Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tissue-resident memory CD8+ T cells: master deciphers of the hepatic environment

Subjects

Abstract

Tissue-resident memory CD8+ T (CD8+ TRM) cells are localized within peripheral tissues, such as the liver, poised to provide effective immunosurveillance, as well as rapid and enhanced effector functions upon stimulation. Here we review how hepatic CD8+ TRM cells decipher a myriad of environmental signals, ranging from cellular and soluble factors to direct interactions with the underlying stroma and structural tissue niche, which dictate their derivation, retention and function. We discuss insights from both mouse and human studies that have contributed to our understanding of how CD8+ TRM cells can, depending on the context, provide targeted antigen-specific antiviral and antitumour immune responses and elicit antigen-independent tissue-damaging responses that contribute to liver pathology. Specifically, we discuss how the CD8+ TRM cell functional response is shaped by multiple factors and how such environmental cues tip the balance between these dual ‘Jekyll and Hyde’ response modes. Finally, we examine strategies to better identify and characterize hepatic CD8⁺ TRM cells and how the enhanced functionality of CD8+ TRM cells can be harnessed therapeutically in the context of hepatocellular carcinoma.

Key points

  • A population of long-lived hepatic CD8+ T cells interpret, integrates and responds to various environmental signals, ranging from metabolic and soluble mediators to direct cell–cell or cell–extracellular matrix interactions.

  • Localized tissue-resident memory CD8+ T (CD8+ TRM) cells can elicit both immunoprotective and immunopathogenic effector functions within the liver.

  • The functional response mode of hepatic CD8+ TRM cells is shaped and/or regulated by context-specific cues.

  • The enhanced retention within tumours and rapid effector function of CD8+ TRM cells could be harnessed for therapeutic intervention, such as chimeric antigen receptor T cell therapy for hepatocellular carcinoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Protective ‘Jekyll’ and pathogenic ‘Hyde’ roles of hepatic CD8+ TRM cells.
Fig. 2: Schematic representation of the micro-architecture of a liver lobule.
Fig. 3: Environmental cues modulating CD8+ TRM cell phenotype and function.
Fig. 4: TRM cell induction strategies for CAR T cell therapy.

Similar content being viewed by others

References

  1. Sender, R. et al. The total mass, number, and distribution of immune cells in the human body. Proc. Natl Acad. Sci. USA 120, e2308511120 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Kumar, B. V., Connors, T. J. & Farber, D. L. Human T cell development, localization, and function throughout life. Immunity 48, 202–213 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Masopust, D. & Soerens, A. G. Tissue-resident T cells and other resident leukocytes. Annu. Rev. Immunol. 37, 521–546 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Mueller, S. N. & Mackay, L. K. Tissue-resident memory T cells: local specialists in immune defence. Nat. Rev. Immunol. 16, 79–89 (2016).

    Article  PubMed  CAS  Google Scholar 

  5. Szabo, P. A., Miron, M. & Farber, D. L. Location, location, location: tissue resident memory T cells in mice and humans. Sci. Immunol. https://doi.org/10.1126/sciimmunol.aas9673 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Domínguez Conde, C. et al. Cross-tissue immune cell analysis reveals tissue-specific features in humans. Science 376, eabl5197 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Reina-Campos, M. et al. Tissue-resident memory CD8 T cell diversity is spatiotemporally imprinted. Nature 639, 483–492 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Hombrink, P. et al. Programs for the persistence, vigilance and control of human CD8+ lung-resident memory T cells. Nat. Immunol. 17, 1467–1478 (2016).

    Article  PubMed  CAS  Google Scholar 

  9. Sasson, S. C., Gordon, C. L., Christo, S. N., Klenerman, P. & Mackay, L. K. Local heroes or villains: tissue-resident memory T cells in human health and disease. Cell. Mol. Immunol. 17, 113–122 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Maini, M. K. et al. The role of virus-specific CD8+ cells in liver damage and viral control during persistent hepatitis B virus infection. J. Exp. Med. 191, 1269–1280 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Thimme, R. et al. CD8+ T cells mediate viral clearance and disease pathogenesis during acute hepatitis B virus infection. J. Virol. 77, 68–76 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Pallett, L. J. et al. IL-2high tissue-resident T cells in the human liver: sentinels for hepatotropic infection. J. Exp. Med. 214, 1567–1580 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Stelma, F. et al. Human intrahepatic CD69+ CD8+ T cells have a tissue resident memory T cell phenotype with reduced cytolytic capacity. Sci. Rep. 7, 6172 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gill, U. S. et al. Fine needle aspirates comprehensively sample intrahepatic immunity. Gut 68, 1493–1503 (2019).

    Article  PubMed  CAS  Google Scholar 

  15. Bénéchet, A. P. et al. Dynamics and genomic landscape of CD8+ T cells undergoing hepatic priming. Nature 574, 200–205 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Maini, M. K. & Burton, A. R. Restoring, releasing or replacing adaptive immunity in chronic hepatitis B. Nat. Rev. Gastroenterol. Hepatol. 16, 662–675 (2019).

    Article  PubMed  Google Scholar 

  17. Fernandez-Ruiz, D. et al. Liver-resident memory CD8+ T cells form a front-line defense against malaria liver-stage infection. Immunity 45, 889–902 (2016).

    Article  PubMed  CAS  Google Scholar 

  18. Valencia-Hernandez, A. M. et al. A natural peptide antigen within the plasmodium ribosomal protein RPL6 confers liver TRM cell-mediated immunity against malaria in mice. Cell Host Microbe 27, 950–962.e7 (2020).

    Article  PubMed  CAS  Google Scholar 

  19. Ganley, M. et al. mRNA vaccine against malaria tailored for liver-resident memory T cells. Nat. Immunol. 24, 1487–1498 (2023).

    Article  PubMed  CAS  Google Scholar 

  20. Holz, L. E. et al. CD8+ T cell activation leads to constitutive formation of liver tissue-resident memory T cells that seed a large and flexible niche in the liver. Cell Rep. 25, 68–79.e4 (2018).

    Article  PubMed  CAS  Google Scholar 

  21. Garnelo, M. et al. Interaction between tumour-infiltrating B cells and T cells controls the progression of hepatocellular carcinoma. Gut 66, 342–351 (2017).

    Article  PubMed  CAS  Google Scholar 

  22. Lim, C. J. et al. Multidimensional analyses reveal distinct immune microenvironment in hepatitis B virus-related hepatocellular carcinoma. Gut 68, 916–927 (2019).

    Article  PubMed  CAS  Google Scholar 

  23. Cheng, Y. et al. Non-terminally exhausted tumor-resident memory HBV-specific T cell responses correlate with relapse-free survival in hepatocellular carcinoma. Immunity 54, 1825–1840.e7 (2021).

    Article  PubMed  CAS  Google Scholar 

  24. Barsch, M. et al. T-cell exhaustion and residency dynamics inform clinical outcomes in hepatocellular carcinoma. J. Hepatol. 77, 397–409 (2022).

    Article  PubMed  CAS  Google Scholar 

  25. Koda, Y. et al. CD8+ tissue-resident memory T cells promote liver fibrosis resolution by inducing apoptosis of hepatic stellate cells. Nat. Commun. 12, 4474 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Pallett, L. J. et al. Longevity and replenishment of human liver-resident memory T cells and mononuclear phagocytes. J. Exp. Med. 217, e20200050 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kim, J. et al. Innate-like cytotoxic function of bystander-activated CD8+ T cells is associated with liver injury in acute hepatitis A. Immunity 48, 161–173.e5 (2018).

    Article  PubMed  CAS  Google Scholar 

  28. Kefalakes, H. et al. Liver-resident bystander CD8+ T cells contribute to liver disease pathogenesis in chronic hepatitis D virus infection. Gastroenterology 161, 1567–1583.e9 (2021).

    Article  PubMed  CAS  Google Scholar 

  29. Huang, C.-H. et al. Innate-like bystander-activated CD38+ HLA-DR+ CD8+ T cells play a pathogenic role in patients with chronic hepatitis C. Hepatology 76, 803–818 (2022).

    Article  PubMed  CAS  Google Scholar 

  30. Koh, J.-Y. et al. Identification of a distinct NK-like hepatic T-cell population activated by NKG2C in a TCR-independent manner. J. Hepatol. 77, 1059–1070 (2022).

    Article  PubMed  CAS  Google Scholar 

  31. Nkongolo, S. et al. Longitudinal liver sampling in patients with chronic hepatitis B starting antiviral therapy reveals hepatotoxic CD8+ T cells. J. Clin. Invest. 133, e158903 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Chu, T. et al. Bystander-activated memory CD8 T cells control early pathogen load in an innate-like, NKG2D-dependent manner. Cell Rep. 3, 701–708 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Soudja, S. M. et al. Memory-T-cell-derived interferon-γ instructs potent innate cell activation for protective immunity. Immunity 40, 974–988 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Li, X. et al. Estimating the health impact of vaccination against ten pathogens in 98 low-income and middle-income countries from 2000 to 2030: a modelling study. Lancet 397, 398–408 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Shin, E.-C., Sung, P. S. & Park, S.-H. Immune responses and immunopathology in acute and chronic viral hepatitis. Nat. Rev. Immunol. 16, 509–523 (2016).

    Article  PubMed  CAS  Google Scholar 

  36. Heim, K. et al. Attenuated effector T cells are linked to control of chronic HBV infection. Nat. Immunol. 25, 1650–1662 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Dudek, M. et al. Auto-aggressive CXCR6+ CD8 T cells cause liver immune pathology in NASH. Nature 592, 444–449 (2021).

    Article  PubMed  CAS  Google Scholar 

  38. Burtis, A. E. C. et al. Ag-driven CD8+ T cell clonal expansion is a prominent feature of MASH in humans and mice. Hepatology 81, 591–608 (2025).

    Article  PubMed  Google Scholar 

  39. You, Z. et al. The clinical significance of hepatic CD69+ CD103+ CD8+ resident-memory T cells in autoimmune hepatitis. Hepatology 74, 847–863 (2021).

    Article  PubMed  CAS  Google Scholar 

  40. Li, Y. et al. Itaconate inhibits CD103+ T RM cells and alleviates hepatobiliary injury in mouse models of primary sclerosing cholangitis. Hepatology 79, 25–38 (2024).

    Article  PubMed  Google Scholar 

  41. Niehaus, C. et al. CXCR6+ CD69+ CD8+ T cells in the ascites are associated with disease severity in patients with liver cirrhosis. JHEP Rep. https://doi.org/10.1016/j.jhepr.2024.101074 (2024).

  42. Yang, H. et al. Intrahepatic infiltration of activated CD8+ T cells and mononuclear phagocyte is associated with idiosyncratic drug-induced liver injury. Front. Immunol. 14, 1138112 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Pfister, D. et al. NASH limits anti-tumour surveillance in immunotherapy-treated HCC. Nature 592, 450–456 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Hao, X. et al. HBsAg-specific CD8+ T cells as an indispensable trigger to induce murine hepatocellular carcinoma. Cell. Mol. Immunol. 18, 128–137 (2021).

    Article  PubMed  Google Scholar 

  45. Lacotte, S. et al. Anti-CD122 antibody restores specific CD8+ T cell response in nonalcoholic steatohepatitis and prevents hepatocellular carcinoma growth. Oncoimmunology 12, 2184991 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Teutsch, H. F. The modular microarchitecture of human liver. Hepatology 42, 317–325 (2005).

    Article  PubMed  Google Scholar 

  47. Racanelli, V. & Rehermann, B. The liver as an immunological organ. Hepatology 43, S54–S62 (2006).

    Article  PubMed  CAS  Google Scholar 

  48. Ben-Moshe, S. & Itzkovitz, S. Spatial heterogeneity in the mammalian liver. Nat. Rev. Gastroenterol. Hepatol. 16, 395–410 (2019).

    Article  PubMed  Google Scholar 

  49. Wei, Y. et al. Liver homeostasis is maintained by midlobular zone 2 hepatocytes. Science 371, eabb1625 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Wen, Y., Lambrecht, J., Ju, C. & Tacke, F. Hepatic macrophages in liver homeostasis and diseases—diversity, plasticity and therapeutic opportunities. Cell. Mol. Immunol. 18, 45–56 (2021).

    Article  PubMed  CAS  Google Scholar 

  51. Friedman, S. L. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol. Rev. 88, 125–172 (2008).

    Article  PubMed  CAS  Google Scholar 

  52. Knolle, P. A. & Wohlleber, D. Immunological functions of liver sinusoidal endothelial cells. Cell. Mol. Immunol. 13, 347–353 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Rathmell, J. C., Farkash, E. A., Gao, W. & Thompson, C. B. IL-7 enhances the survival and maintains the size of naive T cells1. J. Immunol. 167, 6869–6876 (2001).

    Article  PubMed  CAS  Google Scholar 

  54. Teague, T. K., Munn, L., Zygourakis, K. & McIntyre, B. W. Analysis of lymphocyte activation and proliferation by video microscopy and digital imaging. Cytometry 14, 772–782 (1993).

    Article  PubMed  CAS  Google Scholar 

  55. Raynor, J. L. & Chi, H. Nutrients: signal 4 in T cell immunity. J. Exp. Med. 221, e20221839 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Adu-Berchie, K. et al. Generation of functionally distinct T-cell populations by altering the viscoelasticity of their extracellular matrix. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-023-01052-y (2023).

  57. Zhang, J. et al. Osr2 functions as a biomechanical checkpoint to aggravate CD8+ T cell exhaustion in tumor. Cell 187, 3409–3426.e24 (2024).

    Article  PubMed  CAS  Google Scholar 

  58. Pallett, L. J. & Maini, M. K. Liver-resident memory T cells: life in lockdown. Semin. Immunopathol. 44, 813–825 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Gavil, N. V., Cheng, K. & Masopust, D. Resident memory T cells and cancer. Immunity 57, 1734–1751 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Scott, M. C. et al. Deep profiling deconstructs features associated with memory CD8+ T cell tissue residence. Immunity 58, 162–181.e10 (2025).

    Article  PubMed  CAS  Google Scholar 

  61. Rosshart, S. P. et al. Laboratory mice born to wild mice have natural microbiota and model human immune responses. Science 365, eaaw4361 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Beura, L. K. et al. Normalizing the environment recapitulates adult human immune traits in laboratory mice. Nature 532, 512–516 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Zhang, X., Sun, S., Hwang, I., Tough, D. F. & Sprent, J. Potent and selective stimulation of memory-phenotype CD8+ T cells in vivo by IL-15. Immunity 8, 591–599 (1998).

    Article  PubMed  CAS  Google Scholar 

  64. Ku, C. C., Murakami, M., Sakamoto, A., Kappler, J. & Marrack, P. Control of homeostasis of CD8+ memory T cells by opposing cytokines. Science 288, 675–678 (2000).

    Article  PubMed  CAS  Google Scholar 

  65. Sandau, M. M., Kohlmeier, J. E., Woodland, D. L. & Jameson, S. C. IL-15 regulates both quantitative and qualitative features of the memory CD8 T cell pool. J. Immunol.184, 35–44 (2010).

    Article  PubMed  CAS  Google Scholar 

  66. van der Windt, G. J. W. et al. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity 36, 68–78 (2012).

    Article  PubMed  Google Scholar 

  67. O’Sullivan, D. et al. Memory CD8+ T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development. Immunity 41, 75–88 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Tieu, R. et al. Tissue-resident memory T cell maintenance during antigen persistence requires both cognate antigen and interleukin-15. Sci. Immunol. 8, eadd8454 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Swadling, L. et al. Human liver memory CD8+ T cells use autophagy for tissue residence. Cell Rep. 30, 687–698.e6 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Laidlaw, B. J. et al. CD4+ T cell help guides formation of CD103+ lung-resident memory CD8+ T cells during influenza viral infection. Immunity 41, 633–645 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Mackay, L. K. et al. T-box transcription factors combine with the cytokines TGF-β and IL-15 to control tissue-resident memory T cell fate. Immunity 43, 1101–1111 (2015).

    Article  PubMed  CAS  Google Scholar 

  72. Ihara, A., Koizumi, H., Hashizume, R. & Uchikoshi, T. Expression of epithelial cadherin and α- and β-catenins in nontumoral livers and hepatocellular carcinomas. Hepatology 23, 1441–1447 (1996).

    PubMed  CAS  Google Scholar 

  73. Ks, T. et al. Molecular basis for leukocyte integrin αEβ7 adhesion to epithelial E-cadherin. J. Exp. Med. 191, 1555–1567 (2000).

    Article  Google Scholar 

  74. Bromley, S. K. et al. CD49a regulates cutaneous resident memory CD8+ T cell persistence and response. Cell Rep. 32, 108085 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Cheuk, S. et al. CD49a expression defines tissue-resident CD8+ T cells poised for cytotoxic function in human skin. Immunity 46, 287–300 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Skon, C. N. et al. Transcriptional downregulation of S1pr1 is required for the establishment of resident memory CD8+ T cells. Nat. Immunol. 14, 1285–1293 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Borges da Silva, H. et al. Sensing of ATP via the purinergic receptor P2RX7 promotes CD8+ Trm cell generation by enhancing their sensitivity to the cytokine TGF-β. Immunity 53, 158–171.e6 (2020).

    Article  PubMed  CAS  Google Scholar 

  78. Evrard, M. et al. Single-cell protein expression profiling resolves circulating and resident memory T cell diversity across tissues and infection contexts. Immunity 56, 1664–1680.e9 (2023).

    Article  PubMed  CAS  Google Scholar 

  79. Christo, S. N. et al. Discrete tissue microenvironments instruct diversity in resident memory T cell function and plasticity. Nat. Immunol. 22, 1140–1151 (2021).

    Article  PubMed  CAS  Google Scholar 

  80. McNamara, H. A. et al. Up-regulation of LFA-1 allows liver-resident memory T cells to patrol and remain in the hepatic sinusoids. Sci. Immunol. 2, eaaj1996 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Taber, A., Konecny, A., Oda, S. K., Scott-Browne, J. & Prlic, M. TGF-β broadly modifies rather than specifically suppresses reactivated memory CD8 T cells in a dose-dependent manner. Proc. Natl Acad. Sci. USA 120, e2313228120 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Hirai, T. et al. Competition for active TGFβ cytokine allows for selective retention of antigen-specific tissue-resident memory T cells in the epidermal niche. Immunity 54, 84–98.e5 (2021).

    Article  PubMed  CAS  Google Scholar 

  83. Massagué, J. & Sheppard, D. TGF-β signaling in health and disease. Cell 186, 4007–4037 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Mackay, L. K. et al. Hobit and Blimp1 instruct a universal transcriptional program of tissue residency in lymphocytes. Science 352, 459–463 (2016).

    Article  PubMed  CAS  Google Scholar 

  85. Kim, J. H. et al. Functions of human liver CD69+ CD103 CD8+ T cells depend on HIF-2α activity in healthy and pathologic livers. J. Hepatol. 72, 1170–1181 (2020).

    Article  PubMed  CAS  Google Scholar 

  86. Doi, Y. et al. Development of complementary expression patterns of E- and N-cadherin in the mouse liver. Hepatol. Res. 37, 230–237 (2007).

    Article  PubMed  CAS  Google Scholar 

  87. Obers, A. et al. Retinoic acid and TGF-β orchestrate organ-specific programs of tissue residency. Immunity https://doi.org/10.1016/j.immuni.2024.09.015 (2024).

  88. Saeed, A., Dullaart, R. P. F., Schreuder, T. C. M. A., Blokzijl, H. & Faber, K. N. Disturbed vitamin A metabolism in non-alcoholic fatty liver disease (NAFLD). Nutrients 10, 29 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Czuba, L. C. et al. Altered vitamin A metabolism in human liver slices corresponds to fibrogenesis. Clin. Transl. Sci. 14, 976–989 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Zhang, X. et al. GARP on hepatic stellate cells is essential for the development of liver fibrosis. J. Hepatol. 79, 1214–1225 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Yokota, S. et al. IRF-1 promotes liver transplant ischemia/reperfusion injury via hepatocyte IL-15/IL-15Rα production. J. Immunol. 194, 6045–6056 (2015).

    Article  PubMed  CAS  Google Scholar 

  92. Li, M. O. & Flavell, R. A. Contextual regulation of inflammation: a duet by transforming growth factor-β and interleukin-10. Immunity 28, 468–476 (2008).

    Article  PubMed  Google Scholar 

  93. Jabri, B. & Abadie, V. IL-15 functions as a danger signal to regulate tissue-resident T cells and tissue destruction. Nat. Rev. Immunol. 15, 771–783 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Ficht, X. & Iannacone, M. Immune surveillance of the liver by T cells. Sci. Immunol. 5, eaba2351 (2020).

    Article  PubMed  CAS  Google Scholar 

  95. Bosch, M. et al. A liver immune rheostat regulates CD8 T cell immunity in chronic HBV infection. Nature https://doi.org/10.1038/s41586-024-07630-7 (2024).

  96. Heesch, K. et al. The function of the chemokine receptor CXCR6 in the T cell response of mice against Listeria monocytogenes. PLoS ONE 9, e97701 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Remmerie, A. et al. Osteopontin expression identifies a subset of recruited macrophages distinct from Kupffer cells in the fatty liver. Immunity 53, 641–657.e14 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Zigmond, E. et al. Infiltrating monocyte-derived macrophages and resident Kupffer cells display different ontogeny and functions in acute liver injury. J. Immunol. 193, 344–353 (2014).

    Article  PubMed  CAS  Google Scholar 

  99. Guilliams, M. & Scott, C. L. Liver macrophages in health and disease. Immunity 55, 1515–1529 (2022).

    Article  PubMed  CAS  Google Scholar 

  100. Borst, K. et al. Type I interferon receptor signaling delays Kupffer cell replenishment during acute fulminant viral hepatitis. J. Hepatol. 68, 682–690 (2018).

    Article  PubMed  CAS  Google Scholar 

  101. De Simone, G. et al. Identification of a Kupffer cell subset capable of reverting the T cell dysfunction induced by hepatocellular priming. Immunity 54, 2089–2100.e8 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Yu, M.-C. et al. Inhibition of T-cell responses by hepatic stellate cells via B7-H1-mediated T-cell apoptosis in mice. Hepatology 40, 1312–1321 (2004).

    Article  PubMed  CAS  Google Scholar 

  103. Mühlbauer, M. et al. PD-L1 is induced in hepatocytes by viral infection and by interferon-α and -γ and mediates T cell apoptosis. J. Hepatol. 45, 520–528 (2006).

    Article  PubMed  Google Scholar 

  104. Schölzel, K. et al. Transfer of MHC-class-I molecules among liver sinusoidal cells facilitates hepatic immune surveillance. J. Hepatol. 61, 600–608 (2014).

    Article  PubMed  Google Scholar 

  105. Pallett, L. J. et al. Tissue CD14+ CD8+ T cells reprogrammed by myeloid cells and modulated by LPS. Nature 614, 334–342 (2023).

    Article  PubMed  CAS  Google Scholar 

  106. Legut, M. et al. A genome-scale screen for synthetic drivers of T cell proliferation. Nature 603, 728–735 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Tilg, H., Adolph, T. E. & Trauner, M. Gut–liver axis: pathophysiological concepts and clinical implications. Cell Metab. 34, 1700–1718 (2022).

    Article  PubMed  CAS  Google Scholar 

  108. Beura, L. K. et al. Intravital mucosal imaging of CD8+ resident memory T cells shows tissue-autonomous recall responses that amplify secondary memory. Nat. Immunol. 19, 173–182 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Cockburn, I. A. et al. In vivo imaging of CD8+ T cell-mediated elimination of malaria liver stages. Proc. Natl Acad. Sci. USA 110, 9090–9095 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Guidotti, L. G. et al. Immunosurveillance of the liver by intravascular effector CD8+ T cells. Cell 161, 486–500 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. DeLeve, L. D. Liver sinusoidal endothelial cells in hepatic fibrosis. Hepatology 61, 1740–1746 (2015).

    Article  PubMed  CAS  Google Scholar 

  112. Horn, T., Christoffersen, P. & Henriksen, J. H. Alcoholic liver injury: defenestration in noncirrhotic livers—a scanning electron microscopic study. Hepatology 7, 77–82 (1987).

    Article  PubMed  CAS  Google Scholar 

  113. Alon, R. & Dustin, M. L. Force as a facilitator of integrin conformational changes during leukocyte arrest on blood vessels and antigen-presenting cells. Immunity 26, 17–27 (2007).

    Article  PubMed  CAS  Google Scholar 

  114. Liu, C. S. C. et al. Piezo1 mechanosensing regulates integrin-dependent chemotactic migration in human T cells. eLife 12, RP91903 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Reilly, E. C. et al. TRM integrins CD103 and CD49a differentially support adherence and motility after resolution of influenza virus infection. Proc. Natl Acad. Sci. USA 117, 12306–12314 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Richter, M. V. & Topham, D. J. The α1β1 integrin and TNF receptor II protect airway CD8+ effector T cells from apoptosis during influenza infection. J. Immunol. 179, 5054–5063 (2007).

    Article  PubMed  CAS  Google Scholar 

  117. Boyd, D. F. & Thomas, P. G. Towards integrating extracellular matrix and immunological pathways. Cytokine 98, 79–86 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Higashi, T., Friedman, S. L. & Hoshida, Y. Hepatic stellate cells as key target in liver fibrosis. Adv. Drug Deliv. Rev. 121, 27–42 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Giles, J. R., Globig, A.-M., Kaech, S. M. & Wherry, E. J. CD8+ T cells in the cancer-immunity cycle. Immunity 56, 2231–2253 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Schurich, A. et al. Distinct metabolic requirements of exhausted and functional virus-specific CD8 T cells in the same host. Cell Rep. 16, 1243–1252 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Frizzell, H. et al. Organ-specific isoform selection of fatty acid-binding proteins in tissue-resident lymphocytes. Sci. Immunol. 5, eaay9283 (2020).

    Article  PubMed  CAS  Google Scholar 

  122. Sinclair, L. V. et al. Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. Nat. Immunol. 14, 500–508 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Pallett, L. J. et al. Metabolic regulation of hepatitis B immunopathology by myeloid-derived suppressor cells. Nat. Med. 21, 591–600 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Sinclair, L. V., Neyens, D., Ramsay, G., Taylor, P. M. & Cantrell, D. A. Single cell analysis of kynurenine and system L amino acid transport in T cells. Nat. Commun. 9, 1981 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Cornish, G. H., Sinclair, L. V. & Cantrell, D. A. Differential regulation of T-cell growth by IL-2 and IL-15. Blood 108, 600–608 (2006).

    Article  PubMed  CAS  Google Scholar 

  126. Sinclair, L. V. et al. Autophagy repression by antigen and cytokines shapes mitochondrial, migration and effector machinery in CD8 T cells. Nat. Immunol. 26, 429–443 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Kabeya, Y. et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19, 5720–5728 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Protzer, U., Maini, M. K. & Knolle, P. A. Living in the liver: hepatic infections. Nat. Rev. Immunol. 12, 201–213 (2012).

    Article  PubMed  CAS  Google Scholar 

  129. Baumann, T. et al. Regulatory myeloid cells paralyze T cells through cell–cell transfer of the metabolite methylglyoxal. Nat. Immunol. 21, 555–566 (2020).

    Article  PubMed  CAS  Google Scholar 

  130. Li, X. et al. Prostaglandin E2 facilitates hepatitis B virus replication by impairing CTL function. Mol. Immunol. 103, 243–250 (2018).

    Article  PubMed  CAS  Google Scholar 

  131. Pan, Y. et al. Survival of tissue-resident memory T cells requires exogenous lipid uptake and metabolism. Nature 543, 252–256 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Manzo, T. et al. Accumulation of long-chain fatty acids in the tumor microenvironment drives dysfunction in intrapancreatic CD8+ T cells. J. Exp. Med. 217, e20191920 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Xu, S. et al. Uptake of oxidized lipids by the scavenger receptor CD36 promotes lipid peroxidation and dysfunction in CD8+ T cells in tumors. Immunity 54, 1561–1577.e7 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Varanasi, S. K. et al. Bile acid synthesis impedes tumor-specific T cell responses during liver cancer. Science 387, 192–201 (2025).

    Article  PubMed  CAS  Google Scholar 

  135. Zimmer, C. L. et al. A biliary immune landscape map of primary sclerosing cholangitis reveals a dominant network of neutrophils and tissue-resident T cells. Sci. Transl. Med. 13, eabb3107 (2021).

    Article  PubMed  CAS  Google Scholar 

  136. Zhu, H.-X. et al. Targeting pathogenic CD8+ tissue-resident T cells with chimeric antigen receptor therapy in murine autoimmune cholangitis. Nat. Commun. 15, 2936 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Antonioli, L., Pacher, P., Vizi, E. S. & Haskó, G. CD39 and CD73 in immunity and inflammation. Trends Mol. Med. 19, 355–367 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Stark, R. et al. TRM maintenance is regulated by tissue damage via P2RX7. Sci. Immunol. 3, eaau1022 (2018).

    Article  PubMed  Google Scholar 

  139. Cai, J., Hu, M., Chen, Z. & Ling, Z. The roles and mechanisms of hypoxia in liver fibrosis. J. Transl. Med. 19, 186 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Doedens, A. L. et al. Hypoxia-inducible factors enhance the effector responses of CD8+ T cells to persistent antigen. Nat. Immunol. 14, 1173–1182 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Palazon, A., Goldrath, A. W., Nizet, V. & Johnson, R. S. HIF transcription factors, inflammation, and immunity. Immunity 41, 518–528 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Hasan, F., Chiu, Y., Shaw, R. M., Wang, J. & Yee, C. Hypoxia acts as an environmental cue for the human tissue-resident memory T cell differentiation program. JCI Insight 6, e138970 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Smiriglia, A. et al. Sex difference in liver diseases: how preclinical models help to dissect the sex-related mechanisms sustaining NAFLD and hepatocellular carcinoma. iScience 26, 108363 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Schwinge, D. & Schramm, C. Sex-related factors in autoimmune liver diseases. Semin. Immunopathol. 41, 165–175 (2019).

    Article  PubMed  Google Scholar 

  145. Brown, R., Goulder, P. & Matthews, P. C. Sexual dimorphism in chronic hepatitis B virus (HBV) infection: evidence to inform elimination efforts. Wellcome Open. Res. 7, 32 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Klein, S. L. & Flanagan, K. L. Sex differences in immune responses. Nat. Rev. Immunol. 16, 626–638 (2016).

    Article  PubMed  CAS  Google Scholar 

  147. Layug, P. J., Vats, H., Kannan, K. & Arsenio, J. Sex differences in CD8+ T cell responses during adaptive immunity. WIREs Mech. Dis. 16, e1645 (2024).

    Article  PubMed  CAS  Google Scholar 

  148. Yuan, B. et al. Estrogen receptor β signaling in CD8+ T cells boosts T cell receptor activation and antitumor immunity through a phosphotyrosine switch. J. Immunother. Cancer 9, e001932 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Guan, X. et al. Androgen receptor activity in T cells limits checkpoint blockade efficacy. Nature 606, 791–796 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Yee Mon, K. J. et al. Differential sensitivity to IL-12 drives sex-specific differences in the CD8+ T cell response to infection. ImmunoHorizons 3, 121–132 (2019).

    Article  PubMed  Google Scholar 

  151. Sayaf, K. et al. Sex drives functional changes in the progression and regression of liver fibrosis. Int. J. Mol. Sci. 24, 16452 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Rosser, E. C., de Gruijter, N. M. & Matei, D. E. Mini-review: gut-microbiota and the sex-bias in autoimmunity—lessons learnt from animal models. Front. Med. 9, 910561 (2022).

    Article  Google Scholar 

  153. Guan, D. et al. The hepatocyte clock and feeding control chronophysiology of multiple liver cell types. Science 369, 1388–1394 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Wang, C., Lutes, L. K., Barnoud, C. & Scheiermann, C. The circadian immune system. Sci. Immunol. 7, eabm2465 (2022).

    Article  PubMed  CAS  Google Scholar 

  155. Nobis, C. C. et al. The circadian clock of CD8 T cells modulates their early response to vaccination and the rhythmicity of related signaling pathways. Proc. Natl Acad. Sci. USA 116, 20077–20086 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Neufeld-Cohen, A. et al. Circadian control of oscillations in mitochondrial rate-limiting enzymes and nutrient utilization by PERIOD proteins. Proc. Natl Acad. Sci. USA 113, E1673–E1682 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Tahara, Y. & Shibata, S. Circadian rhythms of liver physiology and disease: experimental and clinical evidence. Nat. Rev. Gastroenterol. Hepatol. 13, 217–226 (2016).

    Article  PubMed  CAS  Google Scholar 

  158. Mukherji, A., Bailey, S. M., Staels, B. & Baumert, T. F. The circadian clock and liver function in health and disease. J. Hepatol. 71, 200–211 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Snyder, M. E. et al. Generation and persistence of human tissue-resident memory T cells in lung transplantation. Sci. Immunol. 4, eaav5581 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. FitzPatrick, M. E. B. et al. Human intestinal tissue-resident memory T cells comprise transcriptionally and functionally distinct subsets. Cell Rep. 34, 108661 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Jung, I.-Y. et al. Tissue-resident memory CAR T cells with stem-like characteristics display enhanced efficacy against solid and liquid tumors. Cell Rep. Med. 4, 101053 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Steffin, D. et al. Interleukin-15-armoured GPC3 CAR T cells for patients with solid cancers. Nature 637, 940–946 (2025).

    Article  PubMed  CAS  Google Scholar 

  163. D, A. et al. IL15 enhances CAR-T cell antitumor activity by reducing mTORC1 activity and preserving their stem cell memory phenotype. Cancer Immunol. Res. 7, 759–772 (2019).

    Article  Google Scholar 

  164. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05103631 (2025).

  165. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04377932 (2025).

  166. Steinert, E. M. et al. Quantifying memory CD8 T cells reveals regionalization of immunosurveillance. Cell 161, 737–749 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Guilliams, M. et al. Spatial proteogenomics reveals distinct and evolutionarily conserved hepatic macrophage niches. Cell 185, 379–396.e38 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Salié, H. et al. Spatial single-cell profiling and neighbourhood analysis reveal the determinants of immune architecture connected to checkpoint inhibitor therapy outcome in hepatocellular carcinoma. Gut https://doi.org/10.1136/gutjnl-2024-332837 (2025).

  169. Olsen, T. M., Stone, B. C., Chuenchob, V. & Murphy, S. C. Prime-and-trap malaria vaccination to generate protective CD8+ liver-resident memory T cells. J. Immunol. 201, 1984–1993 (2018).

    Article  PubMed  CAS  Google Scholar 

  170. Holz, L. E. et al. Glycolipid-peptide vaccination induces liver-resident memory CD8+ T cells that protect against rodent malaria. Sci. Immunol. 5, eaaz8035 (2020).

    Article  PubMed  CAS  Google Scholar 

  171. Noé, A. et al. Deep immune phenotyping and single-cell transcriptomics allow identification of circulating TRM-like cells which correlate with liver-stage immunity and vaccine-induced protection from malaria. Front. Immunol. 13, 795463 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank M. Maini, P. Knolle, A. Zhuang, A. Das, D. Wohlleber and B. Höchst for their critical review and discussion of the manuscript before submission.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article. L.J.P. and M.D. contributed substantially to discussion of the content. All authors wrote the article. L.J.P. and M.D. reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Laura J. Pallett.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks Patrick Bertolino, Francesco Andreata and Matthew Burchill for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown Romero, D., Finney, G.E., Dudek, M. et al. Tissue-resident memory CD8+ T cells: master deciphers of the hepatic environment. Nat Rev Gastroenterol Hepatol (2025). https://doi.org/10.1038/s41575-025-01118-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41575-025-01118-z

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer