Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Bridging technical innovation and computational advances in studies of RNA–protein assemblies

Abstract

RNA-dependent protein assemblies — including the spliceosome, ribosome and RNA-dependent membraneless organelles — have crucial roles in diverse cellular processes through RNA scaffolding and hierarchical assembly. Various empirical techniques and artificial intelligence algorithms have been developed to help understand the architecture, dynamics and functional implications of RNA–protein complexes, and their further development is underway to comprehensively integrate this information. This Review explores how combining these diverse technologies will enhance our understanding of the biological functions of RNA-dependent protein assemblies. We first explore methodological frontiers, contrasting traditional approaches with new platforms, which enable the identification and tracking of RNA–protein assembly dynamics on the same RNA molecules. We then present avenues for integrating these new experimental techniques with machine-learning methods to improve both predictive models of RNA–protein assembly and functional RNA design. We discuss how the synergy between experimental and digital biology can drive new insights into disease mechanisms and therapeutic strategies, including targeted modulation of pathogenic RNA–protein assemblies. Finally, we examine roadmaps for future research, emphasizing the potential of closed-loop systems that iteratively refine our understanding of RNA–protein assemblies through cycles of hypothesis generation, prediction, experimentation and validation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Ribonucleoprotein-mediated regulation across the RNA life cycle.
Fig. 2: Overview of selected ribonucleoprotein assemblies in eukaryotic cells.
Fig. 3: RNA and protein features that regulate the assembly of ribonucleoproteins.
Fig. 4: An integrative systems framework for discovery of ribonucleoprotein assemblies.

Similar content being viewed by others

References

  1. Hentze, M. W., Castello, A., Schwarzl, T. & Preiss, T. A brave new world of RNA-binding proteins. Nat. Rev. Mol. Cell Biol. 19, 327–341 (2018).

    Article  PubMed  CAS  Google Scholar 

  2. Gebauer, F., Schwarzl, T., Valcárcel, J. & Hentze, M. W. RNA-binding proteins in human genetic disease. Nat. Rev. Genet. 22, 185–198 (2021).

    Article  PubMed  CAS  Google Scholar 

  3. Buccitelli, C. & Selbach, M. mRNAs, proteins and the emerging principles of gene expression control. Nat. Rev. Genet. 21, 630–644 (2020).

    Article  PubMed  CAS  Google Scholar 

  4. Caudron-Herger, M., Jansen, R. E., Wassmer, E. & Diederichs, S. RBP2GO: a comprehensive pan-species database on RNA-binding proteins, their interactions and functions. Nucleic Acids Res. 49, D425–D436 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Wassmer, E., Koppány, G., Hermes, M., Diederichs, S. & Caudron-Herger, M. Refining the pool of RNA-binding domains advances the classification and prediction of RNA-binding proteins. Nucleic Acids Res. 52, 7504–7522 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Gerstberger, S., Hafner, M. & Tuschl, T. A census of human RNA-binding proteins. Nat. Rev. Genet. 15, 829–845 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Corley, M., Burns, M. C. & Yeo, G. W. How RNA-binding proteins interact with RNA: molecules and mechanisms. Mol. Cell 78, 9–29 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Hafner, M. et al. CLIP and complementary methods. Nat. Rev. Methods Primers 1, 20 (2021).

    Article  CAS  Google Scholar 

  9. Ramanathan, M., Porter, D. F. & Khavari, P. A. Methods to study RNA–protein interactions. Nat. Methods 16, 225–234 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Ule, J. et al. CLIP identifies Nova-regulated RNA networks in the brain. Science 302, 1212–1215 (2003).

    Article  PubMed  CAS  Google Scholar 

  11. Hafner, M. et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141, 129–141 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Sugimoto, Y. et al. Analysis of CLIP and iCLIP methods for nucleotide-resolution studies of protein-RNA interactions. Genome Biol. 13, R67 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chakrabarti, A. M., Haberman, N., Praznik, A., Luscombe, N. M. & Ule, J. Data science issues in studying protein–RNA interactions with CLIP technologies. Annu. Rev. Biomed. Data Sci. 1, 235–261 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lin, C. & Miles, W. O. Beyond CLIP: advances and opportunities to measure RBP–RNA and RNA–RNA interactions. Nucleic Acids Res. 47, 5490–5501 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Vieira-Vieira, C. H. & Selbach, M. Opportunities and challenges in global quantification of RNA-protein interaction via UV cross-linking. Front. Mol. Biosci. 8, 669939 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Mitchell, S. F. & Parker, R. Principles and properties of eukaryotic mRNPs. Mol. Cell 54, 547–558 (2014).

    Article  PubMed  CAS  Google Scholar 

  17. Hirose, T., Ninomiya, K., Nakagawa, S. & Yamazaki, T. A guide to membraneless organelles and their various roles in gene regulation. Nat. Rev. Mol. Cell Biol. 24, 288–304 (2023).

    Article  PubMed  CAS  Google Scholar 

  18. Håkansson, K. & Wigley, D. B. Structure of a complex between a cap analogue and mRNA guanylyl transferase demonstrates the structural chemistry of RNA capping. Proc. Natl Acad. Sci. USA 95, 1505–1510 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Li, Y., Wang, Q., Xu, Y. & Li, Z. Structures of co-transcriptional RNA capping enzymes on paused transcription complex. Nat. Commun. 15, 4622 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Izaurralde, E. et al. A nuclear cap binding protein complex involved in pre-mRNA splicing. Cell 78, 657–668 (1994).

    Article  PubMed  CAS  Google Scholar 

  21. Hamm, J. & Mattaj, I. W. Monomethylated cap structures facilitate RNA export from the nucleus. Cell 63, 109–118 (1990).

    Article  PubMed  CAS  Google Scholar 

  22. Spirin, A. S. Messenger ribonucleoproteins (informosomes) and RNA-binding proteins. Mol. Biol. Rep. 5, 53–57 (1979).

    Article  PubMed  CAS  Google Scholar 

  23. McKnight, S. L. & Miller, O. L. Ultrastructural patterns of RNA synthesis during early embryogenesis of Drosophila melanogaster. Cell 8, 305–319 (1976).

    Article  PubMed  CAS  Google Scholar 

  24. Conway, G., Wooley, J., Bibring, T. & LeStourgeon, W. M. Ribonucleoproteins package 700 nucleotides of pre-mRNA into a repeating array of regular particles. Mol. Cell. Biol. 8, 2884–2895 (1988).

    PubMed  PubMed Central  CAS  Google Scholar 

  25. Piñol-Roma, S., Choi, Y. D., Matunis, M. J. & Dreyfuss, G. Immunopurification of heterogeneous nuclear ribonucleoprotein particles reveals an assortment of RNA-binding proteins. Genes Dev. 2, 215–227 (1988).

    Article  PubMed  Google Scholar 

  26. König, J. et al. iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat. Struct. Mol. Biol. 17, 909–915 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Domanski, M. et al. 40S hnRNP particles are a novel class of nuclear biomolecular condensates. Nucleic Acids Res. 50, 6300–6312 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Rogalska, M. E., Vivori, C. & Valcárcel, J. Regulation of pre-mRNA splicing: roles in physiology and disease, and therapeutic prospects. Nat. Rev. Genet. 24, 251–269 (2023).

    Article  PubMed  CAS  Google Scholar 

  29. Akinyi, M. V. & Frilander, M. J. At the intersection of major and minor spliceosomes: crosstalk mechanisms and their impact on gene expression. Front. Genet. 12, 700744 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Enders, M., Neumann, P., Dickmanns, A. & Ficner, R. Structure and function of spliceosomal DEAH-box ATPases. Biol. Chem. 404, 851–866 (2023).

    Article  PubMed  CAS  Google Scholar 

  31. Pan, Q., Shai, O., Lee, L. J., Frey, B. J. & Blencowe, B. J. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat. Genet. 40, 1413–1415 (2008).

    Article  PubMed  CAS  Google Scholar 

  32. Brody, Y. et al. The in vivo kinetics of RNA polymerase II elongation during co-transcriptional splicing. PLoS Biol. 9, e1000573 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Pandit, S., Wang, D. & Fu, X.-D. Functional integration of transcriptional and RNA processing machineries. Curr. Opin. Cell Biol. 20, 260–265 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Bentley, D. L. Rules of engagement: co-transcriptional recruitment of pre-mRNA processing factors. Curr. Opin. Cell Biol. 17, 251–256 (2005).

    Article  PubMed  CAS  Google Scholar 

  35. Buratowski, S. Connections between mRNA 3′ end processing and transcription termination. Curr. Opin. Cell Biol. 17, 257–261 (2005).

    Article  PubMed  CAS  Google Scholar 

  36. Luo, M. L. et al. Pre-mRNA splicing and mRNA export linked by direct interactions between UAP56 and Aly. Nature 413, 644–647 (2001).

    Article  PubMed  CAS  Google Scholar 

  37. Giudice, J. & Jiang, H. Splicing regulation through biomolecular condensates and membraneless organelles. Nat. Rev. Mol. Cell Biol. 25, 683–700 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Proudfoot, N. J. Ending the message: poly(A) signals then and now. Genes Dev. 25, 1770–1782 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Tian, B., Hu, J., Zhang, H. & Lutz, C. S. A large-scale analysis of mRNA polyadenylation of human and mouse genes. Nucleic Acids Res. 33, 201–212 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Turner, R. E., Pattison, A. D. & Beilharz, T. H. Alternative polyadenylation in the regulation and dysregulation of gene expression. Semin. Cell Dev. Biol. 75, 61–69 (2018).

    Article  PubMed  CAS  Google Scholar 

  41. Shi, Y. et al. Molecular architecture of the human pre-mRNA 3′ processing complex. Mol. Cell 33, 365–376 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Turner, R. E. et al. Requirement for cleavage factor IIm in the control of alternative polyadenylation in breast cancer cells. RNA 26, 969–981 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Passmore, L. A. & Coller, J. Roles of mRNA poly(A) tails in regulation of eukaryotic gene expression. Nat. Rev. Mol. Cell Biol. 23, 93–106 (2022).

    Article  PubMed  CAS  Google Scholar 

  44. Mabin, J. W. et al. The exon junction complex undergoes a compositional switch that alters mRNP structure and nonsense-mediated mRNA decay activity. Cell Rep. 25, 2431–2446.e7 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Le Hir, H., Saulière, J. & Wang, Z. The exon junction complex as a node of post-transcriptional networks. Nat. Rev. Mol. Cell Biol. 17, 41–54 (2016).

    Article  PubMed  CAS  Google Scholar 

  46. Le Hir, H., Izaurralde, E., Maquat, L. E. & Moore, M. J. The spliceosome deposits multiple proteins 20–24 nucleotides upstream of mRNA exon–exon junctions. EMBO J. 19, 6860–6869 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ballut, L. et al. The exon junction core complex is locked onto RNA by inhibition of eIF4AIII ATPase activity. Nat. Struct. Mol. Biol. 12, 861–869 (2005).

    Article  PubMed  CAS  Google Scholar 

  48. Boehm, V. & Gehring, N. H. Exon junction complexes: supervising the gene expression assembly line. Trends Genet. 32, 724–735 (2016).

    Article  PubMed  CAS  Google Scholar 

  49. Xie, Y. et al. Cryo-EM structure of the yeast TREX complex and coordination with the SR-like protein Gbp2. eLife 10, e65699 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Strässer, K. et al. TREX is a conserved complex coupling transcription with messenger RNA export. Nature 417, 304–308 (2002).

    Article  PubMed  Google Scholar 

  51. Viphakone, N. et al. TREX exposes the RNA-binding domain of Nxf1 to enable mRNA export. Nat. Commun. 3, 1006 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Pacheco-Fiallos, B. et al. mRNA recognition and packaging by the human transcription–export complex. Nature 616, 828–835 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. He, P. C. et al. Exon architecture controls mRNA m6A suppression and gene expression. Science 379, 677–682 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Lejeune, F., Ishigaki, Y., Li, X. & Maquat, L. E. The exon junction complex is detected on CBP80-bound but not eIF4E-bound mRNA in mammalian cells: dynamics of mRNP remodeling. EMBO J. 21, 3536–3545 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Gehring, N. H., Lamprinaki, S., Kulozik, A. E. & Hentze, M. W. Disassembly of exon junction complexes by PYM. Cell 137, 536–548 (2009).

    Article  PubMed  CAS  Google Scholar 

  56. Adivarahan, S. et al. Spatial organization of single mRNPs at different stages of the gene expression pathway. Mol. Cell 72, 727–738.e5 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Bensaude, O., Barbosa, I., Morillo, L., Dikstein, R. & Le Hir, H. Exon-junction complex association with stalled ribosomes and slow translation-independent disassembly. Nat. Commun. 15, 4209 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Sonenberg, N. & Hinnebusch, A. G. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136, 731–745 (2009).

    Article  PubMed  CAS  Google Scholar 

  59. Bhat, M. et al. Targeting the translation machinery in cancer. Nat. Rev. Drug Discov. 14, 261–278 (2015).

    Article  PubMed  CAS  Google Scholar 

  60. Marcotrigiano, J., Gingras, A. C., Sonenberg, N. & Burley, S. K. Cap-dependent translation initiation in eukaryotes is regulated by a molecular mimic of eIF4G. Mol. Cell 3, 707–716 (1999).

    Article  PubMed  CAS  Google Scholar 

  61. Dever, T. E., Dinman, J. D. & Green, R. Translation elongation and recoding in eukaryotes. Cold Spring Harb. Perspect. Biol. 10, a032649 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Schoenberg, D. R. & Maquat, L. E. Regulation of cytoplasmic mRNA decay. Nat. Rev. Genet. 13, 246–259 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Müller-McNicoll, M. & Neugebauer, K. M. How cells get the message: dynamic assembly and function of mRNA-protein complexes. Nat. Rev. Genet. 14, 275–287 (2013).

    Article  PubMed  Google Scholar 

  64. Tucker, M. et al. The transcription factor associated Ccr4 and Caf1 proteins are components of the major cytoplasmic mRNA deadenylase in Saccharomyces cerevisiae. Cell 104, 377–386 (2001).

    Article  PubMed  CAS  Google Scholar 

  65. Jonas, S. et al. An asymmetric PAN3 dimer recruits a single PAN2 exonuclease to mediate mRNA deadenylation and decay. Nat. Struct. Mol. Biol. 21, 599–608 (2014).

    Article  PubMed  CAS  Google Scholar 

  66. Wang, Z., Jiao, X., Carr-Schmid, A. & Kiledjian, M. The hDcp2 protein is a mammalian mRNA decapping enzyme. Proc. Natl Acad. Sci. USA 99, 12663–12668 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Chang, C.-T., Bercovich, N., Loh, B., Jonas, S. & Izaurralde, E. The activation of the decapping enzyme DCP2 by DCP1 occurs on the EDC4 scaffold and involves a conserved loop in DCP1. Nucleic Acids Res. 42, 5217–5233 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Brothers, W. R., Ali, F., Kajjo, S. & Fabian, M. R. The EDC4-XRN1 interaction controls P-body dynamics to link mRNA decapping with decay. EMBO J. 42, e113933 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Halbach, F., Reichelt, P., Rode, M. & Conti, E. The yeast ski complex: crystal structure and RNA channeling to the exosome complex. Cell 154, 814–826 (2013).

    Article  PubMed  CAS  Google Scholar 

  70. Weick, E.-M. & Lima, C. D. RNA helicases are hubs that orchestrate exosome-dependent 3′–5′ decay. Curr. Opin. Struct. Biol. 67, 86–94 (2021).

    Article  PubMed  CAS  Google Scholar 

  71. Dehecq, M. et al. Nonsense-mediated mRNA decay involves two distinct Upf1-bound complexes. EMBO J. 37, e99278 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Loh, B., Jonas, S. & Izaurralde, E. The SMG5–SMG7 heterodimer directly recruits the CCR4–NOT deadenylase complex to mRNAs containing nonsense codons via interaction with POP2. Genes Dev. 27, 2125–2138 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Boehm, V. et al. SMG5-SMG7 authorize nonsense-mediated mRNA decay by enabling SMG6 endonucleolytic activity. Nat. Commun. 12, 3965 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Dostie, J. & Dreyfuss, G. Translation is required to remove Y14 from mRNAs in the cytoplasm. Curr. Biol. 12, 1060–1067 (2002).

    Article  PubMed  CAS  Google Scholar 

  75. Chamieh, H., Ballut, L., Bonneau, F. & Le Hir, H. NMD factors UPF2 and UPF3 bridge UPF1 to the exon junction complex and stimulate its RNA helicase activity. Nat. Struct. Mol. Biol. 15, 85–93 (2008).

    Article  PubMed  CAS  Google Scholar 

  76. Kim, V. N., Kataoka, N. & Dreyfuss, G. Role of the nonsense-mediated decay factor hUpf3 in the splicing-dependent exon-exon junction complex. Science 293, 1832–1836 (2001).

    Article  PubMed  CAS  Google Scholar 

  77. Monaghan, L., Longman, D. & Cáceres, J. F. Translation-coupled mRNA quality control mechanisms. EMBO J. 42, e114378 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Presnyak, V. et al. Codon optimality is a major determinant of mRNA stability. Cell 160, 1111–1124 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Doma, M. K. & Parker, R. Endonucleolytic cleavage of eukaryotic mRNAs with stalls in translation elongation. Nature 440, 561–564 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Frischmeyer, P. A. et al. An mRNA surveillance mechanism that eliminates transcripts lacking termination codons. Science 295, 2258–2261 (2002).

    Article  PubMed  CAS  Google Scholar 

  81. Damianov, A. et al. Rbfox proteins regulate splicing as part of a large multiprotein complex LASR. Cell 165, 606–619 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Peyda, P., Lin, C.-H., Onwuzurike, K. & Black, D. L. The Rbfox1/LASR complex controls alternative pre-mRNA splicing by recognition of multipart RNA regulatory modules. Genes Dev. 39, 364–383 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Keenan, R. J., Freymann, D. M., Walter, P. & Stroud, R. M. Crystal structure of the signal sequence binding subunit of the signal recognition particle. Cell 94, 181–191 (1998).

    Article  PubMed  CAS  Google Scholar 

  84. Cusack, S. RNA–protein complexes. Curr. Opin. Struct. Biol. 9, 66–73 (1999).

    Article  PubMed  CAS  Google Scholar 

  85. Bousard, A. et al. The role of Xist-mediated Polycomb recruitment in the initiation of X-chromosome inactivation. EMBO Rep. 20, e48019 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Lu, Z. et al. Structural modularity of the XIST ribonucleoprotein complex. Nat. Commun. 11, 6163 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Protter, D. S. W. et al. Intrinsically disordered regions can contribute promiscuous interactions to RNP granule assembly. Cell Rep. 22, 1401–1412 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Xiao, R. et al. Pervasive chromatin-RNA binding protein interactions enable RNA-based regulation of transcription. Cell 178, 107–121.e18 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Hiragami-Hamada, K., Tani, N. & Nakayama J.-I. in RNA–Chromatin Interactions. Methods in Molecular Biology Vol. 2161 (ed. Ørom, U. A. V.) 89–99 (Humana, 2020).

  90. Rajagopal, V. et al. Proteome-wide identification of RNA-dependent proteins in lung cancer cells. Cancers 14, 6109 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Rajagopal, V. et al. An atlas of RNA-dependent proteins in cell division reveals the riboregulation of mitotic protein-protein interactions. Nat. Commun. 16, 2325 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Hentze, M. W., Sommerkamp, P., Ravi, V. & Gebauer, F. Rethinking RNA-binding proteins: riboregulation challenges prevailing views. Cell 188, 4811–4827 (2025).

    Article  PubMed  CAS  Google Scholar 

  93. Huppertz, I. et al. Riboregulation of enolase 1 activity controls glycolysis and embryonic stem cell differentiation. Mol. Cell 82, 2666–2680.e11 (2022).

    Article  PubMed  CAS  Google Scholar 

  94. Spizzichino, S. et al. Structure-based mechanism of riboregulation of the metabolic enzyme SHMT1. Mol. Cell 84, 2682–2697.e6 (2024).

    Article  PubMed  CAS  Google Scholar 

  95. Castello, A. et al. Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell 149, 1393–1406 (2012).

    Article  PubMed  CAS  Google Scholar 

  96. Mahmoudi, S. et al. WRAP53 is essential for Cajal body formation and for targeting the survival of motor neuron complex to Cajal bodies. PLoS Biol. 8, e1000521 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Enwerem, I. I. et al. Coilin association with Box C/D scaRNA suggests a direct role for the Cajal body marker protein in scaRNP biogenesis. Biol. Open 3, 240–249 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Sawyer, I. A., Sturgill, D., Sung, M.-H., Hager, G. L. & Dundr, M. Cajal body function in genome organization and transcriptome diversity. BioEssays 38, 1197–1208 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Lafontaine, D. L. J., Riback, J. A., Bascetin, R. & Brangwynne, C. P. The nucleolus as a multiphase liquid condensate. Nat. Rev. Mol. Cell Biol. 22, 165–182 (2021).

    Article  PubMed  CAS  Google Scholar 

  100. Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Iarovaia, O. V. et al. Nucleolus: a central hub for nuclear functions. Trends Cell Biol. 29, 647–659 (2019).

    Article  PubMed  CAS  Google Scholar 

  102. Hein, N., Hannan, K. M., George, A. J., Sanij, E. & Hannan, R. D. The nucleolus: an emerging target for cancer therapy. Trends Mol. Med. 19, 643–654 (2013).

    Article  PubMed  CAS  Google Scholar 

  103. Hirose, T. et al. NEAT1 long noncoding RNA regulates transcription via protein sequestration within subnuclear bodies. Mol. Biol. Cell 25, 169–183 (2014).

    Article  PubMed  Google Scholar 

  104. Nakagawa, S., Yamazaki, T. & Hirose, T. Molecular dissection of nuclear paraspeckles: towards understanding the emerging world of the RNP milieu. Open Biol. 8, 180150 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Yamazaki, T. et al. Functional domains of NEAT1 architectural lncRNA induce paraspeckle assembly through phase separation. Mol. Cell 70, 1038–1053.e7 (2018).

    Article  PubMed  CAS  Google Scholar 

  106. An, H., Tan, J. T. & Shelkovnikova, T. A. Stress granules regulate stress-induced paraspeckle assembly. J. Cell Biol. 218, 4127–4140 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Jain, S. et al. ATPase-modulated stress granules contain a diverse proteome and substructure. Cell 164, 487–498 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Protter, D. S. W. & Parker, R. Principles and properties of stress granules. Trends Cell Biol. 26, 668–679 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Sheth, U. & Parker, R. Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science 300, 805–808 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Aizer, A. et al. Quantifying mRNA targeting to P-bodies in living human cells reveals their dual role in mRNA decay and storage. J. Cell Sci. 127, 4443–4456 (2014).

    PubMed  CAS  Google Scholar 

  111. Kedersha, N. et al. Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J. Cell Biol. 169, 871–884 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Decker, C. J. & Parker, R. P-bodies and stress granules: possible roles in the control of translation and mRNA degradation. Cold Spring Harb. Perspect. Biol. 4, a012286 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Youn, J.-Y. et al. Properties of stress granule and P-body proteomes. Mol. Cell 76, 286–294 (2019).

    Article  PubMed  CAS  Google Scholar 

  114. Vorobeva, M. A., Skvortsov, D. A. & Pervouchine, D. D. Cooperation and competition of RNA secondary structure and RNA–protein interactions in the regulation of alternative splicing. Acta Naturae 15, 23–31 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Dassi, E. Handshakes and fights: the regulatory interplay of RNA-binding proteins. Front. Mol. Biosci. 4, 67 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Nag, S., Goswami, B., Das Mandal, S. & Ray, P. S. Cooperation and competition by RNA-binding proteins in cancer. Semin. Cancer Biol. 86, 286–297 (2022).

    Article  PubMed  CAS  Google Scholar 

  117. Wang, H., Ding, N., Guo, J., Xia, J. & Ruan, Y. Dysregulation of TTP and HuR plays an important role in cancers. Tumor Biol. 37, 14451–14461 (2016).

    Article  CAS  Google Scholar 

  118. Bhandare, S., Goldberg, D. S. & Dowell, R. Discriminating between HuR and TTP binding sites using the k-spectrum kernel method. PLoS One 12, e0174052 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  119. von Hacht, A. et al. Identification and characterization of RNA guanine-quadruplex binding proteins. Nucleic Acids Res. 42, 6630–6644 (2014).

    Article  Google Scholar 

  120. Adlhart, M., Hoffmann, D., Polyansky, A. A. & Žagrović, B. Coding relationship links RNA G-quadruplexes and protein RGG motifs in RNA-binding protein autoregulation. Proc. Natl Acad. Sci. USA 122, e2413721122 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Luige, J., Armaos, A., Tartaglia, G. G. & Ørom, U. A. V. Predicting nuclear G-quadruplex RNA-binding proteins with roles in transcription and phase separation. Nat. Commun. 15, 2585 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Ye, X. et al. Two distinct binding modes provide the RNA-binding protein RbFox with extraordinary sequence specificity. Nat. Commun. 14, 701 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Jain, N., Lin, H.-C., Morgan, C. E., Harris, M. E. & Tolbert, B. S. Rules of RNA specificity of hnRNP A1 revealed by global and quantitative analysis of its affinity distribution. Proc. Natl Acad. Sci. USA 114, 2206–2211 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Rodriguez-Rivas, J., Marsili, S., Juan, D. & Valencia, A. Conservation of coevolving protein interfaces bridges prokaryote–eukaryote homologies in the twilight zone. Proc. Natl Acad. Sci. USA 113, 15018–15023 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Harris, S. E. et al. Understanding species-specific and conserved RNA-protein interactions in vivo and in vitro. Nat. Commun. 15, 8400 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Teppa, E., Zea, D. J. & Marino-Buslje, C. Protein–protein interactions leave evolutionary footprints: High molecular coevolution at the core of interfaces. Protein Sci. 26, 2438–2444 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Wilkinson, M. E. et al. Postcatalytic spliceosome structure reveals mechanism of 3′-splice site selection. Science 358, 1283–1288 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Beusch, I. & Madhani, H. D. Understanding the dynamic design of the spliceosome. Trends Biochem. Sci. 49, 583–595 (2024).

    Article  PubMed  CAS  Google Scholar 

  129. Madhani, H. D. & Guthrie, C. A novel base-pairing interaction between U2 and U6 snRNAs suggests a mechanism for the catalytic activation of the spliceosome. Cell 71, 803–817 (1992).

    Article  PubMed  CAS  Google Scholar 

  130. Fica, S. M. et al. RNA catalyses nuclear pre-mRNA splicing. Nature 503, 229–234 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Hainzl, T., Huang, S. & Sauer-Eriksson, A. E. Structural insights into SRP RNA: an induced fit mechanism for SRP assembly. RNA 11, 1043–1050 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Lin, Y.-H. & Bundschuh, R. RNA structure generates natural cooperativity between single-stranded RNA binding proteins targeting 5′ and 3′UTRs. Nucleic Acids Res. 43, 1160–1169 (2015).

    Article  PubMed  CAS  Google Scholar 

  133. Rouskin, S., Zubradt, M., Washietl, S., Kellis, M. & Weissman, J. S. Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo. Nature 505, 701–705 (2014).

    Article  PubMed  CAS  Google Scholar 

  134. Lewis, C. J. T., Pan, T. & Kalsotra, A. RNA modifications and structures cooperate to guide RNA–protein interactions. Nat. Rev. Mol. Cell Biol. 18, 202–210 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Poudyal, R. R., Sieg, J. P., Portz, B., Keating, C. D. & Bevilacqua, P. C. RNA sequence and structure control assembly and function of RNA condensates. RNA 27, 1589–1601 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Wang, X. & He, C. Dynamic RNA modifications in posttranscriptional regulation. Mol. Cell 56, 5–12 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Gallardo-Dodd, C. J. & Kutter, C. The regulatory landscape of interacting RNA and protein pools in cellular homeostasis and cancer. Hum. Genomics 18, 109 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Zhou, K. I. et al. Regulation of co-transcriptional pre-mRNA splicing by m6A through the low-complexity protein hnRNPG. Mol. Cell 76, 70–81.e9 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Meyer, K. D. et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149, 1635–1646 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Liu, N. et al. N6-methyladenosine-dependent RNA structural switches regulate RNA–protein interactions. Nature 518, 560–564 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Du, H. et al. YTHDF2 destabilizes m6A-containing RNA through direct recruitment of the CCR4–NOT deadenylase complex. Nat. Commun. 7, 12626 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Karijolich, J. & Yu, Y.-T. Spliceosomal snRNA modifications and their function. RNA Biol. 7, 192–204 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Schwartz, S. et al. Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA. Cell 159, 148–162 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Karijolich, J. & Yu, Y.-T. Converting nonsense codons into sense codons by targeted pseudouridylation. Nature 474, 395–398 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Tomikawa, C. Pseudouridine modifications in transfer RNA and tRNA pseudouridine synthases. J. Mol. Biol. 437, 169183 (2025).

    Article  PubMed  CAS  Google Scholar 

  146. Borchardt, E. K., Martinez, N. M. & Gilbert, W. V. Regulation and function of RNA pseudouridylation in human cells. Annu. Rev. Genet. 54, 309–336 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Zhao, Y., Dunker, W., Yu, Y.-T. & Karijolich, J. The role of noncoding RNA pseudouridylation in nuclear gene expression events. Front. Bioeng. Biotechnol. 6, 8 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Carlile, T. M. et al. Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature 515, 143–146 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Gao, Y. & Fang, J. RNA 5-methylcytosine modification and its emerging role as an epitranscriptomic mark. RNA Biol. 18, 117–127 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Squires, J. E. et al. Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Res. 40, 5023–5033 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Yang, X. et al. 5-methylcytosine promotes mRNA export — NSUN2 as the methyltransferase and ALYREF as an m5C reader. Cell Res. 27, 606–625 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Liu, Y. et al. mRNA m5C controls adipogenesis by promoting CDKN1A mRNA export and translation. RNA Biol. 18, 711–721 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Lunde, B. M., Moore, C. & Varani, G. RNA-binding proteins: modular design for efficient function. Nat. Rev. Mol. Cell Biol. 8, 479–490 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Agarwal, A. & Bahadur, R. P. Modular architecture and functional annotation of human RNA-binding proteins containing RNA recognition motif. Biochimie 209, 116–130 (2023).

    Article  PubMed  CAS  Google Scholar 

  155. Ramos, A. et al. RNA recognition by a Staufen double-stranded RNA-binding domain. EMBO J. 19, 997–1009 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Dejgaard, K. & Leffers, H. Characterisation of the nucleic-acid-binding activity of KH domains. Different properties of different domains. Eur. J. Biochem. 241, 425–431 (1996).

    Article  PubMed  CAS  Google Scholar 

  157. Linder, P. & Jankowsky, E. From unwinding to clamping — the DEAD box RNA helicase family. Nat. Rev. Mol. Cell Biol. 12, 505–516 (2011).

    Article  PubMed  CAS  Google Scholar 

  158. Jarmoskaite, I. & Russell, R. RNA helicase proteins as chaperones and remodelers. Annu. Rev. Biochem. 83, 697–725 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Ottoz, D. S. M. & Berchowitz, L. E. The role of disorder in RNA binding affinity and specificity. Open Biol. 10, 200328 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Wang, J. et al. A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins. Cell 174, 688–699.e16 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Van Treeck, B. & Parker, R. Emerging roles for intermolecular RNA-RNA interactions in RNP assemblies. Cell 174, 791–802 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Zeke, A. et al. Deep structural insights into RNA-binding disordered protein regions. Wiley Interdiscip. Rev. RNA 13, e1714 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Niedner-Boblenz, A. et al. Intrinsically disordered RNA-binding motifs cooperate to catalyze RNA folding and drive phase separation. Nucleic Acids Res. 52, 14205–14228 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Nott, T. J., Craggs, T. D. & Baldwin, A. J. Membraneless organelles can melt nucleic acid duplexes and act as biomolecular filters. Nat. Chem. 8, 569–575 (2016).

    Article  PubMed  CAS  Google Scholar 

  165. Naganuma, T. et al. Alternative 3′-end processing of long noncoding RNA initiates construction of nuclear paraspeckles. EMBO J. 31, 4020–4034 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Järvelin, A. I., Noerenberg, M., Davis, I. & Castello, A. The new (dis)order in RNA regulation. Cell Commun. Signal. 14, 9 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Ganser, L. R. et al. The roles of FUS-RNA binding domain and low complexity domain in RNA-dependent phase separation. Structure 32, 177–187.e5 (2024).

    Article  PubMed  CAS  Google Scholar 

  168. Hanson, K. A., Kim, S. H. & Tibbetts, R. S. RNA-binding proteins in neurodegenerative disease: TDP-43 and beyond. Wiley Interdiscip. Rev. RNA 3, 265–285 (2012).

    Article  PubMed  CAS  Google Scholar 

  169. Tsang, B., Pritišanac, I., Scherer, S. W., Moses, A. M. & Forman-Kay, J. D. Phase separation as a missing mechanism for interpretation of disease mutations. Cell 183, 1742–1756 (2020).

    Article  PubMed  CAS  Google Scholar 

  170. Mensah, M. A. et al. Aberrant phase separation and nucleolar dysfunction in rare genetic diseases. Nature 614, 564–571 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  171. Lee, J. M., Hammarén, H. M., Savitski, M. M. & Baek, S. H. Control of protein stability by post-translational modifications. Nat. Commun. 14, 201 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Sternburg, E. L., Gruijs da Silva, L. A. & Dormann, D. Post-translational modifications on RNA-binding proteins: accelerators, brakes, or passengers in neurodegeneration? Trends Biochem. Sci. 47, 6–22 (2022).

    Article  PubMed  CAS  Google Scholar 

  173. England, W. E. et al. An atlas of posttranslational modifications on RNA binding proteins. Nucleic Acids Res. 50, 4329–4339 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Howard, J. M. & Sanford, J. R. The RNAissance family: SR proteins as multifaceted regulators of gene expression. Wiley Interdiscip. Rev. RNA 6, 93–110 (2015).

    Article  PubMed  CAS  Google Scholar 

  175. Qamar, S. et al. FUS phase separation is modulated by a molecular chaperone and methylation of arginine cation-π interactions. Cell 173, 720–734.e15 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Li, W.-J. et al. Profiling PRMT methylome reveals roles of hnRNPA1 arginine methylation in RNA splicing and cell growth. Nat. Commun. 12, 1946 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Ryan, V. H. et al. Mechanistic view of hnRNPA2 low-complexity domain structure, interactions, and phase separation altered by mutation and arginine methylation. Mol. Cell 69, 465–479.e7 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Hofweber, M. & Dormann, D. Friend or foe—post-translational modifications as regulators of phase separation and RNP granule dynamics. J. Biol. Chem. 294, 7137–7150 (2019).

    Article  PubMed  CAS  Google Scholar 

  179. Gwon, Y. et al. Ubiquitination of G3BP1 mediates stress granule disassembly in a context-specific manner. Science 372, eabf6548 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Wang, Z., Zhang, C., Fan, C. & Liu, Y. Post-translational modifications in stress granule and their implications in neurodegenerative diseases. Biochim. Biophys. Acta Gene Regul. Mech. 1866, 194989 (2023).

    Article  PubMed  CAS  Google Scholar 

  181. Velázquez-Cruz, A., Baños-Jaime, B., Díaz-Quintana, A., De la Rosa, M. A. & Díaz-Moreno, I. Post-translational control of RNA-binding proteins and disease-related dysregulation. Front. Mol. Biosci. 8, 658852 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Miao, W., Porter, D. F., Lopez-Pajares, V. & Khavari, P. A. Regulation of RNA-binding proteins by small biomolecules. Nat. Rev. Mol. Cell Biol. https://doi.org/10.1038/s41580-025-00914-4 (2025).

    Article  PubMed  Google Scholar 

  183. Miao, W. et al. Glucose dissociates DDX21 dimers to regulate mRNA splicing and tissue differentiation. Cell 186, 80–97.e26 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Miao, W. et al. Glucose binds and activates NSUN2 to promote translation and epidermal differentiation. Nucleic Acids Res. 52, 13577–13593 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Chen, T. et al. NSUN2 is a glucose sensor suppressing cGAS/STING to maintain tumorigenesis and immunotherapy resistance. Cell Metab. 35, 1782–1798.e8 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Sahadevan, S. et al. htseq-clip: a toolset for the preprocessing of eCLIP/iCLIP datasets. Bioinformatics 39, btac747 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Zarnegar, B. J. et al. irCLIP platform for efficient characterization of protein–RNA interactions. Nat. Methods 13, 489–492 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Baker, M., Khosravi, R. & Salton, M. in RNA-Protein Complexes and Interactions. Methods in Molecular Biology Vol. 2666 (ed. Lin, R. J.) 107–114 (Humana, 2023).

  189. Zhao, J. et al. Genome-wide identification of Polycomb-associated RNAs by RIP-seq. Mol. Cell 40, 939–953 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Gavin, A.-C. et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141–147 (2002).

    Article  PubMed  CAS  Google Scholar 

  191. Street, L. A. et al. Large-scale map of RNA-binding protein interactomes across the mRNA life cycle. Mol. Cell 84, 3790–3809.e8 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Steinmetz, B., Smok, I., Bikaki, M. & Leitner, A. Protein–RNA interactions: from mass spectrometry to drug discovery. Essays Biochem. 67, 175–186 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Kramer, K. et al. Photo-cross-linking and high-resolution mass spectrometry for assignment of RNA-binding sites in RNA-binding proteins. Nat. Methods 11, 1064–1070 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. Giambruno, R. & Nicassio, F. Proximity-dependent biotinylation technologies for mapping RNA-protein interactions in live cells. Front. Mol. Biosci. 9, 1062448 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Lu, M. & Wei, W. Proximity labeling to detect RNA–protein interactions in live cells. FEBS Open Bio 9, 1860–1868 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Bai, X., McMullan, G. & Scheres, S. H. W. How cryo-EM is revolutionizing structural biology. Trends Biochem. Sci. 40, 49–57 (2015).

    Article  PubMed  CAS  Google Scholar 

  197. Fica, S. M. & Nagai, K. Cryo-electron microscopy snapshots of the spliceosome: structural insights into a dynamic ribonucleoprotein machine. Nat. Struct. Mol. Biol. 24, 791–799 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. Zeng, C., Jian, Y., Vosoughi, S., Zeng, C. & Zhao, Y. Evaluating native-like structures of RNA-protein complexes through the deep learning method. Nat. Commun. 14, 1060 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  199. Jackson, R. W., Smathers, C. M. & Robart, A. R. General strategies for RNA X-ray crystallography. Molecules 28, 2111 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  200. Grünewald, K. et al. Three-dimensional structure of herpes simplex virus from cryo-electron tomography. Science 302, 1396–1398 (2003).

    Article  PubMed  Google Scholar 

  201. Bäuerlein, F. J. B. & Baumeister, W. Towards visual proteomics at high resolution. J. Mol. Biol. 433, 167187 (2021).

    Article  PubMed  Google Scholar 

  202. Nogales, E., Louder, R. K. & He, Y. Cryo-EM in the study of challenging systems: the human transcription pre-initiation complex. Curr. Opin. Struct. Biol. 40, 120–127 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  203. Tacheny, A., Dieu, M., Arnould, T. & Renard, P. Mass spectrometry-based identification of proteins interacting with nucleic acids. J. Proteom. 94, 89–109 (2013).

    Article  CAS  Google Scholar 

  204. Gräwe, C., Stelloo, S., van Hout, F. A. H. & Vermeulen, M. RNA-centric methods: toward the interactome of specific RNA transcripts. Trends Biotechnol. 39, 890–900 (2021).

    Article  PubMed  Google Scholar 

  205. Siprashvili, Z. et al. The noncoding RNAs SNORD50A and SNORD50B bind K-Ras and are recurrently deleted in human cancer. Nat. Genet. 48, 53–58 (2016).

    Article  PubMed  CAS  Google Scholar 

  206. Kretz, M. et al. Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature 493, 231–235 (2013).

    Article  PubMed  CAS  Google Scholar 

  207. West, J. A. et al. The long noncoding RNAs NEAT1 and MALAT1 bind active chromatin sites. Mol. Cell 55, 791–802 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  208. Chu, C. et al. Systematic discovery of Xist RNA binding proteins. Cell 161, 404–416 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  209. McHugh, C. A. et al. The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature 521, 232–236 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  210. Yap, K., Chung, T. H. & Makeyev, E. V. Hybridization-proximity labeling reveals spatially ordered interactions of nuclear RNA compartments. Mol. Cell 82, 463–478.e11 (2022).

    Article  PubMed  CAS  Google Scholar 

  211. Tsue, A. F. et al. Multiomic characterization of RNA microenvironments by oligonucleotide-mediated proximity-interactome mapping. Nat. Methods 21, 2058–2071 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  212. da Rocha, S. T. & Heard, E. Novel players in X inactivation: insights into Xist-mediated gene silencing and chromosome conformation. Nat. Struct. Mol. Biol. 24, 197–204 (2017).

    Article  PubMed  Google Scholar 

  213. Fanucchi, S. et al. Immune genes are primed for robust transcription by proximal long noncoding RNAs located in nuclear compartments. Nat. Genet. 51, 138–150 (2019).

    Article  PubMed  CAS  Google Scholar 

  214. Ramanathan, M. et al. RNA–protein interaction detection in living cells. Nat. Methods 15, 207–212 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  215. Yoon, J.-H., Srikantan, S. & Gorospe, M. MS2-TRAP (MS2-tagged RNA affinity purification): tagging RNA to identify associated miRNAs. Methods 58, 81–87 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  216. Liu, S. et al. Identification of lncRNA MEG3 binding protein using MS2-tagged RNA affinity purification and mass spectrometry. Appl. Biochem. Biotechnol. 176, 1834–1845 (2015).

    Article  PubMed  CAS  Google Scholar 

  217. Tsai, B. P., Wang, X., Huang, L. & Waterman, M. L. Quantitative profiling of in vivo-assembled RNA-protein complexes using a novel integrated proteomic approach. Mol. Cell. Proteom. 10, M110.007385 (2011).

    Article  Google Scholar 

  218. Yoon, J.-H. & Gorospe, M. in RNA-Protein Complexes and Interactions. Methods in Molecular Biology Vol. 1421 (ed. Lin, R. J.) 15–22 (Humana, 2016).

  219. Lu, M., Wang, Z., Wang, Y. & Ren, B. CRISPR-guided proximity labeling of RNA–protein interactions. Genes 13, 1549 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  220. Cao, H. et al. Progress of CRISPR-Cas13 mediated live-cell RNA imaging and detection of RNA-protein interactions. Front. Cell Dev. Biol. 10, 866820 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Núñez-Álvarez, Y. et al. A CRISPR-dCas13 RNA-editing tool to study alternative splicing. Nucleic Acids Res. 52, 11926–11939 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Apostolopoulos, A. et al. dCas13-mediated translational repression for accurate gene silencing in mammalian cells. Nat. Commun. 15, 2205 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  223. Zhang, Z. et al. Capturing RNA–protein interaction via CRUIS. Nucleic Acids Res. 48, e52 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  224. Yi, W. et al. CRISPR-assisted detection of RNA–protein interactions in living cells. Nat. Methods 17, 685–688 (2020).

    Article  PubMed  CAS  Google Scholar 

  225. Baltz, A. G. et al. The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts. Mol. Cell 46, 674–690 (2012).

    Article  PubMed  CAS  Google Scholar 

  226. Perez-Perri, J. I. et al. Discovery of RNA-binding proteins and characterization of their dynamic responses by enhanced RNA interactome capture. Nat. Commun. 9, 4408 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Perez-Perri, J. I. et al. The RNA-binding protein landscapes differ between mammalian organs and cultured cells. Nat. Commun. 14, 2074 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  228. Castello, A. et al. Comprehensive identification of RNA-binding domains in human cells. Mol. Cell 63, 696–710 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  229. Mullari, M., Lyon, D., Jensen, L. J. & Nielsen, M. L. Specifying RNA-binding regions in proteins by peptide cross-linking and affinity purification. J. Proteome Res. 16, 2762–2772 (2017).

    Article  PubMed  CAS  Google Scholar 

  230. Bao, X. et al. Capturing the interactome of newly transcribed RNA. Nat. Methods 15, 213–220 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  231. Huang, R., Han, M., Meng, L. & Chen, X. Transcriptome-wide discovery of coding and noncoding RNA-binding proteins. Proc. Natl Acad. Sci. USA 115, E3879–E3887 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  232. Shchepachev, V. et al. Defining the RNA interactome by total RNA-associated protein purification. Mol. Syst. Biol. 15, e8689 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  233. Queiroz, R. M. L. et al. Comprehensive identification of RNA–protein interactions in any organism using orthogonal organic phase separation (OOPS). Nat. Biotechnol. 37, 169–178 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  234. Urdaneta, E. C. & Beckmann, B. M. Fast and unbiased purification of RNA-protein complexes after UV cross-linking. Methods 178, 72–82 (2020).

    Article  PubMed  CAS  Google Scholar 

  235. Trendel, J. et al. The human RNA-binding proteome and its dynamics during translational arrest. Cell 176, 391–403.e19 (2019).

    Article  PubMed  CAS  Google Scholar 

  236. He, C. et al. High-resolution mapping of RNA-binding regions in the nuclear proteome of embryonic stem cells. Mol. Cell 64, 416–430 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  237. Panhale, A. et al. CAPRI enables comparison of evolutionarily conserved RNA interacting regions. Nat. Commun. 10, 2682 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  238. Bae, J. W., Kwon, S. C., Na, Y., Kim, V. N. & Kim, J.-S. Chemical RNA digestion enables robust RNA-binding site mapping at single amino acid resolution. Nat. Struct. Mol. Biol. 27, 678–682 (2020).

    Article  PubMed  CAS  Google Scholar 

  239. Bae, J. W., Kim, S., Kim, V. N. & Kim, J.-S. Photoactivatable ribonucleosides mark base-specific RNA-binding sites. Nat. Commun. 12, 6026 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  240. Mallam, A. L. et al. Systematic discovery of endogenous human ribonucleoprotein complexes. Cell Rep. 29, 1351–1368.e5 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  241. Caudron-Herger, M. et al. R-DeeP: proteome-wide and quantitative identification of RNA-dependent proteins by density gradient ultracentrifugation. Mol. Cell 75, 184–199.e10 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  242. Gerovac, M. et al. Global discovery of bacterial RNA-binding proteins by RNase-sensitive gradient profiles reports a new FinO domain protein. RNA 26, 1448–1463 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  243. Brannan, K. W. et al. SONAR discovers RNA-binding proteins from analysis of large-scale protein-protein interactomes. Mol. Cell 64, 282–293 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  244. Jin, W. et al. HydRA: deep-learning models for predicting RNA-binding capacity from protein interaction association context and protein sequence. Mol. Cell 83, 2595–2611.e11 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  245. Bressin, A. et al. TriPepSVM: de novo prediction of RNA-binding proteins based on short amino acid motifs. Nucleic Acids Res. 47, 4406–4417 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  246. Ghosh, P. & Sowdhamini, R. Genome-wide survey of putative RNA-binding proteins encoded in the human proteome. Mol. BioSyst. 12, 532–540 (2016).

    Article  PubMed  CAS  Google Scholar 

  247. Liao, J.-Y. et al. RBPWorld for exploring functions and disease associations of RNA-binding proteins across species. Nucleic Acids Res. 53, D220–D232 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  248. Liao, J.-Y. et al. EuRBPDB: a comprehensive resource for annotation, functional and oncological investigation of eukaryotic RNA binding proteins (RBPs). Nucleic Acids Res. 48, D307–D313 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  249. Esteban-Serna, S., McCaughan, H. & Granneman, S. Advantages and limitations of UV cross-linking analysis of protein–RNA interactomes in microbes. Mol. Microbiol. 120, 477–489 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  250. Mortimer, S. A., Kidwell, M. A. & Doudna, J. A. Insights into RNA structure and function from genome-wide studies. Nat. Rev. Genet. 15, 469–479 (2014).

    Article  PubMed  CAS  Google Scholar 

  251. Flynn, R. A. et al. Transcriptome-wide interrogation of RNA secondary structure in living cells with icSHAPE. Nat. Protoc. 11, 273–290 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  252. Raj, A., van den Bogaard, P., Rifkin, S. A., van Oudenaarden, A. & Tyagi, S. Imaging individual mRNA molecules using multiple singly labeled probes. Nat. Methods 5, 877–879 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  253. Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348, aaa6090 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  254. Xiang, J. S., Schafer, D. M., Rothamel, K. L. & Yeo, G. W. Decoding protein–RNA interactions using CLIP-based methodologies. Nat. Rev. Genet. 25, 879–895 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  255. Yi, S., Singh, S. S., Rozen-Gagnon, K. & Luna, J. M. Mapping RNA–protein interactions with subcellular resolution using colocalization CLIP. RNA 30, 920–937 (2024).

    PubMed  PubMed Central  CAS  Google Scholar 

  256. Benhalevy, D., Anastasakis, D. G. & Hafner, M. Proximity-CLIP provides a snapshot of protein-occupied RNA elements in subcellular compartments. Nat. Methods 15, 1074–1082 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  257. Lorenz, D. A. et al. Multiplexed transcriptome discovery of RNA-binding protein binding sites by antibody-barcode eCLIP. Nat. Methods 20, 65–69 (2023).

    Article  PubMed  CAS  Google Scholar 

  258. Wolin, E. et al. SPIDR enables multiplexed mapping of RNA-protein interactions and uncovers a mechanism for selective translational suppression upon cell stress. Cell 188, 5384–5402.e25 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  259. Ducoli, L. et al. irCLIP-RNP and Re-CLIP reveal patterns of dynamic protein assemblies on RNA. Nature 641, 769–778 (2025).

    Article  PubMed  CAS  Google Scholar 

  260. Her, H., Rothamel, K. L., Nguyen, G. G., Boyle, E. A. & Yeo, G. W. Mudskipper detects combinatorial RNA binding protein interactions in multiplexed CLIP data. Cell Genomics 4, 100603 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  261. Van Nostrand, E. L. et al. A large-scale binding and functional map of human RNA-binding proteins. Nature 583, 711–719 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  262. Van Nostrand, E. L. et al. Principles of RNA processing from analysis of enhanced CLIP maps for 150 RNA binding proteins. Genome Biol. 21, 90 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  263. Logsdon, G. A., Vollger, M. R. & Eichler, E. E. Long-read human genome sequencing and its applications. Nat. Rev. Genet. 21, 597–614 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  264. Wang, Y., Zhao, Y., Bollas, A., Wang, Y. & Au, K. F. Nanopore sequencing technology, bioinformatics and applications. Nat. Biotechnol. 39, 1348–1365 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  265. Monzó, C., Liu, T. & Conesa, A. Transcriptomics in the era of long-read sequencing. Nat. Rev. Genet. 26, 681–701 (2025).

    Article  PubMed  Google Scholar 

  266. Garalde, D. R. et al. Highly parallel direct RNA sequencing on an array of nanopores. Nat. Methods 15, 201–206 (2018).

    Article  PubMed  CAS  Google Scholar 

  267. Kim, Y. et al. Nanopore direct RNA sequencing of human transcriptomes reveals the complexity of mRNA modifications and crosstalk between regulatory features. Cell Genom. 5, 100872 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  268. Castaldi, P. J., Abood, A., Farber, C. R. & Sheynkman, G. M. Bridging the splicing gap in human genetics with long-read RNA sequencing: finding the protein isoform drivers of disease. Hum. Mol. Genet. 31, R123–R136 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  269. Su, Y. et al. Comprehensive assessment of mRNA isoform detection methods for long-read sequencing data. Nat. Commun. 15, 3972 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  270. Castells-Garcia, A. et al. Super resolution microscopy reveals how elongating RNA polymerase II and nascent RNA interact with nucleosome clutches. Nucleic Acids Res. 50, 175–190 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  271. Sarkar, J. & Myong, S. in Nanoscale Imaging. Methods in Molecular Biology Vol. 1814 (ed. Lyubchenko, Y.) 325–338 (Humana, 2018).

  272. Thomsen, J. et al. DeepFRET, a software for rapid and automated single-molecule FRET data classification using deep learning. eLife 9, e60404 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  273. Ji, J., Wang, W. & Chen, C. Single-molecule techniques to visualize and to characterize liquid-liquid phase separation and phase transition. Acta Biochim. Biophys. Sin. 55, 1023–1033 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  274. Khyzha, N., Ahmad, K. & Henikoff, S. Profiling transcriptome composition and dynamics within nuclear compartments using SLAM-RT&Tag. Mol. Cell 85, 1366–1380.e4 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  275. Ghidini, A., Cléry, A., Halloy, F., Allain, F. H. T. & Hall, J. RNA-PROTACs: degraders of RNA-binding proteins. Angew. Chem. Int. Ed. 60, 3163–3169 (2021).

    Article  CAS  Google Scholar 

  276. Bheemireddy, S., Sandhya, S., Srinivasan, N. & Sowdhamini, R. Computational tools to study RNA-protein complexes. Front. Mol. Biosci. 9, 954926 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  277. Wang, T. et al. Design and bioinformatics analysis of genome-wide CLIP experiments. Nucleic Acids Res. 43, 5263–5274 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  278. Grønning, A. G. B. et al. DeepCLIP: predicting the effect of mutations on protein-RNA binding with deep learning. Nucleic Acids Res. 48, 7099–7118 (2020).

    PubMed  PubMed Central  Google Scholar 

  279. Horlacher, M. et al. Towards in silico CLIP-seq: predicting protein-RNA interaction via sequence-to-signal learning. Genome Biol. 24, 180 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  280. Pan, X., Fang, Y., Liu, X., Guo, X. & Shen, H.-B. RBPsuite 2.0: an updated RNA-protein binding site prediction suite with high coverage on species and proteins based on deep learning. BMC Biol. 23, 74 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  281. Xu, Y. et al. PrismNet: predicting protein–RNA interaction using in vivo RNA structural information. Nucleic Acids Res. 51, W468–W477 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  282. Singh, J., Hanson, J., Paliwal, K. & Zhou, Y. RNA secondary structure prediction using an ensemble of two-dimensional deep neural networks and transfer learning. Nat. Commun. 10, 5407 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  283. Shen, T. et al. Accurate RNA 3D structure prediction using a language model-based deep learning approach. Nat. Methods 21, 2287–2298 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  284. Penić, R. J., Vlašić, T., Huber, R. G., Wan, Y. & Šikić, M. RiNALMo: general-purpose RNA language models can generalize well on structure prediction tasks. Nat. Commun. 16, 5671 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  285. Loureiro, R. J., Maiti, S., Mondal, K., Mukherjee, S. & Bujnicki, J. M. Modeling flexible RNA 3D structures and RNA-protein complexes. Curr. Opin. Struct. Biol. 94, 103137 (2025).

    Article  PubMed  CAS  Google Scholar 

  286. Fox, D. M., MacDermaid, C. M., Schreij, A. M. A., Zwierzyna, M. & Walker, R. C. RNA folding using quantum computers. PLoS Comput. Biol. 18, e1010032 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  287. Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  288. Baek, M. et al. Accurate prediction of protein-nucleic acid complexes using RoseTTAFoldNA. Nat. Methods 21, 117–121 (2024).

    Article  PubMed  CAS  Google Scholar 

  289. Krishna, R. et al. Generalized biomolecular modeling and design with RoseTTAFold All-Atom. Science 384, eadl2528 (2024).

    Article  PubMed  CAS  Google Scholar 

  290. Carvajal-Patiño, J. G. et al. RNAmigos2: accelerated structure-based RNA virtual screening with deep graph learning. Nat. Commun. 16, 2799 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  291. Huang, Z. et al. Partner-RBR: predicting multitype RNA-Binding residues based on mutual learning. J. Chem. Inf. Model. 65, 10783–10794 (2025).

    Article  PubMed  CAS  Google Scholar 

  292. Chu, L.-C. et al. pyRBDome: a comprehensive computational platform for enhancing RNA-binding proteome data. Life Sci. Alliance 7, e202402787 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  293. Sun, J. et al. Precise prediction of phase-separation key residues by machine learning. Nat. Commun. 15, 2662 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  294. Zhang, J., Lang, M., Zhou, Y. & Zhang, Y. Predicting RNA structures and functions by artificial intelligence. Trends Genet. 40, 94–107 (2023).

    Article  CAS  Google Scholar 

  295. Wei, J., Chen, S., Zong, L., Gao, X. & Li, Y. Protein–RNA interaction prediction with deep learning: structure matters. Brief. Bioinform. 23, bbab540 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  296. Diao, B., Luo, J. & Guo, Y. A comprehensive survey on deep learning-based identification and predicting the interaction mechanism of long non-coding RNAs. Brief. Funct. Genomics 23, 314–324 (2024).

    Article  PubMed  CAS  Google Scholar 

  297. Zhao, H., Yang, Y., Janga, S. C., Kao, C. C. & Zhou, Y. Prediction and validation of the unexplored RNA-binding protein atlas of the human proteome. Proteins 82, 640–647 (2014).

    Article  PubMed  CAS  Google Scholar 

  298. Choi, Y. et al. Time-resolved profiling of RNA binding proteins throughout the mRNA life cycle. Mol. Cell 84, 1764–1782.e10 (2024).

    Article  PubMed  CAS  Google Scholar 

  299. Fronk, A. D. et al. Development and validation of AI/ML derived splice-switching oligonucleotides. Mol. Syst. Biol. 20, 676–701 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  300. Wu, D. et al. Generative modeling for RNA splicing predictions and design. Preprint at bioRxiv https://doi.org/10.1101/2025.01.20.633986 (2025).

  301. Yang, K. et al. Machine learning-optimized targeted detection of alternative splicing. Nucleic Acids Res. 53, gkae1260 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  302. Liu, X. et al. Base-resolution binding profile prediction of proteins on RNAs with deep learning. Nucleic Acids Res. 53, gkaf748 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  303. Kovalevskiy, O., Mateos-Garcia, J. & Tunyasuvunakool, K. AlphaFold two years on: validation and impact. Proc. Natl Acad. Sci. USA 121, e2315002121 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  304. Hennig, J. Structural biology of RNA and protein-RNA complexes after AlphaFold3. ChemBioChem 26, e202401047 (2025).

    Article  PubMed  CAS  Google Scholar 

  305. Bahai, A., Kwoh, C. K., Mu, Y. & Li, Y. Systematic benchmarking of deep-learning methods for tertiary RNA structure prediction. PLoS Comput. Biol. 20, e1012715 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  306. Kuret, K., Amalietti, A. G., Jones, D. M., Capitanchik, C. & Ule, J. Positional motif analysis reveals the extent of specificity of protein–RNA interactions observed by CLIP. Genome Biol. 23, 191 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  307. Lee, F. C. Y. & Ule, J. Advances in CLIP technologies for studies of protein-RNA interactions. Mol. Cell 69, 354–369 (2018).

    Article  PubMed  CAS  Google Scholar 

  308. Bu, F. et al. RNA-Puzzles Round V: blind predictions of 23 RNA structures. Nat. Methods 22, 399–411 (2025).

    Article  PubMed  CAS  Google Scholar 

  309. Kwon, D. RNA function follows form – why is it so hard to predict? Nature 639, 1106–1108 (2025).

    Article  PubMed  CAS  Google Scholar 

  310. Zhang, S., Li, J., Zhou, Y. & Chen, S.-J. Enhancing RNA 3D structure prediction in CASP16: integrating physics-based modeling with machine learning for improved predictions. Proteins 94, 239–248 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  311. Childs-Disney, J. L. et al. Targeting RNA structures with small molecules. Nat. Rev. Drug Discov. 21, 736–762 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  312. Bennett, C. F. Therapeutic antisense oligonucleotides are coming of age. Annu. Rev. Med. 70, 307–321 (2019).

    Article  PubMed  CAS  Google Scholar 

  313. Licatalosi, D. et al. HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456, 464–469 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  314. Van Nostrand, E. L. et al. Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP). Nat. Methods 13, 508–514 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  315. Porter, D. F. et al. easyCLIP analysis of RNA-protein interactions incorporating absolute quantification. Nat. Commun. 12, 1569 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  316. May, D. G. & Roux, K. J. in Proximity Labeling: Methods and Protocols Vol. 2008 (eds Sunbul, M. & Jäschke, A.) 83–95 (Humana, 2019).

  317. Kalocsay, M. in Proximity Labeling. Methods in Molecular Biology Vol. 2008 (eds Sunbul, M. & Jäschke, A.) 41–55 (Humana, 2019).

  318. Ke, A. & Doudna, J. A. Crystallization of RNA and RNA–protein complexes. Methods 34, 408–414 (2004).

    Article  PubMed  CAS  Google Scholar 

  319. Panda, A. C., Martindale, J. L. & Gorospe, M. Affinity pulldown of biotinylated RNA for Detection of protein-RNA complexes. Bio-protocol 6, e2062 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  320. Walker, S. C., Good, P. D., Gipson, T. A. & Engelke, D. R. in RNA Detection and Visualization: Methods and Protocols Vol. 714 (ed. Gerst, J. E.) 423–444 (Humana, 2011).

  321. Simon, M. D. et al. The genomic binding sites of a noncoding RNA. Proc. Natl Acad. Sci. USA 108, 20497–20502 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  322. Chu, C. & Chang, H.Y. in X-Chromosome Inactivation. Methods in Molecular Biology Vol. 1861 (ed. Sado, T.) 37–45 (Humana, 2018).

  323. McHugh, C. A. & Guttman, M. in RNA Detection: Methods and Protocols Vol. 1649 (ed. Gaspar, I.) 473–488 (Humana, 2018).

  324. Castello, A. et al. in Post-Transcriptional Gene Regulation. Methods in Molecular Biology Vol. 1358 (ed. Dassi, E.) 131–139 (Humana, 2016).

  325. Ament, I. H., DeBruyne, N., Wang, F. & Lin, L. Long-read RNA sequencing: a transformative technology for exploring transcriptome complexity in human diseases. Mol. Ther. 33, 883–894 (2025).

    Article  PubMed  CAS  Google Scholar 

  326. Sun, L. et al. Predicting dynamic cellular protein–RNA interactions by deep learning using in vivo RNA structures. Cell Res. 31, 495–516 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  327. Zhang, H. et al. Algorithm for optimized mRNA design improves stability and immunogenicity. Nature 621, 396–403 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  328. Li, S. et al. CodonBERT large language model for mRNA vaccines. Genome Res. 34, 1027–1035 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  329. Li, S. et al. mRNA-LM: full-length integrated SLM for mRNA analysis. Nucleic Acids Res. 53, gkaf044 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  330. Hwang, G. et al. ASOptimizer: optimizing antisense oligonucleotides through deep learning for IDO1 gene regulation. Mol. Ther. Nucleic Acids 35, 102186 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  331. Delre, P., Cerchia, C. & Lavecchia, A. Artificial intelligence in the development of small nucleic acid therapeutics: toward smarter and safer medicines. Drug Discov. Today 30, 104488 (2025).

    Article  PubMed  CAS  Google Scholar 

  332. Leckie, J. et al. Artificial intelligence-driven design of antisense oligonucleotides for precision medicine in neuromuscular disorders. Genes 16, 1468 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Veterans Affairs Office of Research and Development, USVA Merit Review grant BX001409 to P.A.K.; by NIAMS/NIH (NIAMS, National Institute of Arthritis and Musculoskeletal and Skin Diseases; NIH, National Institutes of Health) grants AR045192 and AR49737 to P.A.K.; and by Swiss National Science Foundation Postdoc Mobility Fellowship P500BP-203019 and NIAMS/NIH K99/R00 Award 1K99AR086341-01 to L.D. The authors thank M. Pilo, P. Bernstein, N. Dow and A. Dazey for administrative assistance, and the members of the Khavari lab for discussions.

Author information

Authors and Affiliations

Authors

Contributions

L.D. designed the review. L.D. and S.S. researched data for the article and wrote the article. L.D. and S.S. generated the figures. L.D., S.S. and E.A. compiled the main tables. All authors contributed substantially to the discussion of the content. All authors reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Luca Ducoli or Paul A. Khavari.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Genetics thanks Yunjie Zhao, who co-reviewed with Haoquan Liu; Jernej Ule; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

AlphaFold 3: https://alphafoldserver.com/welcome

AlphaFold 3 (Code): https://github.com/google-deepmind/alphafold3

CodonBERT (Code): https://github.com/Sanofi-Public/CodonBERT

DeepCLIP: https://deepclip.compbio.sdu.dk/

DeepCLIP (Code): https://github.com/deepclip/deepclip

LinearDesign (Code): https://github.com/LinearDesignSoftware/LinearDesign

mRNA-LM (Code): https://github.com/Sanofi-Public/mRNA-LM

Partner-RBR (Code): https://github.com/Hhhzj-7/Partner-RBR

PrismNet: http://prismnetweb.zhanglab.net/

PrismNet (Code): https://github.com/kuixu/PrismNet

PSPHunter: http://psphunter.stemcellding.org/

PSPHunter (Code): https://github.com/jsun9003/PSPHunter

pyRBDome (Code): https://git.ecdf.ed.ac.uk/sgrannem/pyRBDome_Core

RBP2GO: https://rbp2go.dkfz.de/

RBPbase: https://apps.embl.de/rbpbase/

RBPNet: https://biolib.com/mhorlacher/RBPNet

RBPNet (Code): https://github.com/mhorlacher/rbpnet

RBPsuite: http://www.csbio.sjtu.edu.cn/bioinf/RBPsuite/

RBPsuite (Code): https://zenodo.org/records/14949530

RBPWorld: http://research.gzsys.org.cn/eurbpdb2/index.html

RhoFold+: https://proj.cse.cuhk.edu.hk/aihlab/rhofold/

RhoFold+ (Code): https://github.com/ml4bio/RhoFold

RiNALMo (Code): https://github.com/lbcb-sci/RiNALMo

RNAmigos2 (Code): https://github.com/cgoliver/rnamigos2

RoseTTAFold All-Atom: https://app.superbio.ai/apps/66cee172d979583be60126b5

RoseTTAFold All-Atom (Code): https://github.com/baker-laboratory/RoseTTAFold-All-Atom

RoseTTAFoldNA: https://app.superbio.ai/apps/668c0b4c5a3d67435cdebf64

RoseTTAFoldNA (Code): https://github.com/uw-ipd/RoseTTAFold2NA

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ducoli, L., Srinivasan, S., Amjadi, E. et al. Bridging technical innovation and computational advances in studies of RNA–protein assemblies. Nat Rev Genet (2026). https://doi.org/10.1038/s41576-026-00931-9

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41576-026-00931-9

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research