Abstract
Organic two-dimensional crystals (O2DCs) are a class of synthetic layered materials, typically constructed from π-conjugated building blocks, that show extended in-plane π-conjugation and/or interlayer electronic couplings. They are synthesized either directly as monolayer to few-layer nanosheets or as bulk crystals that can be exfoliated. O2DCs display customizable topological structures and layer-dependent physical attributes, offering a versatile material platform for exploring intriguing electronic and quantum phenomena. In this Review, we discuss the structure–property relationships and synthetic strategies of O2DCs, with particular emphasis on their unique electronic structures, charge transport properties and the emergence of quantum states, such as topological and superconducting phases, alongside different spin states. Furthermore, we highlight emerging device applications of O2DCs across electronics, optoelectronics and spintronics. Finally, we provide an outlook on the persistent challenges in synthetic chemistry, physics and materials science that must be addressed to further advance this field.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout






Similar content being viewed by others
References
Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).
Nicolosi, V., Chhowalla, M., Kanatzidis, M. G., Strano, M. S. & Coleman, J. N. Liquid exfoliation of layered materials. Science 340, 1226419 (2013).
Paton, K. R. et al. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater. 13, 624–630 (2014).
Liu, X. & Hersam, M. C. 2D materials for quantum information science. Nat. Rev. Mater. 4, 669–684 (2019).
Fiori, G. et al. Electronics based on two-dimensional materials. Nat. Nanotechnol. 9, 768–779 (2014).
Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).
Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011).
Tang, S. et al. Quantum spin Hall state in monolayer 1T′-WTe2. Nat. Phys. 13, 683–687 (2017).
Yu, Y. et al. Gate-tunable phase transitions in thin flakes of 1T-TaS2. Nat. Nanotechnol. 10, 270–276 (2015).
Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).
Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O. V. & Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2, 17033 (2017).
Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).
Ahn, G. H. et al. Strain-engineered growth of two-dimensional materials. Nat. Commun. 8, 608 (2017).
Wang, Z. et al. Controllable doping in 2D layered materials. Adv. Mater. 33, 2104942 (2021).
Martín, N., Tagmatarchis, N., Wang, Q. H. & Zhang, X. Chemical functionalization of 2D materials. Chem. Eur. J. 26, 6292–6295 (2020).
Kory, M. J. et al. Gram-scale synthesis of two-dimensional polymer crystals and their structure analysis by X-ray diffraction. Nat. Chem. 6, 779–784 (2014).
Feng, X. & Schlüter, A. D. Towards macroscopic crystalline 2D polymers. Angew. Chem. Int. Ed. Engl. 57, 13748–13763 (2018).
Côté, A. P. et al. Porous, crystalline, covalent organic frameworks. Science 310, 1166–1170 (2005).
Wang, M., Dong, R. & Feng, X. Two-dimensional conjugated metal–organic frameworks (2D c-MOFs): chemistry and function for MOFtronics. Chem. Soc. Rev. 50, 2764–2793 (2021).
Xie, L. S., Skorupskii, G. & Dincă, M. Electrically conductive metal–organic frameworks. Chem. Rev. 120, 8536–8580 (2020).
Nishio, M. CH/π hydrogen bonds in crystals. CrystEngComm 6, 130–158 (2004).
Sherrill, C. D. Energy component analysis of π interactions. Acc. Chem. Res. 46, 1020–1028 (2013).
Gilday, L. C. et al. Halogen bonding in supramolecular chemistry. Chem. Rev. 115, 7118–7195 (2015).
Gao, X. et al. Ultrathin graphdiyne film on graphene through solution-phase van der Waals epitaxy. Sci. Adv. 4, eaat6378 (2018).
Hou, L. et al. Synthesis of a monolayer fullerene network. Nature 606, 507–510 (2022).
Jeon, I.-R., Negru, B., Van Duyne, R. P. & Harris, T. D. A 2D semiquinone radical-containing microporous magnet with solvent-induced switching from Tc = 26 to 80 K. J. Am. Chem. Soc. 137, 15699–15702 (2015).
Schwotzer, F. et al. Cooperative assembly of 2D-MOF nanoplatelets into hierarchical carpets and tubular superstructures for advanced air filtration. Angew. Chem. Int. Ed. Engl. 61, e202117730 (2022).
Wang, B., Lin, R.-B., Zhang, Z., Xiang, S. & Chen, B. Hydrogen-bonded organic frameworks as a tunable platform for functional materials. J. Am. Chem. Soc. 142, 14399–14416 (2020).
Bunck, D. N. & Dichtel, W. R. Bulk synthesis of exfoliated two-dimensional polymers using hydrazone-linked covalent organic frameworks. J. Am. Chem. Soc. 135, 14952–14955 (2013).
Rodríguez-San-Miguel, D., Montoro, C. & Zamora, F. Covalent organic framework nanosheets: preparation, properties and applications. Chem. Soc. Rev. 49, 2291–2302 (2020).
Wang, Z. F., Su, N. & Liu, F. Prediction of a two-dimensional organic topological insulator. Nano Lett. 13, 2842–2845 (2013).
Huang, X. et al. Superconductivity in a copper (II)-based coordination polymer with perfect kagome structure. Angew. Chem. Int. Ed. Engl. 130, 152–156 (2018).
Takenaka, T. et al. Strongly correlated superconductivity in a copper-based metal–organic framework with a perfect kagome lattice. Sci. Adv. 7, eabf3996 (2021).
Dong, R. et al. A coronene-based semiconducting two-dimensional metal–organic framework with ferromagnetic behavior. Nat. Commun. 9, 2637 (2018).
Liu, W. et al. A two-dimensional conjugated aromatic polymer via C–C coupling reaction. Nat. Chem. 9, 563–570 (2017).
Galeotti, G. et al. Synthesis of mesoscale ordered two-dimensional π-conjugated polymers with semiconducting properties. Nat. Mater. 19, 874–880 (2020).
Jadhav, T. et al. 2D Poly(arylene vinylene) covalent organic frameworks via aldol condensation of trimethyltriazine. Angew. Chem. Int. Ed. Engl. 58, 13753–13757 (2019).
Liu, Y. et al. A thiophene backbone enables two-dimensional poly(arylene vinylene)s with high charge carrier mobility. Angew. Chem. Int. Ed. Engl. 62, e202305978 (2023).
Wang, M. et al. Exceptionally high charge mobility in phthalocyanine-based poly(benzimidazobenzophenanthroline)-ladder-type two-dimensional conjugated polymers. Nat. Mater. 22, 880–887 (2023).
Wang, S. et al. An organic electrochemical transistor for multi-modal sensing, memory and processing. Nat. Electron. 6, 281–291 (2023).
Zhang, T. et al. Engineering crystalline quasi-two-dimensional polyaniline thin film with enhanced electrical and chemiresistive sensing performances. Nat. Commun. 10, 4225 (2019).
Liu, K. et al. A quasi-2D polypyrrole film with band-like transport behavior and high charge-carrier mobility. Adv. Mater. 35, 2303288 (2023).
Springer, M. A., Liu, T.-J., Kuc, A. & Heine, T. Topological two-dimensional polymers. Chem. Soc. Rev. 49, 2007–2019 (2020).
Jing, Y. & Heine, T. Making 2D topological polymers a reality. Nat. Mater. 19, 823–824 (2020).
Jing, Y., Zhu, X., Maier, S. & Heine, T. 2D conjugated polymers: exploiting topological properties for the rational design of metal-free photocatalysts. Trends Chem. 4, 792–806 (2022).
Jeon, J.-P. et al. Benzotrithiophene-based covalent organic framework photocatalysts with controlled conjugation of building blocks for charge stabilization. Angew. Chem. Int. Ed. Engl. 62, e202217416 (2023).
Dong, R. et al. High-mobility band-like charge transport in a semiconducting two-dimensional metal–organic framework. Nat. Mater. 17, 1027–1032 (2018).
Jin, E. et al. Two-dimensional sp2 carbon-conjugated covalent organic frameworks. Science 357, 673–676 (2017).
Zhang, J. et al. Wavy two-dimensional conjugated metal–organic framework with metallic charge transport. J. Am. Chem. Soc. 145, 23630–23638 (2023).
Wang, M. et al. High-mobility semiconducting two-dimensional conjugated covalent organic frameworks with p-type doping. J. Am. Chem. Soc. 142, 21622–21627 (2020).
Wang, H. et al. Polymer-derived heteroatom-doped porous carbon materials. Chem. Rev. 120, 9363–9419 (2020).
Bi, S. et al. Heteroatom-embedded approach to vinylene-linked covalent organic frameworks with isoelectronic structures for photoredox catalysis. Angew. Chem. Int. Ed. Engl. 134, e202111627 (2022).
Li, D. et al. Metal-free thiophene-sulfur covalent organic frameworks: precise and controllable synthesis of catalytic active sites for oxygen reduction. J. Am. Chem. Soc. 142, 8104–8108 (2020).
Wang, D. et al. Atomic-level electronic properties of carbon nitride monolayers. ACS Nano 14, 14008–14016 (2020).
Schlütter, F. et al. π-Conjugated heterotriangulene macrocycles by solution and surface-supported synthesis toward honeycomb networks. J. Am. Chem. Soc. 135, 4550–4557 (2013).
Sick, T. et al. Oriented films of conjugated 2D covalent organic frameworks as photocathodes for water splitting. J. Am. Chem. Soc. 140, 2085–2092 (2018).
Xu, S. et al. Thiophene-bridged donor–acceptor sp2-carbon-linked 2D conjugated polymers as photocathodes for water reduction. Adv. Mater. 33, 2006274 (2021).
Yu, F. et al. Electrochromic two-dimensional covalent organic framework with a reversible dark-to-transparent switch. Nat. Commun. 11, 5534 (2020).
Wang, F.-D. et al. Pyrazine-functionalized donor–acceptor covalent organic frameworks for enhanced photocatalytic H2 evolution with high proton transport. Small 19, 2207421 (2023).
Bessinger, D., Ascherl, L., Auras, F. & Bein, T. Spectrally switchable photodetection with near-infrared-absorbing covalent organic frameworks. J. Am. Chem. Soc. 139, 12035–12042 (2017).
Liu, R. et al. Linkage-engineered donor–acceptor covalent organic frameworks for optimal photosynthesis of hydrogen peroxide from water and air. Nat. Catal. 7, 195–206 (2024).
Gutzler, R. & Perepichka, D. F. π-Electron conjugation in two dimensions. J. Am. Chem. Soc. 135, 16585–16594 (2013).
Che, Y. & Perepichka, D. F. Quantifying planarity in the design of organic electronic materials. Angew. Chem. Int. Ed. Engl. 60, 1364–1373 (2021).
Tan, K. T. et al. Covalent organic frameworks. Nat. Rev. Methods Primers 3, 2 (2023).
Wu, S. et al. Toward two-dimensional π-conjugated covalent organic radical frameworks. Angew. Chem. Int. Ed. Engl. 57, 8007–8011 (2018).
Lakshmi, V. et al. A two-dimensional poly (azatriangulene) covalent organic framework with semiconducting and paramagnetic states. J. Am. Chem. Soc. 142, 2155–2160 (2020).
Colson, J. W. et al. Oriented 2D covalent organic framework thin films on single-layer graphene. Science 332, 228–231 (2011).
Martínez-Abadía, M. et al. A wavy two-dimensional covalent organic framework from core-twisted polycyclic aromatic hydrocarbons. J. Am. Chem. Soc. 141, 14403–14410 (2019).
Zhong, Y. et al. Wafer-scale synthesis of monolayer two-dimensional porphyrin polymers for hybrid superlattices. Science 366, 1379–1384 (2019).
Dey, K., Bhunia, S., Sasmal, H. S., Reddy, C. M. & Banerjee, R. Self-assembly-driven nanomechanics in porous covalent organic framework thin films. J. Am. Chem. Soc. 143, 955–963 (2021).
Zhou, D., Tan, X., Wu, H., Tian, L. & Li, M. Synthesis of C–C bonded two-dimensional conjugated covalent organic framework films via Suzuki polymerization on liquid/liquid interface. Angew. Chem. Int. Ed. Engl. 131, 1390–1395 (2019).
Xu, S., Richter, M. & Feng, X. Vinylene-linked two-dimensional covalent organic frameworks: synthesis and functions. Acc. Mater. Res. 2, 252–265 (2021).
Tran, M. et al. 2D coordination polymers: design guidelines and materials perspective. Appl. Phys. Rev. 6, 041311 (2019).
Kambe, T. et al. Redox control and high conductivity of nickel bis (dithiolene) complex π-nanosheet: a potential organic two-dimensional topological insulator. J. Am. Chem. Soc. 136, 14357–14360 (2014).
Dou, J.-H. et al. Signature of metallic behavior in the metal–organic frameworks M3(hexaiminobenzene)2 (M = Ni, Cu). J. Am. Chem. Soc. 139, 13608–13611 (2017).
Campbell, M. G., Liu, S. F., Swager, T. M. & Dincă, M. Chemiresistive sensor arrays from conductive 2D metal–organic frameworks. J. Am. Chem. Soc. 137, 13780–13783 (2015).
Yang, C. et al. A semiconducting layered metal–organic framework magnet. Nat. Commun. 10, 3260 (2019).
Li, W. et al. High temperature ferromagnetism in π-conjugated two-dimensional metal-organic frameworks. Chem. Sci. 8, 2859–2867 (2017).
Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).
Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).
Lukose, B., Kuc, A. & Heine, T. The structure of layered covalent-organic frameworks. Chem. Eur. J. 17, 2388–2392 (2011).
Zhang, Y., Položij, M. & Heine, T. Statistical representation of stacking disorder in layered covalent organic frameworks. Chem. Mater. 34, 2376–2381 (2022).
Pütz, A. M. et al. Total scattering reveals the hidden stacking disorder in a 2D covalent organic framework. Chem. Sci. 11, 12647–12654 (2020).
Rawat, K. S. et al. How the layer alignment in two-dimensional nanoporous covalent organic frameworks impacts its electronic properties. ACS Appl. Nano Mater. 5, 14377–14387 (2022).
Kuc, A. et al. Proximity effect in crystalline framework materials: stacking-induced functionality in MOFs and COFs. Adv. Funct. Mater. 30, 1908004 (2020).
Chen, X., Addicoat, M., Irle, S., Nagai, A. & Jiang, D. Control of crystallinity and porosity of covalent organic frameworks by managing interlayer interactions based on self-complementary π-electronic force. J. Am. Chem. Soc. 135, 546–549 (2013).
Alahakoon, S. B. et al. 2D-covalent organic frameworks with interlayer hydrogen bonding oriented through designed nonplanarity. J. Am. Chem. Soc. 142, 12987–12994 (2020).
Wu, X., Han, X., Liu, Y., Liu, Y. & Cui, Y. Control interlayer stacking and chemical stability of two-dimensional covalent organic frameworks via steric tuning. J. Am. Chem. Soc. 140, 16124–16133 (2018).
Lu, Y. et al. Precise tuning of interlayer electronic coupling in layered conductive metal–organic frameworks. Nat. Commun. 13, 7240 (2022).
Chen, T. et al. Continuous electrical conductivity variation in M3(hexaiminotriphenylene)2 (M = Co, Ni, Cu) MOF alloys. J. Am. Chem. Soc. 142, 12367–12373 (2020).
Zhang, X. et al. Metal-organic frameworks with fine-tuned interlayer spacing for microwave absorption. Sci. Adv. 10, eadl6498 (2024).
Wang, C. et al. Enhancing the carrier transport in monolayer MoS2 through interlayer coupling with 2D covalent organic frameworks. Adv. Mater. 36, 2305882 (2024).
Liu, K. et al. A two-dimensional polyimide-graphene heterostructure with ultra-fast interlayer charge transfer. Angew. Chem. Int. Ed. Engl. 60, 13859–13864 (2021).
Wang, Z. et al. A Cu3BHT-graphene van der Waals heterostructure with strong interlayer coupling for highly efficient photoinduced charge separation. Adv. Mater. 36, 2311454 (2024).
Day, R. W. et al. Single crystals of electrically conductive two-dimensional metal–organic frameworks: structural and electrical transport properties. ACS Cent. Sci. 5, 1959–1964 (2019).
Evans, A. M. et al. Thermally conductive ultra-low-k dielectric layers based on two-dimensional covalent organic frameworks. Nat. Mater. 20, 1142–1148 (2021).
Wang, Z. et al. Interfacial synthesis of layer-oriented 2D conjugated metal–organic framework films toward directional charge transport. J. Am. Chem. Soc. 143, 13624–13632 (2021).
Makiura, R. et al. Surface nano-architecture of a metal–organic framework. Nat. Mater. 9, 565–571 (2010).
Huang, X. et al. Semiconducting conjugated coordination polymer with high charge mobility enabled by ‘4 + 2’ phenyl ligands. J. Am. Chem. Soc. 145, 2430–2438 (2023).
Kissel, P., Murray, D. J., Wulftange, W. J., Catalano, V. J. & King, B. T. A nanoporous two-dimensional polymer by single-crystal-to-single-crystal photopolymerization. Nat. Chem. 6, 774 (2014).
Mahmood, J. et al. Two-dimensional polyaniline (C3N) from carbonized organic single crystals in solid state. Proc. Natl Acad. Sci. USA 113, 7414–7419 (2016).
Dong, R., Zhang, T. & Feng, X. Interface-assisted synthesis of 2D materials: trend and challenges. Chem. Rev. 118, 6189–6235 (2018).
Ma, T. et al. Single-crystal X-ray diffraction structures of covalent organic frameworks. Science 361, 48–52 (2018).
Mahmood, J. et al. Nitrogenated holey two-dimensional structures. Nat. Commun. 6, 6486 (2015).
Evans, A. M. et al. Seeded growth of single-crystal two-dimensional covalent organic frameworks. Science 361, 52–57 (2018).
Natraj, A. et al. Single-crystalline imine-linked two-dimensional covalent organic frameworks separate benzene and cyclohexane efficiently. J. Am. Chem. Soc. 144, 19813–19824 (2022).
Peng, L. et al. Ultra-fast single-crystal polymerization of large-sized covalent organic frameworks. Nat. Commun. 12, 5077 (2021).
Han, J. et al. Fast growth of single-crystal covalent organic frameworks for laboratory X-ray diffraction. Science 383, 1014–1019 (2024).
Wang, S. et al. Exfoliation of covalent organic frameworks into few-layer redox-active nanosheets as cathode materials for lithium-ion batteries. J. Am. Chem. Soc. 139, 4258–4261 (2017).
Burke, D. W. et al. Acid exfoliation of imine‐linked covalent organic frameworks enables solution processing into crystalline thin films. Angew. Chem. Int. Ed. Engl. 132, 5203–5209 (2020).
Liu, X. et al. Magnetoresistance in organic spin valves based on acid-exfoliated 2D covalent organic frameworks thin films. Angew. Chem. Int. Ed. Engl. 62, e202308921 (2023).
Haldar, S., Roy, K., Kushwaha, R., Ogale, S. & Vaidhyanathan, R. Chemical exfoliation as a controlled route to enhance the anodic performance of COF in LIB. Adv. Energy Mater. 9, 1902428 (2019).
Wang, Z. et al. Ultrathin two-dimensional conjugated metal–organic framework single-crystalline nanosheets enabled by surfactant-assisted synthesis. Chem. Sci. 11, 7665–7671 (2020).
Chandra, S. et al. Chemically stable multilayered covalent organic nanosheets from covalent organic frameworks via mechanical delamination. J. Am. Chem. Soc. 135, 17853–17861 (2013).
Wang, M. et al. Phthalocyanine-based 2D conjugated metal-organic framework nanosheets for high-performance micro-supercapacitors. Adv. Funct. Mater. 30, 2002664 (2020).
Lafferentz, L. et al. Controlling on-surface polymerization by hierarchical and substrate-directed growth. Nat. Chem. 4, 215–220 (2012).
Bieri, M. et al. Porous graphenes: two-dimensional polymer synthesis with atomic precision. Chem. Comm. 45, 6919–6921 (2009).
Grossmann, L. et al. On-surface photopolymerization of two-dimensional polymers ordered on the mesoscale. Nat. Chem. 13, 730–736 (2021).
Bieri, M. et al. Two-dimensional polymer formation on surfaces: insight into the roles of precursor mobility and reactivity. J. Am. Chem. Soc. 132, 16669–16676 (2010).
Telychko, M. et al. Ultrahigh-yield on-surface synthesis and assembly of circumcoronene into a chiral electronic Kagome-honeycomb lattice. Sci. Adv. 7, eabf0269 (2021).
Liu, X.-H. et al. On-surface synthesis of single-layered two-dimensional covalent organic frameworks via solid–vapor interface reactions. J. Am. Chem. Soc. 135, 10470–10474 (2013).
Grill, L. & Hecht, S. Covalent on-surface polymerization. Nat. Chem. 12, 115–130 (2020).
Dienstmaier, J. F. et al. Synthesis of well-ordered COF monolayers: surface growth of nanocrystalline precursors versus direct on-surface polycondensation. ACS Nano 5, 9737–9745 (2011).
Liu, M. et al. Two-dimensional covalent organic framework films prepared on various substrates through vapor induced conversion. Nat. Commun. 13, 1411 (2022).
Gong, P. et al. Long-range epitaxial MOF electronics for continuous monitoring of human breath ammonia. J. Am. Chem. Soc. 146, 4036–4044 (2024).
Claire, F. J. et al. Structural and electronic switching of a single crystal 2D metal-organic framework prepared by chemical vapor deposition. Nat. Commun. 11, 5524 (2020).
Zhan, G. et al. Observing polymerization in 2D dynamic covalent polymers. Nature 603, 835–840 (2022).
Mähringer, A. et al. Oriented thin films of electroactive triphenylene catecholate-based two-dimensional metal–organic frameworks. ACS Nano 13, 6711–6719 (2019).
Choe, M. et al. Chemical vapor deposition of edge-on oriented 2D conductive metal–organic framework thin films. J. Am. Chem. Soc. 144, 16726–16731 (2022).
Daum, J. P. et al. Solutions are the problem: ordered two-dimensional covalent organic framework films by chemical vapor deposition. ACS Nano 17, 21411–21419 (2023).
Liu, J. et al. On-liquid-gallium surface synthesis of ultrasmooth thin films of conductive metal–organic frameworks. Nat. Synth. 3, 715–726 (2024).
Rao, C. N. R. & Kalyanikutty, K. P. The liquid–liquid interface as a medium to generate nanocrystalline films of inorganic materials. Acc. Chem. Res. 41, 489–499 (2008).
Yang, R. et al. Potential difference-modulated synthesis of self-standing covalent organic framework membranes at liquid/liquid interfaces. J. Am. Chem. Soc. 144, 11778–11787 (2022).
Pfeffermann, M. et al. Free-standing monolayer two-dimensional supramolecular organic framework with good internal order. J. Am. Chem. Soc. 137, 14525–14532 (2015).
Dong, R. et al. Large-area, free-standing, two-dimensional supramolecular polymer single-layer sheets for highly efficient electrocatalytic hydrogen evolution. Angew. Chem. Int. Ed. Engl. 54, 12058–12063 (2015).
Sahabudeen, H. et al. Wafer-sized multifunctional polyimine-based two-dimensional conjugated polymers with high mechanical stiffness. Nat. Commun. 7, 13461 (2016).
Liu, K. et al. On-water surface synthesis of crystalline, few-layer two-dimensional polymers assisted by surfactant monolayers. Nat. Chem. 11, 994–1000 (2019).
Wang, L., Sahabudeen, H., Zhang, T. & Dong, R. Liquid-interface-assisted synthesis of covalent-organic and metal–organic two-dimensional crystalline polymers. npj 2D Mater. Appl. 2, 26 (2018).
Rideout, D. C. & Breslow, R. Hydrophobic acceleration of Diels–Alder reactions. J. Am. Chem. Soc. 102, 7816–7817 (1980).
Zhao, C. et al. Urea-linked covalent organic frameworks. J. Am. Chem. Soc. 140, 16438–16441 (2018).
Halder, A. et al. Ultrastable imine‐based covalent organic frameworks for sulfuric acid recovery: an effect of interlayer hydrogen bonding. Angew. Chem. Int. Ed. Engl. 57, 5797–5802 (2018).
Halder, A. et al. Interlayer hydrogen-bonded covalent organic frameworks as high-performance supercapacitors. J. Am. Chem. Soc. 140, 10941–10945 (2018).
Seki, T. et al. Real-time study of on-water chemistry: surfactant monolayer-assisted growth of a crystalline quasi-2D polymer. Chem 7, 2758–2770 (2021).
Prasoon, A. et al. Site-selective chemical reactions by on-water surface sequential assembly. Nat. Commun. 14, 8313 (2023).
Qi, H. et al. Near-atomic-scale observation of grain boundaries in a layer-stacked two-dimensional polymer. Sci. Adv. 6, eabb5976 (2020).
Sahabudeen, H. et al. Highly crystalline and semiconducting imine-based two-dimensional polymers enabled by interfacial synthesis. Angew. Chem. Int. Ed. Engl. 59, 6028–6036 (2020).
Park, S. et al. Two‐dimensional boronate ester covalent organic framework thin films with large single crystalline domains for neuromorphic memory device. Angew. Chem. Int. Ed. Engl. 132, 2–9 (2020).
Wang, Z. et al. On-water surface synthesis of charged two-dimensional polymer single crystals via the irreversible Katritzky reaction. Nat. Synth. 1, 69–76 (2022).
Jing, Y. & Heine, T. Two-dimensional kagome lattices made of hetero triangulenes are Dirac semimetals or single-band semiconductors. J. Am. Chem. Soc. 141, 743–747 (2019).
Bian, G., Yin, J. & Zhu, J. Recent advances on conductive 2D covalent organic frameworks. Small 17, 2006043 (2021).
Chen, S., Dai, J. & Zeng, X. C. Metal–organic kagome lattices M3(2,3,6,7,10,11-hexaiminotriphenylene)2 (M = Ni and Cu): from semiconducting to metallic by metal substitution. Phys. Chem. Chem. Phys. 17, 5954–5958 (2015).
Ni, X., Huang, H. & Brédas, J.-L. Emergence of a two-dimensional topological Dirac semimetal phase in a phthalocyanine-based covalent organic framework. Chem. Mater. 34, 3178–3184 (2022).
Huang, X. et al. A two-dimensional π–d conjugated coordination polymer with extremely high electrical conductivity and ambipolar transport behaviour. Nat. Commun. 6, 7408 (2015).
Zhang, X., Zhou, Y., Cui, B., Zhao, M. & Liu, F. Theoretical discovery of a superconducting two-dimensional metal–organic framework. Nano Lett. 17, 6166–6170 (2017).
Foster, M. E., Sohlberg, K., Allendorf, M. D. & Talin, A. A. Unraveling the semiconducting/metallic discrepancy in Ni3(HITP)2. J. Phys. Chem. Lett. 9, 481–486 (2018).
Rubio-Giménez, V., Tatay, S. & Martí-Gastaldo, C. Electrical conductivity and magnetic bistability in metal–organic frameworks and coordination polymers: charge transport and spin crossover at the nanoscale. Chem. Soc. Rev. 49, 5601–5638 (2020).
Un, H.-I. et al. Controlling film formation and host–guest interactions to enhance the thermoelectric properties of nickel–nitrogen-based 2D conjugated coordination polymers. Adv. Mater. 36, 2312325 (2024).
Dou, J.-H. et al. Atomically precise single-crystal structures of electrically conducting 2D metal–organic frameworks. Nat. Mater. 20, 222–228 (2021).
Sheberla, D. et al. High electrical conductivity in Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2, a semiconducting metal–organic graphene analogue. J. Am. Chem. Soc. 136, 8859–8862 (2014).
Saeki, A., Koizumi, Y., Aida, T. & Seki, S. Comprehensive approach to intrinsic charge carrier mobility in conjugated organic molecules, macromolecules, and supramolecular architectures. Acc. Chem. Res. 45, 1193–1202 (2012).
Ulbricht, R., Hendry, E., Shan, J., Heinz, T. F. & Bonn, M. Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy. Rev. Mod. Phys. 83, 543–586 (2011).
Fu, S. et al. Outstanding charge mobility by band transport in two-dimensional semiconducting covalent organic frameworks. J. Am. Chem. Soc. 144, 7489–7496 (2022).
Ding, X. et al. Synthesis of metallophthalocyanine covalent organic frameworks that exhibit high carrier mobility and photoconductivity. Angew. Chem. Int. Ed. Engl. 50, 1289–1293 (2011).
Ding, X. et al. Conducting metallophthalocyanine 2D covalent organic frameworks: the role of central metals in controlling π-electronic functions. Chem. Comm. 48, 8952–8954 (2012).
Wan, S. et al. Covalent organic frameworks with high charge carrier mobility. Chem. Mater. 23, 4094–4097 (2011).
Dalapati, S. et al. Rational design of crystalline supermicroporous covalent organic frameworks with triangular topologies. Nat. Commun. 6, 7786 (2015).
Feng, X. et al. High‐rate charge‐carrier transport in porphyrin covalent organic frameworks: switching from hole to electron to ambipolar conduction. Angew. Chem. Int. Ed. Engl. 51, 2618–2622 (2012).
Guo, J. et al. Conjugated organic framework with three-dimensionally ordered stable structure and delocalized π clouds. Nat. Commun. 4, 2736 (2013).
Jin, E. et al. A nanographene-based two-dimensional covalent organic framework as a stable and efficient photocatalyst. Angew. Chem. Int. Ed. Engl. 61, e202114059 (2022).
Lu, Y. et al. Tunable charge transport and spin dynamics in two-dimensional conjugated metal–organic frameworks. J. Am. Chem. Soc. 146, 2574–2582 (2024).
Jin, E. et al. Module-patterned polymerization towards crystalline 2D sp2-carbon covalent organic framework semiconductors. Angew. Chem. Int. Ed. Engl. 61, e202115020 (2022).
Xing, G. et al. Nonplanar rhombus and kagome 2D covalent organic frameworks from distorted aromatics for electrical conduction. J. Am. Chem. Soc. 144, 5042–5050 (2022).
Sporrer, L. et al. Near IR bandgap semiconducting 2D conjugated metal–organic framework with rhombic lattice and high mobility. Angew. Chem. Int. Ed. Engl. 62, e202300186 (2023).
Deng, T. et al. Designing intrinsic topological insulators in two-dimensional metal–organic frameworks. J. Phys. Chem. Lett. 12, 6934–6940 (2021).
Wang, Z. F., Liu, Z. & Liu, F. Organic topological insulators in organometallic lattices. Nat. Commun. 4, 1471 (2013).
Dong, L., Kim, Y., Er, D., Rappe, A. M. & Shenoy, V. B. Two-dimensional π-conjugated covalent-organic frameworks as quantum anomalous Hall topological insulators. Phys. Rev. Lett. 116, 096601 (2016).
Zhang, L. Z. et al. Intrinsic two-dimensional organic topological insulators in metal-dicyanoanthracene lattices. Nano Lett. 16, 2072–2075 (2016).
Jiang, W., Zhang, S., Wang, Z., Liu, F. & Low, T. Topological band engineering of Lieb lattice in phthalocyanine-based metal–organic frameworks. Nano Lett. 20, 1959–1966 (2020).
Wang, Z., Liu, Z. & Liu, F. Quantum anomalous Hall effect in 2D organic topological insulators. Phys. Rev. Lett. 110, 196801 (2013).
Hu, T., Zhang, T., Mu, H. & Wang, Z. Intrinsic second-order topological insulator in two-dimensional covalent organic frameworks. J. Phys. Chem. Lett. 13, 10905–10911 (2022).
Ni, X., Huang, H. & Brédas, J.-L. Organic higher-order topological insulators: heterotriangulene-based covalent organic frameworks. J. Am. Chem. Soc. 144, 22778–22786 (2022).
López-Cabrelles, J. et al. Isoreticular two-dimensional magnetic coordination polymers prepared through pre-synthetic ligand functionalization. Nat. Chem. 10, 1001–1007 (2018).
López-Cabrelles, J. et al. Chemical design and magnetic ordering in thin layers of 2D metal–organic frameworks (MOFs). J. Am. Chem. Soc. 143, 18502–18510 (2021).
Thomas, S., Li, H. & Bredas, J.-L. Emergence of an antiferromagnetic Mott insulating phase in hexagonal π-conjugated covalent organic frameworks. Adv. Mater. 31, 1900355 (2019).
Phan, H. et al. Room-temperature magnets based on 1,3,5-triazine-linked porous organic radical frameworks. Chem 5, 1223–1234 (2019).
Yu, H. & Wang, D. Metal-free magnetism in chemically doped covalent organic frameworks. J. Am. Chem. Soc. 142, 11013–11021 (2020).
Cui, Y. et al. Synthetic route to a triphenylenehexaselenol-based metal organic framework with semi-conductive and glassy magnetic properties. iScience 23, 100812 (2020).
DeGayner, J. A., Jeon, I.-R., Sun, L., Dincă, M. & Harris, T. D. 2D conductive iron-quinoid magnets ordering up to Tc = 105 K via heterogenous redox chemistry. J. Am. Chem. Soc. 139, 4175–4184 (2017).
Yu, H. & Heine, T. Prediction of metal-free Stoner and Mott-Hubbard magnetism in triangulene-based two-dimensional polymers. Sci. Adv. 10,eadq7954 (2024).
Jiang, W., Huang, H. & Liu, F. A Lieb-like lattice in a covalent-organic framework and its Stoner ferromagnetism. Nat. Commun. 10, 2207 (2019).
Cui, B. et al. Realization of Lieb lattice in covalent-organic frameworks with tunable topology and magnetism. Nat. Commun. 11, 66 (2020).
Chatterjee, A. et al. Semiconductor qubits in practice. Nat. Rev. Phys. 3, 157–177 (2021).
Oanta, A. K. et al. Electronic spin qubit candidates arrayed within layered two-dimensional polymers. J. Am. Chem. Soc. 145, 689–696 (2023).
Evans, A. M. et al. Controlled n-doping of naphthalene diimide-based two-dimensional polymers. Adv. Mater. 34, 2101932 (2021).
Yu, C.-J., Krzyaniak, M. D., Fataftah, M. S., Wasielewski, M. R. & Freedman, D. E. A concentrated array of copper porphyrin candidate qubits. Chem. Sci. 10, 1702–1708 (2019).
Misumi, Y. et al. Quantum spin liquid state in a two-dimensional semiconductive metal–organic framework. J. Am. Chem. Soc. 142, 16513–16517 (2020).
Murphy, R. A. et al. Exchange bias in a layered metal–organic topological spin glass. ACS Cent. Sci. 7, 1317–1326 (2021).
Chandra, P., Coleman, P. & Ritchey, I. The anisotropic kagome antiferromagnet: a topological spin glass? J. Phys. I 3, 591–610 (1993).
Yang, J. et al. Spin jam induced by quantum fluctuations in a frustrated magnet. Proc. Natl Acad. Sci. USA 112, 11519–11523 (2015).
Feng, S. et al. Classical spin liquid state in a rhombic lattice metal–organic framework. Nano Res. 17, 3407–3412 (2023).
Yan, X., Su, X., Chen, J., Jin, C. & Chen, L. Two-dimensional metal–organic frameworks towards spintronics. Angew. Chem. Int. Ed. Engl. 62, e202305408 (2023).
Allendorf, M. D. et al. Electronic devices using open framework materials. Chem. Rev. 120, 8581–8640 (2020).
Yang, F. & et al. 2D organic materials for optoelectronic applications. Adv. Mater. 30, 1702415 (2018).
Wu, G., Huang, J., Zang, Y., He, J. & Xu, G. Porous field-effect transistors based on a semiconductive metal–organic framework. J. Am. Chem. Soc. 139, 1360–1363 (2017).
Feldblyum, J. I. et al. Few-layer, large-area, 2D covalent organic framework semiconductor thin films. Chem. Commun. 51, 13894–13897 (2015).
Wang, B., Luo, Y., Liu, B. & Duan, G. Field-effect transistor based on an in situ grown metal–organic framework film as a liquid-gated sensing device. ACS Appl. Mater. Interfaces 11, 35935–35940 (2019).
Sun, B. et al. Oriented covalent organic framework film on graphene for robust ambipolar vertical organic field-effect transistor. Chem. Mater. 29, 4367–4374 (2017).
Rivnay, J. et al. Organic electrochemical transistors. Nat. Rev. Mater. 3, 17086 (2018).
Gkoupidenis, P. et al. Organic mixed conductors for bioinspired electronics. Nat. Rev. Mater. 9, 134–149 (2024).
Rashid, R. B. et al. A semiconducting two-dimensional polymer as an organic electrochemical transistor active layer. Adv. Mater. 34, 2110703 (2022).
Song, J. et al. 2D metal–organic frameworks for ultraflexible electrochemical transistors with high transconductance and fast response speeds. Sci. Adv. 9, eadd9627 (2023).
Zhang, Z. et al. Cation-selective two-dimensional polyimine membranes for high-performance osmotic energy conversion. Nat. Commun. 13, 3935 (2022).
Sabaghi, D. et al. Ultrathin positively charged electrode skin for durable anion-intercalation battery chemistries. Nat. Commun. 14, 760 (2023).
Majhi, S. M., Mirzaei, A., Kim, H. W., Kim, S. S. & Kim, T. W. Recent advances in energy-saving chemiresistive gas sensors: a review. Nano Energy 79, 105369 (2021).
Jo, Y.-M. et al. MOF-based chemiresistive gas sensors: toward new functionalities. Adv. Mater. 35, 2206842 (2023).
Koo, W.-T., Jang, J.-S. & Kim, I.-D. Metal–organic frameworks for chemiresistive sensors. Chem 5, 1938–1963 (2019).
Stassen, I., Dou, J.-H., Hendon, C. & Dincă, M. Chemiresistive sensing of ambient CO2 by an autogenously hydrated Cu3(hexaiminobenzene)2 framework. ACS Cent. Sci. 5, 1425–1431 (2019).
Chen, X. et al. Ultrafast in situ synthesis of large-area conductive metal–organic frameworks on substrates for flexible chemiresistive sensing. ACS Appl. Mater. Interfaces 12, 57235–57244 (2020).
Rubio‐Giménez, V. et al. Origin of the chemiresistive response of ultrathin films of conductive metal–organic frameworks. Angew. Chem. Int. Ed. Engl. 130, 15306–15310 (2018).
Smith, M. K. & Mirica, K. A. Self-organized frameworks on textiles (SOFT): conductive fabrics for simultaneous sensing, capture, and filtration of gases. J. Am. Chem. Soc. 139, 16759–16767 (2017).
Meng, Z., Stolz, R. M. & Mirica, K. A. Two-dimensional chemiresistive covalent organic framework with high intrinsic conductivity. J. Am. Chem. Soc. 141, 11929–11937 (2019).
Wang, M. et al. Surface-modified phthalocyanine-based two-dimensional conjugated metal–organic framework films for polarity-selective chemiresistive sensing. Angew. Chem. Int. Ed. Engl. 133, 18814–18820 (2021).
Liu, M. et al. Porphyrin-based COF 2D materials: variable modification of sensing performances by post-metallization. Angew. Chem. Int. Ed. Engl. 61, e202115308 (2022).
Yao, M.-S. et al. Layer-by-layer assembled conductive metal-organic framework nanofilms for room-temperature chemiresistive sensing. Angew. Chem. Int. Ed. Engl. 56, 16510–16514 (2017).
Yao, P. et al. Fully hardware-implemented memristor convolutional neural network. Nature 577, 641–646 (2020).
Wang, Z. et al. Nanoionics-enabled memristive devices: strategies and materials for neuromorphic applications. Adv. Electron. Mater. 3, 1600510 (2017).
Wang, Z. et al. Signal filtering enabled by spike voltage-dependent plasticity in metalloporphyrin-based memristors. Adv. Mater. 33, 2104370 (2021).
Wang, Z. et al. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 16, 101–108 (2017).
Ling, H. et al. Electrolyte-gated transistors for synaptic electronics, neuromorphic computing, and adaptable biointerfacing. Appl. Phys. Rev. 7, 011307 (2020).
Li, T. et al. 2D oriented covalent organic frameworks for alcohol-sensory synapses. Mater. Horiz. 8, 2041–2049 (2021).
Ding, G. et al. Porous crystalline materials for memories and neuromorphic computing systems. Chem. Soc. Rev. 52, 7071–7136 (2023).
Liu, J. et al. A robust nonvolatile resistive memory device based on a freestanding ultrathin 2D imine polymer film. Adv. Mater. 31, 1902264 (2019).
Liu, L. et al. A highly crystalline single layer 2D polymer for low variability and excellent scalability molecular memristors. Adv. Mater. 35, 2208377 (2023).
Hota, M. K. et al. Electrochemical thin-film transistors using covalent organic framework channel. Adv. Funct. Mater. 32, 2201120 (2022).
Gu, C., Jia, A.-B., Zhang, Y.-M. & Zhang, S. X.-A. Emerging electrochromic materials and devices for future displays. Chem. Rev. 122, 14679–14721 (2022).
Yang, G. et al. Advances in nanomaterials for electrochromic devices. Chem. Soc. Rev. 49, 8687–8720 (2020).
Hao, Q. et al. Oriented two-dimensional covalent organic framework films for near-infrared electrochromic application. J. Am. Chem. Soc. 141, 19831–19838 (2019).
Hao, Q. et al. A covalent organic framework film for three‐state near‐infrared electrochromism and a molecular logic gate. Angew. Chem. Int. Ed. Engl. 133, 12606–12611 (2021).
Wang, Z. et al. Viologen-immobilized 2D polymer film enabling highly efficient electrochromic device for solar-powered smart window. Adv. Mater. 34, 2106073 (2022).
Cao, L. et al. Two-dimensional covalent organic framework–graphene photodetectors: insight into the relationship between the microscopic interfacial structure and performance. ACS Omega 4, 18780–18786 (2019).
Li, C. et al. Two‐dimensional conjugated polymer synthesized by interfacial Suzuki reaction: towards electronic device applications. Angew. Chem. Int. Ed. Engl. 132, 9489–9493 (2020).
Xiong, Y. et al. Ultrahigh responsivity photodetectors of 2D covalent organic frameworks integrated on graphene. Adv. Mater. 32, 1907242 (2020).
Arora, H. et al. Demonstration of a broadband photodetector based on a two-dimensional metal–organic framework. Adv. Mater. 32, 1907063 (2020).
Chappert, C., Fert, A. & Van Dau, F. N. The emergence of spin electronics in data storage. Nat. Mater. 6, 813–823 (2007).
Coronado, E. Molecular magnetism: from chemical design to spin control in molecules, materials and devices. Nat. Rev. Mater. 5, 87–104 (2020).
Song, X. et al. 2D semiconducting metal–organic framework thin films for organic spin valves. Angew. Chem. Int. Ed. Engl. 59, 1118–1123 (2020).
Song, X. et al. Two-dimensional conductive metal–organic framework reinforced spinterface in organic spin valves. CCS Chem. 6, 208–217 (2024).
Chen, D., Su, S.-J. & Cao, Y. Nitrogen heterocycle-containing materials for highly efficient phosphorescent OLEDs with low operating voltage. J. Mater. Chem. C 2, 9565–9578 (2014).
Acknowledgements
This work was financially supported by an ERC Consolidator Grant (T2DCP, no. 819698) and DFG projects (2D polyanilines, no. 426572620; GRK2861, no. 491865171; and CRC 1415, Chemistry of Synthetic Two-Dimensional Materials, no. 417590517). The authors thank P. L. Koko and R. Zhao for providing the energy levels in Fig. 1b,f.
Author information
Authors and Affiliations
Contributions
Z.W. researched data and wrote the article. All authors contributed to the content discussion and edited the manuscript before submission.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Materials thanks Dima Perepichka and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Wang, Z., Wang, M., Heine, T. et al. Electronic and quantum properties of organic two-dimensional crystals. Nat Rev Mater 10, 147–166 (2025). https://doi.org/10.1038/s41578-024-00740-8
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s41578-024-00740-8
This article is cited by
-
Fundamentals of charge transport in two-dimensional framework materials
Nature Reviews Materials (2025)
-
Unveiling high-mobility hot carriers in a two-dimensional conjugated coordination polymer
Nature Materials (2025)