Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Precision models in hepatocellular carcinoma

Abstract

Hepatocellular carcinoma (HCC) represents a global health challenge, and ranks among one of the most prevalent and deadliest cancers worldwide. Therapeutic advances have expanded the treatment armamentarium for patients with advanced HCC, but obstacles remain. Precision oncology, which aims to match specific therapies to patients who have tumours with particular features, holds great promise. However, its implementation has been hindered by the existence of numerous ‘HCC influencers’ that contribute to the high inter-patient heterogeneity. HCC influencers include tumour-related characteristics, such as genetic alterations, immune infiltration, stromal composition and aetiology, and patient-specific factors, such as sex, age, germline variants and the microbiome. This Review delves into the intricate world of HCC, describing the most innovative model systems that can be harnessed to identify precision and/or personalized therapies. We provide examples of how different models have been used to nominate candidate biomarkers, their limitations and strategies to optimize such models. We also highlight the importance of reproducing distinct HCC influencers in a flexible and modular way, with the aim of dissecting their relative contribution to therapy response. Next-generation HCC models will pave the way for faster discovery of precision therapies for patients with advanced HCC.

Key points

  • Precision therapies in hepatocellular carcinoma (HCC) are difficult to establish owing to high inter-patient heterogeneity.

  • Several factors, or ‘HCC influencers’, contribute to HCC inter-patient heterogeneity.

  • Current in vitro and in vivo models recapitulate some but not all of the HCC influencers.

  • Improvements in the establishment success rate of in vitro HCC models could help the implementation of precision or personalized therapies for HCC, but they might not be ideal for immunotherapy studies.

  • Next-generation in vivo models, recapitulating multiple HCC influencers as well as including human cellular components, could help the implementation of precision therapies for HCC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pipeline for the discovery of precision and personalized therapies in hepatocellular carcinoma.
Fig. 2: HCC influencers.

Similar content being viewed by others

References

  1. Bray, F. et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 74, 229–263 (2024).

    Article  PubMed  Google Scholar 

  2. Llovet, J. M. et al. Molecular pathogenesis and systemic therapies for hepatocellular carcinoma. Nat. Cancer 3, 386–401 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Simon, S. M. Fighting rare cancers: lessons from fibrolamellar hepatocellular carcinoma. Nat. Rev. Cancer 23, 335–346 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ilyas, S. I. et al. Cholangiocarcinoma — novel biological insights and therapeutic strategies. Nat. Rev. Clin. Oncol. 20, 470–486 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Villanueva, A. Hepatocellular carcinoma. N. Engl. J. Med. 380, 1450–1462 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. Llovet, J. M. et al. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 359, 378–390 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Kudo, M. et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. Lancet 391, 1163–1173 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Bruix, J. et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 389, 56–66 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Abou-Alfa, G. K. et al. Cabozantinib in patients with advanced and progressing hepatocellular carcinoma. N. Engl. J. Med. 379, 54–63 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhu, A. X. et al. Ramucirumab after sorafenib in patients with advanced hepatocellular carcinoma and increased α-fetoprotein concentrations (REACH-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 20, 282–296 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Finn, R. S. et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N. Engl. J. Med. 382, 1894–1905 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Kelley, R. K. et al. Safety, efficacy, and pharmacodynamics of tremelimumab plus durvalumab for patients with unresectable hepatocellular carcinoma: randomized expansion of a phase I/II study. J. Clin. Oncol. 39, 2991–3001 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. El-Khoueiry, A. B. et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 389, 2492–2502 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhu, A. X. et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 trial. Lancet Oncol. 19, 940–952 (2018).

    Article  PubMed  Google Scholar 

  15. Yau, T. et al. Nivolumab (NIVO) + ipilimumab (IPI) combination therapy in patients (pts) with advanced hepatocellular carcinoma (aHCC): results from checkmate 040. J. Clin. Oncol. 37, 4012 (2019).

    Article  Google Scholar 

  16. Zanella, E. R., Grassi, E. & Trusolino, L. Towards precision oncology with patient-derived xenografts. Nat. Rev. Clin. Oncol. 19, 719–732 (2022).

    Article  PubMed  Google Scholar 

  17. Mulero-Sanchez, A., Pogacar, Z. & Vecchione, L. Importance of genetic screens in precision oncology. ESMO Open 4, e000505 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Llovet, J. M. Exploring a new pathway for biomarker-based approval of immunotherapies. Nat. Rev. Clin. Oncol. 20, 279–280 (2023).

    Article  PubMed  Google Scholar 

  19. Barcena-Varela, M. & Lujambio, A. The endless sources of hepatocellular carcinoma heterogeneity. Cancers 13, 2621 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Limousin, W. et al. Molecular-based targeted therapies in patients with hepatocellular carcinoma and hepato-cholangiocarcinoma refractory to atezolizumab/bevacizumab. J. Hepatol. 79, 1450–1458 (2023).

    Article  CAS  PubMed  Google Scholar 

  21. Sang, Y. B., Kim, G., Hwang, S., Kang, H. & Chon, H. J. Dramatic response to cabozantinib in a patient with refractory hepatocellular carcinoma with c-MET amplification. J. Clin. Transl. Hepatol. 11, 747–750 (2023).

    PubMed  Google Scholar 

  22. Schulze, K. et al. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat. Genet. 47, 505–511 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cancer Genome Atlas Research Network. Comprehensive and integrative genomic characterization of hepatocellular carcinoma. Cell 169, 1327–1341.e23 (2017).

    Article  Google Scholar 

  24. Totoki, Y. et al. High-resolution characterization of a hepatocellular carcinoma genome. Nat. Genet. 43, 464–469 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Hoshida, Y. et al. Integrative transcriptome analysis reveals common molecular subclasses of human hepatocellular carcinoma. Cancer Res. 69, 7385–7392 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Boyault, S. et al. Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets. Hepatology 45, 42–52 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Sia, D. et al. Identification of an immune-specific class of hepatocellular carcinoma, based on molecular features. Gastroenterology 153, 812–826 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Hoshida, Y. et al. Gene expression in fixed tissues and outcome in hepatocellular carcinoma. N. Engl. J. Med. 359, 1995–2004 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rinella, M. E. et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. J. Hepatol. 79, 1542–1556 (2023).

    Article  CAS  PubMed  Google Scholar 

  30. Schwabe, R. F. & Greten, T. F. Gut microbiome in HCC — mechanisms, diagnosis and therapy. J. Hepatol. 72, 230–238 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Trepo, E. et al. Common genetic variation in alcohol-related hepatocellular carcinoma: a case-control genome-wide association study. Lancet Oncol. 23, 161–171 (2022).

    Article  CAS  PubMed  Google Scholar 

  32. Sangro, B. et al. Association of inflammatory biomarkers with clinical outcomes in nivolumab-treated patients with advanced hepatocellular carcinoma. J. Hepatol. 73, 1460–1469 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Haber, P. K. et al. Molecular markers of response to anti-PD1 therapy in advanced hepatocellular carcinoma. Gastroenterology 164, 72–88.e15 (2022).

    Article  PubMed  Google Scholar 

  34. Zhu, A. X. et al. Molecular correlates of clinical response and resistance to atezolizumab in combination with bevacizumab in advanced hepatocellular carcinoma. Nat. Med. 28, 1599–1611 (2022).

    Article  CAS  PubMed  Google Scholar 

  35. Pfister, D. et al. NASH limits anti-tumour surveillance in immunotherapy-treated HCC. Nature 592, 450–456 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ruiz de Galarreta, M. et al. β-Catenin activation promotes immune escape and resistance to anti-PD-1 therapy in hepatocellular carcinoma. Cancer Discov. 9, 1124–1141 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. Magen, A. et al. Intratumoral dendritic cell-CD4+ T helper cell niches enable CD8+ T cell differentiation following PD-1 blockade in hepatocellular carcinoma. Nat. Med. 29, 1389–1399 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Harding, J. J. et al. Prospective genotyping of hepatocellular carcinoma: clinical implications of next generation sequencing for matching patients to targeted and immune therapies. Clin. Cancer Res. 25, 2116–2126 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Brown, T. J., Mamtani, R., Gimotty, P. A., Karasic, T. B. & Yang, Y.-X. Outcomes of hepatocellular carcinoma by etiology with first-line atezolizumab and bevacizumab: a real-world analysis. J. Cancer Res. Clin. Oncol. 149, 2345–2354 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kudo, M. Selection of systemic treatment regimen for unresectable hepatocellular carcinoma: does etiology matter? Liver Cancer 11, 283–289 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Chen, D. S. & Mellman, I. Oncology meets immunology: the cancer-immunity cycle. Immunity 39, 1–10 (2013).

    Article  PubMed  Google Scholar 

  42. Gracia-Sancho, J., Caparrós, E., Fernández-Iglesias, A. & Francés, R. Role of liver sinusoidal endothelial cells in liver diseases. Nat. Rev. Gastroenterol. Hepatol. 18, 411–431 (2021).

    Article  PubMed  Google Scholar 

  43. Cogliati, B., Yashaswini, C. N., Wang, S., Sia, D. & Friedman, S. L. Friend or foe? The elusive role of hepatic stellate cells in liver cancer. Nat. Rev. Gastroenterol. Hepatol. 20, 647–661 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Qiu, Z. et al. Hepatocellular carcinoma cell lines retain the genomic and transcriptomic landscapes of primary human cancers. Sci. Rep. 6, 27411 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hirschfield, H. et al. In vitro modeling of hepatocellular carcinoma molecular subtypes for anti-cancer drug assessment. Exp. Mol. Med. 50, e419 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Caruso, S. et al. Analysis of liver cancer cell lines identifies agents with likely efficacy against hepatocellular carcinoma and markers of response. Gastroenterology 157, 760–776 (2019).

    Article  CAS  PubMed  Google Scholar 

  47. Qiu, Z. et al. A pharmacogenomic landscape in human liver cancers. Cancer Cell 36, 179–193.e11 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Marasco, G. et al. Non-invasive tests for the prediction of primary hepatocellular carcinoma. World J. Gastroenterol. 26, 3326–3343 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Levrero, M. & Zucman-Rossi, J. Mechanisms of HBV-induced hepatocellular carcinoma. J. Hepatol. 64, S84–S101 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. Ye, H. et al. Gene network analysis of hepatocellular carcinoma identifies modules associated with disease progression, survival, and chemo drug resistance. Int. J. Gen. Med. 14, 9333–9347 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Reiberger, T. et al. An orthotopic mouse model of hepatocellular carcinoma with underlying liver cirrhosis. Nat. Protoc. 10, 1264–1274 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hage, C. et al. Characterizing responsive and refractory orthotopic mouse models of hepatocellular carcinoma in cancer immunotherapy. PLoS ONE 14, e0219517 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Torrens, L. et al. Immunomodulatory effects of lenvatinib plus anti-programmed cell death protein 1 in mice and rationale for patient enrichment in hepatocellular carcinoma. Hepatology 74, 2652–2669 (2021).

    Article  CAS  PubMed  Google Scholar 

  54. Zabransky, D. J. et al. Profiling of syngeneic mouse HCC tumor models as a framework to understand anti-PD-1 sensitive tumor microenvironments. Hepatology 77, 1566–1579 (2023).

    Article  PubMed  Google Scholar 

  55. Darlington, G. J., Bernhard, H. P., Miller, R. A. & Ruddle, F. H. Expression of liver phenotypes in cultured mouse hepatoma cells. J. Natl Cancer Inst. 64, 809–819 (1980).

    CAS  PubMed  Google Scholar 

  56. Kress, S. et al. p53 mutations are absent from carcinogen-induced mouse liver tumors but occur in cell lines established from these tumors. Mol. Carcinog. 6, 148–158 (1992).

    Article  CAS  PubMed  Google Scholar 

  57. Zender, L. et al. Generation and analysis of genetically defined liver carcinomas derived from bipotential liver progenitors. Cold Spring Harb. Symp. Quant. Biol. 70, 251–261 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Molina-Sanchez, P. et al. Cooperation between distinct cancer driver genes underlies intertumor heterogeneity in hepatocellular carcinoma. Gastroenterology 159, 2203–2220.e14 (2020).

    Article  CAS  PubMed  Google Scholar 

  59. Marsee, A. et al. Building consensus on definition and nomenclature of hepatic, pancreatic, and biliary organoids. Cell Stem Cell 28, 816–832 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tuveson, D. & Clevers, H. Cancer modeling meets human organoid technology. Science 364, 952–955 (2019).

    Article  CAS  PubMed  Google Scholar 

  61. Dutta, D., Heo, I. & Clevers, H. Disease modeling in stem cell-derived 3D organoid systems. Trends Mol. Med. 23, 393–410 (2017).

    Article  CAS  PubMed  Google Scholar 

  62. Dong, R., Zhang, B. & Zhang, X. Liver organoids: an in vitro 3D model for liver cancer study. Cell Biosci. 12, 152 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Broutier, L. et al. Culture and establishment of self-renewing human and mouse adult liver and pancreas 3D organoids and their genetic manipulation. Nat. Protoc. 11, 1724–1743 (2016).

    Article  CAS  PubMed  Google Scholar 

  64. Huch, M. et al. Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell 160, 299–312 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Huch, M. et al. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature 494, 247–250 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Broutier, L. et al. Human primary liver cancer-derived organoid cultures for disease modeling and drug screening. Nat. Med. 23, 1424–1435 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Nuciforo, S. et al. Organoid models of human liver cancers derived from tumor needle biopsies. Cell Rep. 24, 1363–1376 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Li, L. et al. Human primary liver cancer organoids reveal intratumor and interpatient drug response heterogeneity. JCI Insight 4, e121490 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Li, L. et al. Protein synthesis inhibitor omacetaxine is effective against hepatocellular carcinoma. JCI Insight 6, e138197 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Xian, L. et al. Heterogeneity, inherent and acquired drug resistance in patient-derived organoid models of primary liver cancer. Cell Oncol. 45, 1019–1036 (2022).

    Article  CAS  Google Scholar 

  71. Tiriac, H. et al. Organoid profiling identifies common responders to chemotherapy in pancreatic cancer. Cancer Discov. 8, 1112–1129 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ganesh, K. et al. A rectal cancer organoid platform to study individual responses to chemoradiation. Nat. Med. 25, 1607–1614 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ooft, S. N. et al. Patient-derived organoids can predict response to chemotherapy in metastatic colorectal cancer patients. Sci. Transl. Med. 11, eaay2574 (2019).

    Article  CAS  PubMed  Google Scholar 

  74. Vlachogiannis, G. et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science 359, 920–926 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Meier, M. A. et al. Patient-derived tumor organoids for personalized medicine in a patient with rare hepatocellular carcinoma with neuroendocrine differentiation: a case report. Commun. Med. 2, 80 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Sun, L. et al. Modelling liver cancer initiation with organoids derived from directly reprogrammed human hepatocytes. Nat. Cell Biol. 21, 1015–1026 (2019).

    Article  CAS  PubMed  Google Scholar 

  77. Thng, D. K. H. et al. Splice-switch oligonucleotide-based combinatorial platform prioritizes synthetic lethal targets CHK1 and BRD4 against MYC-driven hepatocellular carcinoma. Bioeng. Transl. Med. 8, e10363 (2023).

    Article  CAS  PubMed  Google Scholar 

  78. Nie, Y. Z. et al. Recapitulation of hepatitis B virus-host interactions in liver organoids from human induced pluripotent stem cells. eBioMedicine 35, 114–123 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  79. De Crignis, E. et al. Application of human liver organoids as a patient-derived primary model for HBV infection and related hepatocellular carcinoma. eLife 10, e60747 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Wang, S. et al. Human ESC-derived expandable hepatic organoids enable therapeutic liver repopulation and pathophysiological modeling of alcoholic liver injury. Cell Res. 29, 1009–1026 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ouchi, R. et al. Modeling steatohepatitis in humans with pluripotent stem cell-derived organoids. Cell Metab. 30, 374–384.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ramli, M. N. B. et al. Human pluripotent stem cell-derived organoids as models of liver disease. Gastroenterology 159, 1471–1486.e12 (2020).

    Article  CAS  PubMed  Google Scholar 

  83. McCarron, S. et al. Functional characterization of organoids derived from irreversibly damaged liver of patients with NASH. Hepatology 74, 1825–1844 (2021).

    Article  CAS  PubMed  Google Scholar 

  84. Hu, H. et al. Long-term expansion of functional mouse and human hepatocytes as 3D organoids. Cell 175, 1591–1606.e19 (2018).

    Article  CAS  PubMed  Google Scholar 

  85. Takebe, T. et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature 499, 481–484 (2013).

    Article  CAS  PubMed  Google Scholar 

  86. Hendriks, D. et al. Engineered human hepatocyte organoids enable CRISPR-based target discovery and drug screening for steatosis. Nat. Biotechnol. 41, 1567–1581 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Cao, W. et al. Modeling liver cancer and therapy responsiveness using organoids derived from primary mouse liver tumors. Carcinogenesis 40, 145–154 (2019).

    Article  CAS  PubMed  Google Scholar 

  88. Liu, J. et al. Cancer-associated fibroblasts provide a stromal niche for liver cancer organoids that confers trophic effects and therapy resistance. Cell. Mol. Gastroenterol. Hepatol. 11, 407–431 (2021).

    Article  PubMed  Google Scholar 

  89. Rialdi, A. et al. WNTinib is a multi-kinase inhibitor with specificity against β-catenin mutant hepatocellular carcinoma. Nat. Cancer 4, 1157–1175 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. van Tienderen, G. S. et al. Hepatobiliary tumor organoids for personalized medicine: a multicenter view on establishment, limitations, and future directions. Cancer Cell 40, 226–230 (2022).

    Article  PubMed  Google Scholar 

  91. Kong, J. C. H. et al. Tumor-infiltrating lymphocyte function predicts response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. JCO Precis. Oncol. 2, 1–15 (2018).

    Article  PubMed  Google Scholar 

  92. Neal, J. T. et al. Organoid modeling of the tumor immune microenvironment. Cell 175, 1972–1988.e16 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zou, F. et al. The CD39+ HBV surface protein-targeted CAR-T and personalized tumor-reactive CD8+ T cells exhibit potent anti-HCC activity. Mol. Ther. 29, 1794–1807 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Liu, T. et al. High-affinity neoantigens correlate with better prognosis and trigger potent antihepatocellular carcinoma (HCC) activity by activating CD39+CD8+ T cells. Gut 70, 1965–1977 (2021).

    Article  CAS  PubMed  Google Scholar 

  95. Zhou, Z. et al. Evaluation of the tumoricidal efficacy of adoptive cell transfer using hepatocellular carcinoma-derived organoids. J. Gastrointest. Oncol. 13, 732–743 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Daniel, V. C. et al. A primary xenograft model of small-cell lung cancer reveals irreversible changes in gene expression imposed by culture in vitro. Cancer Res. 69, 3364–3373 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sun, F. X. et al. Establishment of a metastatic model of human hepatocellular carcinoma in nude mice via orthotopic implantation of histologically intact tissues. Int. J. Cancer 66, 239–243 (1996).

    Article  CAS  PubMed  Google Scholar 

  98. Gao, Y. S., Chen, X. P., Li, K. Y. & Wu, Z. D. Nude mice model of human hepatocellular carcinoma via orthotopic implantation of histologically intact tissue. World J. Gastroenterol. 10, 3107–3111 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Armengol, C. et al. Orthotopic implantation of human hepatocellular carcinoma in mice: analysis of tumor progression and establishment of the BCLC-9 cell line. Clin. Cancer Res. 10, 2150–2157 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Huynh, H., Soo, K. C., Chow, P. K., Panasci, L. & Tran, E. Xenografts of human hepatocellular carcinoma: a useful model for testing drugs. Clin. Cancer Res. 12, 4306–4314 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Gu, Q. et al. Genomic characterization of a large panel of patient-derived hepatocellular carcinoma xenograft tumor models for preclinical development. Oncotarget 6, 20160–20176 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  102. He, S. et al. PDXliver: a database of liver cancer patient derived xenograft mouse models. BMC Cancer 18, 550 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Blumer, T. et al. Hepatocellular carcinoma xenografts established from needle biopsies preserve the characteristics of the originating tumors. Hepatol. Commun. 3, 971–986 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Tischfield, D. J. et al. Establishment of hepatocellular carcinoma patient-derived xenografts from image-guided percutaneous biopsies. Sci. Rep. 9, 10546 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Hu, B. et al. Establishment of a hepatocellular carcinoma patient-derived xenograft platform and its application in biomarker identification. Int. J. Cancer 146, 1606–1617 (2020).

    Article  CAS  PubMed  Google Scholar 

  106. Zhu, M. et al. Uncovering biological factors that regulate hepatocellular carcinoma growth using patient-derived xenograft assays. Hepatology 72, 1085–1101 (2020).

    Article  CAS  PubMed  Google Scholar 

  107. Xu, W. et al. Comprehensive comparison of patient-derived xenograft models in hepatocellular carcinoma and metastatic liver cancer. Int. J. Med. Sci. 17, 3073–3081 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Sun, F., Tang, Z. & Liu, K. Highly metastatic model of human hepatocellular carcinoma established in nude mice using orthotopic organ selection of metastatic variant from patient specimens. Zhonghua Zhong Liu Za Zhi 18, 109–112 (1996).

    CAS  PubMed  Google Scholar 

  109. Aruga, A., Takasaki, K. & Hanyu, F. Establishment and characterization of liver metastatic model of human hepatoma in nude mice. Int. Hepatol. Commun. 1, 138–145 (1993).

    Article  Google Scholar 

  110. Zhao, Y. et al. Development of a new patient-derived xenograft humanised mouse model to study human-specific tumour microenvironment and immunotherapy. Gut 67, 1845–1854 (2018).

    Article  CAS  PubMed  Google Scholar 

  111. Zhao, Y. et al. Analysis and validation of human targets and treatments using a hepatocellular carcinoma-immune humanized mouse model. Hepatology 74, 1395–1410 (2021).

    Article  CAS  PubMed  Google Scholar 

  112. Tan, Z. et al. Isoformic PD-1-mediated immunosuppression underlies resistance to PD-1 blockade in hepatocellular carcinoma patients. Gut 72, 1568–1580 (2023).

    Article  CAS  PubMed  Google Scholar 

  113. Xiong, Z. et al. Targeting PPAR-γ counteracts tumour adaptation to immune-checkpoint blockade in hepatocellular carcinoma. Gut 72, 1758–1773 (2023).

    Article  CAS  PubMed  Google Scholar 

  114. Yang, Z. et al. Tumor-derived peptidoglycan recognition protein 2 predicts survival and antitumor immune responses in hepatocellular carcinoma. Hepatology 71, 1626–1642 (2020).

    Article  CAS  PubMed  Google Scholar 

  115. Wu, H. et al. Hepatic interferon regulatory factor 8 expression suppresses hepatocellular carcinoma progression and enhances the response to anti-programmed cell death protein-1 therapy. Hepatology 76, 1602–1616 (2022).

    Article  CAS  PubMed  Google Scholar 

  116. Fang, Y. et al. Monocarboxylate transporter 4 inhibition potentiates hepatocellular carcinoma immunotherapy through enhancing T cell infiltration and immune attack. Hepatology 77, 109–123 (2023).

    Article  PubMed  Google Scholar 

  117. Chen, Y. et al. CXCR4 inhibition in tumor microenvironment facilitates anti-programmed death receptor-1 immunotherapy in sorafenib-treated hepatocellular carcinoma in mice. Hepatology 61, 1591–1602 (2015).

    Article  CAS  PubMed  Google Scholar 

  118. Becher, O. J. & Holland, E. C. Genetically engineered models have advantages over xenografts for preclinical studies. Cancer Res. 66, 3355–3358 (2006).

    Article  CAS  PubMed  Google Scholar 

  119. Cho, K. et al. Genetically engineered mouse models for liver cancer. Cancers 12, 14 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Casey, S. C. et al. MYC regulates the antitumor immune response through CD47 and PD-L1. Science 352, 227–231 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Xu, Y. et al. Translation control of the immune checkpoint in cancer and its therapeutic targeting. Nat. Med. 25, 301–311 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Dhanasekaran, R. et al. MYC overexpression drives immune evasion in hepatocellular carcinoma that is reversible through restoration of proinflammatory macrophages. Cancer Res. 83, 626–640 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Srivastava, J. et al. Astrocyte elevated gene-1 and c-Myc cooperate to promote hepatocarcinogenesis in mice. Hepatology 61, 915–929 (2015).

    Article  CAS  PubMed  Google Scholar 

  124. Brown, Z. J., Heinrich, B. & Greten, T. F. Mouse models of hepatocellular carcinoma: an overview and highlights for immunotherapy research. Nat. Rev. Gastroenterol. Hepatol. 15, 536–554 (2018).

    Article  CAS  PubMed  Google Scholar 

  125. Xue, W. et al. CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature 514, 380–384 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Breinig, M. et al. Multiplexed orthogonal genome editing and transcriptional activation by Cas12a. Nat. Methods 16, 51–54 (2019).

    Article  CAS  PubMed  Google Scholar 

  127. Zafra, M. P. et al. Optimized base editors enable efficient editing in cells, organoids and mice. Nat. Biotechnol. 36, 888–893 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Yang, P. L., Althage, A., Chung, J. & Chisari, F. V. Hydrodynamic injection of viral DNA: a mouse model of acute hepatitis B virus infection. Proc. Natl Acad. Sci. USA 99, 13825–13830 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Huang, L. R., Wu, H. L., Chen, P. J. & Chen, D. S. An immunocompetent mouse model for the tolerance of human chronic hepatitis B virus infection. Proc. Natl Acad. Sci. USA 103, 17862–17867 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. McCaffrey, A. P. et al. Determinants of hepatitis C translational initiation in vitro, in cultured cells and mice. Mol. Ther. 5, 676–684 (2002).

    Article  CAS  PubMed  Google Scholar 

  131. Chang, J., Sigal, L. J., Lerro, A. & Taylor, J. Replication of the human hepatitis delta virus genome Is initiated in mouse hepatocytes following intravenous injection of naked DNA or RNA sequences. J. Virol. 75, 3469–3473 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Huang, M., Sun, R., Huang, Q. & Tian, Z. Technical improvement and application of hydrodynamic gene delivery in study of liver diseases. Front. Pharmacol. 8, 591 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Chen, X. & Calvisi, D. F. Hydrodynamic transfection for generation of novel mouse models for liver cancer research. Am. J. Pathol. 184, 912–923 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Monga, S. P. Inside-out or outside-in: choosing the right model of hepatocellular cancer. Gene Expr. 20, 139–145 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Fan, B. et al. Cholangiocarcinomas can originate from hepatocytes in mice. J. Clin. Invest. 122, 2911–2915 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Hu, S. et al. NOTCH-YAP1/TEAD-DNMT1 axis drives hepatocyte reprogramming into intrahepatic cholangiocarcinoma. Gastroenterology 163, 449–465 (2022).

    Article  CAS  PubMed  Google Scholar 

  137. Shang, R. et al. Cabozantinib-based combination therapy for the treatment of hepatocellular carcinoma. Gut 70, 1746–1757 (2021).

    Article  CAS  PubMed  Google Scholar 

  138. Adebayo Michael, A. O. et al. Inhibiting glutamine-dependent mTORC1 activation ameliorates liver cancers driven by β-catenin mutations. Cell Metab. 29, 1135–1150.e6 (2019).

    Article  CAS  PubMed  Google Scholar 

  139. Tang, M. et al. Liver cancer heterogeneity modeled by in situ genome editing of hepatocytes. Sci. Adv. 8, eabn5683 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Yuen, V. W. et al. Using mouse liver cancer models based on somatic genome editing to predict immune checkpoint inhibitor responses. J. Hepatol. 78, 376–389 (2023).

    Article  CAS  PubMed  Google Scholar 

  141. Liu, Y. T. et al. A novel spontaneous hepatocellular carcinoma mouse model for studying T-cell exhaustion in the tumor microenvironment. J. Immunother. Cancer 6, 144 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  142. DuPage, M. et al. Endogenous T cell responses to antigens expressed in lung adenocarcinomas delay malignant tumor progression. Cancer Cell 19, 72–85 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Ochoa, M. C. et al. Synergistic effects of combined immunotherapy strategies in a model of multifocal hepatocellular carcinoma. Cell Rep. Med. 4, 101009 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Hsu, C. L. & Loomba, R. From NAFLD to MASLD: implications of the new nomenclature for preclinical and clinical research. Nat. Metab. 6, 600–602 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Febbraio, M. A. et al. Preclinical models for studying NASH-driven HCC: how useful are they? Cell Metab. 29, 18–26 (2019).

    Article  CAS  PubMed  Google Scholar 

  146. Asgharpour, A. et al. A diet-induced animal model of non-alcoholic fatty liver disease and hepatocellular cancer. J. Hepatol. 65, 579–588 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Tsuchida, T. et al. A simple diet- and chemical-induced murine NASH model with rapid progression of steatohepatitis, fibrosis and liver cancer. J. Hepatol. 69, 385–395 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Dow, M. et al. Integrative genomic analysis of mouse and human hepatocellular carcinoma. Proc. Natl Acad. Sci. USA 115, E9879–E9888 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Pinyol, R. et al. Molecular characterisation of hepatocellular carcinoma in patients with non-alcoholic steatohepatitis. J. Hepatol. 75, 865–878 (2021).

    Article  CAS  PubMed  Google Scholar 

  150. Dudek, M. et al. Auto-aggressive CXCR6+ CD8 T cells cause liver immune pathology in NASH. Nature 592, 444–449 (2021).

    Article  CAS  PubMed  Google Scholar 

  151. Shalapour, S. et al. Inflammation-induced IgA+ cells dismantle anti-liver cancer immunity. Nature 551, 340–345 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Wong, A. M. et al. Unique molecular characteristics of NAFLD-associated liver cancer accentuate β-catenin/TNFRSF19-mediated immune evasion. J. Hepatol. 77, 410–423 (2022).

    Article  CAS  PubMed  Google Scholar 

  153. Leslie, J. et al. CXCR2 inhibition enables NASH-HCC immunotherapy. Gut 71, 2093–2106 (2022).

    Article  CAS  PubMed  Google Scholar 

  154. Gopalakrishnan, V. et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359, 97–103 (2018).

    Article  CAS  PubMed  Google Scholar 

  155. Ma, W. et al. Gut microbiota shapes the efficiency of cancer therapy. Front. Microbiol. 10, 1050 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Ma, C. et al. Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science 360, eaan5931 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Nguyen, P. H. D. et al. Intratumoural immune heterogeneity as a hallmark of tumour evolution and progression in hepatocellular carcinoma. Nat. Commun. 12, 227 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Losic, B. et al. Intratumoral heterogeneity and clonal evolution in liver cancer. Nat. Commun. 11, 291 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Moeini, A. et al. Mixed hepatocellular cholangiocarcinoma tumors: cholangiolocellular carcinoma is a distinct molecular entity. J. Hepatol. 66, 952–961 (2017).

    Article  CAS  PubMed  Google Scholar 

  160. Ma, L. et al. Single-cell atlas of tumor cell evolution in response to therapy in hepatocellular carcinoma and intrahepatic cholangiocarcinoma. J. Hepatol. 75, 1397–1408 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Ma, L. et al. Tumor cell biodiversity drives microenvironmental reprogramming in liver cancer. Cancer Cell 36, 418–430.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Ho, D. W. et al. Single-cell RNA sequencing shows the immunosuppressive landscape and tumor heterogeneity of HBV-associated hepatocellular carcinoma. Nat. Commun. 12, 3684 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Zhou, P. Y. et al. Single-cell and spatial architecture of primary liver cancer. Commun. Biol. 6, 1181 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Zhang, W. et al. The zinc finger protein Miz1 suppresses liver tumorigenesis by restricting hepatocyte-driven macrophage activation and inflammation. Immunity 54, 1168–1185.e8 (2021).

    Article  CAS  PubMed  Google Scholar 

  165. Wang, L. et al. Inhibition of Arid1a increases stem/progenitor cell-like properties of liver cancer. Cancer Lett. 546, 215869 (2022).

    Article  CAS  PubMed  Google Scholar 

  166. Chen, W. S. et al. Single-cell transcriptomics reveals opposing roles of Shp2 in Myc-driven liver tumor cells and microenvironment. Cell Rep. 37, 109974 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Zhou, L. et al. Lineage tracing and single-cell analysis reveal proliferative Prom1+ tumour-propagating cells and their dynamic cellular transition during liver cancer progression. Gut 71, 1656–1668 (2022).

    CAS  PubMed  Google Scholar 

  168. Craig, A. J., von Felden, J., Garcia-Lezana, T., Sarcognato, S. & Villanueva, A. Tumour evolution in hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol. 17, 139–152 (2020).

    Article  PubMed  Google Scholar 

  169. Trefts, E., Gannon, M. & Wasserman, D. H. The liver. Curr. Biol. 27, R1147–R1151 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Verma, B. & Wesa, A. Establishment of humanized mice from peripheral blood mononuclear cells or cord blood CD34+ hematopoietic stem cells for immune-oncology studies evaluating new therapeutic agents. Curr. Protoc. Pharmacol. 89, e77 (2020).

    Article  CAS  PubMed  Google Scholar 

  171. De La Rochere, P. et al. Humanized mice for the study of immuno-oncology. Trends Immunol. 39, 748–763 (2018).

    Article  PubMed  Google Scholar 

  172. Rongvaux, A. et al. Development and function of human innate immune cells in a humanized mouse model. Nat. Biotechnol. 32, 364–372 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Yen, C. J. et al. Hepatitis B virus X protein (HBx) enhances centrosomal P4.1-associated protein (CPAP) expression to promote hepatocarcinogenesis. J. Biomed. Sci. 26, 44 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Chisari, F. V. et al. Structural and pathological effects of synthesis of hepatitis B virus large envelope polypeptide in transgenic mice. Proc. Natl Acad. Sci. USA 84, 6909–6913 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Chisari, F. V. et al. Molecular pathogenesis of hepatocellular carcinoma in hepatitis B virus transgenic mice. Cell 59, 1145–1156 (1989).

    Article  CAS  PubMed  Google Scholar 

  176. Kim, C. M., Koike, K., Saito, I., Miyamura, T. & Jay, G. HBx gene of hepatitis B virus induces liver cancer in transgenic mice. Nature 351, 317–320 (1991).

    Article  CAS  PubMed  Google Scholar 

  177. Koike, K. et al. High-level expression of hepatitis B virus HBx gene and hepatocarcinogenesis in transgenic mice. Hepatology 19, 810–819 (1994).

    Article  CAS  PubMed  Google Scholar 

  178. Yu, D. Y. et al. Incidence of hepatocellular carcinoma in transgenic mice expressing the hepatitis B virus X-protein. J. Hepatol. 31, 123–132 (1999).

    Article  CAS  PubMed  Google Scholar 

  179. Zhu, H., Wang, Y., Chen, J., Cheng, G. & Xue, J. Transgenic mice expressing hepatitis B virus X protein are more susceptible to carcinogen induced hepatocarcinogenesis. Exp. Mol. Pathol. 76, 44–50 (2004).

    Article  CAS  PubMed  Google Scholar 

  180. Moriya, K. et al. The core protein of hepatitis C virus induces hepatocellular carcinoma in transgenic mice. Nat. Med. 4, 1065–1067 (1998).

    Article  CAS  PubMed  Google Scholar 

  181. Inokuchi, S. et al. Disruption of TAK1 in hepatocytes causes hepatic injury, inflammation, fibrosis, and carcinogenesis. Proc. Natl Acad. Sci. USA 107, 844–849 (2010).

    Article  CAS  PubMed  Google Scholar 

  182. Tsai, W. C. et al. MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis. J. Clin. Invest. 122, 2884–2897 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Smit, J. J. et al. Homozygous disruption of the murine mdr2 P-glycoprotein gene leads to a complete absence of phospholipid from bile and to liver disease. Cell 75, 451–462 (1993).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

S.P.M. and A.L. were supported by NIH grant RO1CA251155 awarded to the University of Pittsburgh and Icahn School of Medicine at Mount Sinai.

Author information

Authors and Affiliations

Authors

Contributions

A.L. researched the data for the article, made a substantial contribution to the discussion of content, wrote the article, and reviewed and/or edited the manuscript before submission. M.B.-V. researched the data for the article. S.P.M. made a substantial contribution to the discussion of content.

Corresponding author

Correspondence to Amaia Lujambio.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks Xin Chen; Markus Heim, who co-reviewed with Sandro Nuciforo; Divya Kumar; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barcena-Varela, M., Monga, S.P. & Lujambio, A. Precision models in hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 22, 191–205 (2025). https://doi.org/10.1038/s41575-024-01024-w

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41575-024-01024-w

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer