Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Multifunctional high-entropy materials

Abstract

Entropy-related phase stabilization can allow compositionally complex solid solutions of multiple principal elements. The massive mixing approach was originally introduced for metals and has recently been extended to ionic, semiconductor, polymer and low-dimensional materials. Multielement mixing can leverage new types of random, weakly ordered clustering and precipitation states in bulk materials as well as at interfaces and dislocations. The many possible atomic configurations offer opportunities to discover and exploit new functionalities, as well as to create new local symmetry features, ordering phenomena and interstitial configurations. This opens up a huge chemical and structural space in which uncharted phase states, defect chemistries, mechanisms and properties, some previously thought to be mutually exclusive, can be reconciled in one material. Earlier research concentrated on mechanical properties such as strength, toughness, fatigue and ductility. This Review shifts the focus towards multifunctional property profiles, including electronic, electrochemical, mechanical, magnetic, catalytic, hydrogen-related, Invar and caloric characteristics. Disruptive design opportunities lie in combining several of these features, rendering high-entropy materials multifunctional without sacrificing their unique mechanical properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Principles, property targets, constraints and opportunities for the design of multifunctional high-entropy materials.
Fig. 2: Functional features of high-entropy materials and connections between them as identified by a natural language analysis.
Fig. 3: Magnetic high-entropy materials.
Fig. 4: Magnetic properties of high-entropy materials.
Fig. 5: Effect of nanoprecipitates on the mechanical and magnetic properties of high-entropy materials.
Fig. 6: Sustainability and cost considerations for high-entropy materials.

Similar content being viewed by others

References

  1. Yeh, J. W. et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299–303 (2004).

    Article  CAS  Google Scholar 

  2. Yeh, J.-W. in High-Entropy Alloys: Fundamentals and Applications (eds Gao, M. C. et al.) 1–19 (Springer, 2016).

  3. Murty, B. S., Yeh, J. W., Ranganathan, S. & A brief history of alloys and the birth of high-entropy alloys. High Entropy Alloys https://doi.org/10.1016/b978-0-12-800251-3.00001-8 (2014).

    Article  Google Scholar 

  4. Cantor, B. Multicomponent and high entropy alloys. Entropy 16, 4749–4768 (2014).

    Article  Google Scholar 

  5. George, E. P., Raabe, D. & Ritchie, R. O. High-entropy alloys. Nat. Rev. Mater. 4, 515–534 (2019).

    Article  CAS  Google Scholar 

  6. Tsai, M. H. Physical properties of high entropy alloys. Entropy 15, 5338–5345 (2013).

    Article  CAS  Google Scholar 

  7. Senkov, O. N., Wilks, G. B., Miracle, D. B., Chuang, C. P. & Liaw, P. K. Refractory high-entropy alloys. Intermetallics 18, 1758–1765 (2010).

    Article  CAS  Google Scholar 

  8. Zhang, Y., Yang, X. & Liaw, P. K. Alloy design and properties optimization of high-entropy alloys. JOM 64, 830–838 (2012).

    Article  CAS  Google Scholar 

  9. Li, Z., Pradeep, K. G., Deng, Y., Raabe, D. & Tasan, C. C. Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off. Nature 534, 227–30 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Zhang, Y. et al. Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1–93 (2014).

    Article  Google Scholar 

  11. Li, Z. & Raabe, D. Strong and ductile non-equiatomic high-entropy alloys: design, processing, microstructure, and mechanical properties. JOM 69, 2099–2106 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Li, Z. Interstitial equiatomic CoCrFeMnNi high-entropy alloys: carbon content, microstructure, and compositional homogeneity effects on deformation behavior. Acta Mater. 164, 400–412 (2019).

    Article  CAS  Google Scholar 

  13. Gludovatz, B., George, E. P. & Ritchie, R. O. Processing, microstructure and mechanical properties of the CrMnFeCoNi high-entropy alloy. JOM 67, 2262–2270 (2015).

    Article  CAS  Google Scholar 

  14. Lu, W. et al. Interfacial nanophases stabilize nanotwins in high-entropy alloys. Acta Mater. 185, 218–232 (2019).

    Article  Google Scholar 

  15. Li, L. et al. Segregation-driven grain boundary spinodal decomposition as a pathway for phase nucleation in a high-entropy alloy. Acta Mater. 178, 1–9 (2019).

    Article  Google Scholar 

  16. Donohue, M. D. & Aranovich, G. L. Classification of Gibbs adsorption isotherms. Adv. Colloid Interface Sci. 76–77, 137–152 (1998).

    Article  Google Scholar 

  17. McLean, D. & Maradudin, A. Grain boundaries in metals. Phys. Today 11, 35–36 (1958).

    Article  Google Scholar 

  18. Li, L., Kamachali, R. D., Li, Z. & Zhang, Z. Grain boundary energy effect on grain boundary segregation in an equiatomic high-entropy alloy. Phys. Rev. Mater. 4, 53603 (2020).

    Article  CAS  Google Scholar 

  19. Korte-Kerzel, S. et al. Defect phases — thermodynamics and impact on material properties. Int. Mater. Rev. 67, 89–117 (2022).

    Article  CAS  Google Scholar 

  20. Welk, B. A. et al. Nature of the interfaces between the constituent phases in the high entropy alloy CoCrCuFeNiAl. Ultramicroscopy 134, 193–199 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Ghigna, P. et al. Lithiation mechanism in high-entropy oxides as anode materials for Li-ion batteries: an operando XAS study. ACS Appl. Mater. Interfaces 12, 50344–50354 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schneeweiss, O. et al. Magnetic properties of the CrMnFeCoNi high-entropy alloy. Phys. Rev. B 96, 014437 (2017).

    Article  Google Scholar 

  23. Pickering, E. J. & Jones, N. G. High-entropy alloys: a critical assessment of their founding principles and future prospects. Int. Mater. Rev. 61, 183–202 (2016).

    Article  CAS  Google Scholar 

  24. Mu, S., Pei, Z., Liu, X. & Stocks, G. M. Electronic transport and phonon properties of maximally disordered alloys: from binaries to high-entropy alloys. J. Mater. Res. 33, 2857–2880 (2018).

    Article  CAS  Google Scholar 

  25. Rao, Z. et al. Unveiling the mechanism of abnormal magnetic behavior of FeNiCoMnCu high-entropy alloys through a joint experimental-theoretical study. Phys. Rev. Mater. 4, 14402 (2020).

    Article  CAS  Google Scholar 

  26. Gao, M. C. et al. High-entropy functional materials. J. Mater. Res. 33, 3138–3155 (2018).

    Article  CAS  Google Scholar 

  27. Yeh, J.-W., Chen, S. K., Shih, H. C., Zhang, Y. & Zuo, T. T. in High-Entropy Alloys: Fundamentals and Applications (eds Gao, M. C. et al.) 237–265 (Springer, 2016).

  28. Duan, J. et al. A novel high-entropy alloy with an exceptional combination of soft magnetic properties and corrosion resistance. Sci. China Mater. 66, 772–779 (2023).

    Article  CAS  Google Scholar 

  29. Mishra, R. K., Sahay, P. P. & Shahi, R. R. Alloying, magnetic and corrosion behavior of AlCrFeMnNiTi high entropy alloy. J. Mater. Sci. 54, 4433–4443 (2019).

    Article  CAS  Google Scholar 

  30. Jin, X. et al. CoCrFeMnNi high-entropy alloy powder with excellent corrosion resistance and soft magnetic property prepared by gas atomization method. Materwiss. Werkstofftech. 50, 837–843 (2019).

    Article  CAS  Google Scholar 

  31. Wang, W. et al. A corrosion-resistant soft-magnetic high entropy alloy. Mater. Lett. 304, 130571 (2021).

    Article  CAS  Google Scholar 

  32. Zhang, H. et al. A novel FeCoNiCr0.2Si0.2 high entropy alloy with an excellent balance of mechanical and soft magnetic properties. J. Magn. Magn. Mater. 478, 116–121 (2019).

    Article  CAS  Google Scholar 

  33. Chen, C. et al. A novel ultrafine-grained high entropy alloy with excellent combination of mechanical and soft magnetic properties. J. Magn. Magn. Mater. 502, 166513 (2020).

    Article  CAS  Google Scholar 

  34. Liu, X. & Vecchio, K. Simultaneously improving mechanical and magnetic properties through heterogeneous lamella structures in a superalloy-like, soft magnetic complex concentrated alloy. Mater. Res. Lett. 11, 749–756 (2023).

    Article  CAS  Google Scholar 

  35. Fu, Z. et al. Exceptional combination of soft magnetic and mechanical properties in a heterostructured high-entropy composite. Appl. Mater. Today 15, 590–598 (2019).

    Article  Google Scholar 

  36. Li, Z. et al. Strength, plasticity and coercivity tradeoff in soft magnetic high-entropy alloys by multiple coherent interfaces. Acta Mater. 254, 118970 (2023).

    Article  CAS  Google Scholar 

  37. Han, L. et al. A mechanically strong and ductile soft magnet with extremely low coercivity. Nature 608, 310–316 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Han, L. et al. Ultrastrong and ductile soft magnetic high-entropy alloys via coherent ordered nanoprecipitates. Adv. Mater. 33, 2102139 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Han, L. et al. Strong and ductile high temperature soft magnets through Widmanstätten precipitates. Nat. Commun. 14, 8176 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nemani, S. K., Torkamanzadeh, M., Wyatt, B. C., Presser, V. & Anasori, B. Functional two-dimensional high-entropy materials. Commun. Mater. 4, 16 (2023).

    Article  CAS  Google Scholar 

  41. Löffler, T., Ludwig, A., Rossmeisl, J. & Schuhmann, W. What makes high-entropy alloys exceptional electrocatalysts? Angew. Chem. Int. Ed. 60, 26894–26903 (2021).

    Article  Google Scholar 

  42. Tomboc, G. M., Kwon, T., Joo, J. & Lee, K. High entropy alloy electrocatalysts: a critical assessment of fabrication and performance. J. Mater. Chem. A Mater. 8, 14844–14862 (2020).

    Article  CAS  Google Scholar 

  43. Banko, L. et al. Unravelling composition–activity–stability trends in high entropy alloy electrocatalysts by using a data-guided combinatorial synthesis strategy and computational modeling. Adv. Energy Mater. 12, 2103312 (2022).

    Article  CAS  Google Scholar 

  44. Luo, H., Li, Z. & Raabe, D. Hydrogen enhances strength and ductility of an equiatomic high-entropy alloy. Sci. Rep. 7, 9892 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Luo, H., Li, Z., Mingers, A. M. & Raabe, D. Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution. Corros. Sci. 134, 131–139 (2018).

    Article  CAS  Google Scholar 

  46. Luo, H. et al. A strong and ductile medium-entropy alloy resists hydrogen embrittlement and corrosion. Nat. Commun. 11, 3081 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Körmann, F. et al. ‘Treasure maps’ for magnetic high-entropy-alloys from theory and experiment. Appl. Phys. Lett. 107, 142404 (2015).

    Article  Google Scholar 

  48. Lucas, M. S. et al. Magnetic and vibrational properties of high-entropy alloys. J. Appl. Phys. 109, 10–13 (2011).

    Article  Google Scholar 

  49. Liu, X., Zhang, J. & Pei, Z. Machine learning for high-entropy alloys: progress, challenges and opportunities. Prog. Mater. Sci. 131, 101018 (2023).

    Article  Google Scholar 

  50. Rickman, J. M., Balasubramanian, G., Marvel, C. J., Chan, H. M. & Burton, M.-T. Machine learning strategies for high-entropy alloys. J. Appl. Phys. 128, 221101 (2020).

    Article  CAS  Google Scholar 

  51. Raabe, D., Mianroodi, J. R. & Neugebauer, J. Accelerating the design of compositionally complex materials via physics-informed artificial intelligence. Nat. Comput. Sci. 3, 198–209 (2023).

    Article  PubMed  Google Scholar 

  52. Pei, Z., Yin, J., Hawk, J. A., Alman, D. E. & Gao, M. C. Machine-learning informed prediction of high-entropy solid solution formation: beyond the Hume–Rothery rules. NPJ Comput. Mater. 6, 50 (2020).

    Article  Google Scholar 

  53. Qiao, L., Liu, Y. & Zhu, J. A focused review on machine learning aided high-throughput methods in high entropy alloy. J. Alloy. Compd. 877, 160295 (2021).

    Article  CAS  Google Scholar 

  54. Ma, D., Grabowski, B., Körmann, F., Neugebauer, J. & Raabe, D. Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: importance of entropy contributions beyond the configurational one. Acta Mater. 100, 90–97 (2015).

    Article  CAS  Google Scholar 

  55. Zhang, F. et al. An understanding of high entropy alloys from phase diagram calculations. CALPHAD 45, 1–10 (2014).

    Article  Google Scholar 

  56. Curtarolo, S. et al. The high-throughput highway to computational materials design. Nat. Mater. 12, 191–201 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Holm, E. A. et al. Overview: computer vision and machine learning for microstructural characterization and analysis. Metall. Mater. Trans. A 51, 5985–5999 (2020).

    Article  CAS  Google Scholar 

  58. Muhammad, W., Brahme, A. P., Ibragimova, O., Kang, J. & Inal, K. A machine learning framework to predict local strain distribution and the evolution of plastic anisotropy & fracture in additively manufactured alloys. Int. J. Plast. 136, 102867 (2021).

    Article  CAS  Google Scholar 

  59. Yang, Z. et al. Establishing structure–property localization linkages for elastic deformation of three-dimensional high contrast composites using deep learning approaches. Acta Mater. 166, 335–345 (2019).

    Article  CAS  Google Scholar 

  60. Raabe, D. et al. Current challenges and opportunities in microstructure-related properties of advanced high-strength steels. Metall. Mater. Trans. A 51, 5517–5586 (2020).

    Article  CAS  Google Scholar 

  61. Halpren, E., Yao, X., Chen, Z. W. & Singh, C. V. Machine learning assisted design of BCC high entropy alloys for room temperature hydrogen storage. Acta Mater. 270, 119841 (2024).

    Article  CAS  Google Scholar 

  62. Sasidhar, K. N. et al. Enhancing corrosion-resistant alloy design through natural language processing and deep learning. Sci. Adv. 9, 7992 (2023).

    Article  Google Scholar 

  63. Pei, Z., Yin, J., Liaw, P. K. & Raabe, D. Toward the design of ultrahigh-entropy alloys via mining six million texts. Nat. Commun. 14, 54 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sandlöbes, S. et al. A rare-earth free magnesium alloy with improved intrinsic ductility. Sci. Rep. 7, 10458 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Zhao, S. et al. Machine learning assisted design of high-entropy alloys with ultra-high microhardness and unexpected low density. Mater. Des. https://doi.org/10.1016/j.matdes.2024.112634 (2024).

  66. Rao, Z. et al. Machine learning–enabled high-entropy alloy discovery. Science 378, 78–85 (2022).

    Article  CAS  PubMed  Google Scholar 

  67. Katiyar, N. K., Goel, G. & Goel, S. Emergence of machine learning in the development of high entropy alloy and their prospects in advanced engineering applications. Emergent Mater. 4, 1635–1648 (2021).

    Article  Google Scholar 

  68. Bauer, S. et al. Roadmap on data-centric materials science. Model. Simul. Mater. Sci. Eng. 32, 063301 (2024).

    Article  Google Scholar 

  69. Shi, L. et al. Connecting the composition, structure, and magnetic property in high-entropy metallic glasses. Acta Mater. 254, 118983 (2023).

    Article  CAS  Google Scholar 

  70. Pedersen, J. K. et al. Bayesian optimization of high-entropy alloy compositions for electrocatalytic oxygen reduction. Angew. Chem. Int. Ed. 60, 24144–24152 (2021).

    Article  CAS  Google Scholar 

  71. Khatamsaz, D. et al. Bayesian optimization with active learning of design constraints using an entropy-based approach. NPJ Comput. Mater. 9, 49 (2023).

    Article  CAS  Google Scholar 

  72. Kim, M. et al. Exploring optimal water splitting bifunctional alloy catalyst by pareto active learning. Adv. Mater. 35, 2211497 (2023).

    Article  CAS  Google Scholar 

  73. Sathiyamoorthi, P. & Kim, H. S. High-entropy alloys with heterogeneous microstructure: processing and mechanical properties. Prog. Mater. Sci. 123, 100709 (2022).

    Article  CAS  Google Scholar 

  74. Chen, T. et al. Microstructure and properties of TiC/Fe24Ni24Co24Mn18 high-entropy composite with exceptionally low coercivity. Mater. Today Commun. 35, 106150 (2023).

    Article  CAS  Google Scholar 

  75. Ferrari, A., Körmann, F., Asta, M. & Neugebauer, J. Simulating short-range order in compositionally complex materials. Nat. Comput. Sci. 3, 221–229 (2023).

    Article  PubMed  Google Scholar 

  76. Zhang, Y., Zuo, T., Cheng, Y. & Liaw, P. K. High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability. Sci. Rep. 3, 1455 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Yan, X. & Zhang, Y. Functional properties and promising applications of high entropy alloys. Scr. Mater. 187, 188–193 (2020).

    Article  CAS  Google Scholar 

  78. Chaudhary, V., Chaudhary, R., Banerjee, R. & Ramanujan, R. V. Accelerated and conventional development of magnetic high entropy alloys. Mater. Today 49, 231–252 (2021).

    Article  CAS  Google Scholar 

  79. Xu, J., Zhao, Z. F. & Wang, Y. Effect of annealing treatment on the microstructure and magnetic properties of FeSiBAlNi (C, Ce) high entropy alloys. Mater. Sci. Forum 849, 52–57 (2016).

    Article  Google Scholar 

  80. Morley, N. A., Lim, B., Xi, J., Quintana-Nedelcos, A. & Leong, Z. Magnetic properties of the complex concentrated alloy system CoFeNi0.5Cr0.5Alx. Sci. Rep. 10, 14506 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Cieslak, J., Tobola, J. & Reissner, M. The effect of bcc/fcc phase preference on magnetic properties of AlxCrFeCoNi high entropy alloys. Intermetallics 118, 106672 (2020).

    Article  CAS  Google Scholar 

  82. Zhou, K. X. et al. FeCoNiAlSi high entropy alloys with exceptional fundamental and application-oriented magnetism. Intermetallics 122, 106801 (2020).

    Article  CAS  Google Scholar 

  83. Sahu, P., Bagri, A. S., Anoop, M. D., Kumar, M. & Kumar, V. Impact of Si and Mg on microstructural and magnetic behavior of Fe–Co–Ni (Mg–Si)x (x = 0.00,0.1,0.2) multicomponent alloys. Silicon 12, 893–902 (2020).

    Article  CAS  Google Scholar 

  84. Borkar, T. et al. A combinatorial approach for assessing the magnetic properties of high entropy alloys: role of Cr in AlCoxCr1–xFeNi. Adv. Eng. Mater. 19, 1700048 (2017).

    Article  Google Scholar 

  85. Zhang, Q. et al. The effects of phase constitution on magnetic and mechanical properties of FeCoNi(CuAl)x (x = 0–1.2) high-entropy alloys. J. Alloy. Compd. 693, 1061–1067 (2017).

    Article  CAS  Google Scholar 

  86. Mishra, R. K. & Shahi, R. R. Phase evolution and magnetic characteristics of TiFeNiCr and TiFeNiCrM (M = Mn, Co) high entropy alloys. J. Magn. Magn. Mater. 442, 218–223 (2017).

    Article  CAS  Google Scholar 

  87. Huang, S., Vida, Á., Heczel, A., Holmström, E. & Vitos, L. Thermal expansion, elastic and magnetic properties of FeCoNiCu-based high-entropy alloys using first-principle theory. JOM 69, 2107–2112 (2017).

    Article  CAS  Google Scholar 

  88. Zhang, X., Han, L., Dehm, G. & Liebscher, C. H. Microstructure and physical properties of dual-phase soft magnetic Fe–Co–Ti–Ge alloys. J. Alloy. Compd. 945, 169282 (2023).

    Article  CAS  Google Scholar 

  89. Kurniawan, M., Perrin, A., Xu, P., Keylin, V. & McHenry, M. Curie temperature engineering in high entropy alloys for magnetocaloric applications. IEEE Magn. Lett. 7, 1–5 (2016).

    Article  Google Scholar 

  90. Zhang, B. et al. Magnetic transformation of Mn from anti-ferromagnetism to ferromagnetism in FeCoNiZMnx (Z = Si, Al, Sn, Ge) high entropy alloys. J. Mater. Sci. Technol. 68, 124–131 (2021).

    Article  CAS  Google Scholar 

  91. Zuo, T. et al. Tailoring magnetic behavior of CoFeMnNiX (X = Al, Cr, Ga, and Sn) high entropy alloys by metal doping. Acta Mater. 130, 10–18 (2017).

    Article  CAS  Google Scholar 

  92. Herzer, G. Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets. IEEE Trans. Magn. 26, 1397–1402 (1990).

    Article  CAS  Google Scholar 

  93. Pavithra, C. L. P. et al. An advancement in the synthesis of unique soft magnetic CoCuFeNiZn high entropy alloy thin films. Sci. Rep. 11, 8836 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhang, Y., Zuo, T., Cheng, Y. & Liaw, P. K. High-entropy alloys with high saturation magnetization, electrical resistivity and malleability. Sci. Rep. 3, 1455 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Song, X., Liaw, P. K., Wei, Z., Liu, Z. & Zhang, Y. Evolution of the microstructures, magnetic and mechanical behaviors of Co47.5Fe28.5Ni19Si3.4Al1.6 high-entropy alloy fabricated by laser powder bed fusion. Addit. Manuf. 71, 103593 (2023).

    CAS  Google Scholar 

  96. Coey, J. M. D. Magnetism and Magnetic Materials (Cambridge Univ. Press, 2010).

  97. Kuz’min, M. D., Skokov, K. P., Jian, H., Radulov, I. & Gutfleisch, O. Towards high-performance permanent magnets without rare earths. J. Phys. Condens. Matter 26, 064205 (2014).

    Article  PubMed  Google Scholar 

  98. Gao, Q., Opahle, I., Gutfleisch, O. & Zhang, H. Designing rare-earth free permanent magnets in Heusler alloys via interstitial doping. Acta Mater. 186, 355–362 (2020).

    Article  CAS  Google Scholar 

  99. Na, S.-M., Lambert, P. K. & Jones, N. J. Hard magnetic properties of FeCoNiAlCuxTix based high entropy alloys. AIP Adv. 11, 015210 (2021).

    Article  CAS  Google Scholar 

  100. Chen, H., Gou, J., Jia, W., Song, X. & Ma, T. Origin of hard magnetism in Fe–Co–Ni–Al–Ti–Cu high-entropy alloy: chemical shape anisotropy. Acta Mater. 246, 118702 (2023).

    Article  CAS  Google Scholar 

  101. Lan, Q. et al. Highly complex magnetic behavior resulting from hierarchical phase separation in AlCo(Cr)FeNi high-entropy alloys. iScience 25, 104047 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Dasari, S. et al. Highly tunable magnetic and mechanical properties in an Al0.3CoFeNi complex concentrated alloy. Materialia 12, 100755 (2020).

    Article  CAS  Google Scholar 

  103. Kovács, A. et al. Role of heterophase interfaces on local coercivity mechanisms in the magnetic Al0.3CoFeNi complex concentrated alloy. Acta Mater. 246, 118672 (2023).

    Article  Google Scholar 

  104. Vishina, A. et al. High-throughput and data-mining approach to predict new rare-earth free permanent magnets. Phys. Rev. B 101, 94407 (2020).

    Article  CAS  Google Scholar 

  105. Xia, W. et al. Accelerating the discovery of novel magnetic materials using machine learning–guided adaptive feedback. Proc. Natl Acad. Sci. USA 119, e2204485119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hirayama, Y., Takahashi, Y. K., Hirosawa, S. & Hono, K. Intrinsic hard magnetic properties of Sm(Fe1−xCox)12 compound with the ThMn12 structure. Scr. Mater. 138, 62–65 (2017).

    Article  CAS  Google Scholar 

  107. Tozman, P., Sepehri-Amin, H., Takahashi, Y. K., Hirosawa, S. & Hono, K. Intrinsic magnetic properties of Sm(Fe1xCox)11Ti and Zr-substituted Sm1−yZry(Fe0.8Co0.2)11.5Ti0.5 compounds with ThMn12 structure toward the development of permanent magnets. Acta Mater. 153, 354–363 (2018).

    Article  CAS  Google Scholar 

  108. Tozman, P., Sepehri-Amin, H. & Hono, K. Prospects for the development of SmFe12-based permanent magnets with a ThMn12-type phase. Scr. Mater. 194, 113686 (2021).

    Article  CAS  Google Scholar 

  109. Nguyen, D.-N., Kino, H., Miyake, T. & Dam, H.-C. Explainable active learning in investigating structure–stability of SmFe12−αβXαYβ structures X, Y {Mo, Zn, Co, Cu, Ti, Al, Ga}. MRS Bull. 48, 31–44 (2023).

    Article  CAS  Google Scholar 

  110. Fukazawa, T., Harashima, Y., Hou, Z. & Miyake, T. Bayesian optimization of chemical composition: a comprehensive framework and its application to R Fe12-type magnet compounds. Phys. Rev. Mater. 3, 053807 (2019).

    Article  CAS  Google Scholar 

  111. Gutfleisch, O. et al. Mastering hysteresis in magnetocaloric materials. Phil. Trans. R. Soc. A 374, 20150308 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Scheibel, F. et al. Hysteresis design of magnetocaloric materials — from basic mechanisms to applications. Energy Technol. 6, 1397–1428 (2018).

    Article  CAS  Google Scholar 

  113. Gottschall, T. et al. Making a cool choice: the materials library of magnetic refrigeration. Adv. Energy Mater. 9, 1901322 (2019).

    Article  Google Scholar 

  114. Tegus, O., Brück, E., Buschow, K. H. J. & de Boer, F. R. Transition-metal-based magnetic refrigerants for room-temperature applications. Nature 415, 150–152 (2002).

    Article  CAS  PubMed  Google Scholar 

  115. Fries, M. et al. Microstructural and magnetic properties of Mn–Fe–P–Si (Fe2 P-type) magnetocaloric compounds. Acta Mater. 132, 222–229 (2017).

    Article  CAS  Google Scholar 

  116. Lu, S. F. et al. Effect of configuration entropy on magnetocaloric effect of rare earth high-entropy alloy. J. Alloy. Compd. 874, 159918 (2021).

    Article  CAS  Google Scholar 

  117. Lu, S. F. et al. Magnetocaloric effect of high-entropy rare-earth alloy GdTbHoErY. J. Mater. Sci. Mater. Electron. 32, 10919–10926 (2021).

    Article  CAS  Google Scholar 

  118. Yuan, Y. et al. Rare-earth high-entropy alloys with giant magnetocaloric effect. Acta Mater. 125, 481–489 (2017).

    Article  CAS  Google Scholar 

  119. Guo, D., Moreno-Ramírez, L. M., Law, J.-Y., Zhang, Y. & Franco, V. Excellent cryogenic magnetocaloric properties in heavy rare-earth based HRENiGa2 (HRE = Dy, Ho, or Er) compounds. Sci. China Mater. 66, 249–256 (2023).

    Article  CAS  Google Scholar 

  120. Dong, Z. et al. MnxCr0.3Fe0.5Co0.2Ni0.5Al0.3 high entropy alloys for magnetocaloric refrigeration near room temperature. J. Mater. Sci. Technol. 79, 15–20 (2021).

    Article  CAS  Google Scholar 

  121. Dong, Z., Wang, Z. & Yin, S. Magnetic properties and large cryogenic magneto-caloric effect of Er0.2Tm0.2Ho0.2Cu0.2Co0.2 amorphous ribbon. Intermetallics 124, 106879 (2020).

    Article  CAS  Google Scholar 

  122. Zhang, Y. et al. Tunable magnetic phase transition and magnetocaloric effect in the rare-earth-free Al–Mn–Fe–Co–Cr high-entropy alloys. Mater. Des. 229, 111894 (2023).

    Article  CAS  Google Scholar 

  123. Zhang, Y. et al. The emergence of considerable room temperature magnetocaloric performances in the transition metal high-entropy alloys. Mater. Today Phys. 32, 101031 (2023).

    Article  CAS  Google Scholar 

  124. Zhang, F. et al. Impact of fast-solidification on all-d-metal NiCoMnTi based giant magnetocaloric Heusler compounds. Acta Mater. 265, 119595 (2024).

    Article  CAS  Google Scholar 

  125. Law, J. Y. & Franco, V. Review on magnetocaloric high-entropy alloys: design and analysis methods. J. Mater. Res. 38, 37–51 (2023).

    Article  CAS  Google Scholar 

  126. Law, J. Y., Díaz-García, Á., Moreno-Ramírez, L. M. & Franco, V. Increased magnetocaloric response of FeMnNiGeSi high-entropy alloys. Acta Mater. 212, 116931 (2021).

    Article  CAS  Google Scholar 

  127. Taubel, A. et al. Tailoring magnetocaloric effect in all-d-metal Ni-Co-Mn-Ti Heusler alloys: a combined experimental and theoretical study. Acta Mater. 201, 425–434 (2020).

    Article  CAS  Google Scholar 

  128. Beckmann, B. et al. Dissipation losses limiting first-order phase transition materials in cryogenic caloric cooling: a case study on all-d-metal Ni(–Co)–Mn–Ti Heusler alloys. Acta Mater. 246, 118695 (2023).

    Article  CAS  Google Scholar 

  129. Khan, A. N., Díaz-García, Á., Moreno-Ramírez, L. M., Law, J. Y. & Franco, V. Tunable magnetocaloric effect towards cryogenic range by varying Mn:Ni ratio in all-d-metal Ni(Co)–Mn–Ti Heusler alloys. J. Alloy. Compd. 973, 172938 (2024).

    Article  CAS  Google Scholar 

  130. Taubel, A. et al. Influence of magnetic field, chemical pressure and hydrostatic pressure on the structural and magnetocaloric properties of the Mn–Ni–Ge system. J. Phys. D 50, 464005 (2017).

    Article  Google Scholar 

  131. Fortunato, N. M. et al. High-throughput design of magnetocaloric materials for energy applications: MM′X alloys. Adv. Sci. 10, 2206772 (2023).

    Article  CAS  Google Scholar 

  132. Rowe, D. M. CRC Handbook of Thermoelectrics (CRC Press, 2018).

  133. Snyder, G. J. & Toberer, E. S. Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008).

    Article  CAS  PubMed  Google Scholar 

  134. Liu, D., Qin, B. & Zhao, L.-D. SnSe/SnS: multifunctions beyond thermoelectricity. Mater. Lab. 1, 220006 (2022).

    Google Scholar 

  135. He, R. et al. Studies on mechanical properties of thermoelectric materials by nanoindentation. Phys. Status Solidi 212, 2191–2195 (2015).

    Article  CAS  Google Scholar 

  136. Rogl, G. et al. Mechanical properties of half-Heusler alloys. Acta Mater. 107, 178–195 (2016).

    Article  CAS  Google Scholar 

  137. Liu, Z. et al. Mechanical properties of nanostructured thermoelectric materials α-MgAgSb. Scr. Mater. 127, 72–75 (2017).

    Article  CAS  Google Scholar 

  138. Xia, X. et al. High-temperature oxidation behavior of filled skutterudites YbyCo4Sb12. J. Electron. Mater. 41, 2225–2231 (2012).

    Article  CAS  Google Scholar 

  139. Li, F., Wei, T. R., Kang, F. & Li, J. F. Thermal stability and oxidation resistance of BiCuSeO based thermoelectric ceramics. J. Alloy. Compd. 614, 394–400 (2014).

    Article  CAS  Google Scholar 

  140. Zhu, Y.-K. et al. Mediating point defects endows n-type Bi2Te3 with high thermoelectric performance and superior mechanical robustness for power generation application. Small 18, 2201352 (2022).

    Article  CAS  Google Scholar 

  141. Ge, Z.-H. et al. Low-cost, abundant binary sulfides as promising thermoelectric materials. Mater. Today 19, 227–239 (2016).

    Article  CAS  Google Scholar 

  142. Zhang, J. et al. Discovery of high-performance low-cost n-type Mg3Sb2-based thermoelectric materials with multi-valley conduction bands. Nat. Commun. 8, 13901 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Perumal, S., Roychowdhury, S., Negi, D. S., Datta, R. & Biswas, K. High thermoelectric performance and enhanced mechanical stability of p-type Ge1–xSbxTe. Chem. Mater. 27, 7171–7178 (2015).

    Article  CAS  Google Scholar 

  144. Hatzikraniotis, E., Zorbas, K. T., Samaras, I., Kyratsi, T. & Paraskevopoulos, K. M. Efficiency study of a commercial thermoelectric power generator (TEG) under thermal cycling. J. Electron. Mater. 39, 2112–2116 (2010).

    Article  CAS  Google Scholar 

  145. Al-Merbati, A. S., Yilbas, B. S. & Sahin, A. Z. A model study for cyclic thermal loading and thermal performance of a thermoelectric generator. Int. J. Energy Res. 38, 1351–1360 (2014).

    Article  Google Scholar 

  146. Dong, J., Gao, J. & Yan, Q. High entropy strategy on thermoelectric materials. Mater. Lab. 2, 230001 (2023).

    Google Scholar 

  147. Jiang, B. et al. High figure-of-merit and power generation in high-entropy GeTe-based thermoelectrics. Science 377, 208–213 (2022).

    Article  CAS  PubMed  Google Scholar 

  148. Jiang, F. et al. Structure, magnetic and thermoelectric properties of high entropy selenides Bi0.6Sb0.6In0.4Cr0.4Se3. Mater. Lab. 1, 220045 (2022).

    Google Scholar 

  149. Ma, Z. et al. High thermoelectric performance and low lattice thermal conductivity in lattice-distorted high-entropy semiconductors AgMnSn1–xPbxSbTe4. Chem. Mater. 34, 8959–8967 (2022).

    Article  CAS  Google Scholar 

  150. Kumar, A., Dragoe, D., Berardan, D. & Dragoe, N. Thermoelectric properties of high-entropy rare-earth cobaltates. J. Materiomics 9, 191–196 (2023).

    Article  Google Scholar 

  151. Zhang, P. et al. High-entropy (Ca0.2Sr0.2Ba0.2La0.2Pb0.2)TiO3 perovskite ceramics with A-site short-range disorder for thermoelectric applications. J. Mater. Sci. Technol. 97, 182–189 (2022).

    Article  CAS  Google Scholar 

  152. Lou, Z. et al. A novel high-entropy perovskite ceramics Sr0.9La0.1(Zr0.25Sn0.25Ti0.25Hf0.25)O3 with low thermal conductivity and high Seebeck coefficient. J. Eur. Ceram. Soc. 42, 3480–3488 (2022).

    Article  CAS  Google Scholar 

  153. Zhang, Z. et al. Entropy engineering induced exceptional thermoelectric and mechanical performances in Cu2−yAgyTe12xSxSex. Acta Mater. 224, 117512 (2022).

    Article  CAS  Google Scholar 

  154. Chen, R. et al. Entropy-driven multiscale defects enhance the thermoelectric properties of ZrCoSb-based half-Heusler alloys. Chem. Eng. J. 455, 140676 (2023).

    Article  CAS  Google Scholar 

  155. Jiang, B. et al. High-entropy-stabilized chalcogenides with high thermoelectric performance. Science 371, 830–834 (2021).

    Article  CAS  PubMed  Google Scholar 

  156. Shafeie, S. et al. High-entropy alloys as high-temperature thermoelectric materials. J. Appl. Phys. 118, 184905 (2015).

    Article  Google Scholar 

  157. Pei, Y. et al. Convergence of electronic bands for high performance bulk thermoelectrics. Nature 473, 66–69 (2011).

    Article  CAS  PubMed  Google Scholar 

  158. Wang, X. et al. Enhanced thermoelectric performance in high entropy alloys Sn0.25Pb0.25Mn0.25Ge0.25Te. ACS Appl. Mater. Interfaces 13, 18638–18647 (2021).

    Article  CAS  PubMed  Google Scholar 

  159. Liu, R. et al. Entropy as a gene-like performance indicator promoting thermoelectric materials. Adv. Mater. 29, 1702712 (2017).

    Article  Google Scholar 

  160. Roychowdhury, S. et al. Enhanced atomic ordering leads to high thermoelectric performance in AgSbTe2. Science 371, 722–727 (2021).

    Article  CAS  PubMed  Google Scholar 

  161. Campbell, F. C. Elements of Metallurgy and Engineering Alloys (ASM International, 2008).

  162. Wassermann, E. F. & Acet, M. in Magnetism and Structure in Functional Materials (eds Planes, A. et al.) 177–197 (Springer, 2005).

  163. Rao, Z. et al. 3d transition-metal high-entropy Invar alloy developed by adjusting the valence-electron concentration. Phys. Rev. Mater. 5, 044406 (2021).

    Article  CAS  Google Scholar 

  164. Rao, Z., Springer, H., Ponge, D. & Li, Z. Combinatorial development of multicomponent Invar alloys via rapid alloy prototyping. Materialia 21, 101326 (2022).

    Article  CAS  Google Scholar 

  165. Acet, M. Inducing strong magnetism in Cr20Mn20Fe20Co20Ni20 high-entropy alloys by exploiting its anti-Invar property. AIP Adv. 9, 095037 (2019).

    Article  Google Scholar 

  166. Masumoto, H. On the thermal expansion of alloys of cobalt iron and chromium and a new alloy ‘stainless invar’. Sci. Report. Tohoku. Imp. Univ. 23, 265–275 (1934).

    CAS  Google Scholar 

  167. Masumoto, H. On the thermal expansion of the alloys of iron, nickel, and cobalt and the cause of the small expansibility of alloys of the Invar type. Sci. Rep. Tohoku Imp. Univ. 20, 101–123 (1931).

    CAS  Google Scholar 

  168. Orbay, Y. et al. Magnetic properties of the FCC and BCC phases of (MnFeCoNi)80Cu20−xZx (Z: Al, Ga) high-entropy alloys. Acta Mater. 259, 119240 (2023).

    Article  CAS  Google Scholar 

  169. Lin, C. L. et al. Investigation on the thermal expansion behavior of FeCoNi and Fe30Co30Ni30Cr10xMnx high entropy alloys. Mater. Chem. Phys. 271, 124907 (2021).

    Article  CAS  Google Scholar 

  170. Tanimoto, H., Hozumi, R. & Kawamura, M. Electrical resistivity and short-range order in rapid-quenched CrMnFeCoNi high-entropy alloy. J. Alloy. Compd. 896, 163059 (2022).

    Article  CAS  Google Scholar 

  171. Pal, S., Nair, R. B. & McDonald, A. Toward understanding the microstructure and electrical resistivity of thermal-sprayed high-entropy alloy coatings. J. Mater. Sci. 57, 20928–20944 (2022).

    Article  CAS  Google Scholar 

  172. Kitagawa, J. Magnetic properties, electrical resistivity, and hardness of high-entropy alloys FeCoNiPd and FeCoNiPt. J. Magn. Magn. Mater. 563, 170024 (2022).

    Article  CAS  Google Scholar 

  173. Zhu, S. et al. A strong ferritic high‐resistivity multicomponent alloy with tunable ordered coherent multicomponent nanoprecipitates. Acta Mater. 238, 118209 (2022).

    Article  CAS  Google Scholar 

  174. Kao, Y. F. et al. Electrical, magnetic, and Hall properties of AlxCoCrFeNi high-entropy alloys. J. Alloy. Compd. 509, 1607–1614 (2011).

    Article  CAS  Google Scholar 

  175. Chou, H. P., Chang, Y. S., Chen, S. K. & Yeh, J. W. Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys. Mater. Sci. Eng. B 163, 184–189 (2009).

    Article  CAS  Google Scholar 

  176. Li, P., Wang, A. & Liu, C. T. Composition dependence of structure, physical and mechanical properties of FeCoNi(MnAl)x high entropy alloys. Intermetallics 87, 21–26 (2017).

    Article  CAS  Google Scholar 

  177. Chen, S.-K. & Kao, Y.-F. Near-constant resistivity in 4.2–360 K in a B2 Al2.08CoCrFeNi. AIP Adv. 2, 012111 (2012).

    Article  Google Scholar 

  178. Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957).

    Article  CAS  Google Scholar 

  179. Mizuguchi, Y., Kasem, M. R. & Matsuda, T. D. Superconductivity in CuAl2-type Co0.2Ni0.1Cu0.1Rh0.3Ir0.3Zr2 with a high-entropy-alloy transition metal site. Mater. Res. Lett. 9, 141–147 (2021).

    Article  CAS  Google Scholar 

  180. Marik, S. et al. Superconductivity in a new hexagonal high-entropy alloy. Phys. Rev. Mater. 3, 060602 (2019).

    Article  CAS  Google Scholar 

  181. Liu, B. et al. Superconductivity and paramagnetism in Cr-containing tetragonal high-entropy alloys. J. Alloy. Compd. 869, 159293 (2021).

    Article  CAS  Google Scholar 

  182. Uporov, S. A. et al. Pressure effects on electronic structure and electrical conductivity of TiZrHfNb high-entropy alloy. Intermetallics 140, 107394 (2022).

    Article  CAS  Google Scholar 

  183. El-Atwani, O. et al. Outstanding radiation resistance of tungsten-based high-entropy alloys. Sci. Adv. 5, eaav2002 (2024).

    Article  Google Scholar 

  184. Orhan, O. K., Hendy, M. & Ponga, M. Electronic effects on the radiation damage in high-entropy alloys. Acta Mater. 244, 118511 (2023).

    Article  CAS  Google Scholar 

  185. Cusentino, M. A., Wood, M. A. & Dingreville, R. Compositional and structural origins of radiation damage mitigation in high-entropy alloys. J. Appl. Phys. 128, 125904 (2020).

    Article  CAS  Google Scholar 

  186. Levenets, A. V, Tikhonovsky, M. A., Voyevodin, V. N., Shepelev, A. G. & Nemashkalo, O. V. High-entropy alloys as a prospective class of new radiation-tolerant materials research development analysis based on the information databases. Voprosy Atomnoj Nauki Tekhniki https://doi.org/10.46813/2021-132-003 (2021).

  187. Zhang, H. et al. Effects of nitrogen doping on microstructures and irradiation resistance of Ti–Zr–Nb–V–Mo refractory high-entropy alloy. Acta Metall. Sin. https://doi.org/10.1007/s40195-024-01686-0 (2024).

  188. Kombaiah, B. et al. Nanoprecipitates to enhance radiation tolerance in high-entropy alloys. ACS Appl. Mater. Interfaces 15, 3912–3924 (2023).

    Article  CAS  PubMed  Google Scholar 

  189. Deluigi, O. R. et al. Simulations of primary damage in a high entropy alloy: probing enhanced radiation resistance. Acta Mater. 213, 116951 (2021).

    Article  CAS  Google Scholar 

  190. Lin, Y. et al. Enhanced radiation tolerance of the Ni-Co-Cr-Fe high-entropy alloy as revealed from primary damage. Acta Mater. 196, 133–143 (2020).

    Article  CAS  Google Scholar 

  191. Tunes, M. A. et al. From high-entropy alloys to high-entropy ceramics: the radiation-resistant highly concentrated refractory carbide (CrNbTaTiW)C. Acta Mater. 250, 118856 (2023).

    Article  CAS  Google Scholar 

  192. Mañosa, L. & Planes, A. Elastocaloric effect in shape-memory alloys. Shape Mem. Superelast. https://doi.org/10.1007/s40830-024-00477-x (2024).

  193. Zarnetta, R. et al. Identification of quaternary shape memory alloys with near-zero thermal hysteresis and unprecedented functional stability. Adv. Funct. Mater. 20, 1917–1923 (2010).

    Article  CAS  Google Scholar 

  194. Chen, H. et al. Unprecedented non-hysteretic superelasticity of [001]-oriented NiCoFeGa single crystals. Nat. Mater. 19, 712–718 (2020).

    Article  CAS  PubMed  Google Scholar 

  195. Tanaka, Y. et al. Ferrous polycrystalline shape-memory alloy showing huge superelasticity. Science 327, 1488–1490 (2010).

    Article  CAS  PubMed  Google Scholar 

  196. Omori, T. et al. Superelastic effect in polycrystalline ferrous alloys. Science 333, 68–71 (2011).

    Article  CAS  PubMed  Google Scholar 

  197. Firstov, G. S., Kosorukova, T. A., Koval, Y. N. & Odnosum, V. V. High entropy shape memory alloys. Mater. Today Proc. 2, S499–S503 (2015).

    Article  Google Scholar 

  198. Firstov, G. S., Kosorukova, T. A., Koval, Y. N. & Verhovlyuk, P. A. Directions for high-temperature shape memory alloys’ improvement: straight way to high-entropy materials? Shape Mem. Superelast. 1, 400–407 (2015).

    Article  Google Scholar 

  199. Piorunek, D. et al. Effect of off-stoichiometric compositions on microstructures and phase transformation behavior in Ni–Cu–Pd–Ti–Zr–Hf high entropy shape memory alloys. J. Alloy. Compd. 857, 157467 (2021).

    Article  CAS  Google Scholar 

  200. He, S. et al. Interpretable machine learning workflow for evaluation of the transformation temperatures of TiZrHfNiCoCu high entropy shape memory alloys. Mater. Des. 225, 111513 (2023).

    Article  CAS  Google Scholar 

  201. Thiercelin, L., Peltier, L. & Meraghni, F. Physics-informed machine learning prediction of the martensitic transformation temperature for the design of ‘NiTi-like’ high entropy shape memory alloys. Comput. Mater. Sci. 231, 112578 (2024).

    Article  CAS  Google Scholar 

  202. Akrami, S. et al. Defective high-entropy oxide photocatalyst with high activity for CO2 conversion. Appl. Catal. B 303, 1–24 (2022).

    Article  Google Scholar 

  203. Xin, Y. et al. High-entropy alloys as a platform for catalysis: progress, challenges, and opportunities. ACS Catal. 10, 11280–11306 (2020).

    Article  CAS  Google Scholar 

  204. Löffler, T. et al. Discovery of a multinary noble metal–free oxygen reduction catalyst. Adv. Energy Mater. 8, 1802269 (2018).

    Article  Google Scholar 

  205. Yao, Y. et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science 359, 1489–1494 (2018).

    Article  CAS  PubMed  Google Scholar 

  206. Batchelor, T. A. A. et al. High-entropy alloys as a discovery platform for electrocatalysis. Joule 3, 834–845 (2019).

    Article  CAS  Google Scholar 

  207. Yao, Y. et al. High-entropy nanoparticles: synthesis–structure–property relationships and data-driven discovery. Science 376, eabn3103 (2023).

    Article  Google Scholar 

  208. Zhang, Y., Wang, D. & Wang, S. High-entropy alloys for electrocatalysis: design, characterization, and applications. Small 18, 2104339 (2022).

    Article  CAS  Google Scholar 

  209. Ren, J.-T., Chen, L., Wang, H.-Y. & Yuan, Z.-Y. High-entropy alloys in electrocatalysis: from fundamentals to applications. Chem. Soc. Rev. 52, 8319–8373 (2023).

    Article  CAS  PubMed  Google Scholar 

  210. Schweidler, S. et al. High-entropy materials for energy and electronic applications. Nat. Rev. Mater. 9, 266–281 (2024).

    Article  Google Scholar 

  211. Sun, Y. & Dai, S. High-entropy materials for catalysis: a new frontier. Sci. Adv. 7, eabg1600 (2024).

    Article  Google Scholar 

  212. Wang, X., Guo, W. & Fu, Y. High-entropy alloys: emerging materials for advanced functional applications. J. Mater. Chem. A Mater. 9, 663–701 (2021).

    Article  CAS  Google Scholar 

  213. Mints, V. A., Svane, K. L., Rossmeisl, J. & Arenz, M. Exploring the high-entropy oxide composition space: insights through comparing experimental with theoretical models for the oxygen evolution reaction. ACS Catal. 14, 6936–6944 (2024).

    Article  CAS  Google Scholar 

  214. Batchelor, T. A. A. et al. Complex-solid-solution electrocatalyst discovery by computational prediction and high-throughput experimentation. Angew. Chem. Int. Ed. 60, 6932–6937 (2021).

    Article  CAS  Google Scholar 

  215. Clausen, C. M., Nielsen, M. L. S., Pedersen, J. K. & Rossmeisl, J. Ab initio to activity: machine learning-assisted optimization of high-entropy alloy catalytic activity. High Entropy Alloy. Mater. https://doi.org/10.1007/s44210-022-00006-4 (2022).

  216. Yao, Y. et al. Extreme mixing in nanoscale transition metal alloys. Matter 4, 2340–2353 (2021).

    Article  CAS  Google Scholar 

  217. Li, T. et al. Denary oxide nanoparticles as highly stable catalysts for methane combustion. Nat. Catal. 4, 62–70 (2021).

    Article  CAS  Google Scholar 

  218. Priamushko, T., Kormányos, A. & Cherevko, S. What do we know about the electrochemical stability of high-entropy alloys? Curr. Opin. Chem. Eng. 44, 101020 (2024).

    Article  Google Scholar 

  219. Kormányos, A. et al. Stability of high-entropy alloys under electrocatalytic conditions. iScience 26, 107775 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  220. De Vrieze, J. E., Gunasooriya, G. K. K., Thybaut, J. W. & Saeys, M. Operando computational catalysis: shape, structure, and coverage under reaction conditions. Curr. Opin. Chem. Eng. 23, 85–91 (2019).

    Article  Google Scholar 

  221. Gao, S. et al. Synthesis of high-entropy alloy nanoparticles on supports by the fast moving bed pyrolysis. Nat. Commun. 11, 2016 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Tao, L. et al. A general synthetic method for high-entropy alloy subnanometer ribbons. J. Am. Chem. Soc. 144, 10582–10590 (2022).

    Article  CAS  PubMed  Google Scholar 

  223. Wei, J. et al. Deep eutectic solvent assisted facile synthesis of low-dimensional hierarchical porous high-entropy oxides. Nano Res. 15, 2756–2763 (2022).

    Article  CAS  Google Scholar 

  224. Dangwal, S. & Edalati, K. High-entropy alloy TiV2ZrCrMnFeNi for hydrogen storage at room temperature with full reversibility and good activation. Scr. Mater. 238, 115774 (2024).

    Article  CAS  Google Scholar 

  225. Ma, X. et al. Study on microstructure and the hydrogen storage behavior of a TiVZrNbFe high-entropy alloy. Intermetallics 157, 107885 (2023).

    Article  CAS  Google Scholar 

  226. Shahi, R. R., Gupta, A. K. & Kumari, P. Perspectives of high entropy alloys as hydrogen storage materials. Int. J. Hydrog. Energy 48, 21412–21428 (2023).

    Article  CAS  Google Scholar 

  227. Mohammadi, A. et al. High-entropy hydrides for fast and reversible hydrogen storage at room temperature: binding-energy engineering via first-principles calculations and experiments. Acta Mater. 236, 118117 (2022).

    Article  CAS  Google Scholar 

  228. Moore, C. M. et al. Hydrogen accommodation in the TiZrNbHfTa high entropy alloy. Acta Mater. 229, 117832 (2022).

    Article  CAS  Google Scholar 

  229. Sahlberg, M., Karlsson, D., Zlotea, C. & Jansson, U. Superior hydrogen storage in high entropy alloys. Sci. Rep. 6, 36770 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Chen, S. K., Lee, P. H., Lee, H. & Su, H. T. Hydrogen storage of C14-CruFevMnwTixVyZrz alloys. Mater. Chem. Phys. 210, 336–347 (2018).

    Article  CAS  Google Scholar 

  231. Edalati, P. et al. Reversible room temperature hydrogen storage in high-entropy alloy TiZrCrMnFeNi. Scr. Mater. 178, 387–390 (2020).

    Article  CAS  Google Scholar 

  232. Andrade, G. et al. Crystal structure and hydrogen storage properties of AB-type TiZrNbCrFeNi high-entropy alloy. Int. J. Hydrog. Energy 48, 13555–13565 (2023).

    Article  CAS  Google Scholar 

  233. Edalati, K. et al. Design and synthesis of a magnesium alloy for room temperature hydrogen storage. Acta Mater. 149, 88–96 (2018).

    Article  CAS  Google Scholar 

  234. Shang, Y. et al. Ultra-lightweight compositionally complex alloys with large ambient-temperature hydrogen storage capacity. Mater. Today 67, 113–126 (2023).

    Article  CAS  Google Scholar 

  235. Marques, F., Balcerzak, M., Winkelmann, F., Zepon, G. & Felderhoff, M. Review and outlook on high-entropy alloys for hydrogen storage. Energy Env. Sci. 14, 5191–5227 (2021).

    Article  CAS  Google Scholar 

  236. Felderhoff, M., Weidenthaler, C., von Helmolt, R. & Eberle, U. Hydrogen storage: the remaining scientific and technological challenges. Phys. Chem. Chem. Phys. 9, 2643–2653 (2007).

    Article  CAS  PubMed  Google Scholar 

  237. Weidenthaler, C. & Felderhoff, M. Solid-state hydrogen storage for mobile applications: quo vadis? Energy Env. Sci. 4, 2495–2502 (2011).

    Article  CAS  Google Scholar 

  238. Kumbhakar, M. et al. High-throughput screening of high-entropy fluorite-type oxides as potential candidates for photovoltaic applications. Adv. Energy Mater. https://doi.org/10.1002/aenm.202204337 (2023).

  239. Suhr, E. et al. High-throughput exploration of structural and electrochemical properties of the high-entropy nitride system (Ti–Co–Mo–Ta–W)N. Adv. Eng. Mater. 25, 2300550 (2023).

    Article  CAS  Google Scholar 

  240. He, C. Y. et al. Scalable and highly efficient high temperature solar absorber coatings based on high entropy alloy nitride AlCrTaTiZrN with different antireflection layers. J. Mater. Chem. A 9, 6413–6422 (2021).

    Article  CAS  Google Scholar 

  241. Khan, M., Rahaman, M. Z. & Ali, M. L. Pressure-induced band gap engineering of nontoxic lead-free halide perovskite CsMgI3 for optoelectronic applications. ACS Omega 8, 24942–24951 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Wang, S.-P. & Xu, J. TiZrNbTaMo high-entropy alloy designed for orthopedic implants: as-cast microstructure and mechanical properties. Mater. Sci. Eng. C 73, 80–89 (2017).

    Article  CAS  Google Scholar 

  243. Castro, D., Jaeger, P., Baptista, A. C. & Oliveira, J. P. An overview of high-entropy alloys as biomaterials. Metals 11, 648 (2021).

    Article  CAS  Google Scholar 

  244. de Oliveira, T. G., Fagundes, D. V., Capellato, P., Sachs, D. & da Silva, A. A. A. P. A review of biomaterials based on high-entropy alloys. Metals 12, 1940 (2022).

    Article  Google Scholar 

  245. Shi, Z., Fang, Q., Liaw, P. K. & Li, J. Corrosion-resistant biomedical high-entropy alloys: a review. Adv. Eng. Mater. 25, 2300968 (2023).

    Article  CAS  Google Scholar 

  246. Rashidy Ahmady, A. et al. High entropy alloy coatings for biomedical applications: a review. Smart Mater. Manuf. 1, 100009 (2023).

    Google Scholar 

  247. Feng, J. et al. Preparation of TiNbTaZrMo high-entropy alloy with tunable Young’s modulus by selective laser melting. J. Manuf. Process. 85, 160–165 (2023).

    Article  Google Scholar 

  248. Yang, W. et al. Design and properties of novel Ti–Zr–Hf–Nb–Ta high-entropy alloys for biomedical applications. Intermetallics 141, 107421 (2022).

    Article  CAS  Google Scholar 

  249. Popescu, G. et al. New TiZrNbTaFe high entropy alloy used for medical applications. IOP Conf. Ser. Mater. Sci. Eng. 400, 022049 (2018).

    Article  Google Scholar 

  250. Shittu, J. et al. Biocompatible high entropy alloys with excellent degradation resistance in a simulated physiological environment. ACS Appl. Bio Mater. 3, 8890–8900 (2020).

    Article  CAS  PubMed  Google Scholar 

  251. Motallebzadeh, A. et al. Microstructural, mechanical and electrochemical characterization of TiZrTaHfNb and Ti1.5ZrTa0.5Hf0.5Nb0.5 refractory high-entropy alloys for biomedical applications. Intermetallics 113, 106572 (2019).

    Article  CAS  Google Scholar 

  252. Hori, T., Nagase, T., Todai, M., Matsugaki, A. & Nakano, T. Development of non-equiatomic Ti–Nb–Ta–Zr–Mo high-entropy alloys for metallic biomaterials. Scr. Mater. 172, 83–87 (2019).

    Article  CAS  Google Scholar 

  253. Takahashi, M., Sato, K., Togawa, G. & Takada, Y. Mechanical properties of Ti–Nb–Cu alloys for dental machining applications. J. Funct. Biomater. 13, 263 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Zhou, E. et al. A novel Cu-bearing high-entropy alloy with significant antibacterial behavior against corrosive marine biofilms. J. Mater. Sci. Technol. 46, 201–210 (2020).

    Article  CAS  Google Scholar 

  255. Raabe, D., Tasan, C. C. & Olivetti, E. A. Strategies for improving the sustainability of structural metals. Nature 575, 64–74 (2019).

    Article  CAS  PubMed  Google Scholar 

  256. Raabe, D. The materials science behind sustainable metals and alloys. Chem. Rev. 123, 2436–2608 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Zhang, Z., Tang, H. & Xu, Z. Fatigue database of complex metallic alloys. Sci. Data 10, 447 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  258. Wang, W. et al. Automated pipeline for superalloy data by text mining. NPJ Comput. Mater. 8, 9 (2022).

    Article  Google Scholar 

  259. Zhou, Z. et al. Machine learning guided appraisal and exploration of phase design for high entropy alloys. NPJ Comput. Mater. 5, 128 (2019).

    Article  CAS  Google Scholar 

  260. Gutfleisch, O. et al. Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient. Adv. Mater. 23, 821–842 (2011).

    Article  CAS  PubMed  Google Scholar 

  261. Torrubia, J., Valero, A. & Valero, A. Energy and carbon footprint of metals through physical allocation. Implications for energy transition. Resour. Conserv. Recycl. 199, 107281 (2023).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The support of T. You, S. Zhang, C. Jung and K. Jang from the Max Planck Institute for Sustainable Materials, M. Dai from TU Darmstadt, and J. Frenzel from the Ruhr-Universität Bochum is gratefully acknowledged. D.R. acknowledges financial support through the special focus programme SPP 2006 on Compositionally Complex Alloys–High Entropy Alloys (CCA-HEA), funded by the Deutsche Forschungsgemeinschaft (DFG) under project no. 313773923. Z.L. acknowledges financial support from the Science and Technology Innovation Program of Hunan Province in China (grant no. 2023RC1013). O.G., D.R., Z.R., H.Z. and L.H. acknowledge funding from the European Innovation Council and SMEs Executive Agency (EISMEA) under grant agreement no. 101099736 (Pathfinder Open CoCoMag project) and support by the DFG, project ID no. 405553726, Collaborative Research Centre Transregio CRC-TRR 270. H.H. acknowledges financial support through the DFG via the projects HA 1344/45-1 and HA 1344/43-1/-2. A.L., C.S. and D.R. acknowledge funding by the DFG — SFB 1625, project no. 506711657.

Author information

Authors and Affiliations

Authors

Contributions

L.H., Z.L., A.L., O.G. and D.R. developed the ideas for the paper. All authors contributed equally to the concept, discussion of the results and manuscript writing.

Corresponding authors

Correspondence to Liuliu Han, Alfred Ludwig or Dierk Raabe.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Qihong Fang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, L., Zhu, S., Rao, Z. et al. Multifunctional high-entropy materials. Nat Rev Mater 9, 846–865 (2024). https://doi.org/10.1038/s41578-024-00720-y

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41578-024-00720-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing