Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Defining the mucosal ecosystem: epithelial–mesenchymal interdependence in gastrointestinal health and disease

Abstract

The crypt–villus architecture of the intestinal mucosa is underpinned by dynamic interactions between distinct populations of epithelial, stromal and immune cells. Although the epithelial compartment has attracted substantial attention, there is a growing appreciation for the critical role of mesenchymal cells in shaping epithelial stem cell function and dictating lineage specification. In this Review, we outline how the epithelial and mesenchymal compartments of the developing gut evolve in a mutually dependent manner to establish dynamic reciprocal signalling gradients that maintain adult tissue homeostasis. We discuss how perturbations to this delicate ecosystem result in rapid adaptive cellular responses that act to restore tissue function. Furthermore, we explore how the intricate nature of cell fate interdependence also renders the mucosa susceptible to pathological disruption. Drawing on the latest studies, we highlight the crosstalk networks between the epithelial and stromal compartments that underlie these processes and consider how these insights are informing future research directions and therapeutic strategies. In doing so, we advocate for a shift away from the conventional epithelial-centric paradigm toward a more integrated framework that considers the full spectrum of intercellular interactions maintaining intestinal tissue integrity and shaping disease progression.

Key points

  • Epithelial–mesenchymal cell interactions orchestrate crypt–villus morphogenesis during development, establishing a cross-compartmental interdependence that persists through adult life.

  • In health, crypt–villus compartmentalization is maintained by opposing gradients of reciprocal morphogenic signals that collectively pattern epithelial and mesenchymal cell fate and function along the vertical axis.

  • This dynamic bidirectional interplay renders the intestinal mucosa remarkably sensitive to damage, enabling a rapid cascade of coordinated epithelial and mesenchymal remodelling events that drive tissue repair.

  • Mutant intestinal cells must either cooperate with their surrounding niche or subvert existing intercompartmental crosstalk networks to bypass homeostatic constraints in favour of tumorigenesis.

  • Metastatic outgrowth and colonization similarly rely on adaptive interactions with the evolving microenvironment, with resident cells in the host organ co-opted and reprogrammed into supportive pro-metastatic niches.

  • Adopting a systems-level approach that considers the intestinal mucosa as an integrated ecosystem will be needed to unravel the regulatory mechanisms underpinning these processes and guide innovative therapeutic strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Localization of key cellular components constituting intestinal crypt–villus structures.
Fig. 2: Epithelial–stromal remodelling during intestinal regeneration.
Fig. 3: Mechanisms of mutant cell–niche crosstalk governing neoplastic transformation.

Similar content being viewed by others

References

  1. McCarthy, N. et al. Distinct mesenchymal cell populations generate the essential intestinal BMP signaling gradient. Cell Stem Cell 26, 391–402.e5 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kraiczy, J. et al. Graded BMP signaling within intestinal crypt architecture directs self-organization of the Wnt-secreting stem cell niche. Cell Stem Cell 30, 433–449.e8 (2023). This elegant study illustrates how BMP signals from crypt top fibroblasts create a gradient that spatially patterns mesenchymal cells along the vertical axis, generating a self-organizing WNT-secreting niche at the crypt base that sustains ISC identity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. McCarthy, N., Kraiczy, J. & Shivdasani, R. A. Cellular and molecular architecture of the intestinal stem cell niche. Nat. Cell Biol. 22, 1033–1041 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Pærregaard, S. I. et al. The small and large intestine contain related mesenchymal subsets that derive from embryonic Gli1+ precursors. Nat. Commun. 14, 2307 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kinchen, J. et al. Structural remodeling of the human colonic mesenchyme in inflammatory bowel disease. Cell 175, 372–386.e17 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kabiri, Z. et al. Stroma provides an intestinal stem cell niche in the absence of epithelial Wnts. Development 141, 2206–2215 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Valenta, T. et al. Wnt ligands secreted by subepithelial mesenchymal cells are essential for the survival of intestinal stem cells and gut homeostasis. Cell Rep. 15, 911–918 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Zhu, G., Hu, J. & Xi, R. The cellular niche for intestinal stem cells: a team effort. Cell Reg. 10, 1 (2021).

    Article  CAS  Google Scholar 

  9. McCarthy, N. et al. Smooth muscle contributes to the development and function of a layered intestinal stem cell niche. Dev. Cell 58, 550–564.e6 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shoshkes-Carmel, M. et al. Subepithelial telocytes are an important source of Wnts that supports intestinal crypts. Nature 557, 242–246 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Aoki, R. et al. Foxl1-expressing mesenchymal cells constitute the intestinal stem cell niche. Cell Mol. Gastroenterol. Hepatol. 2, 175–188 (2016).

    Article  PubMed  Google Scholar 

  12. Stzepourginski, I. et al. CD34+ mesenchymal cells are a major component of the intestinal stem cells niche at homeostasis and after injury. Proc. Natl Acad. Sci. USA 114, E506–E513 (2017).

    CAS  Google Scholar 

  13. Sailaja, B. S., He, X. C. & Li, L. The regulatory niche of intestinal stem cells. J. Physiol. 594, 4827–4836 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Eggington, H. R., Mulholland, E. J. & Leedham, S. J. Morphogen regulation of stem cell plasticity in intestinal regeneration and carcinogenesis. Dev. Dyn. 251, 61–74 (2022).

    Article  CAS  PubMed  Google Scholar 

  15. Kim, T.-H., Escudero, S. & Shivdasani, R. A. Intact function of Lgr5 receptor-expressing intestinal stem cells in the absence of Paneth cells. Proc. Natl Acad. Sci. USA 109, 3932–3937 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Farin, H. F., Van Es, J. H. & Clevers, H. Redundant sources of Wnt regulate intestinal stem cells and promote formation of Paneth cells. Gastroenterology 143, 1518–1529.e7 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Degirmenci, B., Valenta, T., Dimitrieva, S., Hausmann, G. & Basler, K. GLI1-expressing mesenchymal cells form the essential Wnt-secreting niche for colon stem cells. Nature 558, 449–453 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Yan, K. S. et al. Non-equivalence of Wnt and R-spondin ligands during Lgr5+ intestinal stem-cell self-renewal. Nature 545, 238–242 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang, Y. & Que, J. BMP signaling in development, stem cells, and diseases of the gastrointestinal tract. Annu. Rev. Physiol. 82, 251–273 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Berková, L. et al. Terminal differentiation of villus tip enterocytes is governed by distinct Tgfβ superfamily members. EMBO Rep. 24, e56454 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lin, M. et al. Establishment of gastrointestinal assembloids to study the interplay between epithelial crypts and their mesenchymal niche. Nat. Commun. 14, 3025 (2023). The authors establish a colon assembloid system composed of epithelial and mesenchymal cells that self-organize into structures that recapitulate in vivo crypt architecture and niche interactions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Beumer, J. et al. BMP gradient along the intestinal villus axis controls zonated enterocyte and goblet cell states. Cell Rep. 38, 110438 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. Beumer, J. et al. Enteroendocrine cells switch hormone expression along the crypt-to-villus BMP signalling gradient. Nat. Cell Biol. 20, 909–916 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lemmetyinen, T. T. et al. Fibroblast-derived EGF ligand neuregulin 1 induces fetal-like reprogramming of the intestinal epithelium without supporting tumorigenic growth. Dis. Model. Mech. 16, dmm049692 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jardé, T. et al. Mesenchymal niche-derived neuregulin-1 drives intestinal stem cell proliferation and regeneration of damaged epithelium. Cell Stem Cell 27, 646–662.e7 (2020).

    Article  PubMed  Google Scholar 

  26. Holloway, E. M. et al. Mapping development of the human intestinal niche at single-cell resolution. Cell Stem Cell 28, 568–580.e4 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Deng, M. et al. Lepr+ mesenchymal cells sense diet to modulate intestinal stem/progenitor cells via Leptin–Igf1 axis. Cell Res. 32, 670–686 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Buechler, M. B. et al. Cross-tissue organization of the fibroblast lineage. Nature 593, 575–579 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. Thomson, C. A. et al. Expression of the atypical chemokine receptor ACKR4 identifies a novel population of intestinal submucosal fibroblasts that preferentially expresses endothelial cell regulators. J. Immunol. 201, 215–229 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Worthley, D. L. et al. Gremlin 1 identifies a skeletal stem cell with bone, cartilage, and reticular stromal potential. Cell 160, 269–284 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Melissari, M.-T. et al. Col6a1+/CD201+ mesenchymal cells regulate intestinal morphogenesis and homeostasis. Cell. Mol. Life Sci. 79, 1 (2022).

    Article  CAS  Google Scholar 

  32. Mulholland, E. J. et al. Epithelial GREMLIN1 disrupts intestinal epithelial-mesenchymal crosstalk to induce a wnt-dependent ectopic stem cell niche through stromal remodelling. Nat. Commun. 16, 5167 (2025). This study demonstrates how BMP disruption can trigger stromal remodelling, leading to the formation of an ectopic stem cell niche that predisposes to tumour formation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ouahoud, S. et al. Loss of bone morphogenetic protein signaling in fibroblasts results in CXCL12-driven serrated polyp development. J. Gastroenterol. 58, 25–43 (2023).

    Article  CAS  PubMed  Google Scholar 

  34. Wang, Y. et al. Stromal BMP signaling regulates mucin production in the large intestine via interleukin-1/17. Sci. Adv. 9, eadi1827 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Allaire, J. M. et al. Bmp signaling in colonic mesenchyme regulates stromal microenvironment and protects from polyposis initiation. Int. J. Cancer 138, 2700–2712 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Jacob, J.-M. et al. PDGFRα-induced stromal maturation is required to restrain postnatal intestinal epithelial stemness and promote defense mechanisms. Cell Stem Cell 29, 856–868.e5 (2022).

    Article  CAS  PubMed  Google Scholar 

  37. Kosinski, C. et al. Indian hedgehog regulates intestinal stem cell fate through epithelial−mesenchymal interactions during development. Gastroenterology 139, 893–903 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. van Dop, W. A. et al. Loss of Indian hedgehog activates multiple aspects of a wound healing response in the mouse intestine. Gastroenterology 139, 1665–1676.e10 (2010).

    Article  PubMed  Google Scholar 

  39. van Dop, W. A. et al. Depletion of the colonic epithelial precursor cell compartment upon conditional activation of the hedgehog pathway. Gastroenterology 136, 2195–2203.e7 (2009).

    Article  PubMed  Google Scholar 

  40. Davidson, L. A. et al. Alteration of colonic stem cell gene signatures during the regenerative response to injury. Biochim. Biophys. Acta 1822, 1600–1607 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Meyer, A. R., Brown, M. E., McGrath, P. S. & Dempsey, P. J. Injury-induced cellular plasticity drives intestinal regeneration. Cell Mol. Gastroenterol. Hepatol. 13, 843–856 (2022).

    Article  PubMed  Google Scholar 

  42. Yui, S. et al. YAP/TAZ-dependent reprogramming of colonic epithelium links ECM remodeling to tissue regeneration. Cell Stem Cell 22, 35–49.e7 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nusse, Y. M. et al. Parasitic helminths induce fetal-like reversion in the intestinal stem cell niche. Nature 559, 109–113 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ayyaz, A. et al. Single-cell transcriptomes of the regenerating intestine reveal a revival stem cell. Nature 569, 121–125 (2019). This study shows how a damage-induced fetal-like state emerges after injury and undergoes YAP-dependent expansion to regenerate the LGR5+ ISC pool.

    Article  CAS  PubMed  Google Scholar 

  45. Viragova, S., Li, D. & Klein, O. D. Activation of fetal-like molecular programs during regeneration in the intestine and beyond. Cell Stem Cell 31, 949–960 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Miyoshi, H. et al. Prostaglandin E2 promotes intestinal repair through an adaptive cellular response of the epithelium. EMBO J. 36, 5–24 (2017).

    Article  CAS  PubMed  Google Scholar 

  47. de Sousa e Melo, F. & de Sauvage, F. J. Cellular plasticity in intestinal homeostasis and disease. Cell Stem Cell 24, 54–64 (2019).

    Article  PubMed  Google Scholar 

  48. Chen, L. et al. TGFB1 induces fetal reprogramming and enhances intestinal regeneration. Cell Stem Cell 30, 1520–1537.e8 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gregorieff, A., Liu, Y., Inanlou, M. R., Khomchuk, Y. & Wrana, J. L. Yap-dependent reprogramming of Lgr5+ stem cells drives intestinal regeneration and cancer. Nature 526, 715–718 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Kim, H.-B. et al. Prostaglandin E2 activates YAP and a positive-signaling loop to promote colon regeneration after colitis but also carcinogenesis in mice. Gastroenterology 152, 616–630 (2017).

    Article  CAS  PubMed  Google Scholar 

  51. Hartl, K. et al. p53 terminates the regenerative fetal-like state after colitis-associated injury. Sci. Adv. 10, eadp8783 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Iftekhar, A. et al. Genomic aberrations after short-term exposure to colibactin-producing E. coli transform primary colon epithelial cells. Nat. Commun. 12, 1003 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shah, K. et al. Cell-intrinsic aryl hydrocarbon receptor signalling is required for the resolution of injury-induced colonic stem cells. Nat. Commun. 13, 1827 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Capdevila, C. et al. Time-resolved fate mapping identifies the intestinal upper crypt zone as an origin of Lgr5+ crypt base columnar cells. Cell 187, 3039–3055.e14 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Malagola, E. et al. Isthmus progenitor cells contribute to homeostatic cellular turnover and support regeneration following intestinal injury. Cell 187, 3056–3071.e17 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Azkanaz, M. et al. Retrograde movements determine effective stem cell numbers in the intestine. Nature 607, 548–554 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cader, M. Z. & Kaser, A. Recent advances in inflammatory bowel disease: mucosal immune cells in intestinal inflammation. Gut 62, 1653–1664 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Palikuqi, B. et al. Lymphangiocrine signals are required for proper intestinal repair after cytotoxic injury. Cell Stem Cell 29, 1262–1272.e5 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Baghdadi, M. B. et al. Enteric glial cell heterogeneity regulates intestinal stem cell niches. Cell Stem Cell 29, 86–100.e6 (2022).

    Article  CAS  PubMed  Google Scholar 

  60. Cadinu, P. et al. Charting the cellular biogeography in colitis reveals fibroblast trajectories and coordinated spatial remodeling. Cell 187, 2010–2028.e30 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hageman, J. H. et al. Intestinal regeneration: regulation by the microenvironment. Dev. Cell 54, 435–446 (2020).

    Article  CAS  PubMed  Google Scholar 

  62. Goto, N. et al. Lymphatics and fibroblasts support intestinal stem cells in homeostasis and injury. Cell Stem Cell 29, 1246–1261.e6 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Miyoshi, H., Ajima, R., Luo, C. T., Yamaguchi, T. P. & Stappenbeck, T. S. Wnt5a potentiates TGF-β signaling to promote colonic crypt regeneration after tissue injury. Science 338, 108–113 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Koppens, M. A. J. et al. Bone morphogenetic protein pathway antagonism by Grem1 regulates epithelial cell fate in intestinal regeneration. Gastroenterology 161, 239–254.e9 (2021).

    Article  CAS  PubMed  Google Scholar 

  65. Horiguchi, H. et al. ANGPTL2 expression in the intestinal stem cell niche controls epithelial regeneration and homeostasis. EMBO J. 36, 409–424 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Harnack, C. et al. R-spondin 3 promotes stem cell recovery and epithelial regeneration in the colon. Nat. Commun. 10, 4368 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Greicius, G. et al. PDGFRα+ pericryptal stromal cells are the critical source of Wnts and RSPO3 for murine intestinal stem cells in vivo. Proc. Natl Acad. Sci. USA 115, E3173–E3181 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Roulis, M. et al. Paracrine orchestration of intestinal tumorigenesis by a mesenchymal niche. Nature 580, 524–529 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Manieri, N. A., Drylewicz, M. R., Miyoshi, H. & Stappenbeck, T. S. Igf2bp1 is required for full induction of Ptgs2 mRNA in colonic mesenchymal stem cells in mice. Gastroenterology 143, 110–121.e10 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Orzechowska-Licari, E. J., Bialkowska, A. B. & Yang, V. W. Sonic Hedgehog and WNT signaling regulate a positive feedback loop between intestinal epithelial and stromal cells to promote epithelial regeneration. Cell Mol. Gastroenterol. Hepatol. 16, 607–642 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kapalczynska, M. et al. BMP feed-forward loop promotes terminal differentiation in gastric glands and is interrupted by H. pylori-driven inflammation. Nat. Commun. 13, 1577 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sigal, M. et al. Stromal R-spondin orchestrates gastric epithelial stem cells and gland homeostasis. Nature 548, 451–455 (2017).

    Article  CAS  PubMed  Google Scholar 

  73. Sigal, M. et al. R-spondin-3 induces secretory, antimicrobial Lgr5+ cells in the stomach. Nat. Cell Biol. 21, 812–823 (2019).

    Article  CAS  PubMed  Google Scholar 

  74. Heuberger, J. et al. Extrusion of BMP2+ surface colonocytes promotes stromal remodeling and tissue regeneration. Nat. Commun. 16, 4131 (2025). This study demonstrates how immune cell-derived IFNγ in colitis induces apoptotic extrusion of BMP2+ surface colonocytes, which, in turn, remodels the mesenchymal niche to promote epithelial regeneration.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Jasso, G. J. et al. Colon stroma mediates an inflammation-driven fibroblastic response controlling matrix remodeling and healing. PLoS Biol. 20, e3001532 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Smillie, C. S. et al. Intra- and inter-cellular rewiring of the human colon during ulcerative colitis. Cell 178, 714–730.e22 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lee-Six, H. et al. The landscape of somatic mutation in normal colorectal epithelial cells. Nature 574, 532–537 (2019).

    Article  CAS  PubMed  Google Scholar 

  78. Blokzijl, F. et al. Tissue-specific mutation accumulation in human adult stem cells during life. Nature 538, 260–264 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Vermeulen, L. et al. Defining stem cell dynamics in models of intestinal tumor initiation. Science 342, 995–998 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. Nicholson, A. M. et al. Fixation and spread of somatic mutations in adult human colonic epithelium. Cell Stem Cell 22, 909–918.e8 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Snippert, H. J., Schepers, A. G., van Es, J. H., Simons, B. D. & Clevers, H. Biased competition between Lgr5 intestinal stem cells driven by oncogenic mutation induces clonal expansion. EMBO Rep. 15, 62–69 (2014).

    Article  CAS  PubMed  Google Scholar 

  82. Lopez-Garcia, C., Klein, A. M., Simons, B. D. & Winton, D. J. Intestinal stem cell replacement follows a pattern of neutral drift. Science 330, 822–825 (2010).

    Article  CAS  PubMed  Google Scholar 

  83. Snippert, H. J. et al. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem Cells. Cell 143, 134–144 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. Cancer Genome Atlas Network Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330–337 (2012).

    Article  Google Scholar 

  85. Vogelstein, B. et al. Genetic alterations during colorectal-tumor development. N. Engl. J. Med. 319, 525–532 (1988).

    Article  CAS  PubMed  Google Scholar 

  86. Fearon, E. R. & Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 61, 759–767 (1990).

    Article  CAS  PubMed  Google Scholar 

  87. Powell, S. M. et al. APC mutations occur early during colorectal tumorigenesis. Nature 359, 235–237 (1992).

    Article  CAS  PubMed  Google Scholar 

  88. Becker, W. R. et al. Single-cell analyses define a continuum of cell state and composition changes in the malignant transformation of polyps to colorectal cancer. Nat. Genet. 54, 985–995 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Barker, N. et al. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 457, 608–611 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. Baker, A.-M. et al. Quantification of crypt and stem cell evolution in the normal and neoplastic human colon. Cell Rep. 8, 940–947 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Flanagan, D. J. et al. NOTUM from Apc-mutant cells biases clonal competition to initiate cancer. Nature 594, 430–435 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. van Neerven, S. M. et al. Apc-mutant cells act as supercompetitors in intestinal tumour initiation. Nature 594, 436–441 (2021). Together with Flanagan et al. (2021), the authors demonstrate that APC-deficient ISCs act as supercompetitors, driving the differentiation of their wild-type neighbours by secreting the WNT antagonist Notum.

    Article  PubMed  Google Scholar 

  93. van Driel, M. S. et al. Caffeine limits expansion of Apc-deficient clones in the intestine by NOTUM inhibition. Cell Mol. Gastroenterol. Hepatol. 16, 652–655 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Huels, D. J. et al. Wnt ligands influence tumour initiation by controlling the number of intestinal stem cells. Nat. Commun. 9, 1132 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Vermeulen, L. et al. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat. Cell Biol. 12, 468–476 (2010).

    Article  CAS  PubMed  Google Scholar 

  96. Calle, E. E. & Kaaks, R. Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat. Rev. Cancer 4, 579–591 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. O’Sullivan, J., Lysaght, J., Donohoe, C. L. & Reynolds, J. V. Obesity and gastrointestinal cancer: the interrelationship of adipose and tumour microenvironments. Nat. Rev. Gastroenterol. Hepatol. 15, 699–714 (2018).

    Article  PubMed  Google Scholar 

  98. Beyaz, S. et al. High-fat diet enhances stemness and tumorigenicity of intestinal progenitors. Nature 531, 53–58 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sasaki, A. et al. Obesity suppresses cell-competition-mediated apical elimination of RasV12-transformed cells from epithelial tissues. Cell Rep. 23, 974–982 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kim, T.-Y. et al. A high-fat diet activates the BAs–FXR axis and triggers cancer-associated fibroblast properties in the colon. Cell Mol. Gastroenterol. Hepatol. 13, 1141–1159 (2022).

    Article  CAS  PubMed  Google Scholar 

  101. Kozar, S. et al. Continuous clonal labeling reveals small numbers of functional stem cells in intestinal crypts and adenomas. Cell Stem Cell 13, 626–633 (2013).

    Article  CAS  PubMed  Google Scholar 

  102. Fischer, J. M., Schepers, A. G., Clevers, H., Shibata, D. & Liskay, R. M. Occult progression by Apc-deficient intestinal crypts as a target for chemoprevention. Carcinogenesis 35, 237–246 (2014).

    Article  CAS  PubMed  Google Scholar 

  103. Gaynor, L. et al. Crypt density and recruited enhancers underlie intestinal tumour initiation. Nature 640, 231–239 (2025).

    Article  CAS  PubMed  Google Scholar 

  104. Sadien, I. D. et al. Polyclonality overcomes fitness barriers in Apc-driven tumorigenesis. Nature 634, 1196–1203 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Thirlwell, C. et al. Clonality assessment and clonal ordering of individual neoplastic crypts shows polyclonality of colorectal adenomas. Gastroenterology 138, 1441–1454.e7 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Leystra, A. A. et al. Multi-ancestral origin of intestinal tumors: impact on growth, progression, and drug efficacy. Cancer Rep. 5, e1459 (2022).

    CAS  Google Scholar 

  107. Lu, Z. et al. Polyclonal-to-monoclonal transition in colorectal precancerous evolution. Nature 636, 233–240 (2024).

    Article  CAS  PubMed  Google Scholar 

  108. Gausachs, M. et al. Mutational heterogeneity in APC and KRAS arises at the crypt level and leads to polyclonality in early colorectal tumorigenesis. Clin. Cancer Res. 23, 5936–5947 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Yum, M. K. et al. Tracing oncogene-driven remodelling of the intestinal stem cell niche. Nature 594, 442–447 (2021). This paper provides the first evidence that mutant ISCs can outcompete their neighbours by modulating stromal cell secretions within the shared niche.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Tomlinson, I. P. M. et al. Multiple common susceptibility variants near BMP pathway loci GREM1, BMP4, and BMP2 explain part of the missing heritability of colorectal cancer. PLoS Genet. 7, e1002105 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Jaeger, E. et al. Hereditary mixed polyposis syndrome is caused by a 40-kb upstream duplication that leads to increased and ectopic expression of the BMP antagonist GREM1. Nat. Genet. 44, 699–703 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Batts, L. E., Polk, D. B., Dubois, R. N. & Kulessa, H. Bmp signaling is required for intestinal growth and morphogenesis. Dev. Dyn. 235, 1563–1570 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Davis, H. et al. Aberrant epithelial GREM1 expression initiates colonic tumorigenesis from cells outside the stem cell niche. Nat. Med. 21, 62–70 (2015).

    Article  CAS  PubMed  Google Scholar 

  114. Haramis, A.-P. G. et al. De novo crypt formation and juvenile polyposis on BMP inhibition in mouse intestine. Science 303, 1684–1686 (2004).

    Article  CAS  PubMed  Google Scholar 

  115. Galandiuk, S. et al. Field cancerization in the intestinal epithelium of patients with Crohn’s ileocolitis. Gastroenterology 142, 855–864.e8 (2012).

    Article  PubMed  Google Scholar 

  116. Leedham, S. J. et al. Clonality, founder mutations, and field cancerization in human ulcerative colitis-associated neoplasia. Gastroenterology 136, 542–550.e6 (2009).

    Article  PubMed  Google Scholar 

  117. Fujii, S. et al. Development of colonic neoplasia in p53 deficient mice with experimental colitis induced by dextran sulphate sodium. Gut 53, 710–716 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Chang, W.-C. L. et al. Loss of p53 enhances the induction of colitis-associated neoplasia by dextran sulfate sodium. Carcinogenesis 28, 2375–2381 (2007).

    Article  CAS  PubMed  Google Scholar 

  119. Porter, R. J., Arends, M. J., Churchhouse, A. M. D. & Din, S. Inflammatory bowel disease-associated colorectal cancer: translational risks from mechanisms to medicines. J. Crohns Colitis 15, 2131–2141 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Hussain, S. P. et al. Increased p53 mutation load in noncancerous colon tissue from ulcerative colitis: a cancer-prone chronic inflammatory disease. Cancer Res. 60, 3333–3337 (2000).

    CAS  PubMed  Google Scholar 

  121. Cheng, H., Bjerknes, M., Amar, J. & Gardiner, G. Crypt production in normal and diseased human colonic epithelium. Anat. Rec. 216, 44–48 (1986).

    Article  CAS  PubMed  Google Scholar 

  122. Zhou, R. W., Harpaz, N., Itzkowitz, S. H. & Parsons, R. E. Molecular mechanisms in colitis-associated colorectal cancer. Oncogenesis 12, 48 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Yamamoto-Furusho, J. K. & Gutierrez-Herrera, F. D. Molecular mechanisms and clinical aspects of colitis-associated cancer in ulcerative colitis. Cells 14, 162 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kusaba, T. et al. Activation of STAT3 is a marker of poor prognosis in human colorectal cancer. Oncol. Rep. 15, 1445–1451 (2006).

    CAS  PubMed  Google Scholar 

  125. Heichler, C. et al. STAT3 activation through IL-6/IL-11 in cancer-associated fibroblasts promotes colorectal tumour development and correlates with poor prognosis. Gut 69, 1269–1282 (2020).

    Article  CAS  PubMed  Google Scholar 

  126. Wizenty, J. et al. Gastric stem cells promote inflammation and gland remodeling in response to Helicobacter pylori via Rspo3–Lgr4 axis. EMBO J. 41, e109996 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Sharma, A., Blériot, C., Currenti, J. & Ginhoux, F. Oncofetal reprogramming in tumour development and progression. Nat. Rev. Cancer 22, 593–602 (2022).

    Article  CAS  PubMed  Google Scholar 

  128. Tape, C. J. Plastic persisters: revival stem cells in colorectal cancer. Trends Cancer 10, 185–195 (2024).

    Article  CAS  PubMed  Google Scholar 

  129. Flier, J. S., Underhill, L. H. & Dvorak, H. F. Tumors: wounds that do not heal. N. Engl. J. Med. 315, 1650–1659 (1986).

    Article  Google Scholar 

  130. Mzoughi, S. et al. Oncofetal reprogramming drives phenotypic plasticity in WNT-dependent colorectal cancer. Nat. Genet. 57, 402–412 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Leach, J. D. G. et al. Oncogenic BRAF, unrestrained by TGFβ-receptor signalling, drives right-sided colonic tumorigenesis. Nat. Commun. 12, 3464 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Reischmann, N. et al. BRAFV600E drives dedifferentiation in small intestinal and colonic organoids and cooperates with mutant p53 and Apc loss in transformation. Oncogene 39, 6053–6070 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Bala, P. et al. Aberrant cell state plasticity mediated by developmental reprogramming precedes colorectal cancer initiation. Sci. Adv. 9, eadf0927 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Gil Vazquez, E. et al. Dynamic and adaptive cancer stem cell population admixture in colorectal neoplasia. Cell Stem Cell 29, 1213–1228.e8 (2022). This study identifies a dynamic continuum of functionally distinct stem cell phenotypes that comprise intestinal tumours and describes how the proportion of each varies according to genetic mutations and microenvironmental cues.

    Article  PubMed Central  Google Scholar 

  135. Solé, L. et al. p53 wild-type colorectal cancer cells that express a fetal gene signature are associated with metastasis and poor prognosis. Nat. Commun. 13, 2866 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Han, T. et al. Lineage reversion drives WNT independence in intestinal cancer. Cancer Discov. 10, 1590–1609 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Cai, J., Maitra, A., Anders, R. A., Taketo, M. M. & Pan, D. β-Catenin destruction complex-independent regulation of Hippo–YAP signaling by APC in intestinal tumorigenesis. Genes Dev. 29, 1493–1506 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Qin, X. et al. An oncogenic phenoscape of colonic stem cell polarization. Cell 186, 5554–5568.e18 (2023). This work provides evidence that cell-extrinsic and cell-intrinsic factors can distinctly shape stem cell fate polarization in colonic tumours using human organoid cultures.

    Article  CAS  PubMed  Google Scholar 

  139. Rehman, S. K. et al. Colorectal cancer cells enter a diapause-like DTP state to survive chemotherapy. Cell 184, 226–242.e21 (2021).

    Article  CAS  PubMed  Google Scholar 

  140. Álvarez-Varela, A. et al. Mex3a marks drug-tolerant persister colorectal cancer cells that mediate relapse after chemotherapy. Nat. Cancer 3, 1052–1070 (2022).

    Article  PubMed  Google Scholar 

  141. Ramos Zapatero, M. et al. Trellis tree-based analysis reveals stromal regulation of patient-derived organoid drug responses. Cell 186, 5606–5619.e24 (2023).

    Article  CAS  PubMed  Google Scholar 

  142. Tauriello, D. V. F. et al. TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis. Nature 554, 538–543 (2018).

    Article  CAS  PubMed  Google Scholar 

  143. Rahrmann, E. P. et al. The NALCN channel regulates metastasis and nonmalignant cell dissemination. Nat. Genet. 54, 1827–1838 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Paget, S. The distribution of secondary growths in cancer of the breast. Lancet 133, 571–573 (1889).

    Article  Google Scholar 

  145. Fumagalli, A. et al. Plasticity of Lgr5-negative cancer cells drives metastasis in colorectal cancer. Cell Stem Cell 26, 569–578.e7 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Ganesh, K. et al. L1CAM defines the regenerative origin of metastasis-initiating cells in colorectal cancer. Nat. Cancer 1, 28–45 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Cañellas-Socias, A. et al. Metastatic recurrence in colorectal cancer arises from residual EMP1+ cells. Nature 611, 603–613 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  148. de Sousa, E., Melo, F. et al. A distinct role for Lgr5+ stem cells in primary and metastatic colon cancer. Nature 543, 676–680 (2017).

    Article  Google Scholar 

  149. Heinz, M. C. et al. Liver colonization by colorectal cancer metastases requires YAP-controlled plasticity at the micrometastatic stage. Cancer Res. 82, 1953–1968 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Moorman, A. et al. Progressive plasticity during colorectal cancer metastasis. Nature 637, 947–954 (2025).

    Article  CAS  PubMed  Google Scholar 

  151. Cheung, P. et al. Regenerative reprogramming of the intestinal stem cell state via hippo signaling suppresses metastatic colorectal cancer. Cell Stem Cell 27, 590–604.e9 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Peinado, H. et al. Pre-metastatic niches: organ-specific homes for metastases. Nat. Rev. Cancer 17, 302–317 (2017).

    Article  CAS  PubMed  Google Scholar 

  153. Er, E. E. et al. Pericyte-like spreading by disseminated cancer cells activates YAP and MRTF for metastatic colonization. Nat. Cell Biol. 20, 966–978 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Calon, A. et al. Dependency of colorectal cancer on a TGF-β-driven program in stromal cells for metastasis initiation. Cancer Cell 22, 571–584 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Elmentaite, R. et al. Cells of the human intestinal tract mapped across space and time. Nature 597, 250–255 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Onesto, M. M., Kim, J. & Pasca, S. P. Assembloid models of cell-cell interaction to study tissue and disease biology. Cell Stem Cell 31, 1563–1573 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Özkan, A., LoGrande, N. T., Feitor, J. F., Goyal, G. & Ingber, D. E. Intestinal organ chips for disease modelling and personalized medicine. Nat. Rev. Gastroenterol. Hepatol. 21, 751–773 (2024).

    Article  PubMed  Google Scholar 

  158. Kim, J.-E. et al. Single cell and genetic analyses reveal conserved populations and signaling mechanisms of gastrointestinal stromal niches. Nat. Commun. 11, 334 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Muhl, L. et al. Single-cell analysis uncovers fibroblast heterogeneity and criteria for fibroblast and mural cell identification and discrimination. Nat. Commun. 11, 3953 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Schmitt, M. & Greten, F. R. The inflammatory pathogenesis of colorectal cancer. Nat. Rev. Immunol. 21, 653–667 (2021).

    Article  CAS  PubMed  Google Scholar 

  161. de Visser, K. E. & Joyce, J. A. The evolving tumor microenvironment: from cancer initiation to metastatic outgrowth. Cancer Cell 41, 374–403 (2023).

    Article  PubMed  Google Scholar 

  162. Huycke, T. R. et al. Patterning and folding of intestinal villi by active mesenchymal dewetting. Cell 187, 3072–3089.e20 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Shyer, A. E., Huycke, T. R., Lee, C., Mahadevan, L. & Tabin, C. J. Bending gradients: how the intestinal stem cell gets its home. Cell 161, 569–580 (2015). This study demonstrates how mechanical buckling of the epithelium during development creates pockets of mesenchymal signals that restrict ISC fate to the crypt base.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Shyer, A. E. et al. Villification: how the gut gets its villi. Science 342, 212–218 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Chin, A. M., Hill, D. R., Aurora, M. & Spence, J. R. Morphogenesis and maturation of the embryonic and postnatal intestine. Semin. Cell Dev. Biol. 66, 81–93 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Walton, K. D. et al. Villification in the mouse: Bmp signals control intestinal villus patterning. Development 143, 427–436 (2015).

    PubMed  Google Scholar 

Download references

Acknowledgements

F.J.E. was supported by a Foulkes Foundation Fellowship. M.S. was supported by the ERC (St Grant REVERT, 101040453) and the BMBF Consortium PACETHERAPY (01EJ2206A). S.J.L. was supported by a CRUK Program Grant (DRCNPG-Jun22\100002) and the CRUK Strategic Award CRC-STARS (SEBCRCS-2024/100001).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to researching data for the article, discussion of the content and writing the article. M.S. and S.J.L. reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Michael Sigal or Simon J. Leedham.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks Ramesh Shivdasani, Doug Winton and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

England, F.J., Lin, M., Sigal, M. et al. Defining the mucosal ecosystem: epithelial–mesenchymal interdependence in gastrointestinal health and disease. Nat Rev Gastroenterol Hepatol (2025). https://doi.org/10.1038/s41575-025-01113-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41575-025-01113-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing