Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

WNT–β-catenin signalling in hepatocellular carcinoma: from bench to clinical trials

Abstract

WNT–β-catenin activation is observed in around 50% of all patients with hepatocellular carcinoma (HCC), through either gain-of-function mutations in CTNNB1 (which encodes β-catenin) or loss-of-function mutations in AXIN1 or APC. Currently, first-line therapies for HCC are immune checkpoint inhibitor (ICI) combinations, and β-catenin-active HCCs have garnered increased attention due to their unique tumour immune microenvironment (TIME). This pathway is known to drive an immune-excluded TIME, but clinical investigations have provided a more nuanced perspective, with the emergence of a new ‘immune-like’ subclass of HCC that is paradoxically enriched for CTNNB1 mutations and has high levels of T cell infiltration. As such, patients and animal models with β-catenin activation treated with ICIs exhibit heterogeneous responses. Additionally, these tumours exhibit higher fatty acid oxidation to fuel tumour growth owing to a unique metabolic milieu shaped by zone 3 metabolism, which is a physiological function of WNT–β-catenin signalling in the liver lobule. Biomarkers to detect molecular subclasses of patients for targeted therapies are being developed. In this Review, we discuss advances in our understanding of the TIME and metabolism of β-catenin-active HCC, driven by in vitro and in vivo models and single-cell and spatial sequencing, and their implications for the treatment of a subset of HCCs using precision therapies against WNT–β-catenin signalling.

Key points

  • The WNT–β-catenin pathway regulates metabolic zonation in the liver lobule and regulates expression of genes in hepatocytes residing in zone 3.

  • Activation of the WNT–β-catenin pathway is evident in a notable subset of hepatocellular carcinomas (HCC) due to multiple mechanisms including missense mutations in CTNNB1.

  • HCCs driven by mutations in CTNNB1 exhibit unique zone 3 metabolic phenotypes and tumour cell metabolism.

  • β-Catenin-active HCCs have a unique tumour immune microenvironment due to both tumour cell-intrinsic and tumour cell-extrinsic mechanisms.

  • Preclinical models and multi-omics clinical studies have been key to understanding the unique biology of the molecular subset of HCCs with WNT–β-catenin activation.

  • Current precision medicine-based clinical trials are exploiting novel metabolic vulnerabilities or directly targeting the WNT–β-catenin pathway for HCC treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Multiple roles of β-catenin in hepatocellular carcinoma.
Fig. 2: Theranostic work-up to assess CTNNB1-mutated HCC for precision therapy.
Fig. 3: Single-cell and spatial transcriptomic workflows to study CTNNB1-mutated HCC.
Fig. 4: Therapies for CTNNB1-mutated HCC for precision therapy.

Similar content being viewed by others

References

  1. Global Burden of Disease Cancer Collaboration. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: a systematic analysis for the Global Burden of Disease Study. JAMA Oncol. 3, 524–548 (2017).

    Article  PubMed Central  Google Scholar 

  2. Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021).

    PubMed  Google Scholar 

  3. Villanueva, A. Hepatocellular carcinoma. N. Engl. J. Med. 380, 1450–1462 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Kanwal, F. et al. Risk factors for HCC in contemporary cohorts of patients with cirrhosis. Hepatology 77, 997–1005 (2023).

    Article  PubMed  Google Scholar 

  5. Singal, A. G., Kanwal, F. & Llovet, J. M. Global trends in hepatocellular carcinoma epidemiology: implications for screening, prevention and therapy. Nat. Rev. Clin. Oncol. 20, 864–884 (2023).

    Article  PubMed  Google Scholar 

  6. Younossi, Z. et al. Nonalcoholic steatohepatitis is the fastest growing cause of hepatocellular carcinoma in liver transplant candidates. Clin. Gastroenterol. Hepatol. 17, 748–755.e43 (2019).

    Article  PubMed  Google Scholar 

  7. Mittal, S. et al. Hepatocellular carcinoma in the absence of cirrhosis in United States veterans is associated with nonalcoholic fatty liver disease. Clin. Gastroenterol. Hepatol. 14, 124–131.e1 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Behari, J. et al. Incidence of hepatocellular carcinoma in nonalcoholic fatty liver disease without cirrhosis or advanced liver fibrosis. Hepatol. Commun. 7, e00183 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Tzartzeva, K. et al. Surveillance imaging and alpha fetoprotein for early detection of hepatocellular carcinoma in patients with cirrhosis: a meta-analysis. Gastroenterology 154, 1706–1718.e1 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Reig, M. et al. BCLC strategy for prognosis prediction and treatment recommendation: the 2022 update. J. Hepatol. 76, 681–693 (2022).

    Article  PubMed  Google Scholar 

  11. Torrecilla, S. et al. Trunk mutational events present minimal intra- and inter-tumoral heterogeneity in hepatocellular carcinoma. J. Hepatol. 67, 1222–1231 (2017).

    Article  PubMed  Google Scholar 

  12. Schulze, K. et al. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat. Genet. 47, 505–511 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Guichard, C. et al. Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Nat. Genet. 44, 694–698 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chaudhary, K. et al. Multimodal meta-analysis of 1,494 hepatocellular carcinoma samples reveals significant impact of consensus driver genes on phenotypes. Clin. Cancer Res. 25, 463–472 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Harding, J. J. et al. Prospective genotyping of hepatocellular carcinoma: clinical implications of next-generation sequencing for matching patients to targeted and immune therapies. Clin. Cancer Res. 25, 2116–2126 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Das, D. et al. Integrative multi-omics characterization of hepatocellular carcinoma in Hispanic patients. J. Natl Cancer Inst. 116, 1961–1978 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wong, A. M. et al. Unique molecular characteristics of NAFLD-associated liver cancer accentuate β-catenin/TNFRSF19-mediated immune evasion. J. Hepatol. 77, 410–423 (2022).

    Article  CAS  PubMed  Google Scholar 

  18. Pinyol, R. et al. Molecular characterisation of hepatocellular carcinoma in patients with non-alcoholic steatohepatitis. J. Hepatol. 75, 865–878 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Huang, H. et al. β-Catenin mutations are frequent in human hepatocellular carcinomas associated with hepatitis C virus infection. Am. J. Pathol. 155, 1795–1801 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cieply, B., Zeng, G., Proverbs-Singh, T., Geller, D. A. & Monga, S. P. Unique phenotype of hepatocellular cancers with exon-3 mutations in β-catenin gene. Hepatology 49, 821–831 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Nault, J. C. et al. Clinical impact of genomic diversity from early to advanced hepatocellular carcinoma. Hepatology 71, 164–182 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Fan, W. et al. Matrix viscoelasticity promotes liver cancer progression in the pre-cirrhotic liver. Nature 626, 635–642 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Devereux, T. R. et al. CTNNB1 mutations and β-catenin protein accumulation in human hepatocellular carcinomas associated with high exposure to aflatoxin B1. Mol. Carcinog. 31, 68–73 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Calderaro, J. et al. Histological subtypes of hepatocellular carcinoma are related to gene mutations and molecular tumour classification. J. Hepatol. 67, 727–738 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. Boyault, S. et al. Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets. Hepatology 45, 42–52 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Chiang, D. Y. et al. Focal gains of VEGFA and molecular classification of hepatocellular carcinoma. Cancer Res. 68, 6779–6788 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hoshida, Y. et al. Integrative transcriptome analysis reveals common molecular subclasses of human hepatocellular carcinoma. Cancer Res. 69, 7385–7392 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rebouissou, S. & Nault, J. C. Advances in molecular classification and precision oncology in hepatocellular carcinoma. J. Hepatol. 72, 215–229 (2020).

    Article  CAS  PubMed  Google Scholar 

  29. Llovet, J. M. et al. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 359, 378–390 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Kudo, M. et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. Lancet 391, 1163–1173 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Bruix, J. et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 389, 56–66 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. Abou-Alfa, G. K. et al. Cabozantinib in patients with advanced and progressing hepatocellular carcinoma. N. Engl. J. Med. 379, 54–63 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Finn, R. S. et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N. Engl. J. Med. 382, 1894–1905 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Cheng, A. L. et al. Updated efficacy and safety data from IMbrave150: atezolizumab plus bevacizumab vs. sorafenib for unresectable hepatocellular carcinoma. J. Hepatol. 76, 862–873 (2022).

    Article  CAS  PubMed  Google Scholar 

  35. Abou-Alfa, G. K. et al. Tremelimumab plus durvalumab in unresectable hepatocellular carcinoma. NEJM Evid. 1, EVIDoa2100070 (2022).

    Article  PubMed  Google Scholar 

  36. Sangro, B. et al. Four-year overall survival update from the phase III HIMALAYA study of tremelimumab plus durvalumab in unresectable hepatocellular carcinoma. Ann. Oncol. 35, 448–457 (2024).

    Article  CAS  PubMed  Google Scholar 

  37. Kudo, M. et al. Nivolumab (NIVO) plus ipilimumab (IPI) vs lenvatinib (LEN) or sorafenib (SOR) as first-line (1L) therapy for unresectable hepatocellular carcinoma (uHCC): CheckMate 9DW expanded analyses [abstract]. J. Clin. Oncol. 43, 520 (2025).

    Article  Google Scholar 

  38. Ren, Z. et al. Sintilimab plus a bevacizumab biosimilar (IBI305) versus sorafenib in unresectable hepatocellular carcinoma (ORIENT-32): a randomised, open-label, phase 2-3 study. Lancet Oncol. 22, 977–990 (2021).

    Article  CAS  PubMed  Google Scholar 

  39. Kelley, R. K. et al. Cabozantinib plus atezolizumab versus sorafenib for advanced hepatocellular carcinoma (COSMIC-312): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 23, 995–1008 (2022).

    Article  CAS  PubMed  Google Scholar 

  40. Llovet, J. M. et al. Lenvatinib plus pembrolizumab versus lenvatinib plus placebo for advanced hepatocellular carcinoma (LEAP-002): a randomised, double-blind, phase 3 trial. Lancet Oncol. 24, 1399–1410 (2023).

    Article  CAS  PubMed  Google Scholar 

  41. Qin, S. et al. Camrelizumab plus rivoceranib versus sorafenib as first-line therapy for unresectable hepatocellular carcinoma (CARES-310): a randomised, open-label, international phase 3 study. Lancet 402, 1133–1146 (2023).

    Article  CAS  PubMed  Google Scholar 

  42. Vogel, A. et al. Atezolizumab in combination with bevacizumab for the management of patients with hepatocellular carcinoma in the first-line setting: systematic literature review and meta-analysis. Liver Cancer 12, 510–520 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lehrich, B. M., Zhang, J., Monga, S. P. & Dhanasekaran, R. Battle of the biopsies: role of tissue and liquid biopsy in hepatocellular carcinoma. J. Hepatol. 80, 515–530 (2024).

    Article  CAS  PubMed  Google Scholar 

  44. Tertiary lymphoid structures validated as biomarker. Cancer Discov. 14, OF2 (2024).

    Article  Google Scholar 

  45. Calderaro, J. et al. Intra-tumoral tertiary lymphoid structures are associated with a low risk of early recurrence of hepatocellular carcinoma. J. Hepatol. 70, 58–65 (2019).

    Article  PubMed  Google Scholar 

  46. Shu, D. H. et al. Immune landscape of tertiary lymphoid structures in hepatocellular carcinoma (HCC) treated with neoadjuvant immune checkpoint blockade. Preprint at bioRxiv https://doi.org/10.1101/2023.10.16.562104 (2023).

  47. Zeng, Q. et al. Artificial intelligence-based pathology as a biomarker of sensitivity to atezolizumab-bevacizumab in patients with hepatocellular carcinoma: a multicentre retrospective study. Lancet Oncol. 24, 1411–1422 (2023).

    Article  CAS  PubMed  Google Scholar 

  48. Ercan, C. et al. Hepatocellular carcinoma immune microenvironment analysis: a comprehensive assessment with computational and classical pathology. Clin. Cancer Res. 30, 5105–5115 (2024).

    Article  CAS  PubMed  Google Scholar 

  49. Sangro, B. et al. Association of inflammatory biomarkers with clinical outcomes in nivolumab-treated patients with advanced hepatocellular carcinoma. J. Hepatol. 73, 1460–1469 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhu, A. X. et al. Molecular correlates of clinical response and resistance to atezolizumab in combination with bevacizumab in advanced hepatocellular carcinoma. Nat. Med. 28, 1599–1611 (2022).

    Article  CAS  PubMed  Google Scholar 

  51. Haber, P. K. et al. Molecular markers of response to anti-PD1 therapy in advanced hepatocellular carcinoma. Gastroenterology 164, 72–88.e18 (2023).

    Article  CAS  PubMed  Google Scholar 

  52. Montironi, C. et al. Inflamed and non-inflamed classes of HCC: a revised immunogenomic classification. Gut 72, 129–140 (2023).

    Article  CAS  PubMed  Google Scholar 

  53. Sia, D. et al. Identification of an immune-specific class of hepatocellular carcinoma, based on molecular features. Gastroenterology 153, 812–826 (2017).

    Article  CAS  PubMed  Google Scholar 

  54. Luke, J. J., Bao, R., Sweis, R. F., Spranger, S. & Gajewski, T. F. WNT/β-catenin pathway activation correlates with immune exclusion across human cancers. Clin. Cancer Res. 25, 3074–3083 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Spranger, S., Bao, R. & Gajewski, T. F. Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature 523, 231–235 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Ruiz de Galarreta, M. et al. β-Catenin activation promotes immune escape and resistance to anti-PD-1 therapy in hepatocellular carcinoma. Cancer Discov. 9, 1124–1141 (2019).

    Article  CAS  PubMed  Google Scholar 

  57. Kuwano, A. et al. Therapeutic efficacy of atezolizumab plus bevacizumab for hepatocellular carcinoma with WNT/β-catenin signal activation. Oncol. Lett. 24, 216 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kurebayashi, Y. et al. Tumor steatosis and glutamine synthetase expression in patients with advanced hepatocellular carcinoma receiving atezolizumab plus bevacizumab therapy. Hepatol. Res. 53, 1008–1020 (2023).

    Article  CAS  PubMed  Google Scholar 

  59. von Felden, J. et al. Mutations in circulating tumor DNA predict primary resistance to systemic therapies in advanced hepatocellular carcinoma. Oncogene 40, 140–151 (2021).

    Article  Google Scholar 

  60. Hong, J. Y. et al. Hepatocellular carcinoma patients with high circulating cytotoxic T cells and intra-tumoral immune signature benefit from pembrolizumab: results from a single-arm phase 2 trial. Genome Med. 14, 1 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Morita, M. et al. Immunological microenvironment predicts the survival of the patients with hepatocellular carcinoma treated with anti-PD-1 antibody. Liver Cancer 10, 380–393 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Matsumae, T. et al. Circulating cell-free DNA profiling predicts the therapeutic outcome in advanced hepatocellular carcinoma patients treated with combination immunotherapy. Cancers 14, 3367 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mohamed, Y. I. et al. Circulating tumor DNA (ctDNA) as a biomarker of response to therapy in advanced hepatocellular carcinoma treated with nivolumab. Cancer Biomark. 41, 83–91 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ogawa, K. et al. Effect of atezolizumab plus bevacizumab in patients with hepatocellular carcinoma harboring CTNNB1 mutation in early clinical experience. J. Cancer 13, 2656–2661 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Campani, C. et al. Circulating tumour DNA in patients with hepatocellular carcinoma across tumour stages and treatments. Gut 73, 1870–1882 (2024).

    Article  CAS  PubMed  Google Scholar 

  66. Terashima, T. et al. Comprehensive genomic profiling for advanced hepatocellular carcinoma in clinical practice. Hepatol. Int. 19, 212–221 (2025).

    Article  PubMed  Google Scholar 

  67. Kuwano, A. et al. WNT/β-catenin signaling and CD8+ tumor-infiltrating lymphocytes in tremelimumab plus durvalumab for advanced hepatocellular carcinoma. In Vivo 38, 2774–2781 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hale, G. et al. Correlation of exon 3 β-catenin mutations with glutamine synthetase staining patterns in hepatocellular adenoma and hepatocellular carcinoma. Mod. Pathol. 29, 1370–1380 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bioulac-Sage, P. et al. Hepatocellular adenoma subtype classification using molecular markers and immunohistochemistry. Hepatology 46, 740–748 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Joseph, N. M., Umetsu, S. E., Shafizadeh, N., Ferrell, L. & Kakar, S. Genomic profiling of well-differentiated hepatocellular neoplasms with diffuse glutamine synthetase staining reveals similar genetics across the adenoma to carcinoma spectrum. Mod. Pathol. 32, 1627–1636 (2019).

    Article  CAS  PubMed  Google Scholar 

  71. Valvezan, A. J., Zhang, F., Diehl, J. A. & Klein, P. S. Adenomatous polyposis coli (APC) regulates multiple signaling pathways by enhancing glycogen synthase kinase-3 (GSK-3) activity. J. Biol. Chem. 287, 3823–3832 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Zhang, Y. et al. Loss of Apc cooperates with activated oncogenes to induce liver tumor formation in mice. Am. J. Pathol. 191, 930–946 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Qiao, Y. et al. Axis inhibition protein 1 (Axin1) deletion-induced hepatocarcinogenesis requires intact β-catenin but not notch cascade in mice. Hepatology 70, 2003–2017 (2019).

    Article  CAS  PubMed  Google Scholar 

  74. Zucman-Rossi, J. et al. Differential effects of inactivated Axin1 and activated β-catenin mutations in human hepatocellular carcinomas. Oncogene 26, 774–780 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Abitbol, S. et al. AXIN deficiency in human and mouse hepatocytes induces hepatocellular carcinoma in the absence of β-catenin activation. J. Hepatol. 68, 1203–1213 (2018).

    Article  CAS  PubMed  Google Scholar 

  76. Rebouissou, S. et al. Genotype–phenotype correlation of CTNNB1 mutations reveals different β-catenin activity associated with liver tumor progression. Hepatology 64, 2047–2061 (2016).

    Article  CAS  PubMed  Google Scholar 

  77. Tao, J. et al. Nuclear factor erythroid 2-related factor 2 and β-catenin coactivation in hepatocellular cancer: biological and therapeutic implications. Hepatology 74, 741–759 (2021).

    Article  CAS  PubMed  Google Scholar 

  78. Miyoshi, Y. et al. Activation of the β-catenin gene in primary hepatocellular carcinomas by somatic alterations involving exon 3. Cancer Res. 58, 2524–2527 (1998).

    CAS  PubMed  Google Scholar 

  79. Tao, J. et al. Modeling a human hepatocellular carcinoma subset in mice through coexpression of met and point-mutant β-catenin. Hepatology 64, 1587–1605 (2016).

    Article  CAS  PubMed  Google Scholar 

  80. Tao, J. et al. Targeting β-catenin in hepatocellular cancers induced by coexpression of mutant β-catenin and K-Ras in mice. Hepatology 65, 1581–1599 (2017).

    Article  CAS  PubMed  Google Scholar 

  81. Hirschfield, H. et al. In vitro modeling of hepatocellular carcinoma molecular subtypes for anti-cancer drug assessment. Exp. Mol. Med. 50, e419 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Caruso, S. et al. Analysis of iver cancer cell lines identifies agents with likely efficacy against hepatocellular carcinoma and markers of response. Gastroenterology 157, 760–776 (2019).

    Article  CAS  PubMed  Google Scholar 

  83. Qiu, Z. et al. A pharmacogenomic landscape in human liver cancers. Cancer Cell 36, 179–193.e11 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Schmidt, B. et al. Molecular subclasses of hepatocellular carcinoma predict sensitivity to fibroblast growth factor receptor inhibition. Int. J. Cancer 138, 1494–1505 (2016).

    Article  CAS  PubMed  Google Scholar 

  85. Finn, R. S. et al. Molecular subtype and response to dasatinib, an Src/Abl small molecule kinase inhibitor, in hepatocellular carcinoma cell lines in vitro. Hepatology 57, 1838–1846 (2013).

    Article  CAS  PubMed  Google Scholar 

  86. Rialdi, A. et al. WNTinib is a multi-kinase inhibitor with specificity against β-catenin mutant hepatocellular carcinoma. Nat. Cancer 4, 1157–1175 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. VanSant-Webb, C. et al. Phospholipid isotope tracing suggests β-catenin-driven suppression of phosphatidylcholine metabolism in hepatocellular carcinoma. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1869, 159514 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Delgado, E. et al. Complete response of Ctnnb1-mutated tumours to β-catenin suppression by locked nucleic acid antisense in a mouse hepatocarcinogenesis model. J. Hepatol. 62, 380–387 (2015).

    Article  CAS  PubMed  Google Scholar 

  89. Akasu, M. et al. Intrinsic activation of β-catenin signaling by CRISPR/Cas9-mediated exon skipping contributes to immune evasion in hepatocellular carcinoma. Sci. Rep. 11, 16732 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Stampar, M., Breznik, B., Filipic, M. & Zegura, B. Characterization of in vitro 3D cell model developed from human hepatocellular carcinoma (HepG2) cell line. Cells 9, 2557 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Jung, H. R. et al. Cell spheroids with enhanced aggressiveness to mimic human liver cancer in vitro and in vivo. Sci. Rep. 7, 10499 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Takai, A. et al. Three-dimensional organotypic culture models of human hepatocellular carcinoma. Sci. Rep. 6, 21174 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Broutier, L. et al. Culture and establishment of self-renewing human and mouse adult liver and pancreas 3D organoids and their genetic manipulation. Nat. Protoc. 11, 1724–1743 (2016).

    Article  CAS  PubMed  Google Scholar 

  94. Sun, L. et al. Modelling liver cancer initiation with organoids derived from directly reprogrammed human hepatocytes. Nat. Cell Biol. 21, 1015–1026 (2019).

    Article  CAS  PubMed  Google Scholar 

  95. Broutier, L. et al. Human primary liver cancer-derived organoid cultures for disease modeling and drug screening. Nat. Med. 23, 1424–1435 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Nuciforo, S. et al. Organoid models of human liver cancers derived from tumor needle biopsies. Cell Rep. 24, 1363–1376 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ji, S. et al. Pharmaco-proteogenomic characterization of liver cancer organoids for precision oncology. Sci. Transl. Med. 15, eadg3358 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Liu, J. et al. Cancer-associated fibroblasts provide a stromal niche for liver cancer organoids that confers trophic effects and therapy resistance. Cell Mol. Gastroenterol. Hepatol. 11, 407–431 (2021).

    Article  PubMed  Google Scholar 

  99. Lu, S. et al. Development of a biomimetic liver tumor-on-a-chip model based on decellularized liver matrix for toxicity testing. Lab Chip 18, 3379–3392 (2018).

    Article  CAS  PubMed  Google Scholar 

  100. Ogawa, K., Yamada, Y., Kishibe, K., Ishizaki, K. & Tokusashi, Y. β-Catenin mutations are frequent in hepatocellular carcinomas but absent in adenomas induced by diethylnitrosamine in B6C3F1 mice. Cancer Res. 59, 1830–1833 (1999).

    CAS  PubMed  Google Scholar 

  101. Aydinlik, H., Nguyen, T. D., Moennikes, O., Buchmann, A. & Schwarz, M. Selective pressure during tumor promotion by phenobarbital leads to clonal outgrowth of β-catenin-mutated mouse liver tumors. Oncogene 20, 7812–7816 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Loeppen, S. et al. Overexpression of glutamine synthetase is associated with β-catenin-mutations in mouse liver tumors during promotion of hepatocarcinogenesis by phenobarbital. Cancer Res. 62, 5685–5688 (2002).

    CAS  PubMed  Google Scholar 

  103. Loeppen, S., Koehle, C., Buchmann, A. & Schwarz, M. A. β-Catenin-dependent pathway regulates expression of cytochrome P450 isoforms in mouse liver tumors. Carcinogenesis 26, 239–248 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Awuah, P. K., Rhieu, B. H., Singh, S., Misse, A. & Monga, S. P. β-Catenin loss in hepatocytes promotes hepatocellular cancer after diethylnitrosamine and phenobarbital administration to mice. PLoS ONE 7, e39771 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zhang, X. F. et al. Conditional β-catenin loss in mice promotes chemical hepatocarcinogenesis: role of oxidative stress and platelet-derived growth factor receptor α/phosphoinositide 3-kinase signaling. Hepatology 52, 954–965 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Rignall, B., Braeuning, A., Buchmann, A. & Schwarz, M. Tumor formation in liver of conditional β-catenin-deficient mice exposed to a diethylnitrosamine/phenobarbital tumor promotion regimen. Carcinogenesis 32, 52–57 (2011).

    Article  CAS  PubMed  Google Scholar 

  107. Tzouanas, C. N. et al. Chronic metabolic stress drives developmental programs and loss of tissue functions in non-transformed liver that mirror tumor states and stratify survival. Preprint at bioRxiv https://doi.org/10.1101/2023.11.30.569407 (2023).

  108. Kwapisz, O. et al. Fatty acids and a high-fat diet induce epithelial-mesenchymal transition by activating TGFβ and β-catenin in liver cells. Int. J. Mol. Sci. 22, 1272 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Popov, V. B. et al. Second-generation antisense oligonucleotides against β-catenin protect mice against diet-induced hepatic steatosis and hepatic and peripheral insulin resistance. FASEB J. 30, 1207–1217 (2016).

    Article  CAS  PubMed  Google Scholar 

  110. Behari, J. et al. β-Catenin links hepatic metabolic zonation with lipid metabolism and diet-induced obesity in mice. Am. J. Pathol. 184, 3284–3298 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Arboatti, A. S. et al. Diethylnitrosamine enhances hepatic tumorigenic pathways in mice fed with high fat diet (Hfd). Chem. Biol. Interact. 303, 70–78 (2019).

    Article  CAS  PubMed  Google Scholar 

  112. Barcena-Varela, M., Monga, S. P. & Lujambio, A. Precision models in hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol. 22, 191–205 (2025).

    Article  CAS  PubMed  Google Scholar 

  113. Lachenmayer, A. et al. Wnt-pathway activation in two molecular classes of hepatocellular carcinoma and experimental modulation by sorafenib. Clin. Cancer Res. 18, 4997–5007 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ding, Z. et al. Oncogenic dependency on β-catenin in liver cancer cell lines correlates with pathway activation. Oncotarget 8, 114526–114539 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Gu, Q. et al. Genomic characterization of a large panel of patient-derived hepatocellular carcinoma xenograft tumor models for preclinical development. Oncotarget 6, 20160–20176 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Harada, N. et al. Lack of tumorigenesis in the mouse liver after adenovirus-mediated expression of a dominant stable mutant of β-catenin. Cancer Res. 62, 1971–1977 (2002).

    CAS  PubMed  Google Scholar 

  117. Stauffer, J. K. et al. Coactivation of AKT and β-catenin in mice rapidly induces formation of lipogenic liver tumors. Cancer Res. 71, 2718–2727 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Lee, S. A. et al. Integration of genomic analysis and in vivo transfection to identify sprouty 2 as a candidate tumor suppressor in liver cancer. Hepatology 47, 1200–1210 (2008).

    Article  CAS  PubMed  Google Scholar 

  119. Molina-Sanchez, P. et al. Cooperation between distinct cancer driver genes underlies intertumor heterogeneity in hepatocellular carcinoma. Gastroenterology 159, 2203–2220.e14 (2020).

    Article  CAS  PubMed  Google Scholar 

  120. Matter, M. S. et al. Oncogenic driver genes and the inflammatory microenvironment dictate liver tumor phenotype. Hepatology 63, 1888–1899 (2016).

    Article  CAS  PubMed  Google Scholar 

  121. Zhu, Y., Tahara, S. M., Tsukamoto, H. & Machida, K. Protocol for generation of humanized HCC mouse model and cancer-driver mutations using CRISPR-Cas9. Star. Protoc. 4, 102389 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Liu, W. N. et al. Single-cell RNA sequencing reveals anti-tumor potency of CD56+ NK cells and CD8+ T cells in humanized mice via PD-1 and TIGIT co-targeting. Mol. Ther. 32, 3895–3914 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Adebayo Michael, A. O. et al. Inhibiting glutamine-dependent mTORC1 activation ameliorates liver cancers driven by β-catenin mutations. Cell Metab. 29, 1135–1150.e6 (2019).

    Article  CAS  PubMed  Google Scholar 

  124. Hu, S. et al. Single-cell spatial transcriptomics reveals a dynamic control of metabolic zonation and liver regeneration by endothelial cell Wnt2 and Wnt9b. Cell Rep. Med. 3, 100754 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Desert, R. et al. Human hepatocellular carcinomas with a periportal phenotype have the lowest potential for early recurrence after curative resection. Hepatology 66, 1502–1518 (2017).

    Article  CAS  PubMed  Google Scholar 

  126. Li, L. et al. The de novo synthesis of GABA and its gene regulatory function control hepatocellular carcinoma metastasis. Dev. Cell 60, 1053–1069.e6 (2025).

    Article  CAS  PubMed  Google Scholar 

  127. Jewell, J. L. et al. Metabolism. Differential regulation of mTORC1 by leucine and glutamine. Science 347, 194–198 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Shang, R. et al. Cabozantinib-based combination therapy for the treatment of hepatocellular carcinoma. Gut 70, 1746–1757 (2021).

    Article  CAS  PubMed  Google Scholar 

  129. Ho, D. W. H. et al. TSC1/2 mutations define a molecular subset of HCC with aggressive behaviour and treatment implication. Gut 66, 1496–1506 (2017).

    Article  CAS  PubMed  Google Scholar 

  130. Sohn, B. H., Park, I. Y., Shin, J. H., Yim, S. Y. & Lee, J. S. Glutamine synthetase mediates sorafenib sensitivity in β-catenin-active hepatocellular carcinoma cells. Exp. Mol. Med. 50, e421 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Lehrich, B. M. et al. Precision targeting of β-catenin induces tumor reprogramming and immunity in hepatocellular cancers. Nat. Commun. 16, 5009 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Giera, S. et al. Wnt/β-catenin signaling activates and determines hepatic zonal expression of glutathione S-transferases in mouse liver. Toxicol. Sci. 115, 22–33 (2010).

    Article  CAS  PubMed  Google Scholar 

  133. Chung, A. et al. Liver cancer initiation is dependent on metabolic zonation but decoupled from premalignant clonal expansion. Preprint at bioRxiv https://doi.org/10.1101/2024.01.10.575013 (2024).

  134. Singh, Y., Braeuning, A., Schmid, A., Pichler, B. J. & Schwarz, M. Selective poisoning of Ctnnb1-mutated hepatoma cells in mouse liver tumors by a single application of acetaminophen. Arch. Toxicol. 87, 1595–1607 (2013).

    Article  CAS  PubMed  Google Scholar 

  135. Senni, N. et al. β-Catenin-activated hepatocellular carcinomas are addicted to fatty acids. Gut 68, 322–334 (2019).

    Article  CAS  PubMed  Google Scholar 

  136. Wang, H. et al. Therapeutic efficacy of FASN inhibition in preclinical models of HCC. Hepatology 76, 951–966 (2022).

    Article  CAS  PubMed  Google Scholar 

  137. Weinfurtner, K. et al. Distinct metabolic phenotype renders β-catenin mutant hepatocellular carcinoma susceptible to treatment-induced ischemia. Preprint at medRxiv https://doi.org/10.1101/2023.09.28.23296283 (2024).

  138. Lehrich, B. M. et al. Development of mutated β-catenin gene signature to identify CTNNB1 mutations from whole and spatial transcriptomic data in patients with HCC. JHEP Rep. 6, 101186 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Zhao, W. et al. SLC13A3 is a major effector downstream of activated β-catenin in liver cancer pathogenesis. Nat. Commun. 15, 7522 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Wu, S. Y. et al. Hepatocellular carcinoma-related cyclin D1 is selectively regulated by autophagy degradation system. Hepatology 68, 141–154 (2018).

    Article  CAS  PubMed  Google Scholar 

  141. Patil, M. A. et al. Role of cyclin D1 as a mediator of c-Met- and β-catenin-induced hepatocarcinogenesis. Cancer Res. 69, 253–261 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Dai, W. et al. Glutamine synthetase limits β-catenin-mutated liver cancer growth by maintaining nitrogen homeostasis and suppressing mTORC1. J. Clin. Invest. 132, e161408 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Liang, B. et al. TBX3 functions as a tumor suppressor downstream of activated CTNNB1 mutants during hepatocarcinogenesis. J. Hepatol. 75, 120–131 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Canal, F. et al. Generation of mice with hepatocyte-specific conditional deletion of notum. PLoS ONE 11, e0150997 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Aoki, T. et al. Two distinct characteristics of immune microenvironment in human hepatocellular carcinoma with Wnt/β-catenin mutations. Liver Cancer 13, 285–305 (2024).

    Article  CAS  PubMed  Google Scholar 

  146. Cadoux, M. et al. Expression of NKG2D ligands is downregulated by β-catenin signalling and associates with HCC aggressiveness. J. Hepatol. 74, 1386–1397 (2021).

    Article  CAS  PubMed  Google Scholar 

  147. L’Hermitte, A. et al. Lect2 controls inflammatory monocytes to constrain the growth and progression of hepatocellular carcinoma. Hepatology 69, 160–178 (2019).

    Article  PubMed  Google Scholar 

  148. Cai, N. et al. Targeting MMP9 in CTNNB1 mutant hepatocellular carcinoma restores CD8+ T cell-mediated antitumour immunity and improves anti-PD-1 efficacy. Gut 73, 985–999 (2024).

    Article  CAS  PubMed  Google Scholar 

  149. Nejak-Bowen, K., Kikuchi, A. & Monga, S. P. β-Catenin-NF-κB interactions in murine hepatocytes: a complex to die for. Hepatology 57, 763–774 (2013).

    Article  CAS  PubMed  Google Scholar 

  150. Liu, X. et al. Can MRI features predict clinically relevant hepatocellular carcinoma genetic subtypes? Abdom. Radiol. 48, 1955–1964 (2023).

    Article  Google Scholar 

  151. Gougelet, A. et al. Hepatocellular carcinomas with mutational activation of β-catenin require choline and can be detected by positron emission tomography. Gastroenterology 157, 807–822 (2019).

    Article  CAS  PubMed  Google Scholar 

  152. Ueno, A. et al. OATP1B3 expression is strongly associated with Wnt/β-catenin signalling and represents the transporter of gadoxetic acid in hepatocellular carcinoma. J. Hepatol. 61, 1080–1087 (2014).

    Article  CAS  PubMed  Google Scholar 

  153. Tamura, Y. et al. Association of hepatobiliary phase of gadoxetic-acid-enhanced MRI imaging with immune microenvironment and response to atezolizumab plus bevacizumab treatment. Cancers 15, 4234 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Sasaki, R. et al. Evaluating the role of hepatobiliary phase of gadoxetic acid-enhanced magnetic resonance imaging in predicting treatment impact of lenvatinib and atezolizumab plus bevacizumab on unresectable hepatocellular carcinoma. Cancers 14, 827 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Aoki, T. et al. Higher enhancement intrahepatic nodules on the hepatobiliary phase of Gd-EOB-DTPA-enhanced MRI as a poor responsive marker of anti-PD-1/PD-L1 monotherapy for unresectable hepatocellular carcinoma. Liver Cancer 10, 615–628 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Arefan, D. et al. Quantitative radiomics and qualitative LI-RADS imaging descriptors for non-invasive assessment of β-catenin mutation status in hepatocellular carcinoma. Abdom. Radiol. 49, 2220–2230 (2024).

    Article  Google Scholar 

  157. Chen, M. et al. Classification and mutation prediction based on histopathology H&E images in liver cancer using deep learning. npj Precis. Oncol. 4, 14 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Coto-Llerena, M. et al. Circulating cell-free DNA captures the intratumor heterogeneity in multinodular hepatocellular carcinoma. JCO Precis. Oncol. 6, e2100335 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Cowzer, D. et al. Targeted molecular profiling of circulating cell-free DNA in patients with advanced hepatocellular carcinoma. JCO Precis. Oncol. 7, e2300272 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Ge, Z. et al. Detection of oncogenic mutations in paired circulating tumor DNA and circulating tumor cells in patients with hepatocellular carcinoma. Transl. Oncol. 14, 101073 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Lin, S. Y. et al. Detection of CTNNB1 hotspot mutations in cell-free DNA from the urine of hepatocellular carcinoma patients. Diagnostics 11, 1475 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Oversoe, S. K. et al. Combining tissue and circulating tumor DNA increases the detection rate of a CTNNB1 mutation in hepatocellular carcinoma. BMC Cancer 21, 376 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Yuen, V. W. et al. Using mouse liver cancer models based on somatic genome editing to predict immune checkpoint inhibitor responses. J. Hepatol. 78, 376–389 (2023).

    Article  CAS  PubMed  Google Scholar 

  164. Chuah, S. et al. Uncoupling immune trajectories of response and adverse events from anti-PD-1 immunotherapy in hepatocellular carcinoma. J. Hepatol. 77, 683–694 (2022).

    Article  CAS  PubMed  Google Scholar 

  165. Cappuyns, S. et al. PD-1 CD45RA+ effector-memory CD8 T cells and CXCL10+ macrophages are associated with response to atezolizumab plus bevacizumab in advanced hepatocellular carcinoma. Nat. Commun. 14, 7825 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Jing, S. Y. et al. Spatial multiomics reveals a subpopulation of fibroblasts associated with cancer stemness in human hepatocellular carcinoma. Genome Med. 16, 98 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Liu, Y. et al. Identification of a tumour immune barrier in the HCC microenvironment that determines the efficacy of immunotherapy. J. Hepatol. 78, 770–782 (2023).

    Article  CAS  PubMed  Google Scholar 

  168. Lu, C. et al. HCC spatial transcriptomic profiling reveals significant and potentially targetable cancer-endothelial interactions. Hepatol. Commun. 8, e0533 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Wang, Y. F. et al. Spatial maps of hepatocellular carcinoma transcriptomes reveal spatial expression patterns in tumor immune microenvironment. Theranostics 12, 4163–4180 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Liu, J. et al. Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal. Transduct. Target. Ther. 7, 3 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Pećina-Šlaus, N., Anicic, S., Bukovac, A. & Kafka, A. Wnt signaling inhibitors and their promising role in tumor treatment. Int. J. Mol. Sci. 24, 6733 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Wang, W. et al. Blocking Wnt secretion reduces growth of hepatocellular carcinoma cell lines mostly independent of β-catenin signaling. Neoplasia 18, 711–723 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Delgado, E. R. et al. Identification and characterization of a novel small-molecule inhibitor of β-catenin signaling. Am. J. Pathol. 184, 2111–2122 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Yamada, K. et al. E7386, a selective inhibitor of the interaction between β-catenin and CBP, exerts antitumor activity in tumor models with activated canonical Wnt signaling. Cancer Res. 81, 1052–1062 (2021).

    Article  CAS  PubMed  Google Scholar 

  175. Gabata, R. et al. Anti-tumor activity of the small molecule inhibitor PRI-724 against β-catenin-activated hepatocellular carcinoma. Anticancer. Res. 40, 5211–5219 (2020).

    Article  CAS  PubMed  Google Scholar 

  176. Ma, L. et al. Tankyrase inhibitors attenuate WNT/β-catenin signaling and inhibit growth of hepatocellular carcinoma cells. Oncotarget 6, 25390–25401 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Liang, B. et al. Differential requirement of Hippo cascade during CTNNB1 or AXIN1 mutation-driven hepatocarcinogenesis. Hepatology 77, 1929–1942 (2023).

    Article  PubMed  Google Scholar 

  178. Ganesh, S. et al. Direct pharmacological inhibition of β-catenin by RNA interference in tumors of diverse origin. Mol. Cancer Ther. 15, 2143–2154 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Ganesh, S. et al. β-Catenin mRNA silencing and MEK inhibition display synergistic efficacy in preclinical tumor models. Mol. Cancer Ther. 17, 544–553 (2018).

    Article  CAS  PubMed  Google Scholar 

  180. Ganesh, S. et al. RNAi-mediated β-catenin inhibition promotes T cell infiltration and antitumor activity in combination with immune checkpoint blockade. Mol. Ther. 26, 2567–2579 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Matsuda, A., Ishiguro, K., Yan, I. K. & Patel, T. Extracellular vesicle-based therapeutic targeting of β-catenin to modulate anticancer immune responses in hepatocellular cancer. Hepatol. Commun. 3, 525–541 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Akinc, A. et al. The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nat. Nanotechnol. 14, 1084–1087 (2019).

    Article  CAS  PubMed  Google Scholar 

  183. Webb, M. J. et al. Expression of tumor antigens within an oncolytic virus enhances the anti-tumor T cell response. Nat. Commun. 15, 5442 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Lu, X. et al. Combination of AFP vaccine and immune checkpoint inhibitors slows hepatocellular carcinoma progression in preclinical models. J. Clin. Invest. 133, e16329 (2023).

    Article  Google Scholar 

  185. Rim, E. Y., Clevers, H. & Nusse, R. The Wnt pathway: from signaling mechanisms to synthetic modulators. Annu. Rev. Biochem. 91, 571–598 (2022).

    Article  CAS  PubMed  Google Scholar 

  186. Akinc, A. et al. Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol. Ther. 18, 1357–1364 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. McDougall, R. et al. The nonclinical disposition and pharmacokinetic/pharmacodynamic properties of N-acetylgalactosamine-conjugated small interfering RNA are highly predictable and build confidence in translation to human. Drug Metab. Dispos. 50, 781–797 (2022).

    Article  CAS  PubMed  Google Scholar 

  188. Nejak-Bowen, K. & Monga, S. P. Wnt-β-catenin in hepatobiliary homeostasis, injury, and repair. Hepatology 78, 1907–1921 (2023).

    Article  PubMed  Google Scholar 

  189. Wickline, E. D. et al. Hepatocyte γ-catenin compensates for conditionally deleted β-catenin at adherens junctions. J. Hepatol. 55, 1256–1262 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Yin, T. et al. Mechanisms of plakoglobin-dependent adhesion: desmosome-specific functions in assembly and regulation by epidermal growth factor receptor. J. Biol. Chem. 280, 40355–40363 (2005).

    Article  CAS  PubMed  Google Scholar 

  191. Zhou, J. et al. Upregulation of γ-catenin compensates for the loss of β-catenin in adult cardiomyocytes. Am. J. Physiol. Heart Circ. Physiol. 292, H270–H276 (2007).

    Article  CAS  PubMed  Google Scholar 

  192. Pradhan-Sundd, T. et al. Dual β-catenin and γ-catenin loss in hepatocytes impacts their polarity through altered transforming growth factor-β and hepatocyte nuclear factor 4α signaling. Am. J. Pathol. 191, 885–901 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Pradhan-Sundd, T. et al. Dual catenin loss in murine liver causes tight junctional deregulation and progressive intrahepatic cholestasis. Hepatology 67, 2320–2337 (2018).

    Article  CAS  PubMed  Google Scholar 

  194. Wickline, E. D., Du, Y., Stolz, D. B., Kahn, M. & Monga, S. P. γ-Catenin at adherens junctions: mechanism and biologic implications in hepatocellular cancer after β-catenin knockdown. Neoplasia 15, 421–434 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

S.P.M. was supported by NIH grants R01CA251155, R01CA250227, 5R01DK062277 and Senior Vice Chancellor Endowed Chair in Pathobiology and Therapeutics. B.M.L. was supported in part by T32EB001026 and F30CA284540.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the manuscript.

Corresponding author

Correspondence to Satdarshan P. Monga.

Ethics declarations

Competing interests

S.P.M. received funding and/or materials from Alnylam Pharmaceuticals, Dicerna, Fog and Revolution Medicines; was a consultant for ALIGOS; and is currently a consultant or scientific adviser to Alnylam Pharmaceuticals, UbiquiTx and Vicero Bio. B.M.L. declares no competing interests.

Peer review

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks Stephanie Ma, Naoshi Nishida and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lehrich, B.M., Monga, S.P. WNT–β-catenin signalling in hepatocellular carcinoma: from bench to clinical trials. Nat Rev Gastroenterol Hepatol (2025). https://doi.org/10.1038/s41575-025-01127-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41575-025-01127-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing