 117, 636–647 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Grabauskas, G. et al. Prostaglandin E2, produced by mast cells in colon tissues from patients with irritable bowel syndrome, contributes to visceral hypersensitivity in mice. Gastroenterology 158, 2195–2207.e6 (2020).

    Article  CAS  PubMed  Google Scholar 

  106. Klooker, T. K. et al. The mast cell stabiliser ketotifen decreases visceral hypersensitivity and improves intestinal symptoms in patients with irritable bowel syndrome. Gut 59, 1213–1221 (2010).

    Article  CAS  PubMed  Google Scholar 

  107. Wang, J. et al. Clinical efficacy and safety of ketotifen in treating irritable bowel syndrome with diarrhea. Eur. J. Gastroenterol. Hepatol. 32, 706–712 (2020).

    Article  CAS  PubMed  Google Scholar 

  108. Wouters, M. M. et al. Histamine receptor H1-mediated sensitization of TRPV1 mediates visceral hypersensitivity and symptoms in patients with irritable bowel syndrome. Gastroenterology 150, 875–887.e9 (2016).

    Article  CAS  PubMed  Google Scholar 

  109. Aguilera-Lizarraga, J. et al. Local immune response to food antigens drives meal-induced abdominal pain. Nature 590, 151–156 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Satitsuksanoa, P., Jansen, K., Głobińska, A., van de Veen, W. & Akdis, M. Regulatory immune mechanisms in tolerance to food allergy. Front. Immunol. 9, 2939 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ma, H., Tao, W. & Zhu, S. T lymphocytes in the intestinal mucosa: defense and tolerance. Cell Mol. Immunol. 16, 216–224 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Rittner, H. L. et al. Opioid peptide-expressing leukocytes: identification, recruitment, and simultaneously increasing inhibition of inflammatory pain. Anesthesiology 95, 500–508 (2001).

    Article  CAS  PubMed  Google Scholar 

  113. Kamphuis, S. et al. Role of endogenous pro-enkephalin A-derived peptides in human T cell proliferation and monocyte IL-6 production. J. Neuroimmunol. 84, 53–60 (1998).

    Article  CAS  PubMed  Google Scholar 

  114. Kavelaars, A., Ballieux, R. E. & Heijnen, C. J. The role of IL-1 in the corticotropin-releasing factor and arginine- vasopressin-induced secretion of immunoreactive β-endorphin by human peripheral blood mononuclear cells. J. Immunol. 142, 2338–2342 (1989).

    Article  CAS  PubMed  Google Scholar 

  115. Smith, E. M., Morrill, A. C., Meyer, W. J. & Blalock, J. E. Corticotropin releasing factor induction of leukocyte-derived immunoreactive ACTH and endorphins. Nature 321, 881–882 (1986).

    Article  CAS  PubMed  Google Scholar 

  116. Verma–Gandhu, M. et al. CD4+ T-cell modulation of visceral nociception in mice. Gastroenterology 130, 1721–1728 (2006).

    Article  PubMed  Google Scholar 

  117. Boué, J. et al. Endogenous regulation of visceral pain via production of opioids by colitogenic CD4+ T cells in mice. Gastroenterology 146, 166–175 (2014).

    Article  PubMed  Google Scholar 

  118. Basso, L. et al. T-lymphocyte-derived enkephalins reduce Th1/Th17 colitis and associated pain in mice. J. Gastroenterol. 53, 215–226 (2018).

    Article  CAS  PubMed  Google Scholar 

  119. Gabanyi, I. et al. Neuro-immune interactions drive tissue programming in intestinal macrophages. Cell 164, 378–391 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Matheis, F. et al. Adrenergic signaling in muscularis macrophages limits infection-induced neuronal loss. Cell 180, 64–78.e16 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Bednarska, O. et al. Vasoactive intestinal polypeptide and mast cells regulate increased passage of colonic bacteria in patients with irritable bowel syndrome. Gastroenterology 153, 948–960.e3 (2017).

    Article  CAS  PubMed  Google Scholar 

  122. Seillet, C. et al. The neuropeptide VIP confers anticipatory mucosal immunity by regulating ILC3 activity. Nat. Immunol. 21, 168–177 (2020).

    Article  CAS  PubMed  Google Scholar 

  123. Talbot, J. et al. Feeding-dependent VIP neuron–ILC3 circuit regulates the intestinal barrier. Nature 579, 575–580 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Wallrapp, A. et al. The neuropeptide NMU amplifies ILC2-driven allergic lung inflammation. Nature 549, 351–356 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Cardoso, V. et al. Neuronal regulation of type 2 innate lymphoid cells via neuromedin U. Nature 549, 277–281 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Klose, C. S. N. et al. The neuropeptide neuromedin U stimulates innate lymphoid cells and type 2 inflammation. Nature 549, 282–286 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Moriyama, S. et al. β2-adrenergic receptor-mediated negative regulation of group 2 innate lymphoid cell responses. Science 359, 1056–1061 (2018).

    Article  CAS  PubMed  Google Scholar 

  128. Hoeffel, G. et al. Sensory neuron-derived TAFA4 promotes macrophage tissue repair functions. Nature 594, 94–99 (2021).

    Article  CAS  PubMed  Google Scholar 

  129. Lu, Y.-Z. et al. CGRP sensory neurons promote tissue healing via neutrophils and macrophages. Nature 628, 604–611 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Pinho-Ribeiro, F. A. et al. Blocking neuronal signaling to immune cells treats streptococcal invasive infection. Cell 173, 1083–1097.e22 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Yang, N. J. et al. Nociceptive sensory neurons mediate inflammation induced by Bacillus anthracis edema toxin. Front. Immunol. 12, 642373 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Filtjens, J. et al. Nociceptive sensory neurons promote CD8 T cell responses to HSV-1 infection. Nat. Commun. 12, 2936 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Cohen, J. A. et al. Cutaneous TRPV1+ neurons trigger protective innate type 17 anticipatory immunity. Cell 178, 919–932.e14 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kashem, S. W. et al. Nociceptive sensory fibers drive interleukin-23 production from CD301b+ dermal dendritic cells and drive protective cutaneous immunity. Immunity 43, 515–526 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Perner, C. et al. Substance P release by sensory neurons triggers dendritic cell migration and initiates the type-2 immune response to allergens. Immunity 53, 1063–1077.e7 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Riol-Blanco, L. et al. Nociceptive sensory neurons drive interleukin-23 mediated psoriasiform skin inflammation. Nature 510, 157–161 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Zhu, Y. et al. A chemogenetic screen reveals that Trpv1-expressing neurons control regulatory T cells in the gut. Science 385, eadk1679 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Okumura, R. & Takeda, K. Roles of intestinal epithelial cells in the maintenance of gut homeostasis. Exp. Mol. Med. 49, e338 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Makadia, P. A. et al. Optogenetic activation of colon epithelium of the mouse produces high-frequency bursting in extrinsic colon afferents and engages visceromotor responses. J. Neurosci. 38, 5788–5798 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Najjar, S. A. et al. Optogenetic inhibition of the colon epithelium reduces hypersensitivity in a mouse model of inflammatory bowel disease. Pain 162, 1126–1134 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Latorre, R., Sternini, C., De Giorgio, R. & Greenwood-Van Meerveld, B. Enteroendocrine cells: a review of their role in brain-gut communication. Neurogastroenterol. Motil. 28, 620–630 (2016).

    Article  CAS  PubMed  Google Scholar 

  142. Bohórquez, D. V. et al. Neuroepithelial circuit formed by innervation of sensory enteroendocrine cells. J. Clin. Invest. 125, 782–786 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Kaelberer, M. M. et al. A gut-brain neural circuit for nutrient sensory transduction. Science 361, eaat5236 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Bellono, N. W. et al. Enterochromaffin cells are gut chemosensors that couple to sensory neural pathways. Cell 170, 185–198.e16 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Gershon, M. D. & Tack, J. The serotonin signaling system: from basic understanding to drug development for functional GI disorders. Gastroenterology 132, 397–414 (2007).

    Article  CAS  PubMed  Google Scholar 

  146. Yano, J. M. et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161, 264–276 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Bayrer, J. R. et al. Gut enterochromaffin cells drive visceral pain and anxiety. Nature 616, 137–142 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Koh, A., De Vadder, F., Kovatcheva-Datchary, P. & Bäckhed, F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165, 1332–1345 (2016).

    Article  CAS  PubMed  Google Scholar 

  149. Coutinho, H. B. et al. Absence of lysozyme (muramidase) in the intestinal Paneth cells of newborn infants with necrotising enterocolitis. J. Clin. Pathol. 51, 512–514 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Wehkamp, J. et al. Reduced Paneth cell α-defensins in ileal Crohn’s disease. Proc. Natl Acad. Sci. USA 102, 18129–18134 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Estienne, M. et al. Maternal deprivation alters epithelial secretory cell lineages in rat duodenum: role of CRF-related peptides. Gut 59, 744–751 (2010).

    Article  CAS  PubMed  Google Scholar 

  152. Riba, A. et al. Paneth cell defects induce microbiota dysbiosis in mice and promote visceral hypersensitivity. Gastroenterology 153, 1594–1606.e2 (2017).

    Article  PubMed  Google Scholar 

  153. Lu, V. B. et al. Adenosine triphosphate is co-secreted with glucagon-like peptide-1 to modulate intestinal enterocytes and afferent neurons. Nat. Commun. 10, 1029 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Mihara, H., Uchida, K., Koizumi, S. & Moriyama, Y. Involvement of VNUT-exocytosis in transient receptor potential vanilloid 4-dependent ATP release from gastrointestinal epithelium. PLoS ONE 13, e0206276 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Uehara, S. et al. Vesicular storage and secretion of L-glutamate from glucagon-like peptide 1-secreting clonal intestinal L cells. J. Neurochem. 96, 550–560 (2006).

    Article  CAS  PubMed  Google Scholar 

  156. Hayashi, M., Morimoto, R., Yamamoto, A. & Moriyama, Y. Expression and localization of vesicular glutamate transporters in pancreatic islets, upper gastrointestinal tract, and testis. J. Histochem. Cytochem. 51, 1375–1390 (2003).

    Article  CAS  PubMed  Google Scholar 

  157. Schütz, B. et al. Chemical coding and chemosensory properties of cholinergic brush cells in the mouse gastrointestinal and biliary tract. Front. Physiol. 6, 87 (2015).

    PubMed  PubMed Central  Google Scholar 

  158. Lai, N. Y. et al. Gut-innervating nociceptor neurons regulate Peyer’s patch microfold cells and SFB levels to mediate Salmonella host defense. Cell 180, 33–49.e22 (2020).

    Article  CAS  PubMed  Google Scholar 

  159. Yang, D. et al. Nociceptor neurons direct goblet cells via a CGRP-RAMP1 axis to drive mucus production and gut barrier protection. Cell 185, 4190–4205.e25 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Zhang, W. et al. Gut-innervating nociceptors regulate the intestinal microbiota to promote tissue protection. Cell 185, 4170–4189.e20 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Shreiner, A. B., Kao, J. Y. & Young, V. B. The gut microbiome in health and in disease. Curr. Opin. Gastroenterol. 31, 69–75 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Turnbaugh, P. J. et al. The Human Microbiome Project. Nature 449, 804–810 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Cho, I. & Blaser, M. J. The human microbiome: at the interface of health and disease. Nat. Rev. Genet. 13, 260–270 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Duncan, S. H., Louis, P. & Flint, H. J. Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Appl. Env. Microbiol. 70, 5810–5817 (2004).

    Article  CAS  Google Scholar 

  165. Long, X. et al. Butyrate promotes visceral hypersensitivity in an IBS-like model via enteric glial cell-derived nerve growth factor. Neurogastroenterol. Motil. 30, e13227 (2018).

    Article  CAS  PubMed  Google Scholar 

  166. Bourdu, S. et al. Rectal instillation of butyrate provides a novel clinically relevant model of noninflammatory colonic hypersensitivity in rats. Gastroenterology 128, 1996–2008 (2005).

    Article  CAS  PubMed  Google Scholar 

  167. Tarrerias, A. L. et al. Short-chain fatty acid enemas fail to decrease colonic hypersensitivity and inflammation in TNBS-induced colonic inflammation in rats. Pain 100, 91–97 (2002).

    Article  CAS  PubMed  Google Scholar 

  168. Lewandowski, K., Kaniewska, M., Karłowicz, K., Rosołowski, M. & Rydzewska, G. The effectiveness of microencapsulated sodium butyrate at reducing symptoms in patients with irritable bowel syndrome. Prz. Gastroenterol. 17, 28–34 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Vanhoutvin, S. A. L. W. et al. The effects of butyrate enemas on visceral perception in healthy volunteers. Neurogastroenterol. Motil. 21, 952–e76 (2009).

    Article  CAS  PubMed  Google Scholar 

  170. Russo, R. et al. Sodium butyrate and its synthetic amide derivative modulate nociceptive behaviors in mice. Pharmacol. Res. 103, 279–291 (2016).

    Article  CAS  PubMed  Google Scholar 

  171. Nozu, T., Miyagishi, S., Nozu, R., Takakusaki, K. & Okumura, T. Butyrate inhibits visceral allodynia and colonic hyperpermeability in rat models of irritable bowel syndrome. Sci. Rep. 9, 19603 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Schwab, M. et al. Involvement of different nuclear hormone receptors in butyrate-mediated inhibition of inducible NFκB signalling. Mol. Immunol. 44, 3625–3632 (2007).

    Article  CAS  PubMed  Google Scholar 

  173. Sukhithasri, V., Nisha, N., Biswas, L., Anil Kumar, V. & Biswas, R. Innate immune recognition of microbial cell wall components and microbial strategies to evade such recognitions. Microbiol. Res. 168, 396–406 (2013).

    Article  CAS  PubMed  Google Scholar 

  174. Millet, A. & Jendzjowsky, N. Pathogen recognition by sensory neurons: hypotheses on the specificity of sensory neuron signaling. Front. Immunol. 14, 1184000 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Liu, T., Gao, Y.-J. & Ji, R.-R. Emerging role of Toll-like receptors in the control of pain and itch. Neurosci. Bull. 28, 131–144 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Ochoa-Cortes, F. et al. Bacterial cell products signal to mouse colonic nociceptive dorsal root ganglia neurons. Am. J. Physiol. Gastrointest. Liver Physiol. 299, G723–G732 (2010).

    Article  CAS  PubMed  Google Scholar 

  177. Meseguer, V. et al. TRPA1 channels mediate acute neurogenic inflammation and pain produced by bacterial endotoxins. Nat. Commun. 5, 3125 (2014).

    Article  PubMed  Google Scholar 

  178. Tedesco, L. S., Fuseler, J., Grisham, M., Wolf, R. & Roerig, S. C. Therapeutic administration of nitric oxide synthase inhibitors reverses hyperalgesia but not inflammation in a rat model of polyarthritis. Pain 95, 215–223 (2002).

    Article  CAS  PubMed  Google Scholar 

  179. Stimpson, S. A., Dalldorf, F. G., Otterness, I. G. & Schwab, J. H. Exacerbation of arthritis by IL-1 in rat joints previously injured by peptidoglycan-polysaccharide. J. Immunol. 140, 2964–2969 (1988).

    Article  CAS  PubMed  Google Scholar 

  180. Das, N. et al. HMGB1 activates proinflammatory signaling via TLR5 leading to allodynia. Cell Rep. 17, 1128–1140 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Maruyama, K. et al. Nociceptors boost the resolution of fungal osteoinflammation via the TRP channel–CGRP–Jdp2 axis. Cell Rep. 19, 2730–2742 (2017).

    Article  CAS  PubMed  Google Scholar 

  182. Rudick, C. N. et al. O-antigen modulates infection-induced pain states. PLoS ONE 7, e41273 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Nozu, T., Miyagishi, S., Nozu, R., Takakusaki, K. & Okumura, T. Lipopolysaccharide induces visceral hypersensitivity: role of interleukin-1, interleukin-6, and peripheral corticotropin-releasing factor in rats. J. Gastroenterol. 52, 72–80 (2017).

    Article  CAS  PubMed  Google Scholar 

  184. Vergnolle, N. Modulation of visceral pain and inflammation by protease-activated receptors. Br. J. Pharmacol. 141, 1264–1274 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Kayssi, A., Amadesi, S., Bautista, F., Bunnett, N. W. & Vanner, S. Mechanisms of protease-activated receptor 2-evoked hyperexcitability of nociceptive neurons innervating the mouse colon. J. Physiol. 580, 977–991 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Cattaruzza, F. et al. Cathepsin S is activated during colitis and causes visceral hyperalgesia by a PAR2-dependent mechanism in mice. Gastroenterology 141, 1864–1874.e3 (2011).

    Article  CAS  PubMed  Google Scholar 

  187. Rolland-Fourcade, C. et al. Epithelial expression and function of trypsin-3 in irritable bowel syndrome. Gut 66, 1767–1778 (2017).

    Article  CAS  PubMed  Google Scholar 

  188. Karanjia, R., Spreadbury, I., Bautista-cruz, F., Tsang, M. E. & Vanner, S. Activation of protease-activated receptor-4 inhibits the intrinsic excitability of colonic dorsal root ganglia neurons. Neurogastroenterol. Motil. 21, 1218–1221 (2009).

    Article  CAS  PubMed  Google Scholar 

  189. Augé, C., Balz-hara, D., Steinhoff, M., Vergnolle, N. & Cenac, N. Protease-activated receptor-4 (PAR4): a role as inhibitor of visceral pain and hypersensitivity. Neurogastroenterol. Motil. 21, 1189–e107 (2009).

    Article  PubMed  Google Scholar 

  190. Asfaha, S., Brussee, V., Chapman, K., Zochodne, D. W. & Vergnolle, N. Proteinase-activated receptor-1 agonists attenuate nociception in response to noxious stimuli. Br. J. Pharmacol. 135, 1101–1106 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Moloney, R. D. et al. Stress and the microbiota–gut–brain axis in visceral pain: relevance to irritable bowel syndrome. CNS Neurosci. Ther. 22, 102–117 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Greenwood-Van Meerveld, B. & Johnson, A. C. Mechanisms of stress-induced visceral pain. J. Neurogastroenterol. Motil. 24, 7–18 (2018).

    Article  PubMed Central  Google Scholar 

  193. Petitfils, C. et al. Identification of bacterial lipopeptides as key players in IBS. Gut 72, 939–950 (2023).

    Article  CAS  PubMed  Google Scholar 

  194. Kassinen, A. et al. The fecal microbiota of irritable bowel syndrome patients differs significantly from that of healthy subjects. Gastroenterology 133, 24–33 (2007).

    Article  CAS  PubMed  Google Scholar 

  195. Si, J.-M., Yu, Y.-C., Fan, Y.-J. & Chen, S.-J. Intestinal microecology and quality of life in irritable bowel syndrome patients. World J. Gastroenterol. 10, 1802–1805 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Rajilić-Stojanović, M. et al. Global and deep molecular analysis of microbiota signatures in fecal samples from patients with irritable bowel syndrome. Gastroenterology 141, 1792–1801 (2011).

    Article  PubMed  Google Scholar 

  197. Saulnier, D. M. et al. Gastrointestinal microbiome signatures of pediatric patients with irritable bowel syndrome. Gastroenterology 141, 1782–1791 (2011).

    Article  CAS  PubMed  Google Scholar 

  198. Botschuijver, S. et al. Intestinal fungal dysbiosis is associated with visceral hypersensitivity in patients with irritable bowel syndrome and rats. Gastroenterology 153, 1026–1039 (2017).

    Article  PubMed  Google Scholar 

  199. Jeffery, I. B. et al. An irritable bowel syndrome subtype defined by species-specific alterations in faecal microbiota. Gut 61, 997–1006 (2012).

    Article  PubMed  Google Scholar 

  200. Zhou, Y. et al. Increased Enterococcus faecalis infection is associated with clinically active Crohn disease. Medicine 95, e5019 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Castaño-Rodríguez, N., Kaakoush, N. O., Lee, W. S. & Mitchell, H. M. Dual role of Helicobacter and Campylobacter species in IBD: a systematic review and meta-analysis. Gut 66, 235–249 (2017).

    Article  PubMed  Google Scholar 

  202. Mckernan, D. P., Fitzgerald, P., Dinan, T. G. & Cryan, J. F. The probiotic Bifidobacterium infantis 35624 displays visceral antinociceptive effects in the rat. Neurogastroenterol. Motil. 22, 1029–e268 (2010).

    Article  CAS  PubMed  Google Scholar 

  203. Johnson, A. C., Greenwood-Van Meerveld, B. & McRorie, J. Effects of Bifidobacterium infantis 35624 on post-inflammatory visceral hypersensitivity in the rat. Dig. Dis. Sci. 56, 3179–3186 (2011).

    Article  PubMed  Google Scholar 

  204. Whorwell, P. J. et al. Efficacy of an encapsulated probiotic Bifidobacterium infantis 35624 in women with irritable bowel syndrome. Am. J. Gastroenterol. 101, 1581–1590 (2006).

    Article  PubMed  Google Scholar 

  205. Agostini, S. et al. A marketed fermented dairy product containing Bifidobacterium lactis CNCM I-2494 suppresses gut hypersensitivity and colonic barrier disruption induced by acute stress in rats. Neurogastroenterol. Motil. 24, 376–e172 (2012).

    Article  CAS  PubMed  Google Scholar 

  206. Pokusaeva, K. et al. GABA-producing Bifidobacterium dentium modulates visceral sensitivity in the intestine. Neurogastroenterol. Motil. 29, e12904 (2017).

    Article  PubMed  Google Scholar 

  207. Kamiya, T. Inhibitory effects of Lactobacillus reuteri on visceral pain induced by colorectal distension in Sprague-Dawley rats. Gut 55, 191–196 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Liu, Y.-W. et al. Lactobacillus plantarum PS128 ameliorated visceral hypersensitivity in rats through the gut–brain axis. Probiotics Antimicro. Prot. 12, 980–993 (2020).

    Article  CAS  Google Scholar 

  209. Ducrotté, P., Sawant, P. & Jayanthi, V. Clinical trial: Lactobacillus plantarum 299v (DSM 9843) improves symptoms of irritable bowel syndrome. World J. Gastroenterol. 18, 4012–4018 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Pérez-Berezo, T. et al. Identification of an analgesic lipopeptide produced by the probiotic Escherichia coli strain Nissle 1917. Nat. Commun. 8, 1314 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Vulevic, J., Tzortzis, G., Juric, A. & Gibson, G. R. Effect of a prebiotic galactooligosaccharide mixture (B-GOS®) on gastrointestinal symptoms in adults selected from a general population who suffer with bloating, abdominal pain, or flatulence. Neurogastroenterol. Motil. 30, e13440 (2018).

    Article  PubMed  Google Scholar 

  212. Kannampalli, P. et al. Probiotic Lactobacillus rhamnosus GG (LGG) and prebiotic prevent neonatal inflammation-induced visceral hypersensitivity in adult rats. Neurogastroenterol. Motil. 26, 1694–1704 (2014).

    Article  CAS  PubMed  Google Scholar 

  213. Saneian, H., Pourmoghaddas, Z., Roohafza, H. & Gholamrezaei, A. Synbiotic containing Bacillus coagulans and fructo-oligosaccharides for functional abdominal pain in children. Gastroenterol. Hepatol. Bed Bench 8, 56–65 (2015).

    PubMed  PubMed Central  Google Scholar 

  214. Chang, L. et al. Gender, age, society, culture, and the patient’s perspective in the functional gastrointestinal disorders. Gastroenterology 130, 1435–1446 (2006).

    Article  PubMed  Google Scholar 

  215. Icenhour, A. et al. Are there sex differences in visceral sensitivity in young healthy men and women? Neurogastroenterol. Motil. 31, e13664 (2019).

    Article  PubMed  Google Scholar 

  216. Posserud, I. et al. Altered rectal perception in irritable bowel syndrome is associated with symptom severity. Gastroenterology 133, 1113–1123 (2007).

    Article  PubMed  Google Scholar 

  217. Almario, C. V. et al. Prevalence and burden of illness of Rome IV irritable bowel syndrome in the United States: results from a nationwide cross-sectional study. Gastroenterology 165, 1475–1487 (2023).

    Article  PubMed  Google Scholar 

  218. Kim, Y. S. & Kim, N. Sex-gender differences in irritable bowel syndrome. J. Neurogastroenterol. Motil. 24, 544–558 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Lungaro, L. et al. Impact of female gender in inflammatory bowel diseases: a narrative review. J. Pers. Med. 13, 165 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Barbara, G. et al. Rome Foundation working team report on post-infection irritable bowel syndrome. Gastroenterology 156, 46–58.e7 (2019).

    Article  PubMed  Google Scholar 

  221. Park, J. H. et al. Contribution of sex and gender roles to the incidence of post-infectious irritable bowel syndrome in a prospective study. Sci. Rep. 13, 19467 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Guo, T. et al. Sex differences in zymosan-induced behavioral visceral hypersensitivity and colorectal afferent sensitization. Am. J. Physiol. Gastrointest. Liver Physiol. 326, G133–G146 (2024).

    Article  CAS  PubMed  Google Scholar 

  223. Kozik, A. J., Nakatsu, C. H., Chun, H. & Jones-Hall, Y. L. Age, sex, and TNF associated differences in the gut microbiota of mice and their impact on acute TNBS colitis. Exp. Mol. Pathol. 103, 311–319 (2017).

    Article  CAS  PubMed  Google Scholar 

  224. Madar, J. et al. Piezo2 regulates colonic mechanical sensitivity in a sex specific manner in mice. Nat. Commun. 14, 2158 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Bábíčková, J. et al. Sex differences in experimentally induced colitis in mice: a role for estrogens. Inflammation 38, 1996–2006 (2015).

    Article  PubMed  Google Scholar 

  226. Hases, L., Birgersson, M., Indukuri, R., Archer, A. & Williams, C. Colitis induces sex-specific intestinal transcriptomic responses in mice. Int. J. Mol. Sci. 23, 10408 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Prusator, D. K. & Greenwood-Van Meerveld, B. Sex-related differences in pain behaviors following three early life stress paradigms. Biol. Sex. Differ. 7, 29 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Louwies, T. & Greenwood-Van Meerveld, B. Sex differences in the epigenetic regulation of chronic visceral pain following unpredictable early life stress. Neurogastroenterol. Motil. 32, e13751 (2020).

    Article  CAS  PubMed  Google Scholar 

  229. Larauche, M. et al. Visceral analgesia induced by acute and repeated water avoidance stress in rats: sex difference in opioid involvement. Neurogastroenterol. Motil. 24, 1031–e547 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Rosztóczy, A. et al. Influence of sex and experimental protocol on the effect of maternal deprivation on rectal sensitivity to distension in the adult rat. Neurogastroenterol. Motil. 15, 679–686 (2003).

    Article  PubMed  Google Scholar 

  231. Mason, K. L., Huffnagle, G. B., Noverr, M. C. & Kao, J. Y. Overview of gut immunology. Adv. Exp. Med. Biol. 635, 1–14 (2008).

    Article  CAS  PubMed  Google Scholar 

  232. Eutamene, H. et al. Guanylate cyclase C-mediated antinociceptive effects of linaclotide in rodent models of visceral pain. Neurogastroenterol. Motil. 22, 312–e84 (2010).

    Article  CAS  PubMed  Google Scholar 

  233. Castro, J. et al. Linaclotide inhibits colonic nociceptors and relieves abdominal pain via guanylate cyclase-C and extracellular cyclic guanosine 3′,5′-monophosphate. Gastroenterology 145, 1334–1346.e11 (2013).

    Article  CAS  PubMed  Google Scholar 

  234. Black, C. J. et al. Efficacy of secretagogues in patients with irritable bowel syndrome with constipation: systematic review and network meta-analysis. Gastroenterology 155, 1753–1763 (2018).

    Article  CAS  PubMed  Google Scholar 

  235. De Palma, G. et al. Histamine production by the gut microbiota induces visceral hyperalgesia through histamine 4 receptor signaling in mice. Sci. Transl. Med. 14, eabj1895 (2022).

    Article  PubMed  Google Scholar 

  236. Decraecker, L. et al. Treatment of non-constipated irritable bowel syndrome with the histamine 1 receptor antagonist ebastine: a randomised, double-blind, placebo-controlled trial. Gut 73, 459–469 (2024).

    CAS  PubMed  Google Scholar 

  237. Lobo, B. et al. Downregulation of mucosal mast cell activation and immune response in diarrhoea-irritable bowel syndrome by oral disodium cromoglycate: a pilot study. U Eur. Gastroenterol. J. 5, 887–897 (2017).

    Article  CAS  Google Scholar 

  238. Mawe, G. M. & Hoffman, J. M. Serotonin signalling in the gut – functions, dysfunctions and therapeutic targets. Nat. Rev. Gastroenterol. Hepatol. 10, 473–486 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Black, C. J. et al. Efficacy of pharmacological therapies in patients with IBS with diarrhoea or mixed stool pattern: systematic review and network meta-analysis. Gut 69, 74–82 (2020).

    Article  CAS  PubMed  Google Scholar 

  240. Shah, E. D., Lacy, B. E., Chey, W. D., Chang, L. & Brenner, D. M. Tegaserod for irritable bowel syndrome with constipation in women younger than 65 years without cardiovascular disease: pooled analyses of 4 controlled trials. Am. J. Gastroenterol. 116, 1601–1611 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Vakil, N. et al. Tegaserod treatment for dysmotility-like functional dyspepsia: results of two randomized, controlled trials. Am. J. Gastroenterol. 103, 1906–1919 (2008).

    PubMed  Google Scholar 

  242. Lindström, E. et al. The selective 5-hydroxytryptamine 1A antagonist, AZD7371 [3(R)-(N,N-dicyclobutylamino)-8-fluoro-3,4-dihydro-2H-1-benzopyran-5-carboxamide (R,R)-tartrate monohydrate] (robalzotan tartrate monohydrate), inhibits visceral pain-related visceromotor, but not autonomic cardiovascular, responses to colorectal distension in rats. J. Pharmacol. Exp. Ther. 329, 1048–1055 (2009).

    Article  PubMed  Google Scholar 

  243. Drossman, D. A. et al. Randomized, double-blind, placebo-controlled trial of the 5-HT1A receptor antagonist AZD7371 tartrate monohydrate (robalzotan tartrate monohydrate) in patients with irritable bowel syndrome. Am. J. Gastroenterol. 103, 2562–2569 (2008).

    Article  CAS  PubMed  Google Scholar 

  244. Loeza-Alcocer, E., McPherson, T. P. & Gold, M. S. Peripheral GABA receptors regulate colonic afferent excitability and visceral nociception. J. Physiol. 597, 3425–3439 (2019).

    Article  CAS  PubMed  Google Scholar 

  245. Saito, Y. A. et al. Randomised clinical trial: pregabalin vs placebo for irritable bowel syndrome. Aliment. Pharmacol. Ther. 49, 389–397 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Kotikula, I. et al. Randomised clinical trial: the effects of pregabalin vs placebo on functional dyspepsia. Aliment. Pharmacol. Ther. 54, 1026–1032 (2021).

    Article  CAS  PubMed  Google Scholar 

  247. Fioramonti, J., Gaultier, E., Toulouse, M., Sanger, G. J. & Bueno, L. Intestinal anti-nociceptive behaviour of NK3 receptor antagonism in conscious rats: evidence to support a peripheral mechanism of action. Neurogastroenterol. Motil. 15, 363–369 (2003).

    Article  CAS  PubMed  Google Scholar 

  248. Houghton, L. A. et al. Effect of the NK3 receptor antagonist, talnetant, on rectal sensory function and compliance in healthy humans. Neurogastroenterol. Motil. 19, 732–743 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I.M.C. acknowledges funding from the Kenneth Rainin Foundation, NIH/NIDDK grant R01DK127257 and the Food Allergy Science Initiative. K.A.M. was supported by NIH fellowship F32DK137456.

Author information

Authors and Affiliations

Authors

Contributions

K.A.M. researched data for the article. Both authors contributed substantially to discussion of the content, wrote the article, and reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Kimberly A. Meerschaert or Isaac M. Chiu.

Ethics declarations

Competing interests

I.M.C. is on scientific advisory boards for GSK Pharmaceuticals and Nilo Therapeutics. He also consults for Panther Life Sciences and Fzata. His laboratory has received sponsored research support from GSK, Abbvie/Allergan and Moderna. K.A.M. declares no competing interests.

Peer review

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks Asbjørn Drewes and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meerschaert, K.A., Chiu, I.M. The gut–brain axis and pain signalling mechanisms in the gastrointestinal tract. Nat Rev Gastroenterol Hepatol 22, 206–221 (2025). https://doi.org/10.1038/s41575-024-01017-9

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41575-024-01017-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing