Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

A role for microglia in mediating the microbiota–gut–brain axis

Abstract

Microglia, the resident immune cells of the brain, are now recognized as being active participants in the onset and progression of many neurological and neuropsychiatric disorders. As a result, substantial effort has been made in finding ways to target, deplete or modulate the aberrant phenotypes of the microglia that are present in these different disease states, albeit with varied levels of success. The gut microbiota has recently emerged as a master regulator of microglia throughout the lifespan; here, we propose that this microbiota–microglia cross-talk may have major implications for our understanding of neurological disorders and neuropsychiatric diseases. We focus on the latest advances in understanding gut–microglia communication in the context of microglial heterogeneity and microglia-related functions, as well as considering the evidence for effects of these pathways on diseases and disorders of the central nervous system. We also address the challenges, opportunities and clinical implications of this emerging area of research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pathways for gut microbiota–microglia communication.
Fig. 2: Effects of microbiota-targeting interventions on microglia across different diseases.

Similar content being viewed by others

References

  1. Boullerne, A. I. & Feinstein, D. L. History of neuroscience I. Pío del Río-Hortega (1882–1945): the discoverer of microglia and oligodendroglia. ASN Neuro 12, 1759091420953259 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wolf, S. A., Boddeke, H. W. G. M. & Kettenmann, H. Microglia in physiology and disease. Annu. Rev. Physiol. 79, 619–643 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Butovsky, O. et al. Identification of a unique TGF-β-dependent molecular and functional signature in microglia. Nat. Neurosci. 17, 131–143 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Hickman, S. E. et al. The microglial sensome revealed by direct RNA sequencing. Nat. Neurosci. 16, 1896–1905 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Escoubas, C. C. et al. Type-I-interferon-responsive microglia shape cortical development and behavior. Cell 187, 1936–1954.e24 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lawrence, A. R. et al. Microglia maintain structural integrity during fetal brain morphogenesis. Cell 187, 962–980.e19 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cheray, M. & Joseph, B. Epigenetics control microglia plasticity. Front. Cell. Neurosci. 12, 1–13 (2018).

    Article  Google Scholar 

  8. Ransohoff, R. M. & Perry, V. H. Microglial physiology: unique stimuli, specialized responses. Annu. Rev. Immunol. 27, 119–145 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Tay, T. L., Savage, J. C., Hui, C. W., Bisht, K. & Tremblay, M. È. Microglia across the lifespan: from origin to function in brain development, plasticity and cognition. J. Physiol. 595, 1929–1945 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Camarillo-Guerrero, L. F., Almeida, A., Rangel-Pineros, G., Finn, R. D. & Lawley, T. D. Massive expansion of human gut bacteriophage diversity. Cell 184, 1098–1109.e9 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hou, K. et al. Microbiota in health and diseases. Signal. Transduct. Target. Ther. 7, 135 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Jandhyala, S. M. et al. Role of the normal gut microbiota. World J. Gastroenterol. 21, 8836–8847 (2015).

    Article  Google Scholar 

  13. Cryan, J. F. & Dinan, T. G. Gut microbiota: microbiota and neuroimmune signalling—Metchnikoff to microglia. Nat. Rev. Gastroenterol. Hepatol. 12, 494–496 (2015).

    Article  PubMed  Google Scholar 

  14. Ratsika, A., Cruz Pereira, J. S., Lynch, C. M. K., Clarke, G. & Cryan, J. F. Microbiota–immune–brain interactions: a lifespan perspective. Curr. Opin. Neurobiol. 78, 102652 (2023).

    Article  CAS  PubMed  Google Scholar 

  15. Erny, D. et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat. Neurosci. 18, 965–977 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Erny, D. et al. Microbiota-derived acetate enables the metabolic fitness of the brain innate immune system during health and disease. Cell Metab. 33, 2260–2276.e7 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Matcovitch-Natan, O. et al. Microglia development follows a stepwise program to regulate brain homeostasis. Science 353, aad8670 (2016).

    Article  PubMed  Google Scholar 

  18. Scheperjans, F. et al. Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov. Disord. 30, 350–358 (2015).

    Article  PubMed  Google Scholar 

  19. Thion, M. S. & Garel, S. On place and time: microglia in embryonic and perinatal brain development. Curr. Opin. Neurobiol. 47, 121–130 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Vogt, N. M. et al. Gut microbiome alterations in Alzheimer’s disease. Sci. Rep. 7, 13537 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lynch, C. M. K., Clarke, G. & Cryan, J. F. Powering up microbiome–microglia interactions. Cell Metab. 33, 2097–2099 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Dodiya, H. B. et al. Sex-specific effects of microbiome perturbations on cerebral Aβ amyloidosis and microglia phenotypes. J. Exp. Med. 216, 1542–1560 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Thion, M. S. et al. Microbiome influences prenatal and adult microglia in a sex-specific manner. Cell 172, 500–516.e16 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xia, Y. et al. Bacteroides fragilis in the gut microbiomes of Alzheimer’s disease activates microglia and triggers pathogenesis in neuronal C/EBPβ transgenic mice. Nat. Commun. 14, 5471 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kipnis, J. Multifaceted interactions between adaptive immunity and the central nervous system. Science 353, 766–771 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mazzitelli, J. A. et al. Skull bone marrow channels as immune gateways to the central nervous system. Nat. Neurosci. 26, 2052–2062 (2023).

    Article  CAS  PubMed  Google Scholar 

  27. Fung, T. C., Olson, C. A. & Hsiao, E. Y. Interactions between the microbiota, immune and nervous systems in health and disease. Nat. Neurosci. 20, 145–155 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Thaiss, C. A., Zmora, N., Levy, M. & Elinav, E. The microbiome and innate immunity. Nature 535, 65–74 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Cryan, J. F. et al. The microbiota–gut–brain axis. Physiol. Rev. 99, 1877–2013 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Kasarello, K., Cudnoch-Jedrzejewska, A. & Czarzasta, K. Communication of gut microbiota and brain via immune and neuroendocrine signaling. Front. Microbiol. 14, 1118529 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mayer, E. A., Tillisch, K. & Gupta, A. Gut/brain axis and the microbiota. J. Clin. Invest. 125, 926–938 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  32. O’Riordan, K. J. et al. Short chain fatty acids: microbial metabolites for gut–brain axis signalling. Mol. Cell. Endocrinol. 546, 111572 (2022).

    Article  PubMed  Google Scholar 

  33. Mossad, O. & Erny, D. The microbiota–microglia axis in central nervous system disorders. Brain Pathol. 30, 1159–1177 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kim, Y. J., Mun, B. R., Choi, K. Y. & Choi, W. S. Oral administration of probiotic bacteria alleviates tau phosphorylation, Aβ accumulation, microglia activation, and memory loss in 5×FAD Mice. Brain Sci. 14, 208 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lee, H. J., Hwang, Y. H. & Kim, D. H. Lactobacillus plantarum C29-fermented soybean (DW2009) alleviates memory impairment in 5×FAD transgenic mice by regulating microglia activation and gut microbiota composition. Mol. Nutr. Food Res. 62, e1800359 (2018).

    Article  PubMed  Google Scholar 

  36. Caetano-Silva, M. E. et al. Inhibition of inflammatory microglia by dietary fiber and short-chain fatty acids. Sci. Rep. 13, 2819 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Moffett, J. R., Puthillathu, N., Vengilote, R., Jaworski, D. M. & Namboodiri, A. M. Acetate revisited: a key biomolecule at the nexus of metabolism, epigenetics and oncogenesis—part 1: acetyl-CoA, acetogenesis and acyl-CoA short-chain synthetases. Front. Physiol. 11, 580171 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Keane, L., Cheray, M., Blomgren, K. & Joseph, B. Multifaceted microglia—key players in primary brain tumour heterogeneity. Nat. Rev. Neurol. 17, 243–259 (2021).

    Article  PubMed  Google Scholar 

  39. Stratoulias, V., Venero, J. L., Tremblay, M. & Joseph, B. Microglial subtypes: diversity within the microglial community. EMBO J. 38, e101997 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bisht, K. et al. Dark microglia: a new phenotype predominantly associated with pathological states. Glia 64, 826–839 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hammond, L. A. et al. Phase I and pharmacokinetic study of temozolomide on a daily-for-5-days schedule in patients with advanced solid malignancies. J. Clin. Oncol. 17, 2604–2613 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Masuda, T., Sankowski, R., Staszewski, O. & Prinz, M. Microglia heterogeneity in the single-cell era. Cell Rep. 30, 1271–1281 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Hove, H. et al. A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment. Nat. Neurosci. 22, 1021–1035 (2019).

    Article  PubMed  Google Scholar 

  44. Gabandé-Rodríguez, E., Keane, L. & Capasso, M. Microglial phagocytosis in aging and Alzheimer’s disease. J. Neurosci. Res. 2, 284–298 (2020).

    Article  Google Scholar 

  45. Keane, L. et al. mTOR-dependent translation amplifies microglia priming in aging mice. J. Clin. Invest. 131, 1–16 (2021).

    Article  Google Scholar 

  46. Grabert, K. et al. Microglial brain region dependent diversity and selective regional sensitivities to aging. Nat. Neurosci. 19, 504–516 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Guneykaya, D. et al. Transcriptional and translational differences of microglia from male and female brains. Cell Rep. 24, 2773–2783.e6 (2018).

    Article  CAS  PubMed  Google Scholar 

  48. Villa, A. et al. Sex-specific features of microglia from adult mice. Cell Rep. 23, 3501–3511 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Easley-Neal, C., Foreman, O., Sharma, N., Zarrin, A. A. & Weimer, R. M. CSF1R ligands IL-34 and CSF1 are differentially required for microglia development and maintenance in white and gray matter brain regions. Front. Immunol. 10, 2199 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Casano, A. M. & Peri, F. Microglia: multitasking specialists of the brain. Dev. Cell 32, 469–477 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. Ginhoux, F. & Prinz, M. Origin of microglia: current concepts and past controversies. Cold Spring Harb. Perspect. Biol. 7, 1–15 (2015).

    Article  Google Scholar 

  52. Kennedy, K. M. et al. Questioning the fetal microbiome illustrates pitfalls of low-biomass microbial studies. Nature 613, 639–649 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Vuong, H. E. et al. The maternal microbiome modulates fetal neurodevelopment in mice. Nature 586, 281–286 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pronovost, G. N. et al. The maternal microbiome promotes placental development in mice. Sci. Adv. 9, 1–12 (2023).

    Article  Google Scholar 

  55. Jessa, S. et al. Stalled developmental programs at the root of pediatric brain tumors. Nat. Genet. 51, 1702–1713 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cowan, C. S. M., Dinan, T. G. & Cryan, J. F. Annual research review: critical windows—the microbiota–gut–brain axis in neurocognitive development. J. Child. Psychol. Psychiatry 3, 353–371 (2019).

    Google Scholar 

  57. Perry, V. H. & Holmes, C. Microglial priming in neurodegenerative disease. Nat. Rev. Neurol. 10, 217–224 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Perry, V. H. & Teeling, J. Microglia and macrophages of the central nervous system: the contribution of microglia priming and systemic inflammation to chronic neurodegeneration. Semin. Immunopathol. 35, 601–612 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Henry, C. J., Huang, Y., Wynne, A. M. & Godbout, J. P. Peripheral lipopolysaccharide (LPS) challenge promotes microglial hyperactivity in aged mice that is associated with exaggerated induction of both pro-inflammatory IL-1β and anti-inflammatory IL-10 cytokines. Brain. Behav. Immun. 23, 309–317 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Tejera, D. et al. Systemic inflammation impairs microglial Aβ clearance through NLRP 3 inflammasome. EMBO J. 38, e101064 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ghosh, T. S., Shanahan, F. & O’Toole, P. W. The gut microbiome as a modulator of healthy ageing. Nat. Rev. Gastroenterol. Hepatol. 19, 565–584 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Boehme, M. et al. Mid-life microbiota crises: middle age is associated with pervasive neuroimmune alterations that are reversed by targeting the gut microbiome. Mol. Psychiatry 25, 2567–2583 (2020).

    Article  PubMed  Google Scholar 

  63. Mossad, O. et al. Gut microbiota drives age-related oxidative stress and mitochondrial damage in microglia via the metabolite N6-carboxymethyllysine. Nat. Neurosci. 25, 295–305 (2022).

    Article  CAS  PubMed  Google Scholar 

  64. Boehme, M. et al. Microbiota from young mice counteracts selective age-associated behavioral deficits. Nat. Aging 1, 666–676 (2021).

    Article  PubMed  Google Scholar 

  65. Bennett, M. L. & Barres, B. A. A genetically distinct microglial subset promotes myelination. EMBO J. 36, 3269–3271 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Guedes, J. R., Ferreira, P. A., Costa, J. M., Cardoso, A. L. & Peça, J. Microglia-dependent remodeling of neuronal circuits. J. Neurochem. 163, 74–93 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hughes, A. N. & Appel, B. Microglia phagocytose myelin sheaths to modify developmental myelination. Nat. Neurosci. 23, 1055–1066 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wake, H., Moorhouse, A. J., Miyamoto, A. & Nabekura, J. Microglia: actively surveying and shaping neuronal circuit structure and function. Trends Neurosci. 36, 209–217 (2013).

    Article  CAS  PubMed  Google Scholar 

  69. Szepesi, Z., Manouchehrian, O., Bachiller, S. & Deierborg, T. Bidirectional microglia–neuron communication in health and disease. Front. Cell. Neurosci. 12, 323 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lui, H. et al. Progranulin deficiency promotes circuit-specific synaptic pruning by microglia via complement activation. Cell 165, 921–935 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Scott-Hewitt, N. et al. Microglial-derived C1q integrates into neuronal ribonucleoprotein complexes and impacts protein homeostasis in the aging brain. Cell 8, 4193–4212 (2024).

    Article  Google Scholar 

  72. Camacho-Hernández, N. P. & Peña-Ortega, F. Fractalkine/CX3CR1-dependent modulation of synaptic and network plasticity in health and disease. Neural Plast. 2023, 4637073 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Lehrman, E. K. et al. CD47 protects synapses from excess microglia-mediated pruning during development. Neuron 100, 120–134.e6 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kim, H. J. et al. Deficient autophagy in microglia impairs synaptic pruning and causes social behavioral defects. Mol. Psychiatry 22, 1576–1584 (2017).

    Article  CAS  PubMed  Google Scholar 

  75. Chafee, M. V. & Averbeck, B. B. Unmasking schizophrenia: synaptic pruning in adolescence reveals a latent physiological vulnerability in prefrontal recurrent networks. Biol. Psychiatry 92, 436–439 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Hong, S. et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 352, 712–716 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bruckner, J. J. et al. The microbiota promotes social behavior by modulating microglial remodeling of forebrain neurons. PLoS Biol. 20, e3001838 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Muller, P. A. et al. Microbiota modulate sympathetic neurons via a gut–brain circuit. Nature 583, 441–446 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hoyles, L. et al. Regulation of blood–brain barrier integrity by microbiome-associated methylamines and cognition by trimethylamine N-oxide. Microbiome 9, 235 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rosito, M. et al. Antibiotics treatment promotes vasculogenesis in the brain of glioma-bearing mice. Cell Death Dis. 15, 210 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Çalışkan, G. et al. Antibiotic-induced gut dysbiosis leads to activation of microglia and impairment of cholinergic gamma oscillations in the hippocampus. Brain. Behav. Immun. 99, 203–217 (2022).

    Article  PubMed  Google Scholar 

  82. He, H. et al. Gut microbiota regulate stress resistance by influencing microglia–neuron interactions in the hippocampus. Brain Behav. Immun. Health 36, 100729 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. He, H., He, H., Mo, L., You, Z. & Zhang, J. Priming of microglia with dysfunctional gut microbiota impairs hippocampal neurogenesis and fosters stress vulnerability of mice. Brain. Behav. Immun. 115, 280–294 (2024).

    Article  CAS  PubMed  Google Scholar 

  84. Luck, B. et al. Bifidobacteria shape host neural circuits during postnatal development by promoting synapse formation and microglial function. Sci. Rep. 10, 7737 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Williamson, J. M. & Lyons, D. A. Myelin dynamics throughout life: an ever-changing landscape? Front. Cell. Neurosci. 12, 424 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Irfan, M., Evonuk, K. S. & DeSilva, T. M. Microglia phagocytose oligodendrocyte progenitor cells and synapses during early postnatal development: implications for white versus gray matter maturation. FEBS J. 289, 2110–2127 (2022).

    Article  CAS  PubMed  Google Scholar 

  87. Nemes-Baran, A. D., White, D. R. & DeSilva, T. M. Fractalkine-dependent microglial pruning of viable oligodendrocyte progenitor cells regulates myelination. Cell Rep. 32, 108047 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Giera, S. et al. Microglial transglutaminase-2 drives myelination and myelin repair via GPR56/ ADGRG1 in oligodendrocyte precursor cells. eLIFE 7, e33385 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Djannatian, M. et al. Myelination generates aberrant ultrastructure that is resolved by microglia. J. Cell Biol. 222, e202204010 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. McNamara, N. B. et al. Microglia regulate central nervous system myelin growth and integrity. Nature 613, 120–129 (2023).

    Article  CAS  PubMed  Google Scholar 

  91. Benmamar-Badel, A., Owens, T. & Wlodarczyk, A. Protective microglial subset in development, aging, and disease: lessons from transcriptomic studies. Front. Immunol. 11, 430 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hagemeyer, N. et al. Microglia contribute to normal myelinogenesis and to oligodendrocyte progenitor maintenance during adulthood. Acta Neuropathol. 134, 441–458 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Shen, X. et al. Definition of a mouse microglial subset that regulates neuronal development and proinflammatory responses in the brain. Proc. Natl Acad. Sci. USA 119, e2116241119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wlodarczyk, A. et al. CSF1R stimulation promotes increased neuroprotection by CD11c+ microglia in EAE. Front. Cell. Neurosci. 12, 1–10 (2019).

    Article  Google Scholar 

  95. Wlodarczyk, A. et al. A novel microglial subset plays a key role in myelinogenesis in developing brain. EMBO J. 36, 3292–3308 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hoban, A. E. et al. Regulation of prefrontal cortex myelination by the microbiota. Transl. Psychiatry 6, e774 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ahmed, S. et al. Early influences of microbiota on white matter development in germ-free piglets. Front. Cell. Neurosci. 15, 807170 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Gacias, M. et al. Microbiota-driven transcriptional changes in prefrontal cortex override genetic differences in social behavior. eLIFE 6, e13442 (2016).

    Article  Google Scholar 

  99. Keogh, C. E. et al. Myelin as a regulator of development of the microbiota–gut–brain axis. Brain. Behav. Immun. 91, 437–450 (2021).

    Article  CAS  PubMed  Google Scholar 

  100. Lynch, C. M. K. et al. Critical windows of early-life microbiota disruption on behaviour, neuroimmune function, and neurodevelopment. Brain. Behav. Immun. 108, 309–327 (2023).

    Article  CAS  PubMed  Google Scholar 

  101. Sampson, T. R. et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167, 1469–1480.e12 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Berer, K. et al. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature 479, 538–541 (2011).

    Article  CAS  PubMed  Google Scholar 

  103. McMurran, C. E. et al. The microbiota regulates murine inflammatory responses to toxin-induced CNS demyelination but has minimal impact on remyelination. Proc. Natl Acad. Sci. USA 50, 25311–25321 (2019).

    Article  Google Scholar 

  104. Rothhammer, V. et al. Microglial control of astrocytes in response to microbial metabolites. Nature 557, 724–728 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Juricek, L. et al. AhR-deficiency as a cause of demyelinating disease and inflammation. Sci. Rep. 7, 9794 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Juricek, L. & Coumoul, X. The aryl hydrocarbon receptor and the nervous system. Int. J. Mol. Sci. 19, 2504 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Shackleford, G. et al. Involvement of aryl hydrocarbon receptor in myelination and in human nerve sheath tumorigenesis. Proc. Natl Acad. Sci. USA 115, 1319–1328 (2018).

    Article  Google Scholar 

  108. Rothhammer, V. & Quintana, F. J. The aryl hydrocarbon receptor: an environmental sensor integrating immune responses in health and disease. Nat. Rev. Immunol. 19, 184–197 (2019).

    Article  CAS  PubMed  Google Scholar 

  109. Wang, T. et al. Microbiota–indole 3-propionic acid–brain axis mediates abnormal synaptic pruning of hippocampal microglia and susceptibility to ASD in IUGR offspring. Microbiome 11, 245 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Wang, Y. et al. Microglial aryl hydrocarbon receptor enhances phagocytic function via SYK and promotes remyelination in the cuprizone mouse model of demyelination. J. Neuroinflamm. 20, 83 (2023).

    Article  CAS  Google Scholar 

  111. Harry, G. J. Microglia in neurodegenerative events—an initiator or a significant other? Int. J. Mol. Sci. 22, 5818 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zhang, W., Xiao, D., Mao, Q. & Xia, H. Role of neuroinflammation in neurodegeneration development. Signal. Transduct. Target. Ther. 8, 267 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Krasemann, S. et al. The TREM2–APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity 47, 566–581.e9 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Young, A. M. H. et al. A map of transcriptional heterogeneity and regulatory variation in human microglia. Nat. Genet. 53, 861–868 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Schneider, E., O’Riordan, K. J., Clarke, G. & Cryan, J. F. Feeding gut microbes to nourish the brain: unravelling the diet–microbiota–gut–brain axis. Nat. Metab. 6, 1454–1478 (2024).

    Article  PubMed  Google Scholar 

  116. Baufeld, C., Osterloh, A., Prokop, S., Miller, K. R. & Heppner, F. L. High-fat diet-induced brain region-specific phenotypic spectrum of CNS resident microglia. Acta Neuropathol. 132, 361–375 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Fernández-Arjona, M. D. M., León-Rodríguez, A., Grondona, J. M. & López-Ávalos, M. D. Long-term priming of hypothalamic microglia is associated with energy balance disturbances under diet-induced obesity. Glia 70, 1734–1761 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Wang, X. L. & Li, L. Microglia regulate neuronal circuits in homeostatic and high-fat diet-induced inflammatory conditions. Front. Cell. Neurosci. 15, 722028 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Vijaya, A. K. et al. Prebiotics mitigate the detrimental effects of high-fat diet on memory, anxiety and microglia functionality in ageing mice. Brain. Behav. Immun. 122, 167–184 (2024).

    Article  CAS  PubMed  Google Scholar 

  120. Yin, Z. et al. Low-fat diet with caloric restriction reduces white matter microglia activation during aging. Front. Mol. Neurosci. 11, 65 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Abdel-Haq, R. et al. A prebiotic diet modulates microglial states and motor deficits in α-synuclein overexpressing mice. eLife 11, e81453 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Barros-Santos, T. & Clarke, G. Gut-initiated neuroprotection in Parkinson’s disease: when microbes turn the tables in the battle against neuroinflammation. Brain. Behav. Immun. 108, 350–352 (2023).

    Article  CAS  PubMed  Google Scholar 

  123. Sun, M. F. et al. Neuroprotective effects of fecal microbiota transplantation on MPTP-induced Parkinson’s disease mice: gut microbiota, glial reaction and TLR4/TNF-α signaling pathway. Brain. Behav. Immun. 70, 48–60 (2018).

    Article  CAS  PubMed  Google Scholar 

  124. Keren-Shaul, H. et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169, 1276–1290.e17 (2017).

    Article  CAS  PubMed  Google Scholar 

  125. Hill, C. et al. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 11, 506–514 (2014).

    Article  PubMed  Google Scholar 

  126. Castro-Gomez, S. & Heneka, M. T. Innate immune activation in neurodegenerative diseases. Immunity 57, 790–814 (2024).

    Article  CAS  PubMed  Google Scholar 

  127. Heneka, M. T. et al. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature 493, 674–678 (2013).

    Article  CAS  PubMed  Google Scholar 

  128. Ising, C. et al. NLRP3 inflammasome activation drives tau pathology. Nature 575, 669–673 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Venegas, C. et al. Microglia-derived ASC specks crossseed amyloid-β in Alzheimer’s disease. Nature 552, 355–361 (2017).

    Article  CAS  PubMed  Google Scholar 

  130. Abdelhamid, M. et al. Probiotic Bifidobacterium breve prevents memory impairment through the reduction of both amyloid-β production and microglia activation in APP knock-in mouse. J. Alzheimers Dis. 85, 1555–1571 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Cox, L. M. et al. The microbiota restrains neurodegenerative microglia in a model of amyotrophic lateral sclerosis. Microbiome 10, 47 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Medawar, E. et al. Prebiotic diet changes neural correlates of food decision-making in overweight adults: a randomised controlled within-subject cross-over trial. Gut 73, 298–310 (2023).

    Article  Google Scholar 

  133. Tillisch, K. et al. Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology 144, 1394–1401 (2013).

    Article  CAS  PubMed  Google Scholar 

  134. Bagga, D. et al. Influence of 4-week multi-strain probiotic administration on resting-state functional connectivity in healthy volunteers. Eur. J. Nutr. 58, 1821–1827 (2019).

    Article  CAS  PubMed  Google Scholar 

  135. Janssen, B., Vugts, D. J., Windhorst, A. D. & Mach, R. H. PET imaging of microglial activation—beyond targeting TSPO. Molecules 23, 607 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Gerhard, A. et al. In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson’s disease. Neurobiol. Dis. 21, 404–412 (2006).

    Article  CAS  PubMed  Google Scholar 

  137. Pajares, M. et al. Inflammation in Parkinson’s disease: mechanisms and therapeutic implications. Cells 9, 1687 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Zhang, W. et al. Aggregated α‐synuclein activates microglia: a process leading to disease progression in Parkinson’s disease. FASEB J. 19, 533–542 (2005).

    Article  CAS  PubMed  Google Scholar 

  139. Scheiblich, H. et al. Microglia jointly degrade fibrillar α-synuclein cargo by distribution through tunneling nanotubes. Cell 184, 5089–5106.e21 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Unger, M. M. et al. Short chain fatty acids and gut microbiota differ between patients with Parkinson’s disease and age-matched controls. Parkinsonism Relat. Disord. 32, 66–72 (2016).

    Article  PubMed  Google Scholar 

  141. Tan, A. H. et al. Small intestinal bacterial overgrowth in Parkinson’s disease. Parkinsonism Relat. Disord. 20, 535–540 (2014).

    Article  PubMed  Google Scholar 

  142. Liu, J. et al. Microbiota-microglia crosstalk between Blautia producta and neuroinflammation of Parkinson’s disease: a bench-to-bedside translational approach. Brain. Behav. Immun. 117, 270–282 (2024).

    Article  CAS  PubMed  Google Scholar 

  143. Rossano, S. M. et al. Microglia measured by TSPO PET are associated with Alzheimer’s disease pathology and mediate key steps in a disease progression model. Alzheimers Dement. J. Alzheimers Assoc. 20, 2397–2407 (2024).

    Article  CAS  Google Scholar 

  144. Haney, M. S. et al. APOE4/4 is linked to damaging lipid droplets in Alzheimer’s disease microglia. Nature 628, 154–161 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Miao, J. et al. Microglia in Alzheimer’s disease: pathogenesis, mechanisms, and therapeutic potentials. Front. Aging Neurosci. 15, 1201982 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Chen, C. et al. Gut microbiota regulate Alzheimer’s disease pathologies and cognitive disorders via PUFA-associated neuroinflammation. Gut 71, 2233–2252 (2022).

    Article  PubMed  Google Scholar 

  147. Wasén, C. et al. Bacteroidota inhibit microglia clearance of amyloid-β and promote plaque deposition in Alzheimer’s disease mouse models. Nat. Commun. 15, 3872 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Colombo, A. V. et al. Microbiota-derived short chain fatty acids modulate microglia and promote aβ plaque deposition. eLife 10, e59826 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Dodiya, H. B. et al. Gut microbiota-driven brain Aβ amyloidosis in mice requires microglia. J. Exp. Med. 219, e20200895 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Brettschneider, J. et al. Microglial activation correlates with disease progression and upper motor neuron clinical symptoms in amyotrophic lateral sclerosis. PLoS One 7, 39216 (2012).

    Article  Google Scholar 

  151. Dols-Icardo, O. et al. Motor cortex transcriptome reveals microglial key events in amyotrophic lateral sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 7, e829 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Frakes, A. E. et al. Microglia induce motor neuron death via the classical NF-κB pathway in amyotrophic lateral sclerosis. Neuron 81, 1009–1023 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Guo, K. et al. Gut microbiome correlates with plasma lipids in amyotrophic lateral sclerosis. Brain 147, 665–679 (2024).

    Article  PubMed  Google Scholar 

  154. Zeng, Q. et al. The alteration of gut microbiome and metabolism in amyotrophic lateral sclerosis patients. Sci. Rep. 10, 12998 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Nicholson, K. et al. The human gut microbiota in people with amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Front. Degener. 22, 186–194 (2021).

    Article  CAS  Google Scholar 

  156. Singh, S. B. et al. The utility of PET imaging in depression. Front. Psychiatry 15, 1322118 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Fan, C. et al. Microglia secrete miR-146a-5p-containing exosomes to regulate neurogenesis in depression. Mol. Ther. 30, 1300–1314 (2022).

    Article  CAS  PubMed  Google Scholar 

  158. Duan, N. et al. Therapeutic targeting of STING–TBK1–IRF3 signalling ameliorates chronic stress induced depression-like behaviours by modulating neuroinflammation and microglia phagocytosis. Neurobiol. Dis. 169, 105739 (2022).

    Article  CAS  PubMed  Google Scholar 

  159. He, L. et al. Nrf2 regulates the arginase 1+ microglia phenotype through the initiation of TREM2 transcription, ameliorating depression-like behavior in mice. Transl. Psychiatry 12, 459 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Barandouzi, Z. A., Starkweather, A. R., Henderson, W. A., Gyamfi, A. & Cong, X. S. Altered composition of gut microbiota in depression: a systematic review. Front. Psychiatry 11, 541 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Marin, I. A. et al. Microbiota alteration is associated with the development of stress-induced despair behavior. Sci. Rep. 7, 43859 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Hao, W. et al. Gut dysbiosis induces the development of depression-like behavior through abnormal synapse pruning in microglia-mediated by complement C3. Microbiome 12, 34 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Li, H. et al. Rifaximin-mediated gut microbiota regulation modulates the function of microglia and protects against CUMS-induced depression-like behaviors in adolescent rat. J. Neuroinflamm. 18, 254 (2021).

    Article  CAS  Google Scholar 

  164. Liao, X., Chen, M. & Li, Y. The glial perspective of autism spectrum disorder convergent evidence from postmortem brain and PET studies. Front. Neuroendocrinol. 70, 101064 (2023).

    Article  CAS  PubMed  Google Scholar 

  165. Bose, R. et al. Bi-allelic NRXN1α deletion in microglia derived from iPSC of an autistic patient increases interleukin-6 production and impairs supporting function on neuronal networking. Brain. Behav. Immun. 123, 28–42 (2025).

    Article  CAS  PubMed  Google Scholar 

  166. Zhan, Y. et al. Deficient neuron–microglia signaling results in impaired functional brain connectivity and social behavior. Nat. Neurosci. 17, 400–406 (2014).

    Article  CAS  PubMed  Google Scholar 

  167. Martínez-Cerdeño, V. Dendrite and spine modifications in autism and related neurodevelopmental disorders in patients and animal models. Dev. Neurobiol. 77, 393–404 (2017).

    Article  PubMed  Google Scholar 

  168. Hsiao, E. Y. et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155, 1451–1463 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Kong, Q. et al. Bifidobacterium longum CCFM1077 ameliorated neurotransmitter disorder and neuroinflammation closely linked to regulation in the kynurenine pathway of autistic-like rats. Nutrients 14, 1615 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Bloomfield, P. S. et al. Microglial activity in people at ultra high risk of psychosis and in schizophrenia: an [11C]PBR28 PET brain imaging study. Am. J. Psychiatry 173, 44–52 (2016).

    Article  PubMed  Google Scholar 

  171. Na, K. S., Jung, H. Y. & Kim, Y. K. The role of pro-inflammatory cytokines in the neuroinflammation and neurogenesis of schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry 48, 277–286 (2014).

    Article  CAS  PubMed  Google Scholar 

  172. Hartmann, S. M., Heider, J., Wüst, R., Fallgatter, A. J. & Volkmer, H. Microglia–neuron interactions in schizophrenia. Front. Cell. Neurosci. 18, 1345349 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Sekar, A. et al. Schizophrenia risk from complex variation of complement component 4. Nature 530, 177–183 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Zheng, P. et al. The gut microbiome from patients with schizophrenia modulates the glutamate–glutamine–GABA cycle and schizophrenia-relevant behaviors in mice. Sci. Adv. 5, eaau8317 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Samochowiec, J. & Misiak, B. Gut microbiota and microbiome in schizophrenia. Curr. Opin. Psychiatry 34, 503–507 (2021).

    Article  PubMed  Google Scholar 

  176. Airas, L., Rissanen, E. & Rinne, J. Imaging of microglial activation in MS using PET: research use and potential future clinical application. Mult. Scler. 23, 496–504 (2017).

    Article  PubMed  Google Scholar 

  177. Heppner, F. L. et al. Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nat. Med. 11, 146–152 (2005).

    Article  CAS  PubMed  Google Scholar 

  178. Absinta, M. et al. A lymphocyte–microglia–astrocyte axis in chronic active multiple sclerosis. Nature 597, 709–714 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Beckmann, N. et al. Brain region-specific enhancement of remyelination and prevention of demyelination by the CSF1R kinase inhibitor BLZ945. Acta Neuropathol. Commun. 6, 9 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Cekanaviciute, E. et al. Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. Proc. Natl Acad. Sci. USA 40, 10713–20728 (2017).

    Article  Google Scholar 

  181. Akkari, L. et al. Dynamic changes in glioma macrophage populations after radiotherapy reveal CSF-1R inhibition as a strategy to overcome resistance. Sci. Transl. Med. 12, eaaw7843 (2020).

    Article  CAS  PubMed  Google Scholar 

  182. Yan, D. et al. Inhibition of colony stimulating factor-1 receptor abrogates microenvironment-mediated therapeutic resistance in gliomas. Oncogene 36, 6049–6058 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Keane, L. et al. Inhibition of microglial EZH2 leads to anti-tumoral effects in pediatric diffuse midline gliomas. Neuro-Oncol. Adv. 3, 45–60 (2020).

    Google Scholar 

  184. Patrizz, A. et al. Glioma and temozolomide induced alterations in gut microbiome. Sci. Rep. 10, 21002 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Fan, H. et al. Multi-omics-based investigation of Bifidobacterium’s inhibitory effect on glioma: regulation of tumor and gut microbiota, and MEK/ERK cascade. Front. Microbiol. 15, 1344284 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Scalise, M., Galluccio, M., Console, L., Pochini, L. & Indiveri, C. The human SLC7A5 (LAT1): the intriguing histidine/large neutral amino acid transporter and its relevance to human health. Front. Chem. 6, 243 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Koh, A., Vadder, F., Kovatcheva-Datchary, P. & Bäckhed, F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165, 1332–1345 (2016).

    Article  CAS  PubMed  Google Scholar 

  188. Caetano-Silva, M. E. et al. The emergence of inflammatory microglia during gut inflammation is not affected by FFAR2 expression in intestinal epithelial cells or peripheral myeloid cells. Brain. Behav. Immun. 118, 423–436 (2024).

    Article  CAS  PubMed  Google Scholar 

  189. Halestrap, A. P. & Wilson, M. C. The monocarboxylate transporter family—role and regulation. IUBMB Life 64, 109–119 (2012).

    Article  CAS  PubMed  Google Scholar 

  190. Monsorno, K. et al. Loss of microglial MCT4 leads to defective synaptic pruning and anxiety-like behavior in mice. Nat. Commun. 14, 5749 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Mishra, S. P., Karunakar, P., Taraphder, S. & Yadav, H. Free fatty acid receptors 2 and 3 as microbial metabolite sensors to shape host health: pharmacophysiological view. Biomedicines 8, 154 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Bindels, L. B., Dewulf, E. M. & Delzenne, N. M. GPR43/FFA2: physiopathological relevance and therapeutic prospects. Trends Pharmacol. Sci. 34, 226–232 (2013).

    Article  CAS  PubMed  Google Scholar 

  193. Lee, Y. H. et al. Aryl hydrocarbon receptor mediates both proinflammatory and anti-inflammatory effects in lipopolysaccharide-activated microglia. Glia 63, 1138–1154 (2015).

    Article  PubMed  Google Scholar 

  194. Baggio, L. L. & Drucker, D. J. Glucagon-like peptide-1 receptors in the brain: controlling food intake and body weight. J. Clin. Invest. 124, 4223–4226 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Cook, T. M. et al. Vagal neuron expression of the microbiota-derived metabolite receptor, free fatty acid receptor (FFAR3), is necessary for normal feeding behavior. Mol. Metab. 54, 101350 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Ni, Y., Tong, Q., Xu, M., Gu, J. & Ye, H. Gut microbiota-induced modulation of the central nervous system function in Parkinson’s disease through the gut–brain axis and short-chain fatty acids. Mol. Neurobiol. 62, 2480–2492 (2025).

    Article  CAS  PubMed  Google Scholar 

  197. Dalile, B., Oudenhove, L., Vervliet, B. & Verbeke, K. The role of short-chain fatty acids in microbiota–gut–brain communication. Nat. Rev. Gastroenterol. Hepatol. 16, 461–478 (2019).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank their funding sources. L.K. acknowledges support from the ChadTough Defeat DIPG Foundation, and J.F.C. acknowledges the support of Science Foundation Ireland (SFI/12/RC/2273_P2). The authors also thank C. Cuesta for her help in generating the original version of Fig. 2.

Author information

Authors and Affiliations

Authors

Contributions

All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Lily Keane.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks Jacob Allen, who co-reviewed with Elisa Caetano-Silva, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keane, L., Clarke, G. & Cryan, J.F. A role for microglia in mediating the microbiota–gut–brain axis. Nat Rev Immunol (2025). https://doi.org/10.1038/s41577-025-01188-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41577-025-01188-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing