Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

End-to-end design of wearable sensors

Abstract

Wearable devices provide an alternative pathway to clinical diagnostics by exploiting various physical, chemical and biological sensors to mine physiological (biophysical and/or biochemical) information in real time (preferably, continuously) and in a non-invasive or minimally invasive manner. These sensors can be worn in the form of glasses, jewellery, face masks, wristwatches, fitness bands, tattoo-like devices, bandages or other patches, and textiles. Wearables such as smartwatches have already proved their capability for the early detection and monitoring of the progression and treatment of various diseases, such as COVID-19 and Parkinson disease, through biophysical signals. Next-generation wearable sensors that enable the multimodal and/or multiplexed measurement of physical parameters and biochemical markers in real time and continuously could be a transformative technology for diagnostics, allowing for high-resolution and time-resolved historical recording of the health status of an individual. In this Review, we examine the building blocks of such wearable sensors, including the substrate materials, sensing mechanisms, power modules and decision-making units, by reflecting on the recent developments in the materials, engineering and data science of these components. Finally, we synthesize current trends in the field to provide predictions for the future trajectory of wearable sensors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of major milestones in the development of wearable sensors and a summary of their building blocks.
Fig. 2: The decision-making unit and its working principles.
Fig. 3: Energy harvesting methods.

Similar content being viewed by others

References

  1. Iqbal, S. M. A., Mahgoub, I., Du, E., Leavitt, M. A. & Asghar, W. Advances in healthcare wearable devices. npj Flex. Electron. 5, 9 (2021).

    Article  Google Scholar 

  2. Brophy, K. et al. The future of wearable technologies. Brief. Pap. 8, 1–20 (2021).

    Google Scholar 

  3. Ates, H. C. et al. Integrated devices for non-invasive diagnostics. Adv. Funct. Mater. 31, 2010388 (2021).

    Article  CAS  Google Scholar 

  4. Heikenfeld, J. et al. Wearable sensors: modalities, challenges, and prospects. Lab Chip 18, 217–248 (2018).

    Article  CAS  Google Scholar 

  5. Gambhir, S. S., Ge, T. J., Vermesh, O., Spitler, R. & Gold, G. E. Continuous health monitoring: an opportunity for precision health. Sci. Transl. Med. 13, eabe5383 (2021).

    Article  Google Scholar 

  6. Kim, J., Campbell, A. S., de Ávila, B. E.-F. & Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 37, 389–406 (2019).

    Article  CAS  Google Scholar 

  7. Wang, L., Lou, Z., Jiang, K. & Shen, G. Bio-multifunctional smart wearable sensors for medical devices. Adv. Intell. Syst. 1, 1900040 (2019).

    Article  Google Scholar 

  8. Yang, Y. et al. A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nat. Biotechnol. 38, 217–224 (2020).

    Article  CAS  Google Scholar 

  9. Guo, S. et al. Integrated contact lens sensor system based on multifunctional ultrathin MoS2 transistors. Matter 4, 969–985 (2020).

    Article  Google Scholar 

  10. Gao, W. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529, 509–514 (2016).

    Article  CAS  Google Scholar 

  11. Nyein, H. Y. Y. et al. A wearable microfluidic sensing patch for dynamic sweat secretion analysis. ACS Sens. 3, 944–952 (2018).

    Article  CAS  Google Scholar 

  12. Quer, G. et al. Wearable sensor data and self-reported symptoms for COVID-19 detection. Nat. Med. 27, 73–77 (2021).

    Article  CAS  Google Scholar 

  13. Mishra, T. et al. Pre-symptomatic detection of COVID-19 from smartwatch data. Nat. Biomed. Eng. 4, 1208–1220 (2020).

    Article  CAS  Google Scholar 

  14. Ates, H. C., Yetisen, A. K., Güder, F. & Dincer, C. Wearable devices for the detection of COVID-19. Nat. Electron. 4, 13–14 (2021).

    Article  CAS  Google Scholar 

  15. Powers, R. et al. Smartwatch inertial sensors continuously monitor real-world motor fluctuations in Parkinson’s disease. Sci. Transl. Med. 13, eabd7865 (2021).

    Article  Google Scholar 

  16. Sempionatto, J. R., Montiel, V. R. V., Vargas, E., Teymourian, H. & Wang, J. Wearable and mobile sensors for personalized nutrition. ACS Sens. 6, 1745–1760 (2021).

    Article  CAS  Google Scholar 

  17. Hong, W. & Lee, W. G. Wearable sensors for continuous oral cavity and dietary monitoring toward personalized healthcare and digital medicine. Analyst 145, 7796–7808 (2021).

    Article  Google Scholar 

  18. Ates, H. C. et al. On-site therapeutic drug monitoring. Trends Biotechnol. 38, 1262–1277 (2020).

    Article  CAS  Google Scholar 

  19. Cotur, Y. et al. Stretchable composite acoustic transducer for wearable monitoring of vital signs. Adv. Funct. Mater. 30, 1910288 (2020).

    Article  CAS  Google Scholar 

  20. Kozlowski, R. M. & Muzyczek, M. Natural Fibers (Nova Science Publishers, 2017).

  21. Shaker, K., Umair, M., Ashraf, W. & Nawab, Y. Fabric manufacturing. Phys. Sci. Rev. 1, 20160024 (2016).

    Google Scholar 

  22. Applegate, M. B., Perotto, G., Kaplan, D. L. & Omenetto, F. G. Biocompatible silk step-index optical waveguides. Biomed. Opt. Express 6, 4221–4227 (2015).

    Article  Google Scholar 

  23. Guidetti, G., Atifi, S., Vignolini, S. & Hamad, W. Y. Flexible photonic cellulose nanocrystal films. Adv. Mater. 28, 10042–10047 (2016).

    Article  CAS  Google Scholar 

  24. Kim, S. J. et al. Wearable UV sensor based on carbon nanotube-coated cotton thread. ACS Appl. Mater. Interfaces 10, 40198–40202 (2018).

    Article  CAS  Google Scholar 

  25. Gurarslan, A., Özdemir, B., Bayat, İ. H., Yelten, M. B. & Karabulut Kurt, G. Silver nanowire coated knitted wool fabrics for wearable electronic applications. J. Eng. Fibers Fabr. https://doi.org/10.1177/1558925019856222 (2019).

    Article  Google Scholar 

  26. Morales-Narváez, E. et al. Nanopaper as an optical sensing platform. ACS Nano 9, 7296–7305 (2015).

    Article  Google Scholar 

  27. Cao, J. & Wang, C. Multifunctional surface modification of silk fabric via graphene oxide repeatedly coating and chemical reduction method. Appl. Surf. Sci. 405, 380–388 (2017).

    Article  CAS  Google Scholar 

  28. Nguyen, P. Q. et al. Wearable materials with embedded synthetic biology sensors for biomolecule detection. Nat. Biotechnol. 39, 1366–1374 (2021).

    Article  CAS  Google Scholar 

  29. Song, Y. et al. Design framework for a seamless smart glove using a digital knitting system. Fash. Text. 8, 6 (2021).

    Article  Google Scholar 

  30. Loke, G. et al. Structured multimaterial filaments for 3D printing of optoelectronics. Nat. Commun. 10, 4010 (2019).

    Article  Google Scholar 

  31. Valentine, A. D. et al. Hybrid 3D printing of soft electronics. Adv. Mater. 29, 1703817 (2017).

    Article  Google Scholar 

  32. Kraft, U., Molina-Lopez, F., Son, D., Bao, Z. & Murmann, B. Ink development and printing of conducting polymers for intrinsically stretchable interconnects and circuits. Adv. Electron. Mater. 6, 1900681 (2020).

    Article  CAS  Google Scholar 

  33. Geng, W., Cuthbert, T. J. & Menon, C. Conductive thermoplastic elastomer composite capacitive strain sensors and their application in a wearable device for quantitative joint angle prediction. ACS Appl. Polym. Mater. 3, 122–129 (2021).

    Article  CAS  Google Scholar 

  34. Sala de Medeiros, M., Chanci, D., Moreno, C., Goswami, D. & Martinez, R. V. Waterproof, breathable, and antibacterial self-powered e-textiles based on omniphobic triboelectric nanogenerators. Adv. Funct. Mater. 29, 1904350 (2019).

    Article  CAS  Google Scholar 

  35. Wu, C., Liu, X. & Ying, Y. Soft and stretchable optical waveguide: light delivery and manipulation at complex biointerfaces creating unique windows for on-body sensing. ACS Sens. 6, 1446–1460 (2021).

    Article  CAS  Google Scholar 

  36. Choi, S. et al. Highly flexible and efficient fabric-based organic light-emitting devices for clothing-shaped wearable displays. Sci. Rep. 7, 6424 (2017).

    Article  Google Scholar 

  37. Xu, G. et al. Design of non-dimensional parameters in stretchable microstrip antennas with coupled mechanics-electromagnetics. Mater. Des. 205, 109721 (2021).

    Article  Google Scholar 

  38. Mota-Morales, J. D. & Morales-Narváez, E. Transforming nature into the next generation of bio-based flexible devices: new avenues using deep eutectic systems. Matter 4, 2141–2162 (2021).

    Article  CAS  Google Scholar 

  39. Correa, S. et al. Translational applications of hydrogels. Chem. Rev. 121, 11385–11457 (2021).

    Article  CAS  Google Scholar 

  40. Homayounfar, S. Z. et al. Multimodal smart eyewear for longitudinal eye movement tracking. Matter 3, 1275–1293 (2020).

    Article  Google Scholar 

  41. Turner, J. G., White, L. R., Estrela, P. & Leese, H. S. Hydrogel-forming microneedles: current advancements and future trends. Macromol. Biosci. 21, 2000307 (2021).

    Article  CAS  Google Scholar 

  42. Matsuhisa, N. et al. Printable elastic conductors with a high conductivity for electronic textile applications. Nat. Commun. 6, 7461 (2015).

    Article  CAS  Google Scholar 

  43. Wang, B. et al. Flexible and stretchable metal oxide nanofiber networks for multimodal and monolithically integrated wearable electronics. Nat. Commun. 11, 2405 (2020).

    Article  CAS  Google Scholar 

  44. Schroeder, T. B. H. et al. An electric-eel-inspired soft power source from stacked hydrogels. Nature 552, 214–218 (2017).

    Article  CAS  Google Scholar 

  45. Scarpa, E. et al. Wearable piezoelectric mass sensor based on pH sensitive hydrogels for sweat pH monitoring. Sci. Rep. 10, 10854 (2020).

    Article  CAS  Google Scholar 

  46. Xu, J., Wang, G., Wu, Y., Ren, X. & Gao, G. Ultrastretchable wearable strain and pressure sensors based on adhesive, tough, and self-healing hydrogels for human motion monitoring. ACS Appl. Mater. Interfaces 11, 25613–25623 (2019).

    Article  CAS  Google Scholar 

  47. Di, J. et al. Stretch-triggered drug delivery from wearable elastomer films containing therapeutic depots. ACS Nano 9, 9407–9415 (2015).

    Article  CAS  Google Scholar 

  48. Liu, X. et al. 3D printing of living responsive materials and devices. Adv. Mater. 30, 1704821 (2018).

    Article  Google Scholar 

  49. Herrmann, A., Haag, R. & Schedler, U. Hydrogels and their role in biosensing applications. Adv. Healthc. Mater. 10, 2100062 (2021).

    Article  CAS  Google Scholar 

  50. Zhao, Y. et al. Hierarchically structured stretchable conductive hydrogels for high-performance wearable strain sensors and supercapacitors. Matter 3, 1196–1210 (2020).

    Article  Google Scholar 

  51. Gibbs, P. & Asada, H. H. Wearable conductive fiber sensors for measuring joint movements. In IEEE International Conference on Robotics and Automation, 2004 Vol. 5, 4753–4758 (IEEE, 2004).

  52. Xu, S. & Wu, W. Ink-based additive nanomanufacturing of functional materials for human-integrated smart wearables. Adv. Intell. Syst. 2, 2000117 (2020).

    Article  Google Scholar 

  53. Hu, X. et al. Stretchable inorganic-semiconductor electronic systems. Adv. Mater. 23, 2933–2936 (2011).

    Article  CAS  Google Scholar 

  54. Yun, M. J., Sim, Y. H., Lee, D. Y. & Cha, S. I. Highly stretchable large area woven, knitted and robust braided textile based interconnection for stretchable electronics. Sci. Rep. 11, 4038 (2021).

    Article  CAS  Google Scholar 

  55. Dincer, C. et al. Disposable sensors in diagnostics, food, and environmental monitoring. Adv. Mater. 31, 1806739 (2019).

    Article  Google Scholar 

  56. Arun, H. Advancements in the use of carbon nanotubes for antenna realization. AEU Int. J. Electron. Commun. 136, 153753 (2021).

    Article  Google Scholar 

  57. Mackanic, D. G. et al. Decoupling of mechanical properties and ionic conductivity in supramolecular lithium ion conductors. Nat. Commun. 10, 5384 (2019).

    Article  Google Scholar 

  58. Wang, C. et al. Monitoring of the central blood pressure waveform via a conformal ultrasonic device. Nat. Biomed. Eng. 2, 687–695 (2018).

    Article  Google Scholar 

  59. Ershad, F. et al. Ultra-conformal drawn-on-skin electronics for multifunctional motion artifact-free sensing and point-of-care treatment. Nat. Commun. 11, 3823 (2020).

    Article  CAS  Google Scholar 

  60. Uzun, S. et al. Knittable and washable multifunctional MXene-coated cellulose yarns. Adv. Funct. Mater. 29, 1905015 (2019).

    Article  CAS  Google Scholar 

  61. Sim, K. et al. Metal oxide semiconductor nanomembrane-based soft unnoticeable multifunctional electronics for wearable human-machine interfaces. Sci. Adv. 5, eaav9653 (2019).

    Article  CAS  Google Scholar 

  62. Carey, T. et al. Fully inkjet-printed two-dimensional material field-effect heterojunctions for wearable and textile electronics. Nat. Commun. 8, 1202 (2017).

    Article  Google Scholar 

  63. Abdelkader, A. M. et al. Ultraflexible and robust graphene supercapacitors printed on textiles for wearable electronics applications. 2D Mater. 4, 35016 (2017).

    Article  Google Scholar 

  64. Wang, Z. et al. An ultraflexible and stretchable aptameric graphene nanosensor for biomarker detection and monitoring. Adv. Funct. Mater. 29, 1905202 (2019).

    Article  CAS  Google Scholar 

  65. Lee, H. et al. A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat. Nanotechnol. 11, 566–572 (2016).

    Article  Google Scholar 

  66. Punetha, D., Kar, M. & Pandey, S. K. A new type low-cost, flexible and wearable tertiary nanocomposite sensor for room temperature hydrogen gas sensing. Sci. Rep. 10, 2151 (2020).

    Article  CAS  Google Scholar 

  67. Kabiri Ameri, S. et al. Graphene electronic tattoo sensors. ACS Nano 11, 7634–7641 (2017).

    Article  CAS  Google Scholar 

  68. Araromi, O. A. et al. Ultra-sensitive and resilient compliant strain gauges for soft machines. Nature 587, 219–224 (2020).

    Article  CAS  Google Scholar 

  69. Ou, L. et al. Toxicity of graphene-family nanoparticles: a general review of the origins and mechanisms. Part. Fibre Toxicol. 13, 57 (2016).

    Article  Google Scholar 

  70. Tran, B. Q. et al. Proteomic characterization of dermal interstitial fluid extracted using a novel microneedle-assisted technique. J. Proteome Res. 17, 479–485 (2018).

    Article  CAS  Google Scholar 

  71. He, R. et al. A hydrogel microneedle patch for point-of-care testing based on skin interstitial fluid. Adv. Healthc. Mater. 9, 1901201 (2020).

    Article  CAS  Google Scholar 

  72. Makvandi, P. et al. Engineering microneedle patches for improved penetration: analysis, skin models and factors affecting needle insertion. Nano Micro Lett. 13, 93 (2021).

    Article  CAS  Google Scholar 

  73. Kim, Y. & Prausnitz, M. R. Sensitive sensing of biomarkers in interstitial fluid. Nat. Biomed. Eng. 5, 3–5 (2021).

    Article  CAS  Google Scholar 

  74. Moussi, K., Bukhamsin, A., Hidalgo, T. & Kosel, J. Biocompatible 3D printed microneedles for transdermal, intradermal, and percutaneous applications. Adv. Eng. Mater. 22, 1901358 (2020).

    Article  CAS  Google Scholar 

  75. Prausnitz, M. R. The effects of electric current applied to skin: a review for transdermal drug delivery. Adv. Drug Deliv. Rev. 18, 395–425 (1996).

    Article  CAS  Google Scholar 

  76. Giri, T. K., Chakrabarty, S. & Ghosh, B. Transdermal reverse iontophoresis: a novel technique for therapeutic drug monitoring. J. Control. Release 246, 30–38 (2017).

    Article  CAS  Google Scholar 

  77. Tamada, J. A. et al. Noninvasive glucose monitoringcomprehensive clinical results. JAMA 282, 1839–1844 (1999).

    Article  CAS  Google Scholar 

  78. Bandodkar, A. J. et al. Tattoo-based noninvasive glucose monitoring: a proof-of-concept study. Anal. Chem. 87, 394–398 (2015).

    Article  CAS  Google Scholar 

  79. Yao, Y. et al. Integration of interstitial fluid extraction and glucose detection in one device for wearable non-invasive blood glucose sensors. Biosens. Bioelectron. 179, 113078 (2021).

    Article  CAS  Google Scholar 

  80. Hakala, T. A. et al. Sampling of fluid through skin with magnetohydrodynamics for noninvasive glucose monitoring. Sci. Rep. 11, 7609 (2021).

    Article  CAS  Google Scholar 

  81. Currano, L. J. et al. Wearable sensor system for detection of lactate in sweat. Sci. Rep. 8, 15890 (2018).

    Article  Google Scholar 

  82. Sempionatto, J. R. et al. Epidermal enzymatic biosensors for sweat vitamin C: toward personalized nutrition. ACS Sens. 5, 1804–1813 (2020).

    Article  CAS  Google Scholar 

  83. Karpova, E. V. et al. Noninvasive diabetes monitoring through continuous analysis of sweat using flow-through glucose biosensor. Anal. Chem. 91, 3778–3783 (2019).

    Article  CAS  Google Scholar 

  84. Parlak, O., Keene, S. T., Marais, A., Curto, V. F. & Salleo, A. Molecularly selective nanoporous membrane-based wearable organic electrochemical device for noninvasive cortisol sensing. Sci. Adv. 4, eaar2904 (2018).

    Article  CAS  Google Scholar 

  85. Kim, J. et al. Noninvasive alcohol monitoring using a wearable tattoo-based iontophoretic-biosensing system. ACS Sens. 1, 1011–1019 (2016).

    Article  CAS  Google Scholar 

  86. Jagannath, B. et al. Temporal profiling of cytokines in passively expressed sweat for detection of infection using wearable device. Bioeng. Transl. Med. 6, e10220 (2021).

    Article  CAS  Google Scholar 

  87. Emaminejad, S. et al. Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform. Proc. Natl Acad. Sci. USA 114, 4625–4630 (2017).

    Article  CAS  Google Scholar 

  88. Jagannath, B. et al. A sweat-based wearable enabling technology for real-time monitoring of IL-1β and CRP as potential markers for inflammatory bowel disease. Inflamm. Bowel Dis. 26, 1533–1542 (2020).

    Article  Google Scholar 

  89. Mintah Churcher, N. K., Upasham, S., Rice, P., Bhadsavle, S. & Prasad, S. Development of a flexible, sweat-based neuropeptide Y detection platform. RSC Adv. 10, 23173–23186 (2020).

    Article  CAS  Google Scholar 

  90. Kim, S. et al. Soft, skin-interfaced microfluidic systems with integrated immunoassays, fluorometric sensors, and impedance measurement capabilities. Proc. Natl Acad. Sci. USA 117, 27906–27915 (2020).

    Article  CAS  Google Scholar 

  91. Bandodkar, A. J. et al. Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical, colorimetric, and volumetric analysis of sweat. Sci. Adv. 5, eaav3294 (2019).

    Article  Google Scholar 

  92. Koh, A. et al. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Sci. Transl. Med. 8, 366ra165 (2016).

    Article  Google Scholar 

  93. Xiao, J. et al. Microfluidic chip-based wearable colorimetric sensor for simple and facile detection of sweat glucose. Anal. Chem. 91, 14803–14807 (2019).

    Article  CAS  Google Scholar 

  94. Hojaiji, H. et al. An autonomous wearable system for diurnal sweat biomarker data acquisition. Lab Chip 20, 4582–4591 (2020).

    Article  CAS  Google Scholar 

  95. Kim, J. et al. Simultaneous monitoring of sweat and interstitial fluid using a single wearable biosensor platform. Adv. Sci. 5, 1800880 (2018).

    Article  Google Scholar 

  96. Patterson, B. & Wood, R. Is cough really necessary for TB transmission? Tuberculosis 117, 31–35 (2019).

    Article  Google Scholar 

  97. Halloran, S. K., Wexler, A. S. & Ristenpart, W. D. A comprehensive breath plume model for disease transmission via expiratory aerosols. PLoS ONE 7, e37088 (2012).

    Article  CAS  Google Scholar 

  98. Wei, J. & Li, Y. Airborne spread of infectious agents in the indoor environment. Am. J. Infect. Control 44, S102–S108 (2016).

    Article  Google Scholar 

  99. Maier, D. et al. Toward continuous monitoring of breath biochemistry: a paper-based wearable sensor for real-time hydrogen peroxide measurement in simulated breath. ACS Sens. 4, 2945–2951 (2019).

    Article  CAS  Google Scholar 

  100. Xu, C., Yang, Y. & Gao, W. Skin-interfaced sensors in digital medicine: from materials to applications. Matter 2, 1414–1445 (2020).

    Article  Google Scholar 

  101. Sharma, A., Badea, M., Tiwari, S. & Marty, J. L. Wearable biosensors: an alternative and practical approach in healthcare and disease monitoring. Molecules 26, 748 (2021).

    Article  CAS  Google Scholar 

  102. Xu, Y. et al. Pencil–paper on-skin electronics. Proc. Natl Acad. Sci. USA 117, 18292–18301 (2020).

    Article  CAS  Google Scholar 

  103. Hozumi, S., Honda, S., Arie, T., Akita, S. & Takei, K. Multimodal wearable sensor sheet for health-related chemical and physical monitoring. ACS Sens. 6, 1918–1924 (2021).

    Article  CAS  Google Scholar 

  104. Aroganam, G., Manivannan, N. & Harrison, D. Review on wearable technology sensors used in consumer sport applications. Sensors 19, 1983 (2019).

    Article  Google Scholar 

  105. Jing, X. et al. Highly stretchable and biocompatible strain sensors based on mussel-inspired super-adhesive self-healing hydrogels for human motion monitoring. ACS Appl. Mater. Interfaces 10, 20897–20909 (2018).

    Article  CAS  Google Scholar 

  106. Xiao, D. et al. Seeking answers from tradition: facile preparation of durable adhesive hydrogel using natural quercetin. iScience 23, 101342 (2020).

    Article  CAS  Google Scholar 

  107. Sun, X., Yao, F. & Li, J. Nanocomposite hydrogel-based strain and pressure sensors: a review. J. Mater. Chem. A 8, 18605–18623 (2020).

    Article  CAS  Google Scholar 

  108. Jiang, N. et al. Flexible, transparent, and antibacterial ionogels toward highly sensitive strain and temperature sensors. Chem. Eng. J. 424, 130418 (2021).

    Article  CAS  Google Scholar 

  109. Tan, C. et al. A high performance wearable strain sensor with advanced thermal management for motion monitoring. Nat. Commun. 11, 3530 (2020).

    Article  CAS  Google Scholar 

  110. Kim, K.-H., Jang, N.-S., Ha, S.-H., Cho, J. H. & Kim, J.-M. Highly sensitive and stretchable resistive strain sensors based on microstructured metal nanowire/elastomer composite films. Small 14, 1704232 (2018).

    Article  Google Scholar 

  111. Song, H. et al. Hydrogen-bonded network enables polyelectrolyte complex hydrogels with high stretchability, excellent fatigue resistance and self-healability for human motion detection. Compos. B Eng. 217, 108901 (2021).

    Article  CAS  Google Scholar 

  112. Noshadi, I. et al. Engineering biodegradable and biocompatible bio-ionic liquid conjugated hydrogels with tunable conductivity and mechanical properties. Sci. Rep. 7, 4345 (2017).

    Article  Google Scholar 

  113. Sreenilayam, S. P., Ahad, I. U., Nicolosi, V., Acinas Garzon, V. & Brabazon, D. Advanced materials of printed wearables for physiological parameter monitoring. Mater. Today 32, 147–177 (2020).

    Article  Google Scholar 

  114. Ohm, Y. et al. An electrically conductive silver–polyacrylamide–alginate hydrogel composite for soft electronics. Nat. Electron. 4, 185–192 (2021).

    Article  CAS  Google Scholar 

  115. Yu, X.-G. et al. A wearable strain sensor based on a carbonized nano-sponge/silicone composite for human motion detection. Nanoscale 9, 6680–6685 (2017).

    Article  CAS  Google Scholar 

  116. Kim, J. H. et al. Simple and cost-effective method of highly conductive and elastic carbon nanotube/polydimethylsiloxane composite for wearable electronics. Sci. Rep. 8, 1375 (2018).

    Article  Google Scholar 

  117. Lin, J. et al. Wearable sensors and devices for real-time cardiovascular disease monitoring. Cell Rep. Phys. Sci. 2, 100541 (2021).

    Article  CAS  Google Scholar 

  118. Sharma, P., Imtiaz, S. A. & Rodriguez-Villegas, E. Acoustic sensing as a novel wearable approach for cardiac monitoring at the wrist. Sci. Rep. 9, 20079 (2019).

    Article  CAS  Google Scholar 

  119. Ha, T. et al. A chest-laminated ultrathin and stretchable E-tattoo for the measurement of electrocardiogram, seismocardiogram, and cardiac time intervals. Adv. Sci. 6, 1900290 (2019).

    Article  Google Scholar 

  120. Homayounfar, S. Z., Kiaghadi, A., Ganesan, D. & Andrew, T. L. PressION: an all-fabric piezoionic pressure sensor for extracting physiological metrics in both static and dynamic contexts. J. Electrochem. Soc. 168, 017515 (2021).

    Article  CAS  Google Scholar 

  121. Kiaghadi, A., Baima, M., Gummeson, J., Andrew, T. & Ganesan, D. Fabric as a sensor: towards unobtrusive sensing of human behavior with triboelectric textiles. In Proc. 16th ACM Conference on Embedded Networked Sensor Systems Vol. 18 199–210 (Association for Computing Machinery, 2018).

  122. Kiaghadi, A., Homayounfar, S. Z., Gummeson, J., Andrew, T. & Ganesan, D. Phyjama: physiological sensing via fiber-enhanced pyjamas. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 3, 1–29 (2019).

    Article  Google Scholar 

  123. Sterr, A. et al. Sleep EEG derived from behind-the-ear electrodes (cEEGrid) compared to standard polysomnography: a proof of concept study. Front. Hum. Neurosci. 12, 452 (2018).

    Article  Google Scholar 

  124. Zulqarnain, M. et al. A flexible ECG patch compatible with NFC RF communication. npj Flex. Electron. 4, 13 (2020).

    Article  Google Scholar 

  125. Rashkovska, A., Depolli, M., Tomašić, I., Avbelj, V. & Trobec, R. Medical-grade ECG sensor for long-term monitoring. Sensors 20, 1695 (2020).

    Article  Google Scholar 

  126. Song, M.-S., Kang, S.-G., Lee, K.-T. & Kim, J. Wireless, skin-mountable EMG sensor for human–machine interface application. Micromachines 10, 879 (2019).

    Article  Google Scholar 

  127. Colyer, S. L. & McGuigan, P. M. Textile electrodes embedded in clothing: a practical alternative to traditional surface electromyography when assessing muscle excitation during functional movements. J. Sports Sci. Med. 17, 101–109 (2018).

    Google Scholar 

  128. Sharma, P., Hui, X., Zhou, J., Conroy, T. B. & Kan, E. C. Wearable radio-frequency sensing of respiratory rate, respiratory volume, and heart rate. npj Digital Med. 3, 98 (2020).

    Article  Google Scholar 

  129. Lim, C. et al. Tissue-like skin-device interface for wearable bioelectronics by using ultrasoft, mass-permeable, and low-impedance hydrogels. Sci. Adv. 7, eabd3716 (2021).

    Article  CAS  Google Scholar 

  130. Liu, J. et al. Recent progress in flexible wearable sensors for vital sign monitoring. Sensors 20, 4009 (2020).

    Article  Google Scholar 

  131. Zhang, L. et al. Fully organic compliant dry electrodes self-adhesive to skin for long-term motion-robust epidermal biopotential monitoring. Nat. Commun. 11, 4683 (2020).

    Article  CAS  Google Scholar 

  132. Pan, J., Zhang, Z., Jiang, C., Zhang, L. & Tong, L. A multifunctional skin-like wearable optical sensor based on an optical micro-/nanofibre. Nanoscale 12, 17538–17544 (2020).

    Article  CAS  Google Scholar 

  133. Wang, Y. et al. Wearable plasmonic-metasurface sensor for noninvasive and universal molecular fingerprint detection on biointerfaces. Sci. Adv. 7, eabe4553 (2021).

    Article  CAS  Google Scholar 

  134. Vaquer, A., Barón, E. & de la Rica, R. Wearable analytical platform with enzyme-modulated dynamic range for the simultaneous colorimetric detection of sweat volume and sweat biomarkers. ACS Sens. 6, 130–136 (2021).

    Article  CAS  Google Scholar 

  135. Baker, L. B. et al. Skin-interfaced microfluidic system with personalized sweating rate and sweat chloride analytics for sports science applications. Sci. Adv. 6, eabe3929 (2020).

    Article  CAS  Google Scholar 

  136. Singh, G., Tee, A., Trakoolwilaiwan, T., Taha, A. & Olivo, M. Method of respiratory rate measurement using a unique wearable platform and an adaptive optical-based approach. Intensive Care Med. Exp. 8, 15 (2020).

    Article  Google Scholar 

  137. Wang, R. et al. Wearable respiration monitoring using an in-line few-mode fiber Mach-Zehnder interferometric sensor. Biomed. Opt. Express 11, 316–329 (2020).

    Article  CAS  Google Scholar 

  138. Papini, G. B. et al. Wearable monitoring of sleep-disordered breathing: estimation of the apnea–hypopnea index using wrist-worn reflective photoplethysmography. Sci. Rep. 10, 13512 (2020).

    Article  CAS  Google Scholar 

  139. Kwon, S., Kim, H. & Yeo, W.-H. Recent advances in wearable sensors and portable electronics for sleep monitoring. iScience 24, 102461 (2021).

    Article  Google Scholar 

  140. Park, H., Park, W. & Lee, C. H. Electrochemically active materials and wearable biosensors for the in situ analysis of body fluids for human healthcare. NPG Asia Mater. 13, 23 (2021).

    Article  CAS  Google Scholar 

  141. Manjakkal, L. et al. Flexible printed reference electrodes for electrochemical applications. Adv. Mater. Technol. 3, 1800252 (2018).

    Article  Google Scholar 

  142. Vinoth, R., Nakagawa, T., Mathiyarasu, J. & Mohan, A. M. V. Fully printed wearable microfluidic devices for high-throughput sweat sampling and multiplexed electrochemical analysis. ACS Sens. 6, 1174–1186 (2021).

    Article  CAS  Google Scholar 

  143. Gillan, L., Teerinen, T., Suhonen, M., Kivimäki, L. & Alastalo, A. Simultaneous multi-location wireless monitoring of sweat lactate trends. Flex. Print. Electron. 6, 034003 (2021).

    Article  CAS  Google Scholar 

  144. Güder, F. et al. Paper-based electrical respiration sensor. Angew. Chem. Int. Ed. 55, 5727–5732 (2016).

    Article  Google Scholar 

  145. Sugiyama, M. et al. An ultraflexible organic differential amplifier for recording electrocardiograms. Nat. Electron. 2, 351–360 (2019).

    Article  Google Scholar 

  146. Seok, D., Lee, S., Kim, M., Cho, J. & Kim, C. Motion artifact removal techniques for wearable EEG and PPG sensor systems. Front. Electron. 2, 685513 (2021).

    Article  Google Scholar 

  147. Haick, H. & Tang, N. Artificial intelligence in medical sensors for clinical decisions. ACS Nano 15, 3557–3567 (2021).

    Article  CAS  Google Scholar 

  148. Ometov, A. et al. A survey on wearable technology: history, state-of-the-art and current challenges. Computer Netw. 193, 108074 (2021).

    Article  Google Scholar 

  149. Ferri, S., Kojima, K. & Sode, K. Review of glucose oxidases and glucose dehydrogenases: a bird’s eye view of glucose sensing enzymes. J. Diabetes Sci. Technol. 5, 1068–1076 (2011).

    Article  Google Scholar 

  150. Lee, S.-W. et al. Direct electron transfer of enzymes in a biologically assembled conductive nanomesh enzyme platform. Adv. Mater. 28, 1577–1584 (2016).

    Article  CAS  Google Scholar 

  151. Ricci, F. & Palleschi, G. Sensor and biosensor preparation, optimisation and applications of Prussian blue modified electrodes. Biosens. Bioelectron. 21, 389–407 (2005).

    Article  CAS  Google Scholar 

  152. Kim, S. B. et al. Soft, skin-interfaced microfluidic systems with integrated enzymatic assays for measuring the concentration of ammonia and ethanol in sweat. Lab Chip 20, 84–92 (2020).

    Article  CAS  Google Scholar 

  153. Boutureira, O. & Bernardes, G. J. L. Advances in chemical protein modification. Chem. Rev. 115, 2174–2195 (2015).

    Article  CAS  Google Scholar 

  154. Spicer, C. D. & Davis, B. G. Selective chemical protein modification. Nat. Commun. 5, 4740 (2014).

    Article  CAS  Google Scholar 

  155. Whitehead, T. A., Baker, D. & Fleishman, S. J. Computational design of novel protein binders and experimental affinity maturation. Methods Enzymol. 523, 1–19 (2013).

    Article  CAS  Google Scholar 

  156. Esvelt, K. M., Carlson, J. C. & Liu, D. R. A system for the continuous directed evolution of biomolecules. Nature 472, 499–503 (2011).

    Article  CAS  Google Scholar 

  157. Wang, Z. et al. A flexible and regenerative aptameric graphene–nafion biosensor for cytokine storm biomarker monitoring in undiluted biofluids toward wearable applications. Adv. Funct. Mater. 31, 2005958 (2021).

    Article  CAS  Google Scholar 

  158. Fercher, C., Jones, M. L., Mahler, S. M. & Corrie, S. R. Recombinant antibody engineering enables reversible binding for continuous protein biosensing. ACS Sens. 6, 764–776 (2021).

    Article  CAS  Google Scholar 

  159. Sheibani, S. et al. Extended gate field-effect-transistor for sensing cortisol stress hormone. Commun. Mater. 2, 10 (2021).

    Article  CAS  Google Scholar 

  160. Clavé, G., Reverte, M., Vasseur, J. J. & Smietana, M. Modified internucleoside linkages for nuclease-resistant oligonucleotides. RSC Chem. Biol. 2, 94–150 (2021).

    Article  Google Scholar 

  161. Binnie, A., Fernandes, E., Almeida-Lousada, H., de Mello, R. A. & Castelo-Branco, P. CRISPR-based strategies in infectious disease diagnosis and therapy. Infection 49, 377–385 (2021).

    Article  Google Scholar 

  162. Zhang, J. et al. In-depth proteomic analysis of tissue interstitial fluid for hepatocellular carcinoma serum biomarker discovery. Br. J. Cancer 117, 1676–1684 (2017).

    Article  CAS  Google Scholar 

  163. Gootenberg, J. S. et al. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a and Csm6. Science 360, 439–444 (2018).

    Article  CAS  Google Scholar 

  164. Chen, J. S. et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 360, 436–439 (2018).

    Article  CAS  Google Scholar 

  165. Bruch, R. et al. CRISPR/Cas13a-powered electrochemical microfluidic biosensor for nucleic acid amplification-free miRNA diagnostics. Adv. Mater. 31, 1905311 (2019).

    Article  CAS  Google Scholar 

  166. Witt, D. R., Kellogg, R. A., Snyder, M. P. & Dunn, J. Windows into human health through wearables data analytics. Curr. Opin. Biomed. Eng. 9, 28–46 (2019).

    Article  Google Scholar 

  167. Cui, F., Yue, Y., Zhang, Y., Zhang, Z. & Zhou, H. S. Advancing biosensors with machine learning. ACS Sens. 5, 3346–3364 (2020).

    Article  CAS  Google Scholar 

  168. Faes, L. et al. A clinician’s guide to artificial intelligence: how to critically appraise machine learning studies. Transl. Vis. Sci. Technol. 9, 7 (2020).

    Article  Google Scholar 

  169. Liu, Y., Chen, P. H. C., Krause, J. & Peng, L. How to read articles that use machine learning: users’ guides to the medical literature. J. Am. Med. Assoc. 322, 1806–1816 (2019).

    Article  Google Scholar 

  170. King, R. C. et al. Application of data fusion techniques and technologies for wearable health monitoring. Med. Eng. Phys. 42, 1–12 (2017).

    Article  Google Scholar 

  171. Chakraborty, T. & Ghosh, I. Real-time forecasts and risk assessment of novel coronavirus (COVID-19) cases: a data-driven analysis. Chaos Solitons Fractals 135, 109850 (2020).

    Article  Google Scholar 

  172. Benvenuto, D., Giovanetti, M., Vassallo, L., Angeletti, S. & Ciccozzi, M. Application of the ARIMA model on the COVID-2019 epidemic dataset. Data Brief. 29, 105340 (2020).

    Article  Google Scholar 

  173. Ates, C. Data driven engineering. GitLab https://git.scc.kit.edu/em0787/data-driven-engineering (2021).

  174. Huang, G., Liu, Z., van der Maaten, L. & Weinberger, K. Q. Densely connected convolutional networks. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2261–2269 (IEEE, 2017).

  175. Laguarta, J., Hueto, F. & Subirana, B. COVID-19 artificial intelligence diagnosis using only cough recordings. IEEE Open J. Eng. Med. Biol. 1, 275–281 (2020).

    Article  Google Scholar 

  176. Mishra, S., Singh, N. K. & Rousseau, V. Generic SoC architecture components. Syst. Chip Interfaces Low. Power Des. 2016, 29–51 (2016).

    Article  Google Scholar 

  177. Altay, A., Learney, R., Güder, F. & Dincer, C. Sensors in blockchain. Trends Biotechnol. 40, 141–144 (2022).

    Article  CAS  Google Scholar 

  178. Yin, L., Kim, K. N., Trifonov, A., Podhajny, T. & Wang, J. Designing wearable microgrids: towards autonomous sustainable on-body energy management. Energy Environ. Sci. 15, 82–101 (2022).

    Article  Google Scholar 

  179. Yin, L. et al. A self-sustainable wearable multi-modular E-textile bioenergy microgrid system. Nat. Commun. 12, 1542 (2021).

    Article  CAS  Google Scholar 

  180. Briscoe, J. & Dunn, S. Piezoelectric nanogenerators — a review of nanostructured piezoelectric energy harvesters. Nano Energy 14, 15–29 (2015).

    Article  CAS  Google Scholar 

  181. Pu, X., An, S., Tang, Q., Guo, H. & Hu, C. Wearable triboelectric sensors for biomedical monitoring and human-machine interface. iScience 24, 102027 (2021).

    Article  CAS  Google Scholar 

  182. Zhang, R. & Olin, H. Material choices for triboelectric nanogenerators: a critical review. EcoMat 2, e12062 (2020).

    Article  CAS  Google Scholar 

  183. Song, S. & Yun, K. S. Design and characterization of scalable woven piezoelectric energy harvester for wearable applications. Smart Mater. Struct. 24, 045008 (2015).

    Article  Google Scholar 

  184. Dong, K. et al. A stretchable yarn embedded triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and multifunctional pressure sensing. Adv. Mater. 30, 1804944 (2018).

    Article  Google Scholar 

  185. Liu, Z. et al. Wearable and implantable triboelectric nanogenerators. Adv. Funct. Mater. 29, 1808820 (2019).

    Article  Google Scholar 

  186. Wang, Y. et al. Flexible thermoelectric materials and generators: challenges and innovations. Adv. Mater. 31, 1807916 (2019).

    Article  Google Scholar 

  187. Ren, W. et al. High-performance wearable thermoelectric generator with self-healing, recycling, and Lego-like reconfiguring capabilities. Sci. Adv. 7, eabe0586 (2021).

    Article  CAS  Google Scholar 

  188. Lee, G. et al. Flexible heatsink based on a phase-change material for a wearable thermoelectric generator. Energy 179, 12–18 (2019).

    Article  CAS  Google Scholar 

  189. Hasan, M. N., Nafea, M., Nayan, N. & Mohamed Ali, M. S. Thermoelectric generator: materials and applications in wearable health monitoring sensors and internet of things devices. Adv. Mater. Technol. 7, 2101203 (2021).

    Article  Google Scholar 

  190. Cui, N. et al. Stretchable transparent electrodes for conformable wearable organic photovoltaic devices. npj Flex. Electron. 5, 31 (2021).

    Article  CAS  Google Scholar 

  191. Zhang, N. et al. Photo-rechargeable fabrics as sustainable and robust power sources for wearable bioelectronics. Matter 2, 1260–1269 (2020).

    Article  Google Scholar 

  192. Jeong, E. G., Jeon, Y., Cho, S. H. & Choi, K. C. Textile-based washable polymer solar cells for optoelectronic modules: toward self-powered smart clothing. Energy Environ. Sci. 12, 1878–1889 (2019).

    Article  CAS  Google Scholar 

  193. Zhao, R., Gu, Z., Li, P., Zhang, Y. & Song, Y. Flexible and wearable optoelectronic devices based on perovskites. Adv. Mater. Technol. 7, 2101124 (2021).

    Article  Google Scholar 

  194. Olenik, S., Lee, H. S. & Güder, F. The future of near-field communication-based wireless sensing. Nat. Rev. Mater. 6, 286–288 (2021).

    Article  CAS  Google Scholar 

  195. Tucker, S. et al. Biosymbiotic, personalized, and digitally manufactured wireless devices for indefinite collection of high-fidelity biosignals. Sci. Adv. 7, eabj3269 (2021).

    Article  Google Scholar 

  196. Gharbi, M. E., Fernández-García, R., Ahyoud, S. & Gil, I. A review of flexible wearable antenna sensors: design, fabrication methods, and applications. Materials 13, 3781 (2020).

    Article  Google Scholar 

  197. Ali, S. M. et al. Recent advances of wearable antennas in materials, fabrication methods, designs, and their applications: state-of-the-art. Micromachines 11, 888 (2020).

    Article  Google Scholar 

  198. Song, M. et al. Wireless power transfer based on novel physical concepts. Nat. Electron. 4, 707–716 (2021).

    Article  Google Scholar 

  199. Li, J., Dong, Y., Park, J. H. & Yoo, J. Body-coupled power transmission and energy harvesting. Nat. Electron. 4, 530–538 (2021).

    Article  Google Scholar 

  200. Atanasova, G. & Atanasov, N. Small antennas for wearable sensor networks: impact of the electromagnetic properties of the textiles on antenna performance. Sensors 20, 5157 (2020).

    Article  CAS  Google Scholar 

  201. Nie, H. K., Xuan, X. W. & Ren, G. J. Wearable antenna pressure sensor with electromagnetic bandgap for elderly fall monitoring. AEU Int. J. Electron. Commun. 138, 153861 (2021).

    Article  Google Scholar 

  202. Nie, H. K. et al. Wearable antenna sensor based on EBG structure for cervical curvature monitoring. IEEE Sens. J. 22, 315–323 (2022).

    Article  CAS  Google Scholar 

  203. Alam, M. M. & ben Hamida, E. Strategies for optimal MAC parameters tuning in IEEE 802.15.6 wearable wireless sensor networks. J. Med. Syst. 39, 106 (2015).

    Article  Google Scholar 

  204. Bandodkar, A. J. Review — wearable biofuel cells: past, present and future. J. Electrochem. Soc. 164, H3007 (2016).

    Article  Google Scholar 

  205. Song, Y., Mukasa, D., Zhang, H. & Gao, W. Self-powered wearable biosensors. Acc. Mater. Res. 2, 184–197 (2021).

    Article  CAS  Google Scholar 

  206. Manjakkal, L., Yin, L., Nathan, A., Wang, J. & Dahiya, R. Energy autonomous sweat based wearable systems. Adv. Mater. 33, 2100899 (2021).

    Article  CAS  Google Scholar 

  207. Gu, C., Kong, X., Yan, S., Gai, P. & Li, F. Glucose dehydrogenase-like nanozyme based on black phosphorus nanosheets for high-performance biofuel cells. ACS Sustain. Chem. Eng. 8, 16549–16554 (2020).

    Article  CAS  Google Scholar 

  208. Lv, J. et al. Wearable biosupercapacitor: harvesting and storing energy from sweat. Adv. Funct. Mater. 31, 2102915 (2021).

    Article  CAS  Google Scholar 

  209. Yang, Q. et al. Categorizing wearable batteries: unidirectional and omnidirectional deformable batteries. Matter 4, 3146–3160 (2021).

    Article  CAS  Google Scholar 

  210. Zhou, Y., Wang, C.-H., Lu, W. & Dai, L. Recent advances in fiber-shaped supercapacitors and lithium-ion batteries. Adv. Mater. 32, 1902779 (2020).

    Article  CAS  Google Scholar 

  211. Zhao, J., Zha, J., Zeng, Z. & Tan, C. Recent advances in wearable self-powered energy systems based on flexible energy storage devices integrated with flexible solar cells. J. Mater. Chem. A 9, 18887–18905 (2021).

    Article  CAS  Google Scholar 

  212. Choi, C. et al. Stretchable, weavable coiled carbon nanotube/MnO2/polymer fiber solid-state supercapacitors. Sci. Rep. 5, 9387 (2015).

    Article  CAS  Google Scholar 

  213. Wu, T. et al. Anisotropic boron–carbon hetero-nanosheets for ultrahigh energy density supercapacitors. Angew. Chem. Int. Ed. 59, 23800–23809 (2020).

    Article  CAS  Google Scholar 

  214. Song, J. et al. Superflexible wood. ACS Appl. Mater. Interfaces 9, 23520–23527 (2017).

    Article  CAS  Google Scholar 

  215. Wu, Q., Jungstedt, E., Šoltésová, M., Mushi, N. E. & Berglund, L. A. High strength nanostructured films based on well-preserved β-chitin nanofibrils. Nanoscale 11, 11001–11011 (2019).

    Article  CAS  Google Scholar 

  216. Li, X., Tabil, L. G. & Panigrahi, S. Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J. Polym. Environ. 15, 25–33 (2007).

    Article  Google Scholar 

  217. Promphet, N. et al. Cotton thread-based wearable sensor for non-invasive simultaneous diagnosis of diabetes and kidney failure. Sens. Actuators B Chem. 321, 128549 (2020).

    Article  CAS  Google Scholar 

  218. Matzeu, G. et al. Large-scale patterning of reactive surfaces for wearable and environmentally deployable sensors. Adv. Mater. 32, 2001258 (2020).

    Article  CAS  Google Scholar 

  219. Chu, T. et al. 3D printed smart silk wearable sensors. Analyst 146, 1552–1558 (2021).

    Article  CAS  Google Scholar 

  220. Wen, D.-L. et al. Recent progress in silk fibroin-based flexible electronics. Microsyst. Nanoeng. 7, 35 (2021).

    Article  CAS  Google Scholar 

  221. Li, P. et al. A wearable and sensitive graphene-cotton based pressure sensor for human physiological signals monitoring. Sci. Rep. 9, 14457 (2019).

    Article  Google Scholar 

  222. Zhang, Y. et al. Cotton fabrics decorated with conductive graphene nanosheet inks for flexible wearable heaters and strain sensors. ACS Appl. Nano Mater. 4, 9709–9720 (2021).

    Article  CAS  Google Scholar 

  223. Feng, L., Li, S. & Feng, S. Preparation and characterization of silicone rubber with high modulus via tension spring-type crosslinking. RSC Adv. 7, 13130–13137 (2017).

    Article  CAS  Google Scholar 

  224. Laoui, T. Mechanical and thermal properties of styrene butadiene rubber — functionalized carbon nanotubes nanocomposites. Fuller. Nanotub. Carbon Nanostruct. 21, 89–101 (2013).

    Article  CAS  Google Scholar 

  225. Wang, Z., Volinsky, A. A. & Gallant, N. D. Crosslinking effect on polydimethylsiloxane elastic modulus measured by custom-built compression instrument. J. Appl. Polym. Sci. 131, 41050 (2014).

    Article  Google Scholar 

  226. Jain, N., Singh, V. K. & Chauhan, S. A review on mechanical and water absorption properties of polyvinyl alcohol based composites/films. J. Mech. Behav. Mater. 26, 213–222 (2017).

    Article  CAS  Google Scholar 

  227. Hyunjae, L. et al. Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module. Sci. Adv. 3, e1601314 (2022).

    Google Scholar 

  228. Brown, M. S. et al. Electronic-ECM: a permeable microporous elastomer for an advanced bio-integrated continuous sensing platform. Adv. Mater. Technol. 5, 2000242 (2020).

    Article  CAS  Google Scholar 

  229. Choi, S. et al. Multi-directionally wrinkle-able textile OLEDs for clothing-type displays. npj Flex. Electron. 4, 33 (2020).

    Article  CAS  Google Scholar 

  230. Musgrave, C. & Fang, F. Contact lens materials: a materials science perspective. Materials 12, 261 (2019).

    Article  CAS  Google Scholar 

  231. Shaoting, L. et al. Anti-fatigue-fracture hydrogels. Sci. Adv. 5, eaau8528 (2022).

    Google Scholar 

  232. Bachmann, B. et al. Stiffness matters: fine-tuned hydrogel elasticity alters chondrogenic redifferentiation. Front. Bioeng. Biotechnol. 8, 373 (2020).

    Article  Google Scholar 

  233. Lee, K. H. et al. Muscle fatigue sensor based on Ti3C2Tx MXene hydrogel. Small Methods 5, 2100819 (2021).

    Article  CAS  Google Scholar 

  234. Ze, X. et al. A wireless and battery-free wound infection sensor based on DNA hydrogel. Sci. Adv. 7, eabj1617 (2022).

    Google Scholar 

  235. Ying, B. & Liu, X. Skin-like hydrogel devices for wearable sensing, soft robotics and beyond. iScience 24, 103174 (2021).

    Article  Google Scholar 

  236. Nyein, H. Y. Y. et al. A wearable patch for continuous analysis of thermoregulatory sweat at rest. Nat. Commun. 12, 1823 (2021).

    Article  CAS  Google Scholar 

  237. Zhu, Y. et al. Size effects on elasticity, yielding, and fracture of silver nanowires: in situ experiments. Phys. Rev. B 85, 45443 (2012).

    Article  Google Scholar 

  238. Peng, B., Zhao, F., Ping, J. & Ying, Y. Recent advances in nanomaterial-enabled wearable sensors: material synthesis, sensor design, and personal health monitoring. Small 16, 2002681 (2020).

    Article  CAS  Google Scholar 

  239. Poletti, F. et al. Continuous capillary-flow sensing of glucose and lactate in sweat with an electrochemical sensor based on functionalized graphene oxide. Sens. Actuators B Chem. 344, 130253 (2021).

    Article  CAS  Google Scholar 

  240. Liu, Y., Huang, J., Ding, G. & Yang, Z. High-performance and wearable strain sensors based on graphene microfluidics and serpentine microchannels for human motion detection. Microelectron. Eng. 231, 111402 (2020).

    Article  CAS  Google Scholar 

  241. Shi, C. et al. Heterogeneous integration of rigid, soft, and liquid materials for self-healable, recyclable, and reconfigurable wearable electronics. Sci. Adv. 6, eabd0202 (2020).

    Article  CAS  Google Scholar 

  242. Heikenfeld, J. et al. Accessing analytes in biofluids for peripheral biochemical monitoring. Nat. Biotechnol. 37, 407–419 (2019).

    Article  CAS  Google Scholar 

  243. Pu, Z. et al. A thermal activated and differential self-calibrated flexible epidermal biomicrofluidic device for wearable accurate blood glucose monitoring. Sci. Adv. 7, eabd0199 (2021).

    Article  CAS  Google Scholar 

  244. Rawson, T. M. et al. Microneedle biosensors for real-time, minimally invasive drug monitoring of phenoxymethylpenicillin: a first-in-human evaluation in healthy volunteers. Lancet Digit. Health 1, e335–e343 (2019).

    Article  Google Scholar 

  245. Samant, P. P. et al. Sampling interstitial fluid from human skin using a microneedle patch. Sci. Transl. Med. 12, eaaw0285 (2020).

    Article  CAS  Google Scholar 

  246. Ibrahim, W. et al. Breathomics for the clinician: the use of volatile organic compounds in respiratory diseases. Thorax 76, 514–521 (2021).

    Article  Google Scholar 

  247. Ates, H. C. et al. Biosensor-enabled multiplexed on-site therapeutic drug monitoring of antibiotics. Adv. Mater. 34, 2104555 (2022).

    Article  CAS  Google Scholar 

  248. Kim, K. et al. All-printed stretchable corneal sensor on soft contact lenses for noninvasive and painless ocular electrodiagnosis. Nat. Commun. 12, 1544 (2021).

    Article  CAS  Google Scholar 

  249. Moreddu, R., Vigolo, D. & Yetisen, A. K. Contact lens technology: from fundamentals to applications. Adv. Healthc. Mater. 8, 1900368 (2019).

    Article  Google Scholar 

  250. Yuan, M. et al. Electronic contact lens: a platform for wireless health monitoring applications. Adv. Intell. Syst. 2, 1900190 (2020).

    Article  Google Scholar 

  251. de Puig, H. et al. Minimally instrumented SHERLOCK (miSHERLOCK) for CRISPR-based point-of-care diagnosis of SARS-CoV-2 and emerging variants. Sci. Adv. 7, eabh2944 (2021).

    Article  Google Scholar 

  252. Butler-Laporte, G. et al. Comparison of saliva and nasopharyngeal swab nucleic acid amplification testing for detection of SARS-CoV-2: a systematic review and meta-analysis. JAMA Intern. Med. 181, 353–360 (2021).

    Article  CAS  Google Scholar 

  253. Bahbah, E. I., Noehammer, C., Pulverer, W., Jung, M. & Weinhaeusel, A. Salivary biomarkers in cardiovascular disease: an insight into the current evidence. FEBS J. 288, 6392–6405 (2020).

    Article  Google Scholar 

  254. Belstrøm, D. The salivary microbiota in health and disease. J. Oral Microbiol. 12, 1723975 (2020).

    Article  Google Scholar 

  255. Francavilla, V. C. et al. Use of saliva in alternative to serum sampling to monitor biomarkers modifications in professional soccer players. Front. Physiol. 9, 1828 (2018).

    Article  Google Scholar 

  256. García-Carmona, L. et al. Pacifier biosensor: toward noninvasive saliva biomarker monitoring. Anal. Chem. 91, 13883–13891 (2019).

    Article  Google Scholar 

  257. Noiphung, J. et al. Development of paper-based analytical devices for minimizing the viscosity effect in human saliva. Theranostics 8, 3797–3807 (2018).

    Article  CAS  Google Scholar 

  258. Cho, J. H. et al. A smart diaper system using bluetooth and smartphones to automatically detect urination and volume of voiding: prospective observational pilot study in an acute care hospital. J. Med. Internet Res. 23, e29979 (2021).

    Article  Google Scholar 

  259. Lin, S. Y., Linehan, J. A., Wilson, T. G. & Hoon, D. S. B. Emerging utility of urinary cell-free nucleic acid biomarkers for prostate, bladder, and renal cancers. Eur. Urol. Focus 3, 265–272 (2017).

    Article  Google Scholar 

  260. Seo, W., Yu, W., Tan, T., Ziaie, B. & Jung, B. Diaper-embedded urinary tract infection monitoring sensor module powered by urine-activated batteries. IEEE Trans. Biomed. Circuits Syst. 11, 681–691 (2017).

    Article  Google Scholar 

  261. Shitanda, I. et al. Self-powered diaper sensor with wireless transmitter powered by paper-based biofuel cell with urine glucose as fuel. ACS Sens. 6, 3409–3415 (2021).

    Article  CAS  Google Scholar 

  262. Sung, W.-H. et al. Urinalysis using a diaper-based testing device. Biosensors 10, 94 (2020).

    Article  CAS  Google Scholar 

  263. Zhang, J. et al. A wearable self-powered biosensor system integrated with diaper for detecting the urine glucose of diabetic patients. Sens. Actuators B Chem. 341, 130046 (2021).

    Article  CAS  Google Scholar 

  264. Sha, F., Salzman, G., Gupta, A. & Koide, S. Monobodies and other synthetic binding proteins for expanding protein science. Protein Sci. 26, 910–924 (2017).

    Article  CAS  Google Scholar 

  265. le Basle, Y., Chennell, P., Tokhadze, N., Astier, A. & Sautou, V. Physicochemical stability of monoclonal antibodies: a review. J. Pharm. Sci. 109, 169–190 (2020).

    Article  Google Scholar 

  266. Groß, A., Hashimoto, C., Sticht, H. & Eichler, J. Synthetic peptides as protein mimics. Front. Bioeng. Biotechnol. 3, 211 (2016).

    Article  Google Scholar 

  267. Jaroszewicz, W., Morcinek-Orłowska, J., Pierzynowska, K., Gaffke, L. & Węgrzyn, G. Phage display and other peptide display technologies. FEMS Microbiol. Rev. 46, fuab052 (2022).

    Article  CAS  Google Scholar 

  268. Dunn, M. R., Jimenez, R. M. & Chaput, J. C. Analysis of aptamer discovery and technology. Nat. Rev. Chem. 1, 0076 (2017).

    Article  CAS  Google Scholar 

  269. Halvorsen, A. R. et al. Profiling of microRNAs in tumor interstitial fluid of breast tumors — a novel resource to identify biomarkers for prognostic classification and detection of cancer. Mol. Oncol. 11, 220–234 (2017).

    Article  CAS  Google Scholar 

  270. Gootenberg, J. S. et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 356, 438–442 (2017).

    Article  CAS  Google Scholar 

  271. Bent, B. et al. Engineering digital biomarkers of interstitial glucose from noninvasive smartwatches. npj Digit. Med. 4, 89 (2021).

    Article  Google Scholar 

  272. Cichosz, S. L., Jensen, M. H. & Hejlesen, O. Short-term prediction of future continuous glucose monitoring readings in type 1 diabetes: development and validation of a neural network regression model. Int. J. Med. Inform. 151, 104472 (2021).

    Article  Google Scholar 

  273. Rodríguez-Rodríguez, I. et al. Utility of big data in predicting short-term blood glucose levels in type 1 diabetes mellitus through machine learning techniques. Sensors 19, 4482 (2019).

    Article  Google Scholar 

  274. Nasseri, M. et al. Non-invasive wearable seizure detection using long-short-term memory networks with transfer learning. J. Neural Eng. 18, 056017 (2021).

    Article  Google Scholar 

  275. Rostaminia, S., Lamson, A., Maji, S., Rahman, T. & Ganesan, D. W!NCE: eyewear solution for upper face action units monitoring. In Proc. 11th ACM Symposium on Eye Tracking Research & Applications Vol. 63, 1–3 (Association for Computing Machinery, 2019).

  276. Rostaminia, S., Mayberry, A., Ganesan, D., Marlin, B. & Gummeson, J. iLiD: eyewear solution for low-power fatigue and drowsiness monitoring. In Proc. 11th ACM Symposium on Eye Tracking Research & Applications Vol. 62, 1–3 (Association for Computing Machinery, 2019).

  277. Moon, S. et al. Classification of Parkinson’s disease and essential tremor based on balance and gait characteristics from wearable motion sensors via machine learning techniques: a data-driven approach. J. Neuroeng. Rehabilit. 17, 125 (2020).

    Article  Google Scholar 

  278. Hssayeni, M. D., Jimenez-Shahed, J., Burack, M. A. & Ghoraani, B. Ensemble deep model for continuous estimation of unified Parkinson’s disease rating scale III. Biomed. Eng. Online 20, 32 (2021).

    Article  Google Scholar 

  279. Bai, R. et al. Tracking and monitoring mood stability of patients with major depressive disorder by machine learning models using passive digital data: prospective naturalistic multicenter study. JMIR Mhealth Uhealth 9, e24365 (2021).

    Article  Google Scholar 

  280. Chen, A. et al. Machine-learning enabled wireless wearable sensors to study individuality of respiratory behaviors. Biosens. Bioelectron. 173, 112799 (2021).

    Article  CAS  Google Scholar 

  281. Bogu, G. K. & Snyder, M. P. Deep learning-based detection of COVID-19 using wearables data. Preprint at medRxiv https://doi.org/10.1101/2021.01.08.21249474 (2021).

    Article  Google Scholar 

  282. Un, K. C. et al. Observational study on wearable biosensors and machine learning-based remote monitoring of COVID-19 patients. Sci. Rep. 11, 4388 (2021).

    Article  CAS  Google Scholar 

  283. de Rossi, D., della Santa, A. & Mazzoldi, A. Dressware: wearable hardware. Mater. Sci. Eng. C 7, 31–35 (1999).

    Article  Google Scholar 

  284. Kim, D. H. et al. Epidermal electronics. Science 333, 838–843 (2011).

    Article  CAS  Google Scholar 

  285. Mannoor, M. S. et al. Graphene-based wireless bacteria detection on tooth enamel. Nat. Commun. 3, 763 (2012).

    Article  Google Scholar 

  286. Kim, J. et al. Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics. Biosens. Bioelectron. 74, 1061–1068 (2015).

    Article  CAS  Google Scholar 

  287. Mishra, R. K. et al. Wearable flexible and stretchable glove biosensor for on-site detection of organophosphorus chemical threats. ACS Sens. 2, 553–561 (2017).

    Article  CAS  Google Scholar 

  288. Yin, L. et al. A passive perspiration biofuel cell: high energy return on investment. Joule 5, 1888–1904 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

H.C.A. and C.D. thank the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) for funding this work (grant numbers 404478562 and 446617142). F.G. and L.G.-M. thank the Bill and Melinda Gates Foundation (Grand Challenges Explorations scheme under grant number OPP1212574) and the US Army (US Army Foreign Technology (and Science) Assessment Support (FTAS) programme under grant number W911QY-20-R-0022) for their generous support. E.M.-N. acknowledges financial support from CONACYT (Mexico, grant numbers 312271 and 376135) and IDEA-GTO (grant number MA-CFINN0997). P.Q.N. and J.J.C. were supported by the Wyss Institute.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the discussion of content and edited the article before submission. H.C.A., P.Q.N., L.G.-M., E.M.-N., F.G. and C.D. also researched data for the article and contributed to the writing.

Corresponding authors

Correspondence to James J. Collins or Can Dincer.

Ethics declarations

Competing interests

J.J.C. is a cofounder and director of Sherlock Biosciences. F.G. is a cofounder and sharefolder of Spyras. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Jerald Yoo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

FreeStyle Libre glucose monitoring system: https://www.freestylelibre.co.uk/libre/

Gx Sweat Patch: https://www.gatorade.com/gear/tech/gx-sweat-patch/2-pack

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ates, H.C., Nguyen, P.Q., Gonzalez-Macia, L. et al. End-to-end design of wearable sensors. Nat Rev Mater 7, 887–907 (2022). https://doi.org/10.1038/s41578-022-00460-x

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41578-022-00460-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing