Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Influence of biological sex in inflammatory bowel diseases

Abstract

The incidence of inflammatory bowel disease (IBD) has risen in the past decades and has emerged as a global health issue. IBD is characterized by chronic inflammation of the gastrointestinal tract. There is compelling evidence for the role of biological sex in IBD epidemiology, pathophysiology, disease progression, symptoms and extra-intestinal diseases. IBD disease course, management and therapies differ between men and women, yet there is a paucity of analysis of sex as a factor. This Review discusses the known influence of sex-linked genetic factors, hormones and hormone receptors in IBD incidence, prevalence, disease burden and clinical manifestation. Furthermore, we review the mechanisms underlying these sex-dependent effects on the dysregulation of gastrointestinal mucosal immunity (immune, epithelial barrier and microbiota) in IBD. To support the progressive inclusion of sex in the study of IBD, we summarize the current standard research methodology that should be implemented to investigate sex as a biological variable in IBD studies. Enhanced comprehension of the influence of sex in IBD pathophysiology will advance the development of targeted therapies and improve patient care.

Key points

  • Biological sex differentially affects inflammatory bowel disease (IBD) subtypes, ulcerative colitis, and Crohn’s disease epidemiology, disease course and symptoms across ages.

  • This article summarizes current knowledge of the effect of biological sex on IBD, highlights research gaps and recommends best practices in research methodology to integrate sex in IBD research.

  • To improve patient care, integration and comprehension of biological sex in IBD, personalized therapeutic strategies and the inclusion of a broader population in preclinical and clinical research are needed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Biological sex differences in IBD epidemiology across age groups.
Fig. 2: Sex chromosomes and hormones in IBD onset and progression across age groups.
Fig. 3: Role of dysregulated ERs in the sex discrepancy of IBD severity.

Similar content being viewed by others

References

  1. McGregor, A. J. et al. How to study the impact of sex and gender in medical research: a review of resources. Biol. Sex Differ. 7, 46 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Klein, S. L. & Flanagan, K. L. Sex differences in immune responses. Nat. Rev. Immunol. 16, 626–638 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Gahagan, J., Gray, K. & Whynacht, A. Sex and gender matter in health research: addressing health inequities in health research reporting. Int. J. Equity Health 14, 12–15 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Shah, S. C. et al. Sex-based differences in incidence of inflammatory bowel diseases — pooled analysis of population-based studies from Western countries. Gastroenterology 155, 1079–1089.e3 (2018).

    Article  PubMed  Google Scholar 

  5. Ng, S. C. et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet 390, 2769–2778 (2017).

    Article  PubMed  Google Scholar 

  6. Mauvais-Jarvis, F. et al. Sex and gender: modifiers of health, disease, and medicine. Lancet 396, 565–582 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rustgi, S. D., Kayal, M. & Shah, S. C. Sex-based differences in inflammatory bowel diseases: a review. Therap. Adv. Gastroenterol. 13, 1756284820915043 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sceats, L. A., Morris, A. M., Bundorf, M. K., Park, K. T. & Kin, C. Sex differences in treatment strategies among patients with ulcerative colitis: a retrospective cohort analysis of privately insured patients. Dis. Colon Rectum 62, 586–594 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Khan, S. et al. Real-world evidence on adherence, persistence, switching and dose escalation with biologics in adult inflammatory bowel disease in the United States: a systematic review. J. Clin. Pharm. Ther. 44, 495–507 (2019).

    PubMed  Google Scholar 

  10. Schiebinger, L. & Klinge, I. Gendered innovation in health and medicine. Z. Geschlecht Kult. Ges. 7, 29–50 (2015).

    Google Scholar 

  11. Hunt, L., Nielsen, M. W. & Schiebinger, L. A framework for sex, gender, and diversity analysis in research. Science 377, 1492–1495 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Day, S., Mason, R., Lagosky, S. & Rochon, P. A. Integrating and evaluating sex and gender in health research. Health Res. Policy Syst. 14, 75 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Park, J. & Cheon, J. H. Incidence and prevalence of inflammatory bowel disease across Asia. Yonsei Med. J. 62, 99–108 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Goodman, W. A., Erkkila, I. P. & Pizarro, T. T. Sex matters: impact on pathogenesis, presentation and treatment of inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 17, 740–754 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Varatharaj, A. et al. Neurological and neuropsychiatric complications of COVID-19 in 153 patients: a UK-wide surveillance study. Lancet Psychiatry 7, 875–882 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Rich-Edwards, J. W., Kaiser, U. B., Chen, G. L., Manson, J. A. E. & Goldstein, J. M. Sex and gender differences research design for basic, clinical, and population studies: essentials for investigators. Endocr. Rev. 39, 424–439 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hammarström, A. & Annandale, E. A conceptual muddle: an empirical analysis of the use of ‘sex’ and ‘gender’ in ‘gender-specific medicine’ journals. PLoS ONE 7, e34193 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ainsworth, C. Sex redefined — the idea of two sexes is simplistic. Biologists now think there is a wider spectrum than that. Nature 518, 288–291 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Witchel Feldman, S. Disorders of sex development. Semin. Reprod. Med. 30, 337 (2012).

    Article  Google Scholar 

  20. Jones, T. Intersex studies: a systematic review of international health literature. SAGE Open https://doi.org/10.1177/2158244017745577 (2018).

  21. Sax, L. How common is intersex? A response to Anne Fausto-Sterling. J. Sex Res. 39, 174–178 (2002).

    Article  PubMed  Google Scholar 

  22. Tannenbaum, C., Greaves, L. & Graham, I. D. Why sex and gender matter in implementation research Economic, social, and ethical factors affecting the implementation of research. BMC Med. Res. Methodol. 16, 145 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Madla, C. M. et al. Let’s talk about sex: differences in drug therapy in males and females. Adv. Drug Deliv. Rev. 175, 113804 (2021).

    Article  CAS  PubMed  Google Scholar 

  24. Tannenbaum, C., Ellis, R. P., Eyssel, F., Zou, J. & Schiebinger, L. Sex and gender analysis improves science and engineering. Nature 575, 137–146 (2019).

    Article  CAS  PubMed  Google Scholar 

  25. Anyane-Yeboa, A., Quezada, S., Rubin, D. T. & Balzora, S. The impact of the social determinants of health on disparities in inflammatory bowel disease. Clin. Gastroenterol. Hepatol. 20, 2427–2434 (2022).

    Article  PubMed  Google Scholar 

  26. World Health Organization. A conceptual framework for action on the social determinants of health (WHO, 2010).

  27. Nguyen, N. H., Khera, R., Ohno-Machado, L., Sandborn, W. J. & Singh, S. Prevalence and effects of food insecurity and social support on financial toxicity in and healthcare use by patients with inflammatory bowel diseases. Clin. Gastroenterol. Hepatol. 19, 1377–1386.e5 (2021).

    Article  PubMed  Google Scholar 

  28. Bernstein, C. N., Walld, R. & Marrie, R. A. Social determinants of outcomes in inflammatory bowel disease. Am. J. Gastroenterol. 115, 2036–2046 (2020).

    Article  PubMed  Google Scholar 

  29. Shah, R. et al. Medical and social determinants of health as predictors of adverse outcomes in patients with inflammatory bowel disease. Bayl. Univ. Med. Cent. Proc. 36, 165–170 (2023).

    Article  Google Scholar 

  30. Vlassoff, C. Gender differences in determinants and consequences of health and illness. J. Health Popul. Nutr. 25, 47–61 (2007).

    PubMed  PubMed Central  Google Scholar 

  31. Greuter, T., Manser, C., Pittet, V., Vavricka, S. R. & Biedermann, L. Gender differences in inflammatory bowel disease. Digestion 101, 98–104 (2020).

    Article  PubMed  Google Scholar 

  32. Dale, L. et al. Diet in the pathogenesis and treatment of inflammatory bowel diseases. Gastroenterology 148, 1087–1106 (2015).

    Article  Google Scholar 

  33. Varì, R., Scazzocchio, B. & Del Papa, S. Dietary habits and gender difference. J. Gend. Specif. Med. 3, 55–58 (2017).

    Google Scholar 

  34. Küçük, N. et al. Fruit and vegetable consumption across population segments: evidence from a national household survey. J. Heal. Popul. Nutr. 42, 54 (2023).

    Article  Google Scholar 

  35. Fagerli, R. A. & Wandel, M. Gender differences in opinions and practices with regard to a ‘Healthy Diet’. Appetite 32, 171–190 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Li, K. K. et al. An examination of sex differences in relation to the eating habits and nutrient intakes of university students. J. Nutr. Educ. Behav. 44, 246–250 (2012).

    Article  PubMed  Google Scholar 

  37. Hou, J. K., Abraham, B. & El-Serag, H. Dietary intake and risk of developing inflammatory bowel disease: a systematic review of the literature. Am. J. Gastroenterol. 106, 563–573 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Lambert, K. et al. Systematic review with meta-analysis: dietary intake in adults with inflammatory bowel disease. Aliment. Pharmacol. Ther. 54, 742–754 (2021).

    Article  PubMed  Google Scholar 

  39. Peters, V. et al. Habitual dietary intake of IBD patients differs from population controls: a case–control study. Eur. J. Nutr. 60, 345–356 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. Godala, M., Gaszyńska, E., Walczak, K. & Małecka-Wojciesko, E. Habitual dietary intake and adherence to dietary guidelines of patients with inflammatory bowel diseases. Gastroenterol. Insights 15, 69–86 (2024).

    Article  Google Scholar 

  41. Kamp, K., Pennings, B., Javelli, D., Wyatt, G. & Given, B. Dietary patterns, beliefs and behaviors among individuals with inflammatory bowel disease: a cross-sectional study. J. Hum. Nutr. Diet. 34, 257–264 (2022).

    Article  Google Scholar 

  42. Pueschel, L. et al. Patients with inflammatory bowel disease show fewer sex-related differences in their dietary behavior than the general population: a qualitative analysis. Nutrients 16, 2954 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhou, X. L. et al. Protein intake and risk of inflammatory bowel disease: a meta-analysis. Asia Pac. J. Clin. Nutr. 31, 443–449 (2022).

    CAS  PubMed  Google Scholar 

  44. Xu, F., Park, S., Liu, Y. & Greenlund, K. J. Dietary intake patterns among adults with inflammatory bowel disease in the United States, 2015. PLoS ONE 16, e0250441 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. World Health Organization. Global status report on alcohol and health and treatment of substance use disorders (WHO, 2024).

  46. Griswold, M. G. et al. Alcohol use and burden for 195 countries and territories, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 392, 1015–1035 (2018).

    Article  Google Scholar 

  47. Goh, C. M. J. et al. Gender differences in alcohol use: a nationwide study in a multiethnic population. Int. J. Ment. Health Addict. 22, 1161–1175 (2024).

    Article  Google Scholar 

  48. White, M. A. Gender differences in the epidemiology of alcohol use and related harms in the United States. Alcohol. Res. 40, 01 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Park, S. H. & Kim, D. J. Global and regional impacts of alcohol use on public health: emphasis on alcohol policies. Clin. Mol. Hepatol. 26, 652–661 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  50. White, B. A., Ramos, G. P. & Kane, S. The impact of alcohol in inflammatory bowel diseases. Inflamm. Bowel Dis. 28, 466–473 (2022).

    Article  PubMed  Google Scholar 

  51. Ramos, G. P. & Kane, S. Alcohol use in patients with inflammatory bowel disease. Gastroenterol. Hepatol. 17, 221–225 (2021).

    Google Scholar 

  52. Dai, X., Gakidou, E. & Lopez, A. D. Evolution of the global smoking epidemic over the past half century: strengthening the evidence base for policy action. Tob. Control. 31, 129–137 (2022).

    Article  PubMed  Google Scholar 

  53. Piovani, D. et al. Environmental risk factors for inflammatory bowel diseases: an umbrella review of meta-analyses. Gastroenterology 157, 647–659.e4 (2019).

    Article  PubMed  Google Scholar 

  54. Persson, P. G., Ahlbom, A. & Hellers, G. Inflammatory bowel disease and tobacco smoke — a case-control study. Gut 31, 1377–1381 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cosnes, J., Nion-Larmurier, I., Afchain, P., Beaugerie, L. & Gendre, J. P. Gender differences in the response of colitis to smoking. Clin. Gastroenterol. Hepatol. 2, 41–48 (2004).

    Article  PubMed  Google Scholar 

  56. Karczewski, J., Poniedzialek, B., Piotr, R. & Malgorzata, M. Different effect of smoking on genders in Crohn’s disease. Turk. J. Gastroenterol. 26, 133–139 (2015).

    Article  PubMed  Google Scholar 

  57. Higuchi, L. M. et al. A prospective study of cigarette smoking and the risk of inflammatory bowel disease in women. Am. J. Gastroenterol. 107, 1399–1406 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Sutherland, L. R., Ramcharan, S., Bryant, H. & Fick, G. Effect of cigarette smoking on recurrence of Crohn’s disease. Gastroenterology 98, 1123–1128 (1990).

    Article  CAS  PubMed  Google Scholar 

  59. Tobin, M. V., Logan, R. F. A., Langman, M. J. S., Mcconnell, R. B. & Gilmore, I. T. Cigarette smoking and inflammatory bowel disease. Gastroenterology 93, 316–321 (1987).

    Article  CAS  PubMed  Google Scholar 

  60. Benoni, C. & Nilsson, Å. Smoking habits in patients with inflammatory bowel disease: a case-control study. Scand. J. Gastroenterol. 22, 1130–1136 (1987).

    Article  CAS  PubMed  Google Scholar 

  61. Lindberg, E., Tysk, C., Andersson, K. & Järnerot, G. Smoking and inflammatory bowel disease. A case control study. Gut 29, 352–357 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Piovani, D. et al. Ethnic differences in the smoking-related risk of inflammatory bowel disease: a systematic review and meta-analysis. J. Crohns Colitis 15, 1658–1678 (2021).

    Article  PubMed  Google Scholar 

  63. World Health Organization. WHO guidelines on physical activity and sedentary behaviour (WHO, 2020).

  64. Guthold, R., Stevens, G. A., Riley, L. M. & Bull, F. C. Global trends in insufficient physical activity among adolescents: a pooled analysis of 298 population-based surveys with 1.6 million participants. Lancet Child Adolesc. Health 4, 23–35 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Guthold, R., Stevens, G. A., Riley, L. M. & Bull, F. C. Worldwide trends in insufficient physical activity from 2001 to 2016: a pooled analysis of 358 population-based surveys with 1.9 million participants. Lancet Glob. Health 6, e1077–e1086 (2018).

    Article  PubMed  Google Scholar 

  66. Sonnenberg, A. Occupational distribution of inflammatory bowel disease among German employees. Gut 31, 1037–1040 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bøggild, H., Tüchsen, F. & Ørhede, E. Occupation, employment status and chronic inflammatory bowel disease in Denmark. Int. J. Epidemiol. 25, 630–637 (1996).

    Article  PubMed  Google Scholar 

  68. Cucino, C. & Sonnenberg, A. Occupational mortality from inflammatory bowel disease in the United States 1991-1996. Am. J. Gastroenterol. 96, 1101–1105 (2001).

    CAS  PubMed  Google Scholar 

  69. Lautenschlager, S. A. et al. Lifestyle factors associated with inflammatory bowel disease: data from the Swiss IBD cohort study. BMC Gastroenterol. 23, 71 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Hlavaty, T. et al. Smoking, breastfeeding, physical inactivity, contact with animals, and size of the family influence the risk of inflammatory bowel disease: a Slovak case–control study. United Eur. Gastroenterol. J. 1, 109–119 (2013).

    Article  Google Scholar 

  71. Jones, P. D. et al. Exercise decreases risk of future active disease in inflammatory bowel disease patients in remission. Inflamm. Bowel Dis. 21, 1063–1071 (2015).

    Article  PubMed  Google Scholar 

  72. Ng, S. C. et al. Environmental risk factors in inflammatory bowel disease: a population-based case-control study in Asia-Pacific. Gut 64, 1063–1071 (2015).

    Article  PubMed  Google Scholar 

  73. Khalili, H. et al. Physical activity and risk of inflammatory bowel disease: prospective study from the Nurses’ Health Study cohorts. BMJ 347, f6633 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Melinder, C. et al. Physical fitness in adolescence and subsequent inflammatory bowel disease risk. Clin. Transl. Gastroenterol. 6, e121–e128 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Wang, R., Li, Z., Liu, S. & Zhang, D. Global, regional and national burden of inflammatory bowel disease in 204 countries and territories from 1990 to 2019: a systematic analysis based on the Global Burden of Disease Study 2019. BMJ Open 13, e065186 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Xu, L., Huang, G., Cong, Y., Yu, Y. & Li, Y. Sex-related differences in inflammatory bowel diseases: the potential role of sex hormones. Inflamm. Bowel Dis. 28, 1766–1775 (2022).

    Article  PubMed  Google Scholar 

  77. Zheng, H. B., de la Morena, M. T. & Suskind, D. L. The growing need to understand very early onset inflammatory bowel disease. Front. Immunol. 12, 675186 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ouahed, J. et al. Very early onset inflammatory bowel disease: a clinical approach with a focus on the role of genetics and underlying immune deficiencies. Inflamm. Bowel Dis. 26, 820–842 (2020).

    Article  PubMed  Google Scholar 

  79. Heyman, M. B. et al. Children with early-onset inflammatory bowel disease (IBD): analysis of a pediatric IBD consortium registry. J. Pediatr. 146, 35–40 (2005).

    Article  PubMed  Google Scholar 

  80. Bequet, E. et al. Incidence and phenotype at diagnosis of very-early-onset compared with later-onset paediatric inflammatory bowel disease: a population-based study [1988–2011]. J. Crohns Colitis 11, 519–526 (2017).

    CAS  PubMed  Google Scholar 

  81. Ruemmele, F. M. et al. Characteristics of inflammatory bowel disease with onset during the first year of life. J. Pediatr. Gastroenterol. Nutr. 43, 603–609 (2006).

    Article  PubMed  Google Scholar 

  82. Benchimol, E. I. et al. Incidence, outcomes, and health services burden of very early onset inflammatory bowel disease. Gastroenterology 147, 803–813.e7 (2014).

    Article  PubMed  Google Scholar 

  83. Shah, S. C. et al. Sex-based differences in the incidence of inflammatory bowel diseases — pooled analysis of population-based studies from the Asia-Pacific region. Aliment. Pharmacol. Ther. 49, 904–911 (2019).

    Article  PubMed  Google Scholar 

  84. Mak, W. Y., Zhao, M., Ng, S. C. & Burisch, J. The epidemiology of inflammatory bowel disease: East meets West. J. Gastroenterol. Hepatol. 35, 380–389 (2020).

    Article  PubMed  Google Scholar 

  85. Sýkora, J. et al. Current global trends in the incidence of pediatric-onset inflammatory bowel disease. World J. Gastroenterol. 24, 2741–2763 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Kuenzig, M. E. et al. Twenty-first century trends in the global epidemiology of pediatric-onset inflammatory bowel disease: systematic review. Gastroenterology 162, 1147–1159.e4 (2022).

    Article  PubMed  Google Scholar 

  87. Lee, H. A. et al. Characteristics of pediatric inflammatory bowel disease in Korea: comparison with EUROKIDS data. Gut Liver 9, 756–760 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Duricova, D., Burisch, J., Jess, T., Gower-Rousseau, C. & Lakatos, P. L. Age-related differences in presentation and course of inflammatory bowel disease: an update on the population-based literature. J. Crohns Colitis 8, 1351–1361 (2014).

    Article  PubMed  Google Scholar 

  89. Kern, I. et al. Incidence trends of pediatric onset inflammatory bowel disease in the years 2000–2009 in Saxony, Germany–first results of the Saxon Pediatric IBD Registry. PLoS ONE 16, e0243774 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wittig, R., Albers, L., Koletzko, S., Saam, J. & Von Kries, R. Pediatric chronic inflammatory bowel disease in a German statutory health INSURANCE-incidence rates from 2009 to 2012. J. Pediatr. Gastroenterol. Nutr. 68, 244–250 (2019).

    Article  PubMed  Google Scholar 

  91. Zurek, M. et al. Epidemiology and care structures for children and adolescents and young adults up to the 26th year of life with inflammatory bowel diseases (IBD) in Leipzig/Saxony/Germany. J. Public Health 26, 437–442 (2018).

    Article  Google Scholar 

  92. Malaty, H. M., Fan, X., Opekun, A. R., Thibodeaux, C. & Ferry, G. D. Rising incidence of inflammatory bowel disease among children: a 12-year study. J. Pediatr. Gastroenterol. Nutr. 50, 27–31 (2010).

    Article  PubMed  Google Scholar 

  93. Hong, S. J. et al. Characteristics and incidence trends for pediatric inflammatory bowel disease in Daegu-Kyungpook province in Korea: a multi-center study. J. Korean Med. Sci. 33, e132 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Carroll, M. W. et al. The impact of inflammatory bowel disease in Canada 2018: children and adolescents with IBD. J. Can. Assoc. Gastroenterol. 2, S49–S67 (2019).

    Article  PubMed  Google Scholar 

  95. Van Limbergen, J. et al. Definition of phenotypic characteristics of childhood-onset inflammatory bowel disease. Gastroenterology 135, 1114–1122 (2008).

    Article  PubMed  Google Scholar 

  96. Denise, H. et al. Gender differences in paediatric patients of the Swiss. Pediatr. Gastroenterol. Hepatol. Nutr. 17, 147–154 (2014).

    Article  Google Scholar 

  97. Gupta, N. et al. Gender differences in presentation and course of disease in pediatric patients with Crohn disease. Pediatrics 120, e1418–e1425 (2007).

    Article  PubMed  Google Scholar 

  98. Park, S. H. et al. A 30-year trend analysis in the epidemiology of inflammatory bowel disease in the Songpa-Kangdong District of Seoul, Korea in 1986-2015. J. Crohns Colitis 13, 1410–1417 (2019).

    Article  PubMed  Google Scholar 

  99. Dotson, J. L., Bricker, J. B., Kappelman, M. D., Chisolm, D. & Crandall, W. V. Assessment of sex differences for treatment, procedures, complications, and associated conditions among adolescents hospitalized with Crohn’s disease. Inflamm. Bowel Dis. 21, 2619–2624 (2015).

    Article  PubMed  Google Scholar 

  100. Ferguson, A. & Sedgwick, D. M. Juvenile onset inflammatory bowel disease: height and body mass index in adult life. Br. Med. J. 308, 1259–1263 (1994).

    Article  CAS  Google Scholar 

  101. Gupta, N., Lustig, R. H., Kohn, M. A. & Vittinghoff, E. Menarche in pediatric patients with Crohn’s disease. Dig. Dis. Sci. 57, 2975–2981 (2012).

    Article  PubMed  Google Scholar 

  102. DeBoer, M. D. et al. Increases in sex hormones during anti-tumor necrosis factor α therapy in adolescents with Crohn’s disease. J. Pediatr. 171, 146–152.e2 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Alatab, S. et al. The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol. Hepatol. 5, 17–30 (2020).

    Article  Google Scholar 

  104. Lungaro, L. et al. Impact of female gender in inflammatory bowel diseases: a narrative review. J. Pers. Med. 13, 165 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Brant, S. R. & Nguyen, G. C. Is there a gender difference in the prevalence of Crohn’s disease or ulcerative colitis? Inflamm. Bowel Dis. 14, 2–3 (2008).

    Article  Google Scholar 

  106. Severs, M. et al. Sex-related differences in patients with inflammatory bowel disease: results of 2 prospective cohort studies. Inflamm. Bowel Dis. 24, 1298–1306 (2018).

    Article  PubMed  Google Scholar 

  107. King, D. et al. Changing patterns in the epidemiology and outcomes of inflammatory bowel disease in the United Kingdom: 2000-2018. Aliment. Pharmacol. Ther. 51, 922–934 (2020).

    Article  PubMed  Google Scholar 

  108. Tragnone, A. et al. Incidence of inflammatory bowel disease in Italy: a nationwide population-based study. Int. J. Epidemiol. 25, 1044–1052 (1996).

    Article  CAS  PubMed  Google Scholar 

  109. Wei, S. C. et al. A nationwide population-based study of the inflammatory bowel diseases between 1998 and 2008 in Taiwan. BMC Gastroenterol. 13, 166 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Wilson, J. et al. High incidence of inflammatory bowel disease in Australia: a prospective population-based Australian incidence study. Inflamm. Bowel Dis. 16, 1550–1556 (2010).

    Article  PubMed  Google Scholar 

  111. Leddin, D., Tamim, H. & Levy, A. R. Decreasing incidence of inflammatory bowel disease in Eastern Canada: a population database study. BMC Gastroenterol. 14, 140 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Ng, S. C. et al. Incidence and phenotype of inflammatory bowel disease based on results from the Asia-Pacific Crohn’s and colitis epidemiology study. Gastroenterology 145, 158–165.e2 (2013).

    Article  PubMed  Google Scholar 

  113. Gordon, H. et al. ECCO guidelines on extraintestinal manifestations in inflammatory bowel disease. J. Crohns Colitis 18, 1–37 (2024).

    Article  PubMed  Google Scholar 

  114. Bernstein, C. N., Blanchard, J. F., Rawsthorne, P. & Yu, N. The prevalence of extraintestinal diseases in inflammatory bowel disease: a population-based study. Am. J. Gastroenterol. 96, 1116–1122 (2001).

    Article  CAS  PubMed  Google Scholar 

  115. Vavricka, S. R. et al. Extraintestinal manifestations of inflammatory bowel disease. Inflamm. Bowel Dis. 21, 1982–1992 (2015).

    Article  PubMed  Google Scholar 

  116. Wagtmans, M. J., Verspaget, H. W., Lamers, C. B. H. W. & Van Hogezand, R. A. Gender-related differences in the clinical course of Crohn’s disease. Am. J. Gastroenterol. 96, 1541–1546 (2001).

    Article  CAS  PubMed  Google Scholar 

  117. Söderlund, S. et al. Inflammatory bowel disease confers a lower risk of colorectal cancer to females than to males. Gastroenterology 138, 1697–1703.e2 (2010).

    Article  PubMed  Google Scholar 

  118. Wu, H. et al. Inflammatory bowel disease and cardiovascular diseases. Eur. Heart J. Open 2, oeab029 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Kirchgesner, J. et al. Increased risk of acute arterial events in young patients and severely active IBD: a nationwide French cohort study. Gut 67, 1261–1268 (2018).

    Article  PubMed  Google Scholar 

  120. Macaluso, F. S., Ventimiglia, M. & Orlando, A. Effectiveness and safety of vedolizumab in inflammatory bowel disease: a comprehensive meta-analysis of observational studies. J. Crohns Colitis 17, 1217–1227 (2023).

    Article  PubMed  Google Scholar 

  121. Lee, L. Y. W., Gardezi, A. S., Santharam, V., Boyd, J. & Lanzon-Miller, S. Effect of azathioprine intolerance on outcomes of inflammatory bowel disease: a cross-sectional study. Frontline Gastroenterol. 5, 40–43 (2014).

    Article  CAS  PubMed  Google Scholar 

  122. Fidder, H. et al. Long-term safety of infliximab for the treatment of inflammatory bowel disease: a single-centre cohort study. Gut 58, 501–508 (2009).

    Article  CAS  PubMed  Google Scholar 

  123. Peyrin-Biroulet, L. et al. Defining disease severity in inflammatory bowel diseases: current and future directions. Clin. Gastroenterol. Hepatol. 14, 348–354.e17 (2016).

    Article  PubMed  Google Scholar 

  124. Kishi, M. et al. A review on the current status and definitions of activity indices in inflammatory bowel disease: how to use indices for precise evaluation. J. Gastroenterol. 57, 246–266 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Shaoul, R. & Day, A. S. An overview of tools to score severity in pediatric inflammatory bowel disease. Front. Pediatr. 9, 615216 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Ishige, T. et al. Inflammatory bowel disease in children: epidemiological analysis of the nationwide IBD registry in Japan. J. Gastroenterol. 45, 911–917 (2010).

    Article  PubMed  Google Scholar 

  127. Pigneur, B. et al. Natural history of Crohn’s disease: comparison between childhood- and adult-onset disease. Inflamm. Bowel Dis. 16, 953–961 (2010).

    Article  PubMed  Google Scholar 

  128. Aloi, M. et al. Presenting features and disease course of pediatric ulcerative colitis. J. Crohns Colitis 7, e509–e515 (2013).

    Article  PubMed  Google Scholar 

  129. Benchimol, E. I., To, T., Griffiths, A. M., Rabeneck, L. & Guttmann, A. Outcomes of pediatric inflammatory bowel disease: socioeconomic status disparity in a universal-access healthcare system. J. Pediatr. 158, 960–967.e4 (2011).

    Article  PubMed  Google Scholar 

  130. Gupta, N. et al. Risk factors for initial surgery in pediatric patients with Crohn’s disease. Gastroenterology 130, 1069–1077 (2006).

    Article  PubMed  Google Scholar 

  131. Gupta, N. et al. Presentation and disease course in early- compared to later-onset pediatric Crohn’s disease. Am. J. Gastroenterol. 103, 2092–2098 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Polito, J. M. et al. Crohn’s disease: influence of age at diagnosis on site and clinical type of disease. Gastroenterology 111, 580–586 (1996).

    Article  PubMed  Google Scholar 

  133. Sempere, L. et al. Gender biases and diagnostic delay in inflammatory bowel disease: multicenter observational study. Inflamm. Bowel Dis. 29, 1886–1894 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Blumenstein, I. et al. Female patients suffering from inflammatory bowel diseases are treated less frequently with immunosuppressive medication and have a higher disease activity. A subgroup analysis of a large multi-centre, prospective, internet-based study. J. Crohns Colitis 5, 203–210 (2011).

    Article  CAS  PubMed  Google Scholar 

  135. Allison, J., Herrinton, L. J., Liu, L., Yu, J. & Lowder, J. Natural history of severe ulcerative colitis in a community-based health plan. Clin. Gastroenterol. Hepatol. 6, 999–1003 (2008).

    Article  PubMed  Google Scholar 

  136. Coskun, M. Intestinal epithelium in inflammatory bowel disease. Front. Med. 1, 24 (2014).

    Article  Google Scholar 

  137. Lefèvre, N. et al. The number of X chromosomes influences inflammatory cytokine production following Toll-like receptor stimulation. Front. Immunol. 10, 1052 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Uhlig, H. H. & Muise, A. M. Clinical genomics in inflammatory bowel disease. Trends Genet. 33, 629–641 (2017).

    Article  CAS  PubMed  Google Scholar 

  139. Nameirakpam, J., Rikhi, R., Rawat, S. S., Sharma, J. & Suri, D. Genetics on early onset inflammatory bowel disease: an update. Genes Dis. 7, 93–106 (2020).

    Article  CAS  PubMed  Google Scholar 

  140. Chandrakasan, S., Venkateswaran, S. & Kugathasan, S. Nonclassic inflammatory bowel disease in young infants: immune dysregulation, polyendocrinopathy, enteropathy, x-linked syndrome, and other disorders. Pediatr. Clin. North Am. 64, 139–160 (2017).

    Article  PubMed  Google Scholar 

  141. Nambu, R. et al. A systematic review of monogenic inflammatory bowel disease. Clin. Gastroenterol. Hepatol. 20, e653–e663 (2022).

    Article  CAS  PubMed  Google Scholar 

  142. Cui, J., Shen, Y., & Li, R. Estrogen synthesis and signaling pathways during ageing: from periphery to brain. Trends Mol. Med. 19, 197–209 (2012).

    Article  Google Scholar 

  143. Bouguen, G., Dubuquoy, L., Desreumaux, P., Brunner, T. & Bertin, B. Intestinal steroidogenesis. Steroids 103, 64–71 (2015).

    Article  CAS  PubMed  Google Scholar 

  144. Geremia, A., Biancheri, P., Allan, P., Corazza, G. R. & Di Sabatino, A. Innate and adaptive immunity in inflammatory bowel disease. Autoimmun. Rev. 13, 3–10 (2014).

    Article  CAS  PubMed  Google Scholar 

  145. Cooke, P. S., Nanjappa, M. K., Ko, C., Prins, G. S. & Hess, R. A. Estrogens in male physiology. Physiol. Rev. 97, 995–1043 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Oettel, M. & Mukhopadhyay, A. K. Progesterone: the forgotten hormone in men? Aging Male 7, 236–257 (2004).

    Article  CAS  PubMed  Google Scholar 

  147. Bianchi, V. E. et al. The role of androgens in women’s health and wellbeing. Pharmacol. Res. 171, 105758 (2021).

    Article  CAS  PubMed  Google Scholar 

  148. Igarashi, M. et al. Female-dominant estrogen production in healthy children before adrenarche. Endocr. Connect. 10, 1221–1226 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Zec, I. et al. Reference intervals for reproductive hormones in prepubertal children on the automated Roche Cobas E 411 analyzer. Clin. Biochem. 45, 1206–1212 (2012).

    Article  CAS  PubMed  Google Scholar 

  150. Courant, F. et al. Assessment of circulating sex steroid levels in prepubertal and pubertal boys and girls by a novel ultrasensitive gas chromatography-tandem mass spectrometry method. J. Clin. Endocrinol. Metab. 95, 82–92 (2010).

    Article  CAS  PubMed  Google Scholar 

  151. Leifke, E. et al. Age-related changes of serum sex hormones, insulin-like growth factor-1 and sex-hormone binding globulin levels in men: cross-sectional data from a healthy male cohort. Clin. Endocrinol. 53, 689–695 (2000).

    Article  CAS  Google Scholar 

  152. Greenblatt, R. B., Oettinger, M. & Bohler, C. S. Estrogen‐androgen levels in aging men and women: therapeutic considerations. J. Am. Geriatr. Soc. 24, 173–178 (1976).

    Article  CAS  PubMed  Google Scholar 

  153. Erbay, G., Senol, G., Anar, C., Meral, A. R. & Tuzel, O. Relationship between tuberculosis and female hormone levels in post-menopausal women. Southeast Asian J. Trop. Med. Public Health 47, 78–83 (2016).

    PubMed  Google Scholar 

  154. Mohamad, N. V. et al. The relationship between circulating testosterone and inflammatory cytokines in men. Aging Male 22, 129–140 (2019).

    Article  CAS  PubMed  Google Scholar 

  155. Bini, E. I. et al. The implication of pro-inflammatory cytokines in the impaired production of gonadal androgens by patients with pulmonary tuberculosis. Tuberculosis 95, 701–706 (2015).

    Article  CAS  PubMed  Google Scholar 

  156. Demirtaş Şahin, T. et al. TNF-α antagonism with etanercept enhances penile NOS expression, cavernosal reactivity, and testosterone levels in aged rats. Can. J. Physiol. Pharmacol. 96, 200–207 (2018).

    Article  PubMed  Google Scholar 

  157. Lahat, A., Falach-Malik, A., Haj, O., Shatz, Z. & Ben-Horin, S. Change in bowel habits during menstruation: are IBD patients different? Therap. Adv. Gastroenterol. 13, 1756284820929806 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Lim, S. M. et al. The effect of the menstrual cycle on inflammatory bowel disease: a prospective study. Gut Liver 7, 51–57 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Saha, S. et al. Menstrual cycle changes in women with inflammatory bowel disease: a study from the Ocean State Crohn’s and Colitis Area Registry. Inflamm. Bowel Dis. 20, 534–540 (2014).

    Article  PubMed  Google Scholar 

  160. Rolston, V. S. et al. The influence of hormonal fluctuation on inflammatory bowel disease symptom severity — a cross-sectional cohort study. Inflamm. Bowel Dis. 24, 387–393 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Bharadwaj, S., Barber, M. D., Graff, L. A. & Shen, B. Symptomatology of irritable bowel syndrome and inflammatory bowel disease during the menstrual cycle. Gastroenterol. Rep. 3, 185–193 (2015).

    Article  Google Scholar 

  162. Crittenden, S. et al. Prostaglandin E2 promotes intestinal inflammation via inhibiting microbiota-dependent regulatory T cells. Sci. Adv. 7, eabd7954 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Khalili, H. et al. Endogenous levels of circulating androgens and risk of Crohn’s disease and ulcerative colitis among women: a nested case-control study from the nurses’ health study cohorts. Inflamm. Bowel Dis. 21, 1378–1385 (2015).

    PubMed  Google Scholar 

  164. Ortizo, R. et al. Exposure to oral contraceptives increases the risk for development of inflammatory bowel disease: a meta-analysis of case-controlled and cohort studies. Eur. J. Gastroenterol. Hepatol. 29, 1064–1070 (2017).

    Article  CAS  PubMed  Google Scholar 

  165. Wang, X. et al. Use of oral contraceptives and risk of ulcerative colitis – a systematic review and meta-analysis. Pharmacol. Res. 139, 367–374 (2019).

    Article  CAS  PubMed  Google Scholar 

  166. Khalili, H. et al. Oral contraceptives, reproductive factors and risk of inflammatory bowel disease. Gut 62, 1153–1159 (2013).

    Article  CAS  PubMed  Google Scholar 

  167. Pasvol, T. J., Bloom, S., Segal, A. W., Rait, G. & Horsfall, L. Use of contraceptives and risk of inflammatory bowel disease: a nested case–control study. Aliment. Pharmacol. Ther. 55, 318–326 (2022).

    Article  PubMed  Google Scholar 

  168. Khalili, H. et al. Hormone therapy increases risk of ulcerative colitis but not Crohn’s disease. Gastroenterology 143, 1199–1206 (2012).

    Article  CAS  PubMed  Google Scholar 

  169. Chiaffarino, F. et al. Endometriosis and inflammatory bowel disease: a systematic review of the literature. Eur. J. Obstet. Gynecol. Reprod. Biol. 252, 246–251 (2020).

    Article  PubMed  Google Scholar 

  170. Jess, T., Frisch, M., Jørgensen, K. T., Pedersen, B. V. & Nielsen, N. M. Increased risk of inflammatory bowel disease in women with endometriosis: a nationwide Danish cohort study. Gut 61, 1279–1283 (2012).

    Article  PubMed  Google Scholar 

  171. Kane, S. V. & Reddy, D. Hormonal replacement therapy after menopause is protective of disease activity in women with inflammatory bowel disease. Am. J. Gastroenterol. 103, 1193–1196 (2008).

    Article  PubMed  Google Scholar 

  172. Tremellen, K., McPhee, N. & Pearce, K. Metabolic endotoxaemia related inflammation is associated with hypogonadism in overweight men. Basic Clin. Androl. 27, 5 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Nasser, M. et al. Testosterone therapy in men with Crohn’s disease improves the clinical course of the disease: data from long-term observational registry study. Horm. Mol. Biol. Clin. Investig. 22, 111–117 (2015).

    Article  CAS  PubMed  Google Scholar 

  174. Klil-Drori, A. J. et al. Androgen deprivation therapy and the incidence of inflammatory bowel disease in patients with prostate cancer. Am. J. Epidemiol. 184, 15–22 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Zucker, K. J. Epidemiology of gender dysphoria and transgender identity. Sex. Health 14, 404–411 (2017).

    Article  PubMed  Google Scholar 

  176. Nolan, I. T., Kuhner, C. J. & Dy, G. W. Demographic and temporal trends in transgender identities and gender confirming surgery. Transl. Androl. Urol. 8, 184–190 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Statistics Canada. Canada is the first country to provide census data on transgender and non-binary people. StatCan https://www150.statcan.gc.ca/n1/daily-quotidien/220427/dq220427b-eng.htm (2022).

  178. Abramovich, A. et al. Assessment of health conditions and health service use among transgender patients in Canada. JAMA Netw. Open 3, e2015036 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Hassan, B. et al. The impact of hormone therapy on inflammatory bowel disease in transgender and nonbinary individuals. Inflamm. Bowel Dis. https://doi.org/10.1093/ibd/izae236 (2024).

    Article  PubMed  Google Scholar 

  180. Habbema, J. D. F. et al. Towards less confusing terminology in reproductive medicine: a proposal. Hum. Reprod. 19, 1497–1501 (2004).

    Article  CAS  PubMed  Google Scholar 

  181. Zegers-Hochschild, F. et al. The international glossary on infertility and fertility care, 2017. Hum. Reprod. 32, 1786–1801 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Tavernier, N., Fumery, M., Peyrin-Biroulet, L., Colombel, J. F. & Gower-Rousseau, C. Systematic review: fertility in non-surgically treated inflammatory bowel disease. Aliment. Pharmacol. Ther. 38, 847–853 (2013).

    Article  CAS  PubMed  Google Scholar 

  183. Druvefors, E., Landerholm, K., Hammar, U., Myrelid, P. & Andersson, R. E. Impaired fertility in women with inflammatory bowel disease: a national cohort study from Sweden. J. Crohns Colitis 15, 383–390 (2021).

    Article  PubMed  Google Scholar 

  184. Bonthala, N. & Kane, S. Updates on women’s health issues in patients with inflammatory bowel disease. Curr. Treat. Options Gastroenterol. 16, 86–100 (2018).

    Article  PubMed  Google Scholar 

  185. Baird, D. D., Narendranathan, M. & Sandler, R. S. Increased risk of preterm birth for women with inflammatory bowel disease. Gastroenterology 99, 987–994 (1990).

    Article  CAS  PubMed  Google Scholar 

  186. Laube, R. et al. Knowledge and attitudes towards pregnancy in females with inflammatory bowel disease: an international, multi-centre study. J. Crohns Colitis 14, 1248–1255 (2020).

    Article  PubMed  Google Scholar 

  187. Winter, R. W., Boyd, T., Chan, W. W., Levy, A. N. & Friedman, S. Risk factors for voluntary childlessness in men and women with inflammatory bowel disease. Inflamm. Bowel Dis. 28, 1927–1931 (2022).

    Article  PubMed  Google Scholar 

  188. Marri, S. R., Ahn, C. & Buchman, A. L. Voluntary childlessness is increased in women with inflammatory bowel disease. Inflamm. Bowel Dis. 13, 591–599 (2007).

    Article  PubMed  Google Scholar 

  189. Mountifield, R., Bampton, P., Prosser, R., Muller, K. & Andrews, J. M. Fear and fertility in inflammatory bowel disease: a mismatch of perception and reality affects family planning decisions. Inflamm. Bowel Dis. 15, 720–725 (2009).

    Article  PubMed  Google Scholar 

  190. Frolkis, A. D. et al. Risk of surgery for inflammatory bowel diseases has decreased over time: a systematic review and meta-analysis of population-based studies. Gastroenterology 145, 996–1006 (2013).

    Article  PubMed  Google Scholar 

  191. Lee, S. et al. Surgery for inflammatory bowel disease has unclear impact on female fertility: a Cochrane collaboration systematic review. J. Can. Assoc. Gastroenterol. 4, 115–124 (2021).

    Article  PubMed  Google Scholar 

  192. Waljee, A., Waljee, J., Morris, A. M. & Higgins, P. D. R. Threefold increased risk of infertility: a meta-analysis of infertility after ileal pouch anal anastomosis in ulcerative colitis. Gut 55, 1575–1580 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Cornish, J. A. et al. The effect of restorative proctocolectomy on sexual function, urinary function, fertility, pregnancy and delivery: a systematic review. Dis. Colon Rectum 50, 1128–1138 (2007).

    Article  PubMed  Google Scholar 

  194. Rajaratnam, S. G., Eglinton, T. W., Hider, P. & Fearnhead, N. S. Impact of ileal pouch-anal anastomosis on female fertility: meta-analysis and systematic review. Int. J. Colorectal Dis. 26, 1365–1374 (2011).

    Article  PubMed  Google Scholar 

  195. Gorgun, E. et al. Fertility is reduced after restorative proctocolectomy with ileal pouch anal anastomosis: a study of 300 patients. Surgery 136, 795–803 (2004).

    Article  PubMed  Google Scholar 

  196. Hudson, M. et al. Fertility and pregnancy in inflammatory bowel disease. Int. J. Gynecol. Obstet. 58, 229–237 (1997).

    Article  CAS  Google Scholar 

  197. Carini, F. et al. Inflammatory bowel disease and infertility: analysis of literature and future perspectives. Acta Biomed. 92, 5–9 (2021).

    Google Scholar 

  198. Bharadwaj, S., Philpott, J. R., Barber, M. D., Graff, L. A. & Shen, B. Women’s health issues after ileal pouch surgery. Inflamm. Bowel Dis. 20, 2470–2482 (2014).

    Article  PubMed  Google Scholar 

  199. Druvefors, E., Andersson, R. E., Hammar, U., Landerholm, K. & Myrelid, P. Minor impact on fertility in men with inflammatory bowel disease: a National Cohort Study from Sweden. Aliment. Pharmacol. Ther. 56, 292–300 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Narendranathan, M., Sandler, R. S., Chirayath, S. M. & Savitz, D. A. Male infertility in inflammatory bowel disease. J. Clin. Gastroenterol. 11, 403–406 (1989).

    Article  CAS  PubMed  Google Scholar 

  201. Palomba, S. et al. Inflammatory bowel diseases and human reproduction: a comprehensive evidence-based review. World J. Gastroenterol. 20, 7123–7136 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Rossato, M. & Foresta, C. Antisperm antibodies in inflammatory bowel disease. Arch. Intern. Med. 164, 2283 (2004).

    Article  PubMed  Google Scholar 

  203. Dimitrova, D., Kalaydjiev, S., Mendizova, A., Piryova, E. & Nakov, L. Circulating antibodies to human spermatozoa in patients with ulcerative colitis. Fertil. Steril. 84, 1533–1535 (2005).

    Article  PubMed  Google Scholar 

  204. Cosentino, M. J., Chey, W. Y., Takihara, H. & Cockett, A. T. K. The effects of sulfasalazine on human male fertility potential and seminal prostaglandins. J. Urol. 132, 682–686 (1984).

    Article  CAS  PubMed  Google Scholar 

  205. Fukushima, T. et al. Effects of sulfasalazine on sperm acrosome reaction and gene expression in the male reproductive organs of rats. Toxicol. Sci. 85, 675–682 (2005).

    Article  CAS  PubMed  Google Scholar 

  206. Alonso, V. et al. Sulfasalazine induced oxidative stress: a possible mechanism of male infertility. Reprod. Toxicol. 27, 35–40 (2009).

    Article  CAS  PubMed  Google Scholar 

  207. Gubatan, J. et al. Paternal medications in inflammatory bowel disease and male fertility and reproductive outcomes: a systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 21, 2222–2238 (2023).

    Article  CAS  PubMed  Google Scholar 

  208. French, A. E., Koren, G. & Motherisk Team. Effect of methotrexate on male fertility. Can. Fam. Physician 49, 577–578 (2003).

    PubMed  PubMed Central  Google Scholar 

  209. Sussman, A. & Leonard, J. M. Psoriasis, methotrexate, and oligospermia. Arch. Dermatol. 116, 215–217 (1980).

    Article  CAS  PubMed  Google Scholar 

  210. Haberman, J. et al. Male fertility in cyclosporine-treated renal transplant patients. J. Urol. 145, 294–296 (1991).

    Article  CAS  PubMed  Google Scholar 

  211. Bouloux, P. M. G., Wass, J. A. H., Parslow, J. M., Hendry, W. F. & Besser, G. M. Effect of cyclosporin A in male autoimmune infertility. Fertil. Steril. 46, 81–85 (1986).

    Article  CAS  PubMed  Google Scholar 

  212. Siervo, G. E. M. et al. Low dose of cyclosporine A disrupts sperm parameters and testosterone levels reversibly in mice. Toxicol. Appl. Pharmacol. 460, 116374 (2023).

    Article  CAS  PubMed  Google Scholar 

  213. Park, Y. E. & Kim, T. O. Sexual dysfunction and fertility problems in men with inflammatory bowel disease. World J. Mens. Health 37, 285–297 (2019).

    Google Scholar 

  214. Peyrin-Biroulet, L. et al. Surgery in a population-based cohort of Crohn’s disease from Olmsted County, Minnesota (1970–2004). Am. J. Gastroenterol. 107, 1693–1701 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Samuel, S. et al. Cumulative incidence and risk factors for hospitalization and surgery in a population-based cohort of ulcerative colitis. Inflamm. Bowel Dis. 19, 1858–1866 (2013).

    PubMed  Google Scholar 

  216. Farouk, R. et al. Functional outcomes after ileal pouch-anal anastomosis for chronic ulcerative colitis. Ann. Surg. 231, 919–926 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Heuthorst, L. et al. Ileal pouch-anal anastomosis complications and pouch failure: a systematic review and meta-analysis. Ann. Surg. 23, 2062–2074 (2021).

    Google Scholar 

  218. Robinson, D. P. & Klein, S. L. Pregnancy and pregnancy-associated hormones alter immune responses and disease pathogenesis. Horm. Behav. 63, 263–271 (2012).

    Article  Google Scholar 

  219. Druckmann, R. & Druckmann, M. A. Progesterone and the immunology of pregnancy. J. Steroid Biochem. Mol. Biol. 97, 389–396 (2005).

    Article  CAS  PubMed  Google Scholar 

  220. Jee, H. L., Benjamin, U., Jungyoon, C., Jeongho, P. & Chang, H. K. Progesterone promotes differentiation of human cord blood fetal T cells into T regulatory cells but suppresses their differentiation into Th17 cells. J. Immunol. 187, 1778–1787 (2011).

    Article  Google Scholar 

  221. Khan, D. & Ansar Ahmed, S. The immune system is a natural target for estrogen action: opposing effects of estrogen in two prototypical autoimmune diseases. Front. Immunol. 6, 635 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Harding, A. T. & Heaton, N. S. The impact of estrogens and their receptors on immunity and inflammation during infection. Cancers 14, 909 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Draca, S. Estriol and progesterone: a new role for sex hormones. Int. J. Biomed. Sci. 2, 305–307 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Nekrasova, I. & Shirshev, S. Estriol in regulation of cell-mediated immune reactions in multiple sclerosis. J. Neuroimmunol. 349, 577421 (2020).

    Article  CAS  PubMed  Google Scholar 

  225. Van Der Giessen, J., Huang, V. W., Janneke Van Der Woude, C. & Fuhler, G. M. Modulatory effects of pregnancy on inflammatory bowel disease. Clin. Transl. Gastroenterol. 10, e00009 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  226. Ding, N. et al. Management of biologics in pregnant, lactating patients with inflammatory bowel disease and the impact on neonatal vaccination: a systematic review of clinical practice guidelines and consensus statements. J. Clin. Pharm. Ther. 47, 1952–1965 (2022).

    Article  CAS  PubMed  Google Scholar 

  227. Wierman, M. E. Sex steroid effects at target tissues: mechanisms of action. Adv. Physiol. Educ. 31, 26–33 (2007).

    Article  PubMed  Google Scholar 

  228. Laurentino, S. S. et al. Identification of androgen receptor variants in testis from humans and other vertebrates. Andrologia 45, 187–194 (2013).

    Article  CAS  PubMed  Google Scholar 

  229. Kadel, S. & Kovats, S. Sex hormones regulate innate immune cells and promote sex differences in respiratory virus infection. Front. Immunol. 9, 1653 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Wilkenfeld, S. R., Lin, C. & Frigo, D. E. Events coordinate steroid hormone actions. Steroids 133, 2–7 (2019).

    Article  Google Scholar 

  231. Asavasupreechar, T. et al. Systemic distribution of progesterone receptor subtypes in human tissues. J. Steroid Biochem. Mol. Biol. 199, 105599 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Rastelli, D. et al. Diminished androgen levels are linked to irritable bowel syndrome and cause bowel dysfunction in mice. J. Clin. Invest. 132, e150789 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Winborn, W. B., Sheridan, P. J. & McGill, H. C. Sex steroid receptors in the stomach, liver, pancreas, and gastrointestinal tract of the baboon. Gastroenterology 92, 23–32 (1987).

    Article  CAS  PubMed  Google Scholar 

  234. Kawano, N. et al. Identification and localization of estrogen receptor α- and β-positive cells in adult male and female mouse intestine at various estrogen levels. Histochem. Cell Biol. 121, 399–405 (2004).

    Article  CAS  PubMed  Google Scholar 

  235. Salih, M. A., Sims, S. H. & Kalu, D. N. Putative intestinal estrogen receptor: evidence for regional differences. Mol. Cell. Endocrinol. 121, 47–55 (1996).

    Article  CAS  PubMed  Google Scholar 

  236. Verdú, E. F., Deng, Y., Bercik, P. & Collins, S. M. Modulatory effects of estrogen in two murine models of experimental colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 283, G27–G36 (2002).

    Article  PubMed  Google Scholar 

  237. Campbell-Thompson, M., Lynch, I. J. & Bhardwaj, B. Expression of estrogen receptor (ER) subtypes and ERβ isoforms in colon cancer. Cancer Res. 61, 632–640 (2001).

    CAS  PubMed  Google Scholar 

  238. Mähler, M. et al. Differential susceptibility of inbred mouse strains to dextran sulfate sodium-induced colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 274, 6–9 (1998).

    Article  Google Scholar 

  239. Bábíčková, J. et al. Sex differences in experimentally induced colitis in mice: a role for estrogens. Inflammation 38, 1996–2006 (2015).

    Article  PubMed  Google Scholar 

  240. Armstrong, C. M., Allred, K. F., Weeks, B. R., Chapkin, R. S. & Allred, C. D. Estradiol has differential effects on acute colonic inflammation in the presence and absence of estrogen receptor β expression. Dig. Dis. Sci. 62, 1977–1984 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Song, C. H. et al. Effects of 17β-estradiol on colonic permeability and inflammation in an azoxymethane/dextran sulfate sodium-induced colitis mouse model. Gut Liver 12, 682–693 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Jacenik, D. et al. Sex- and age-related estrogen signaling alteration in inflammatory bowel diseases: modulatory role of estrogen receptors. Int. J. Mol. Sci. 20, 3175 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Goodman, W. A. et al. Loss of estrogen-mediated immunoprotection underlies female gender bias in experimental Crohn’s-like ileitis. Mucosal Immunol. 7, 1255–1265 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Goodman, W. A. et al. Impaired estrogen signaling underlies regulatory T cell loss-of-function in the chronically inflamed intestine. Proc. Natl. Acad. Sci. USA 117, 17166–17176 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. van Langen, M. L. et al. Estrogen receptor-β signaling modulates epithelial barrier function. Am. J. Physiol. Gastrointest. Liver Physiol. 300, 621–626 (2011).

    Article  Google Scholar 

  246. Goodman, W. A. et al. Estrogen receptor α loss-of-function protects female mice from DSS-induced experimental colitis. Cell. Mol. Gastroenterol. Hepatol. 5, 630–633.e1 (2018).

    Article  PubMed  Google Scholar 

  247. Hases, L. et al. Intestinal estrogen receptor beta suppresses colon inflammation and tumorigenesis in both sexes. Cancer Lett. 492, 54–62 (2020).

    Article  CAS  PubMed  Google Scholar 

  248. Fan, W. et al. Estrogen receptor β activation inhibits colitis by promoting NLRP6-mediated autophagy. Cell Rep. 41, 111454 (2022).

    Article  CAS  PubMed  Google Scholar 

  249. Jacenik, D. et al. G protein-coupled estrogen receptor mediates anti-inflammatory action in Crohn’s disease. Sci. Rep. 9, 6749 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  250. Cook, L. C. et al. The role of estrogen signaling in a mouse model of inflammatory bowel disease: a Helicobacter hepaticus model. PLoS ONE 9, e94209 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  251. Karatepe, O. et al. The effect of progesterone in the prevention of the chemically induced experimental colitis in rats TT - Efeito da progesterona na prevenção de colite experimental induzida quimicamente em ratos. Acta Cir. Bras. 27, 23–29 (2012).

    Article  PubMed  Google Scholar 

  252. Hou, Q., Huang, J., Ayansola, H., Masatoshi, H. & Zhang, B. Intestinal stem cells and immune cell relationships: potential therapeutic targets for inflammatory bowel diseases. Front. Immunol. 11, 623691 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  253. Lee, S. H. et al. Anti-microbial antibody response is associated with future onset of Crohn’s disease independent of biomarkers of altered gut barrier function, subclinical inflammation, and genetic risk. Gastroenterology 161, 1540–1551 (2021).

    Article  CAS  PubMed  Google Scholar 

  254. Sciarra, F., Campolo, F., Franceschini, E., Carlomagno, F. & Venneri, M. A. Gender-specific impact of sex hormones on the immune system. Int. J. Mol. Sci. 24, 6302 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Ahluwalia, B., Moraes, L., Magnusson, M. K. & Öhman, L. Immunopathogenesis of inflammatory bowel disease and mechanisms of biological therapies. Scand. J. Gastroenterol. 53, 379–389 (2018).

    Article  PubMed  Google Scholar 

  256. Michele, F. H., Vladimir, B. B. & Sabra, L. K. Sex differences in the recognition of and innate antiviral responses to Seoul virus in Norway rats. Brain Behav. Immun. 22, 503–516 (2008).

    Article  Google Scholar 

  257. Sugimoto, K. Role of STAT3 in inflammatory bowel disease. World J. Gastroenterol. 14, 5110–5114 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Hedl, M., Proctor, D. D. & Abraham, C. JAK2 disease-risk variants are gain of function and JAK signaling threshold determines innate receptor-induced proinflammatory cytokine secretion in macrophages. J. Immunol. 197, 3695–3704 (2016).

    Article  CAS  PubMed  Google Scholar 

  259. Marriott, I., Bost, K. L. & Huet-Hudson, Y. M. Sexual dimorphism in expression of receptors for bacterial lipopolysaccharides in murine macrophages: a possible mechanism for gender-based differences in endotoxic shock susceptibility. J. Reprod. Immunol. 71, 12–27 (2006).

    Article  CAS  PubMed  Google Scholar 

  260. Rettew, J. A., Huet-Hudson, Y. M. & Marriott, I. Testosterone reduces macrophage expression in the mouse of toll-like receptor 4, a trigger for inflammation and innate immunity. Biol. Reprod. 78, 432–437 (2008).

    Article  CAS  PubMed  Google Scholar 

  261. Powrie, F. et al. Inhibition of Th1 responses prevents inflammatory bowel disease in scid mice reconstituted with CD45RBhi CD4+ T cells. Immunity 1, 553–562 (1994).

    Article  CAS  PubMed  Google Scholar 

  262. Mohammad, I. et al. Estrogen receptor contributes to T cell-mediated autoimmune inflammation by promoting T cell activation and proliferation. Sci. Signal. 11, eaap9415 (2018).

    Article  PubMed  Google Scholar 

  263. Dosiou, C. et al. Expression of membrane progesterone receptors on human T lymphocytes and Jurkat cells and activation of G-proteins by progesterone. J. Endocrinol. 196, 67–77 (2008).

    Article  CAS  PubMed  Google Scholar 

  264. Pierdominici, M. et al. Linking estrogen receptor β expression with inflammatory bowel disease activity. Oncotarget 6, 40443–40451 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  265. Guo, D. et al. Estrogen receptor β activation ameliorates DSS-induced chronic colitis by inhibiting inflammation and promoting Treg differentiation. Int. Immunopharmacol. 77, 105971 (2019).

    Article  CAS  PubMed  Google Scholar 

  266. Eichele, D. D. & Kharbanda, K. K. Dextran sodium sulfate colitis murine model: an indispensable tool for advancing our understanding of inflammatory bowel diseases pathogenesis. World J. Gastroenterol. 23, 6016–6029 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Yu, X. et al. Androgen maintains intestinal homeostasis by inhibiting BMP signaling via intestinal stromal cells. Stem Cell Rep. 15, 912–925 (2020).

    Article  CAS  Google Scholar 

  268. Homma, H. et al. The female intestine is more resistant than the male intestine to gut injury and inflammation when subjected to conditions associated with shock states. Am. J. Physiol. Gastrointest. Liver Physiol. 288, 466–472 (2005).

    Article  Google Scholar 

  269. Wada-Hiraike, O. et al. Role of estrogen receptor β in colonic epithelium. Proc. Natl. Acad. Sci. USA 103, 2959–2964 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Braniste, V. et al. Oestradiol decreases colonic permeability through oestrogen receptor β-mediated up-regulation of occludin and junctional adhesion molecule-A in epithelial cells. J. Physiol. 587, 3317–3328 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. van der Giessen, J., van der Woude, C., Peppelenbosch, M. & Fuhler, G. A direct effect of sex hormones on epithelial barrier function in inflammatory bowel disease models. Cells 8, 261 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  272. Harris, H. A. et al. Evaluation of an estrogen receptor-β agonist in animal models of human disease. Endocrinology 144, 4241–4249 (2003).

    Article  CAS  PubMed  Google Scholar 

  273. Thursby, E. & Juge, N. Introduction to the human gut microbiota. Biochem. J. 474, 1823–1836 (2017).

    Article  CAS  PubMed  Google Scholar 

  274. Natividad, J. M. M. & Verdu, E. F. Modulation of intestinal barrier by intestinal microbiota: pathological and therapeutic implications. Pharmacol. Res. 69, 42–51 (2013).

    Article  CAS  PubMed  Google Scholar 

  275. Amy, M. S., Alyssa, K. W. & Tiffany, L. W. Cancer-promoting effects of microbial dysbiosis. Curr. Oncol. Rep. 16, 406 (2014).

    Article  Google Scholar 

  276. Santana, P. T., Rosas, S. L. B., Ribeiro, B. E., Marinho, Y. & de Souza, H. S. P. Dysbiosis in inflammatory bowel disease: pathogenic role and potential therapeutic targets. Int. J. Mol. Sci. 23, 1–25 (2022).

    Article  Google Scholar 

  277. Leibovitzh, H. et al. Altered gut microbiome composition and function are associated with gut barrier dysfunction in healthy relatives of patients with Crohn’s disease. Gastroenterology 163, 1364–1376.e10 (2022).

    Article  CAS  PubMed  Google Scholar 

  278. Raygoza Garay, J. A. et al. Gut microbiome composition is associated with future onset of Crohn’s disease in healthy first-degree relatives. Gastroenterology 165, 670–681 (2023).

    Article  CAS  PubMed  Google Scholar 

  279. Forbes, J. D., Van Domselaar, G. & Bernstein, C. N. Microbiome survey of the inflamed and noninflamed gut at different compartments within the gastrointestinal tract of inflammatory bowel disease patients. Inflamm. Bowel Dis. 22, 817–825 (2016).

    Article  PubMed  Google Scholar 

  280. Nishino, K. et al. Analysis of endoscopic brush samples identified mucosa-associated dysbiosis in inflammatory bowel disease. J. Gastroenterol. 53, 95–106 (2018).

    Article  PubMed  Google Scholar 

  281. Lawal, S. A., Voisin, A., Olof, H., Bording-Jorgensen, M. & Armstrong, H. Diversity of the microbiota communities found in the various regions of the intestinal tract in healthy individuals and inflammatory bowel diseases. Front. Immunol. 14, 1242242 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Org, E. et al. Sex differences and hormonal effects on gut microbiota composition in mice. Gut Microbes 7, 313–322 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Mueller, S. et al. Differences in fecal microbiota in different European study populations in relation to age, gender, and country: a cross-sectional study. Appl. Environ. Microbiol. 72, 1027–1033 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. He, S. et al. The gut microbiome and sex hormone-related diseases. Front. Microbiol. 12, 711137 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  285. Markle, J. G. M. et al. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science 339, 1084–1088 (2013).

    Article  CAS  PubMed  Google Scholar 

  286. Colldén, H. et al. The gut microbiota is a major regulator of androgen metabolism in intestinal contents. Am. J. Physiol. Endocrinol. Metab. 317, E1182–E1192 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  287. Haro, C. et al. Intestinal microbiota is influenced by gender and body mass index. PLoS ONE 11, e0154090 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  288. Zhang, X. et al. Sex- and age-related trajectories of the adult human gut microbiota shared across populations of different ethnicities. Nat. Aging 1, 87–100 (2021).

    Article  PubMed  Google Scholar 

  289. Yurkovetskiy, L. et al. Gender bias in autoimmunity is influenced by microbiota. Immunity 39, 400–412 (2013).

    Article  CAS  PubMed  Google Scholar 

  290. Yang, Y. et al. Estrogen inhibits the overgrowth of Escherichia coli in the rat intestine under simulated microgravity. Mol. Med. Rep. 17, 2313–2320 (2018).

    CAS  PubMed  Google Scholar 

  291. Koren, O. et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell 150, 470–480 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Nuriel-Ohayon, M. et al. Progesterone increases bifidobacterium relative abundance during late pregnancy. Cell Rep. 27, 730–736.e3 (2019).

    Article  CAS  PubMed  Google Scholar 

  293. Arruvito, L., Sanz, M., Banham, A. H. & Fainboim, L. Expansion of CD4+CD25+ and FOXP3+ regulatory T cells during the follicular phase of the menstrual cycle: implications for human reproduction. J. Immunol. 178, 2572–2578 (2007).

    Article  CAS  PubMed  Google Scholar 

  294. Lee, G. S. et al. Estrogen enhances female small intestine epithelial organoid regeneration. J. BioX Res. 2, 9–15 (2019).

    Google Scholar 

  295. Miller, L. R. et al. Considering sex as a biological variable in preclinical research. FASEB J. 31, 29–34 (2017).

    Article  CAS  PubMed  Google Scholar 

  296. Garcia-Sifuentes, Y. & Maney, D. L. Reporting and misreporting of sex differences in the biological sciences. eLife 10, e70817 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Nieuwenhuis, S., Forstmann, B. U. & Wagenmakers, E. J. Erroneous analyses of interactions in neuroscience: a problem of significance. Nat. Neurosci. 14, 1105–1107 (2011).

    Article  CAS  PubMed  Google Scholar 

  298. Buch, T. et al. Benefits of a factorial design focusing on inclusion of female and male animals in one experiment. J. Mol. Med. 97, 871–877 (2019).

    Article  PubMed  Google Scholar 

  299. Hines, M. Sex-related variation in human behavior and the brain. Trends Cogn. Sci. 14, 448–456 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  300. Breehl, L. & Caban, O. Physiology, Puberty (StatPearls, 2023).

  301. Morton, A. & Teasdale, S. Physiological changes in pregnancy and their influence on the endocrine investigation. Clin. Endocrinol. 96, 3–11 (2022).

    Article  CAS  Google Scholar 

  302. Jiang, L. Q. et al. Hormonal and reproductive factors in relation to the risk of rheumatoid arthritis in women: a prospective cohort study with 223 526 participants. RMD Open 10, e003338 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  303. Arnold, A. P. & Chen, X. What does the “four core genotypes” mouse model tell us about sex differences in the brain and other tissues? Front. Neuroendocrinol. 30, 1–9 (2009).

    Article  PubMed  Google Scholar 

  304. Joshi, A., Soni, A. & Acharya, S. In vitro models and ex vivo systems used in inflammatory bowel disease. Vitr. Model. 1, 213–227 (2022).

    Article  Google Scholar 

  305. Swanson, K. D., Theodorou, E. & Kokkotou, E. Reproducing the human mucosal environment ex vivo: inflammatory bowel disease as a paradigm. Curr. Opin. Gastroenterol. 34, 384–391 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  306. Bailoo, J. D., Reichlin, T. S. & Würbel, H. Refinement of experimental design and conduct in laboratory animal research. ILAR J. 55, 383–391 (2014).

    Article  CAS  PubMed  Google Scholar 

  307. Barnett, A. G. & Glasziou, P. Target and actual sample sizes for studies from two trial registries from 1999 to 2020: an observational study. BMJ Open 11, 1–13 (2021).

    Article  Google Scholar 

  308. Patel, M. X., Doku, V. & Tennakoon, L. Challenges in recruitment of research participants. Adv. Psychiatr. Treat. 9, 229–238 (2003).

    Article  Google Scholar 

  309. Beltz, A. M., Beery, A. K. & Becker, J. B. Analysis of sex differences in pre-clinical and clinical data sets. Neuropsychopharmacology 44, 2155–2158 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  310. Diester, C. M., Banks, M. L., Neigh, G. N. & Negus, S. S. Experimental design and analysis for consideration of sex as a biological variable. Neuropsychopharmacology 44, 2159–2162 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  311. DeCasien, A. R., Guma, E., Liu, S. & Raznahan, A. Sex differences in the human brain: a roadmap for more careful analysis and interpretation of a biological reality. Biol. Sex. Differ. 13, 43 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  312. Usselman, C. W. et al. Guidelines on the use of sex and gender in cardiovascular research. Am. J. Physiol. Heart Circ. Physiol. 326, H238–H255 (2024).

    Article  PubMed  Google Scholar 

  313. Maté-Jimenez, J., Muñoz, S., Vicent, D. & Pajares, J. M. Incidence and prevalence of ulcerative colitis and Crohn’s disease in urban and rural areas of Spain from 1981 to 1988. J. Clin. Gastroenterol. 18, 27–31 (1994).

    Article  PubMed  Google Scholar 

  314. Hauser, G., Tkalcić, M., Stimac, D., Milić, S. & Sincić, B. M. Gender related differences in quality of life and affective status in patients with inflammatory bowel disease. Coll. Antropol. 35, 203–207 (2011).

    PubMed  Google Scholar 

  315. Zelinkova, Z. et al. Sex-dimorphic adverse drug reactions to immune suppressive agents in inflammatory bowel disease. World J. Gastroenterol. 18, 6967–6973 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. Heath, E. M., Kim, R. B. & Wilson, A. A comparative analysis of drug therapy, disease phenotype, and health care outcomes for men and women with inflammatory bowel disease. Dig. Dis. Sci. 67, 4287–4294 (2022).

    Article  PubMed  Google Scholar 

  317. McCarthy, L. et al. Sex and gender-based analysis in pharmacy practice research: a scoping review. Res. Soc. Adm. Pharm. 13, 1045–1054 (2017).

    Article  Google Scholar 

  318. Colineaux, H., Soulier, A., Lepage, B. & Kelly-Irving, M. Considering sex and gender in Epidemiology: a challenge beyond terminology. From conceptual analysis to methodological strategies. Biol. Sex. Differ. 13, 23 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  319. Geerling, B. J., Van Marken Lichtenbelt, W. D., Stockbrügger, R. W. & Brummer, R. J. M. Gender specific alterations of body composition in patients with inflammatory bowel disease compared with controls. Eur. J. Clin. Nutr. 53, 479–485 (1999).

    Article  CAS  PubMed  Google Scholar 

  320. Bommena, S., Goldberg, A., Amini, M. & Alishahi, Y. Depression in women with inflammatory bowel disease: a multifaceted approach for a multidimensional problem. Inflamm. Bowel Dis. 29, 1957–1970 (2023).

    Article  PubMed  Google Scholar 

  321. Tso, V. K. et al. Metabolomic profiles are gender, disease and time specific in the interleukin-10 gene-deficient mouse model of inflammatory bowel disease. PLoS ONE 8, e67654 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  322. Metge, C. J., Blanchard, J. F., Peterson, S. & Bernstein, C. N. Use of pharmaceuticals by inflammatory bowel disease patients: a population-based study. Am. J. Gastroenterol. 96, 3348–3355 (2001).

    Article  CAS  PubMed  Google Scholar 

  323. Fägerstam, J. P. & Whiss, P. A. Higher platelet P-selectin in male patients with inflammatory bowel disease compared to healthy males. World J. Gastroenterol. 12, 1270–1272 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  324. Agrawal, M. et al. Gender-based differences in response to tumor necrosis factor inhibitor therapies for ulcerative colitis: individual participant data meta-analyses of clinical trials. Inflamm. Bowel Dis. 29, 1–8 (2023).

    Article  PubMed  Google Scholar 

  325. Maunder, R., Toner, B., De Rooy, E. & Moskovitz, D. Influence of sex and disease on illness-related concerns in inflammatory bowel disease. Can. J. Gastroenterol. 13, 728–732 (1999).

    CAS  PubMed  Google Scholar 

  326. Son, H. J. et al. Sex-related alterations of gut microbiota in the C57BL/6 mouse model of inflammatory bowel disease. J. Cancer Prev. 24, 173–182 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  327. d’Aldebert, E. et al. Characterization of human colon organoids from inflammatory bowel disease patients. Front. Cell Dev. Biol. 8, 363 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  328. Armstrong, H. K. et al. Unfermented β-fructan fibers fuel inflammation in select inflammatory bowel disease patients. Gastroenterology 164, 228–240 (2023).

    Article  CAS  PubMed  Google Scholar 

  329. Bedke, T. et al. Protective function of sclerosing cholangitis on IBD. Gut 73, 1292–1301 (2024).

    Article  PubMed  Google Scholar 

  330. Zhang, Z. et al. Sex-specific differences in the gut microbiome in response to dietary fiber supplementation in IL-10-deficient mice. Nutrients 12, 2088 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  331. Brand, E. C. et al. Healthy cotwins share gut microbiome signatures with their inflammatory bowel disease twins and unrelated patients. Gastroenterology 160, 1970–1985 (2021).

    Article  CAS  PubMed  Google Scholar 

  332. Zou, F. et al. Associations between sex hormones, receptors, binding proteins and inflammatory bowel disease: a Mendelian randomization study. Front. Endocrinol. 15, 1272746 (2024).

    Article  Google Scholar 

  333. Hoffmann, J. P., Liu, J. A., Seddu, K. & Klein, S. L. Sex hormone signaling and regulation of immune function. Immunity 56, 2472–2491 (2023).

    Article  CAS  PubMed  Google Scholar 

  334. Homo-Delarche, F. et al. Sex steroids, glucocorticoids, stress and autoimmunity. J. Steroid Biochem. Molec. Biol. 40, 619–637 (1991).

    Article  CAS  PubMed  Google Scholar 

  335. Chuffa, L. G., Lupi-Júnior, L. A., Costa, A. B., Amorim, J. P. & Seiva, F. R. The role of sex hormones and steroid receptors on female reproductive cancers. Steroids 118, 93–108 (2017).

    Article  CAS  PubMed  Google Scholar 

  336. Pardridge, M. W. Serum bioavailability of sex steroid hormones. Clin. Endocrinol. Metab. 15, 259–278 (1986).

    Article  CAS  PubMed  Google Scholar 

  337. Gao, X., Loggie, B. W. & Nawaz, Z. The roles of sex steroid receptor coregulators in cancer. Mol. Cancer 1, 7 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  338. Thakur, M. K. & Paramanik, V. Role of steroid hormone coregulators in health and disease. Horm. Res. 71, 194–200 (2009).

    CAS  PubMed  Google Scholar 

  339. Blumenstein, I. & Sonnenberg, E. Sex- and gender-related differences in inflammatory bowel diseases. Front. Gastroenterol. 2, 1199687 (2023).

    Article  Google Scholar 

  340. Golder, S., O’Connor, K., Wang, Y., Stevens, R. & Gonzalez-Hernandez, G. Best practices on big data analytics to address sex-specific biases in our understanding of the etiology, diagnosis, and prognosis of diseases. Annu. Rev. Biomed. Data Sci. 5, 251–267 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  341. Cremin, C. J., Dash, S. & Huang, X. Big data: historic advances and emerging trends in biomedical research. Curr. Res. Biotechnol. 4, 138–151 (2022).

    Article  CAS  Google Scholar 

  342. Dash, S., Shakyawar, S. K., Sharma, M. & Kaushik, S. Big data in healthcare: management, analysis and future prospects. J. Big Data 6, 54 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

D.M.T. is supported by the Children’s Hospital Research Institute of Manitoba/Research Manitoba PhD Studentship Award and the Mindel & Tom Olenick Research Studentships in Medicine. C.N.B. is supported in part by the Bingham Chair in Gastroenterology. J.-E.G. is supported by the Natural Sciences and Engineering Research Council of Canada (NSERC). H.K.A. is supported by the University of Manitoba and Canada Research Chair. S.M. is supported by the Canadian Institutes of Health Research and NSERC.

Author information

Authors and Affiliations

Authors

Contributions

D.M.T. and H.K.A. researched data for the article. C.N.B., D.M.T., J.-E.G. and H.K.A. contributed substantially to discussion of the content. D.M.T., C.N.B., S.M. and H.K.A. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Heather K. Armstrong.

Ethics declarations

Competing interests

C.N.B. has consulted for Abbvie Canada, Amgen Canada, Bristol Myers Squibb Canada, Eli Lilly, Janssen Canada, Pfizer Canada, Ferring Canada, Pendopharm Canada, Sandoz Canada and Takeda Canada. He has received unrestricted educational grants from Abbvie Canada, Boston Scientific, Fresenius-Kabi Canada, Bristol Myers Squibb Canada, Janssen Canada, Pfizer Canada, Organon Canada and Takeda Canada and research grants from Abbvie, Janssen, Bristol Myers Squibb, Pfizer, Sandoz and Takeda. He has been on speaker’s bureaus of Abbvie Canada, Eli Lilly, Fresenius-Kabi, Takeda Canada, Pfizer Canada and Janssen Canada. J.-E.G. has served as a member of the scientific medical advisory committee for Crohn’s and Colitis Canada and as a member and chair of the research advisory committee for Research Manitoba. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks Gionata Fiorino, Alessandro Armuzzi, Giuseppe Privitera and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tshikudi, D.M., Bernstein, C.N., Mishra, S. et al. Influence of biological sex in inflammatory bowel diseases. Nat Rev Gastroenterol Hepatol 22, 415–437 (2025). https://doi.org/10.1038/s41575-025-01038-y

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41575-025-01038-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing