Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Electronic and quantum properties of organic two-dimensional crystals

Abstract

Organic two-dimensional crystals (O2DCs) are a class of synthetic layered materials, typically constructed from π-conjugated building blocks, that show extended in-plane π-conjugation and/or interlayer electronic couplings. They are synthesized either directly as monolayer to few-layer nanosheets or as bulk crystals that can be exfoliated. O2DCs display customizable topological structures and layer-dependent physical attributes, offering a versatile material platform for exploring intriguing electronic and quantum phenomena. In this Review, we discuss the structure–property relationships and synthetic strategies of O2DCs, with particular emphasis on their unique electronic structures, charge transport properties and the emergence of quantum states, such as topological and superconducting phases, alongside different spin states. Furthermore, we highlight emerging device applications of O2DCs across electronics, optoelectronics and spintronics. Finally, we provide an outlook on the persistent challenges in synthetic chemistry, physics and materials science that must be addressed to further advance this field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design principles of organic two-dimensional crystals and chemical approaches to tune their electronic structures.
Fig. 2: Schematics of different synthetic protocols.
Fig. 3: Electronic structures of organic two-dimensional crystals.
Fig. 4: Charge transport in organic two-dimensional crystals.
Fig. 5: Quantum states in organic two-dimensional crystals.
Fig. 6: Device applications of organic two-dimensional crystals.

Similar content being viewed by others

References

  1. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    CAS  PubMed  Google Scholar 

  2. Nicolosi, V., Chhowalla, M., Kanatzidis, M. G., Strano, M. S. & Coleman, J. N. Liquid exfoliation of layered materials. Science 340, 1226419 (2013).

    Google Scholar 

  3. Paton, K. R. et al. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater. 13, 624–630 (2014).

    CAS  PubMed  Google Scholar 

  4. Liu, X. & Hersam, M. C. 2D materials for quantum information science. Nat. Rev. Mater. 4, 669–684 (2019).

    Google Scholar 

  5. Fiori, G. et al. Electronics based on two-dimensional materials. Nat. Nanotechnol. 9, 768–779 (2014).

    CAS  PubMed  Google Scholar 

  6. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    CAS  Google Scholar 

  7. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011).

    CAS  PubMed  Google Scholar 

  8. Tang, S. et al. Quantum spin Hall state in monolayer 1T′-WTe2. Nat. Phys. 13, 683–687 (2017).

    CAS  Google Scholar 

  9. Yu, Y. et al. Gate-tunable phase transitions in thin flakes of 1T-TaS2. Nat. Nanotechnol. 10, 270–276 (2015).

    CAS  PubMed  Google Scholar 

  10. Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).

    CAS  PubMed  Google Scholar 

  11. Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O. V. & Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2, 17033 (2017).

    CAS  Google Scholar 

  12. Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

    CAS  PubMed  Google Scholar 

  13. Ahn, G. H. et al. Strain-engineered growth of two-dimensional materials. Nat. Commun. 8, 608 (2017).

    PubMed  PubMed Central  Google Scholar 

  14. Wang, Z. et al. Controllable doping in 2D layered materials. Adv. Mater. 33, 2104942 (2021).

    CAS  Google Scholar 

  15. Martín, N., Tagmatarchis, N., Wang, Q. H. & Zhang, X. Chemical functionalization of 2D materials. Chem. Eur. J. 26, 6292–6295 (2020).

    PubMed  Google Scholar 

  16. Kory, M. J. et al. Gram-scale synthesis of two-dimensional polymer crystals and their structure analysis by X-ray diffraction. Nat. Chem. 6, 779–784 (2014).

    CAS  PubMed  Google Scholar 

  17. Feng, X. & Schlüter, A. D. Towards macroscopic crystalline 2D polymers. Angew. Chem. Int. Ed. Engl. 57, 13748–13763 (2018).

    CAS  PubMed  Google Scholar 

  18. Côté, A. P. et al. Porous, crystalline, covalent organic frameworks. Science 310, 1166–1170 (2005).

    PubMed  Google Scholar 

  19. Wang, M., Dong, R. & Feng, X. Two-dimensional conjugated metal–organic frameworks (2D c-MOFs): chemistry and function for MOFtronics. Chem. Soc. Rev. 50, 2764–2793 (2021).

    CAS  PubMed  Google Scholar 

  20. Xie, L. S., Skorupskii, G. & Dincă, M. Electrically conductive metal–organic frameworks. Chem. Rev. 120, 8536–8580 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Nishio, M. CH/π hydrogen bonds in crystals. CrystEngComm 6, 130–158 (2004).

    CAS  Google Scholar 

  22. Sherrill, C. D. Energy component analysis of π interactions. Acc. Chem. Res. 46, 1020–1028 (2013).

    CAS  PubMed  Google Scholar 

  23. Gilday, L. C. et al. Halogen bonding in supramolecular chemistry. Chem. Rev. 115, 7118–7195 (2015).

    CAS  PubMed  Google Scholar 

  24. Gao, X. et al. Ultrathin graphdiyne film on graphene through solution-phase van der Waals epitaxy. Sci. Adv. 4, eaat6378 (2018).

    PubMed  PubMed Central  Google Scholar 

  25. Hou, L. et al. Synthesis of a monolayer fullerene network. Nature 606, 507–510 (2022).

    CAS  PubMed  Google Scholar 

  26. Jeon, I.-R., Negru, B., Van Duyne, R. P. & Harris, T. D. A 2D semiquinone radical-containing microporous magnet with solvent-induced switching from Tc = 26 to 80 K. J. Am. Chem. Soc. 137, 15699–15702 (2015).

    CAS  PubMed  Google Scholar 

  27. Schwotzer, F. et al. Cooperative assembly of 2D-MOF nanoplatelets into hierarchical carpets and tubular superstructures for advanced air filtration. Angew. Chem. Int. Ed. Engl. 61, e202117730 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang, B., Lin, R.-B., Zhang, Z., Xiang, S. & Chen, B. Hydrogen-bonded organic frameworks as a tunable platform for functional materials. J. Am. Chem. Soc. 142, 14399–14416 (2020).

    CAS  PubMed  Google Scholar 

  29. Bunck, D. N. & Dichtel, W. R. Bulk synthesis of exfoliated two-dimensional polymers using hydrazone-linked covalent organic frameworks. J. Am. Chem. Soc. 135, 14952–14955 (2013).

    CAS  PubMed  Google Scholar 

  30. Rodríguez-San-Miguel, D., Montoro, C. & Zamora, F. Covalent organic framework nanosheets: preparation, properties and applications. Chem. Soc. Rev. 49, 2291–2302 (2020).

    PubMed  Google Scholar 

  31. Wang, Z. F., Su, N. & Liu, F. Prediction of a two-dimensional organic topological insulator. Nano Lett. 13, 2842–2845 (2013).

    CAS  PubMed  Google Scholar 

  32. Huang, X. et al. Superconductivity in a copper (II)-based coordination polymer with perfect kagome structure. Angew. Chem. Int. Ed. Engl. 130, 152–156 (2018).

    Google Scholar 

  33. Takenaka, T. et al. Strongly correlated superconductivity in a copper-based metal–organic framework with a perfect kagome lattice. Sci. Adv. 7, eabf3996 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Dong, R. et al. A coronene-based semiconducting two-dimensional metal–organic framework with ferromagnetic behavior. Nat. Commun. 9, 2637 (2018).

    PubMed  PubMed Central  Google Scholar 

  35. Liu, W. et al. A two-dimensional conjugated aromatic polymer via C–C coupling reaction. Nat. Chem. 9, 563–570 (2017).

    CAS  PubMed  Google Scholar 

  36. Galeotti, G. et al. Synthesis of mesoscale ordered two-dimensional π-conjugated polymers with semiconducting properties. Nat. Mater. 19, 874–880 (2020).

    CAS  PubMed  Google Scholar 

  37. Jadhav, T. et al. 2D Poly(arylene vinylene) covalent organic frameworks via aldol condensation of trimethyltriazine. Angew. Chem. Int. Ed. Engl. 58, 13753–13757 (2019).

    CAS  PubMed  Google Scholar 

  38. Liu, Y. et al. A thiophene backbone enables two-dimensional poly(arylene vinylene)s with high charge carrier mobility. Angew. Chem. Int. Ed. Engl. 62, e202305978 (2023).

    CAS  PubMed  Google Scholar 

  39. Wang, M. et al. Exceptionally high charge mobility in phthalocyanine-based poly(benzimidazobenzophenanthroline)-ladder-type two-dimensional conjugated polymers. Nat. Mater. 22, 880–887 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang, S. et al. An organic electrochemical transistor for multi-modal sensing, memory and processing. Nat. Electron. 6, 281–291 (2023).

    CAS  Google Scholar 

  41. Zhang, T. et al. Engineering crystalline quasi-two-dimensional polyaniline thin film with enhanced electrical and chemiresistive sensing performances. Nat. Commun. 10, 4225 (2019).

    PubMed  PubMed Central  Google Scholar 

  42. Liu, K. et al. A quasi-2D polypyrrole film with band-like transport behavior and high charge-carrier mobility. Adv. Mater. 35, 2303288 (2023).

    CAS  Google Scholar 

  43. Springer, M. A., Liu, T.-J., Kuc, A. & Heine, T. Topological two-dimensional polymers. Chem. Soc. Rev. 49, 2007–2019 (2020).

    CAS  PubMed  Google Scholar 

  44. Jing, Y. & Heine, T. Making 2D topological polymers a reality. Nat. Mater. 19, 823–824 (2020).

    CAS  PubMed  Google Scholar 

  45. Jing, Y., Zhu, X., Maier, S. & Heine, T. 2D conjugated polymers: exploiting topological properties for the rational design of metal-free photocatalysts. Trends Chem. 4, 792–806 (2022).

    CAS  Google Scholar 

  46. Jeon, J.-P. et al. Benzotrithiophene-based covalent organic framework photocatalysts with controlled conjugation of building blocks for charge stabilization. Angew. Chem. Int. Ed. Engl. 62, e202217416 (2023).

    CAS  PubMed  Google Scholar 

  47. Dong, R. et al. High-mobility band-like charge transport in a semiconducting two-dimensional metal–organic framework. Nat. Mater. 17, 1027–1032 (2018).

    CAS  PubMed  Google Scholar 

  48. Jin, E. et al. Two-dimensional sp2 carbon-conjugated covalent organic frameworks. Science 357, 673–676 (2017).

    CAS  PubMed  Google Scholar 

  49. Zhang, J. et al. Wavy two-dimensional conjugated metal–organic framework with metallic charge transport. J. Am. Chem. Soc. 145, 23630–23638 (2023).

    CAS  PubMed  Google Scholar 

  50. Wang, M. et al. High-mobility semiconducting two-dimensional conjugated covalent organic frameworks with p-type doping. J. Am. Chem. Soc. 142, 21622–21627 (2020).

    CAS  PubMed  Google Scholar 

  51. Wang, H. et al. Polymer-derived heteroatom-doped porous carbon materials. Chem. Rev. 120, 9363–9419 (2020).

    CAS  PubMed  Google Scholar 

  52. Bi, S. et al. Heteroatom-embedded approach to vinylene-linked covalent organic frameworks with isoelectronic structures for photoredox catalysis. Angew. Chem. Int. Ed. Engl. 134, e202111627 (2022).

    Google Scholar 

  53. Li, D. et al. Metal-free thiophene-sulfur covalent organic frameworks: precise and controllable synthesis of catalytic active sites for oxygen reduction. J. Am. Chem. Soc. 142, 8104–8108 (2020).

    CAS  PubMed  Google Scholar 

  54. Wang, D. et al. Atomic-level electronic properties of carbon nitride monolayers. ACS Nano 14, 14008–14016 (2020).

    PubMed  Google Scholar 

  55. Schlütter, F. et al. π-Conjugated heterotriangulene macrocycles by solution and surface-supported synthesis toward honeycomb networks. J. Am. Chem. Soc. 135, 4550–4557 (2013).

    PubMed  Google Scholar 

  56. Sick, T. et al. Oriented films of conjugated 2D covalent organic frameworks as photocathodes for water splitting. J. Am. Chem. Soc. 140, 2085–2092 (2018).

    CAS  PubMed  Google Scholar 

  57. Xu, S. et al. Thiophene-bridged donor–acceptor sp2-carbon-linked 2D conjugated polymers as photocathodes for water reduction. Adv. Mater. 33, 2006274 (2021).

    CAS  PubMed  Google Scholar 

  58. Yu, F. et al. Electrochromic two-dimensional covalent organic framework with a reversible dark-to-transparent switch. Nat. Commun. 11, 5534 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang, F.-D. et al. Pyrazine-functionalized donor–acceptor covalent organic frameworks for enhanced photocatalytic H2 evolution with high proton transport. Small 19, 2207421 (2023).

    CAS  Google Scholar 

  60. Bessinger, D., Ascherl, L., Auras, F. & Bein, T. Spectrally switchable photodetection with near-infrared-absorbing covalent organic frameworks. J. Am. Chem. Soc. 139, 12035–12042 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Liu, R. et al. Linkage-engineered donor–acceptor covalent organic frameworks for optimal photosynthesis of hydrogen peroxide from water and air. Nat. Catal. 7, 195–206 (2024).

    Google Scholar 

  62. Gutzler, R. & Perepichka, D. F. π-Electron conjugation in two dimensions. J. Am. Chem. Soc. 135, 16585–16594 (2013).

    CAS  PubMed  Google Scholar 

  63. Che, Y. & Perepichka, D. F. Quantifying planarity in the design of organic electronic materials. Angew. Chem. Int. Ed. Engl. 60, 1364–1373 (2021).

    CAS  PubMed  Google Scholar 

  64. Tan, K. T. et al. Covalent organic frameworks. Nat. Rev. Methods Primers 3, 2 (2023).

    Google Scholar 

  65. Wu, S. et al. Toward two-dimensional π-conjugated covalent organic radical frameworks. Angew. Chem. Int. Ed. Engl. 57, 8007–8011 (2018).

    CAS  PubMed  Google Scholar 

  66. Lakshmi, V. et al. A two-dimensional poly (azatriangulene) covalent organic framework with semiconducting and paramagnetic states. J. Am. Chem. Soc. 142, 2155–2160 (2020).

    CAS  PubMed  Google Scholar 

  67. Colson, J. W. et al. Oriented 2D covalent organic framework thin films on single-layer graphene. Science 332, 228–231 (2011).

    CAS  PubMed  Google Scholar 

  68. Martínez-Abadía, M. et al. A wavy two-dimensional covalent organic framework from core-twisted polycyclic aromatic hydrocarbons. J. Am. Chem. Soc. 141, 14403–14410 (2019).

    PubMed  Google Scholar 

  69. Zhong, Y. et al. Wafer-scale synthesis of monolayer two-dimensional porphyrin polymers for hybrid superlattices. Science 366, 1379–1384 (2019).

    CAS  PubMed  Google Scholar 

  70. Dey, K., Bhunia, S., Sasmal, H. S., Reddy, C. M. & Banerjee, R. Self-assembly-driven nanomechanics in porous covalent organic framework thin films. J. Am. Chem. Soc. 143, 955–963 (2021).

    CAS  PubMed  Google Scholar 

  71. Zhou, D., Tan, X., Wu, H., Tian, L. & Li, M. Synthesis of C–C bonded two-dimensional conjugated covalent organic framework films via Suzuki polymerization on liquid/liquid interface. Angew. Chem. Int. Ed. Engl. 131, 1390–1395 (2019).

    Google Scholar 

  72. Xu, S., Richter, M. & Feng, X. Vinylene-linked two-dimensional covalent organic frameworks: synthesis and functions. Acc. Mater. Res. 2, 252–265 (2021).

    CAS  Google Scholar 

  73. Tran, M. et al. 2D coordination polymers: design guidelines and materials perspective. Appl. Phys. Rev. 6, 041311 (2019).

    Google Scholar 

  74. Kambe, T. et al. Redox control and high conductivity of nickel bis (dithiolene) complex π-nanosheet: a potential organic two-dimensional topological insulator. J. Am. Chem. Soc. 136, 14357–14360 (2014).

    CAS  PubMed  Google Scholar 

  75. Dou, J.-H. et al. Signature of metallic behavior in the metal–organic frameworks M3(hexaiminobenzene)2 (M = Ni, Cu). J. Am. Chem. Soc. 139, 13608–13611 (2017).

    CAS  PubMed  Google Scholar 

  76. Campbell, M. G., Liu, S. F., Swager, T. M. & Dincă, M. Chemiresistive sensor arrays from conductive 2D metal–organic frameworks. J. Am. Chem. Soc. 137, 13780–13783 (2015).

    CAS  PubMed  Google Scholar 

  77. Yang, C. et al. A semiconducting layered metal–organic framework magnet. Nat. Commun. 10, 3260 (2019).

    PubMed  PubMed Central  Google Scholar 

  78. Li, W. et al. High temperature ferromagnetism in π-conjugated two-dimensional metal-organic frameworks. Chem. Sci. 8, 2859–2867 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    CAS  PubMed  Google Scholar 

  80. Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    CAS  PubMed  Google Scholar 

  81. Lukose, B., Kuc, A. & Heine, T. The structure of layered covalent-organic frameworks. Chem. Eur. J. 17, 2388–2392 (2011).

    CAS  PubMed  Google Scholar 

  82. Zhang, Y., Položij, M. & Heine, T. Statistical representation of stacking disorder in layered covalent organic frameworks. Chem. Mater. 34, 2376–2381 (2022).

    CAS  Google Scholar 

  83. Pütz, A. M. et al. Total scattering reveals the hidden stacking disorder in a 2D covalent organic framework. Chem. Sci. 11, 12647–12654 (2020).

    PubMed  PubMed Central  Google Scholar 

  84. Rawat, K. S. et al. How the layer alignment in two-dimensional nanoporous covalent organic frameworks impacts its electronic properties. ACS Appl. Nano Mater. 5, 14377–14387 (2022).

    CAS  Google Scholar 

  85. Kuc, A. et al. Proximity effect in crystalline framework materials: stacking-induced functionality in MOFs and COFs. Adv. Funct. Mater. 30, 1908004 (2020).

    CAS  Google Scholar 

  86. Chen, X., Addicoat, M., Irle, S., Nagai, A. & Jiang, D. Control of crystallinity and porosity of covalent organic frameworks by managing interlayer interactions based on self-complementary π-electronic force. J. Am. Chem. Soc. 135, 546–549 (2013).

    CAS  PubMed  Google Scholar 

  87. Alahakoon, S. B. et al. 2D-covalent organic frameworks with interlayer hydrogen bonding oriented through designed nonplanarity. J. Am. Chem. Soc. 142, 12987–12994 (2020).

    CAS  PubMed  Google Scholar 

  88. Wu, X., Han, X., Liu, Y., Liu, Y. & Cui, Y. Control interlayer stacking and chemical stability of two-dimensional covalent organic frameworks via steric tuning. J. Am. Chem. Soc. 140, 16124–16133 (2018).

    CAS  PubMed  Google Scholar 

  89. Lu, Y. et al. Precise tuning of interlayer electronic coupling in layered conductive metal–organic frameworks. Nat. Commun. 13, 7240 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Chen, T. et al. Continuous electrical conductivity variation in M3(hexaiminotriphenylene)2 (M = Co, Ni, Cu) MOF alloys. J. Am. Chem. Soc. 142, 12367–12373 (2020).

    CAS  PubMed  Google Scholar 

  91. Zhang, X. et al. Metal-organic frameworks with fine-tuned interlayer spacing for microwave absorption. Sci. Adv. 10, eadl6498 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Wang, C. et al. Enhancing the carrier transport in monolayer MoS2 through interlayer coupling with 2D covalent organic frameworks. Adv. Mater. 36, 2305882 (2024).

    CAS  Google Scholar 

  93. Liu, K. et al. A two-dimensional polyimide-graphene heterostructure with ultra-fast interlayer charge transfer. Angew. Chem. Int. Ed. Engl. 60, 13859–13864 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Wang, Z. et al. A Cu3BHT-graphene van der Waals heterostructure with strong interlayer coupling for highly efficient photoinduced charge separation. Adv. Mater. 36, 2311454 (2024).

    CAS  Google Scholar 

  95. Day, R. W. et al. Single crystals of electrically conductive two-dimensional metal–organic frameworks: structural and electrical transport properties. ACS Cent. Sci. 5, 1959–1964 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Evans, A. M. et al. Thermally conductive ultra-low-k dielectric layers based on two-dimensional covalent organic frameworks. Nat. Mater. 20, 1142–1148 (2021).

    CAS  PubMed  Google Scholar 

  97. Wang, Z. et al. Interfacial synthesis of layer-oriented 2D conjugated metal–organic framework films toward directional charge transport. J. Am. Chem. Soc. 143, 13624–13632 (2021).

    CAS  PubMed  Google Scholar 

  98. Makiura, R. et al. Surface nano-architecture of a metal–organic framework. Nat. Mater. 9, 565–571 (2010).

    CAS  PubMed  Google Scholar 

  99. Huang, X. et al. Semiconducting conjugated coordination polymer with high charge mobility enabled by ‘4 + 2’ phenyl ligands. J. Am. Chem. Soc. 145, 2430–2438 (2023).

    CAS  PubMed  Google Scholar 

  100. Kissel, P., Murray, D. J., Wulftange, W. J., Catalano, V. J. & King, B. T. A nanoporous two-dimensional polymer by single-crystal-to-single-crystal photopolymerization. Nat. Chem. 6, 774 (2014).

    CAS  PubMed  Google Scholar 

  101. Mahmood, J. et al. Two-dimensional polyaniline (C3N) from carbonized organic single crystals in solid state. Proc. Natl Acad. Sci. USA 113, 7414–7419 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Dong, R., Zhang, T. & Feng, X. Interface-assisted synthesis of 2D materials: trend and challenges. Chem. Rev. 118, 6189–6235 (2018).

    CAS  PubMed  Google Scholar 

  103. Ma, T. et al. Single-crystal X-ray diffraction structures of covalent organic frameworks. Science 361, 48–52 (2018).

    CAS  PubMed  Google Scholar 

  104. Mahmood, J. et al. Nitrogenated holey two-dimensional structures. Nat. Commun. 6, 6486 (2015).

    CAS  PubMed  Google Scholar 

  105. Evans, A. M. et al. Seeded growth of single-crystal two-dimensional covalent organic frameworks. Science 361, 52–57 (2018).

    CAS  PubMed  Google Scholar 

  106. Natraj, A. et al. Single-crystalline imine-linked two-dimensional covalent organic frameworks separate benzene and cyclohexane efficiently. J. Am. Chem. Soc. 144, 19813–19824 (2022).

    CAS  PubMed  Google Scholar 

  107. Peng, L. et al. Ultra-fast single-crystal polymerization of large-sized covalent organic frameworks. Nat. Commun. 12, 5077 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Han, J. et al. Fast growth of single-crystal covalent organic frameworks for laboratory X-ray diffraction. Science 383, 1014–1019 (2024).

    CAS  PubMed  Google Scholar 

  109. Wang, S. et al. Exfoliation of covalent organic frameworks into few-layer redox-active nanosheets as cathode materials for lithium-ion batteries. J. Am. Chem. Soc. 139, 4258–4261 (2017).

    CAS  PubMed  Google Scholar 

  110. Burke, D. W. et al. Acid exfoliation of imine‐linked covalent organic frameworks enables solution processing into crystalline thin films. Angew. Chem. Int. Ed. Engl. 132, 5203–5209 (2020).

    Google Scholar 

  111. Liu, X. et al. Magnetoresistance in organic spin valves based on acid-exfoliated 2D covalent organic frameworks thin films. Angew. Chem. Int. Ed. Engl. 62, e202308921 (2023).

    CAS  PubMed  Google Scholar 

  112. Haldar, S., Roy, K., Kushwaha, R., Ogale, S. & Vaidhyanathan, R. Chemical exfoliation as a controlled route to enhance the anodic performance of COF in LIB. Adv. Energy Mater. 9, 1902428 (2019).

    CAS  Google Scholar 

  113. Wang, Z. et al. Ultrathin two-dimensional conjugated metal–organic framework single-crystalline nanosheets enabled by surfactant-assisted synthesis. Chem. Sci. 11, 7665–7671 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Chandra, S. et al. Chemically stable multilayered covalent organic nanosheets from covalent organic frameworks via mechanical delamination. J. Am. Chem. Soc. 135, 17853–17861 (2013).

    CAS  PubMed  Google Scholar 

  115. Wang, M. et al. Phthalocyanine-based 2D conjugated metal-organic framework nanosheets for high-performance micro-supercapacitors. Adv. Funct. Mater. 30, 2002664 (2020).

    CAS  Google Scholar 

  116. Lafferentz, L. et al. Controlling on-surface polymerization by hierarchical and substrate-directed growth. Nat. Chem. 4, 215–220 (2012).

    CAS  PubMed  Google Scholar 

  117. Bieri, M. et al. Porous graphenes: two-dimensional polymer synthesis with atomic precision. Chem. Comm. 45, 6919–6921 (2009).

    Google Scholar 

  118. Grossmann, L. et al. On-surface photopolymerization of two-dimensional polymers ordered on the mesoscale. Nat. Chem. 13, 730–736 (2021).

    CAS  PubMed  Google Scholar 

  119. Bieri, M. et al. Two-dimensional polymer formation on surfaces: insight into the roles of precursor mobility and reactivity. J. Am. Chem. Soc. 132, 16669–16676 (2010).

    CAS  PubMed  Google Scholar 

  120. Telychko, M. et al. Ultrahigh-yield on-surface synthesis and assembly of circumcoronene into a chiral electronic Kagome-honeycomb lattice. Sci. Adv. 7, eabf0269 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Liu, X.-H. et al. On-surface synthesis of single-layered two-dimensional covalent organic frameworks via solid–vapor interface reactions. J. Am. Chem. Soc. 135, 10470–10474 (2013).

    CAS  PubMed  Google Scholar 

  122. Grill, L. & Hecht, S. Covalent on-surface polymerization. Nat. Chem. 12, 115–130 (2020).

    CAS  PubMed  Google Scholar 

  123. Dienstmaier, J. F. et al. Synthesis of well-ordered COF monolayers: surface growth of nanocrystalline precursors versus direct on-surface polycondensation. ACS Nano 5, 9737–9745 (2011).

    CAS  PubMed  Google Scholar 

  124. Liu, M. et al. Two-dimensional covalent organic framework films prepared on various substrates through vapor induced conversion. Nat. Commun. 13, 1411 (2022).

    PubMed  PubMed Central  Google Scholar 

  125. Gong, P. et al. Long-range epitaxial MOF electronics for continuous monitoring of human breath ammonia. J. Am. Chem. Soc. 146, 4036–4044 (2024).

    CAS  PubMed  Google Scholar 

  126. Claire, F. J. et al. Structural and electronic switching of a single crystal 2D metal-organic framework prepared by chemical vapor deposition. Nat. Commun. 11, 5524 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Zhan, G. et al. Observing polymerization in 2D dynamic covalent polymers. Nature 603, 835–840 (2022).

    CAS  PubMed  Google Scholar 

  128. Mähringer, A. et al. Oriented thin films of electroactive triphenylene catecholate-based two-dimensional metal–organic frameworks. ACS Nano 13, 6711–6719 (2019).

    PubMed  Google Scholar 

  129. Choe, M. et al. Chemical vapor deposition of edge-on oriented 2D conductive metal–organic framework thin films. J. Am. Chem. Soc. 144, 16726–16731 (2022).

    CAS  PubMed  Google Scholar 

  130. Daum, J. P. et al. Solutions are the problem: ordered two-dimensional covalent organic framework films by chemical vapor deposition. ACS Nano 17, 21411–21419 (2023).

    PubMed  Google Scholar 

  131. Liu, J. et al. On-liquid-gallium surface synthesis of ultrasmooth thin films of conductive metal–organic frameworks. Nat. Synth. 3, 715–726 (2024).

    CAS  Google Scholar 

  132. Rao, C. N. R. & Kalyanikutty, K. P. The liquid–liquid interface as a medium to generate nanocrystalline films of inorganic materials. Acc. Chem. Res. 41, 489–499 (2008).

    CAS  PubMed  Google Scholar 

  133. Yang, R. et al. Potential difference-modulated synthesis of self-standing covalent organic framework membranes at liquid/liquid interfaces. J. Am. Chem. Soc. 144, 11778–11787 (2022).

    CAS  PubMed  Google Scholar 

  134. Pfeffermann, M. et al. Free-standing monolayer two-dimensional supramolecular organic framework with good internal order. J. Am. Chem. Soc. 137, 14525–14532 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Dong, R. et al. Large-area, free-standing, two-dimensional supramolecular polymer single-layer sheets for highly efficient electrocatalytic hydrogen evolution. Angew. Chem. Int. Ed. Engl. 54, 12058–12063 (2015).

    CAS  PubMed  Google Scholar 

  136. Sahabudeen, H. et al. Wafer-sized multifunctional polyimine-based two-dimensional conjugated polymers with high mechanical stiffness. Nat. Commun. 7, 13461 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Liu, K. et al. On-water surface synthesis of crystalline, few-layer two-dimensional polymers assisted by surfactant monolayers. Nat. Chem. 11, 994–1000 (2019).

    CAS  PubMed  Google Scholar 

  138. Wang, L., Sahabudeen, H., Zhang, T. & Dong, R. Liquid-interface-assisted synthesis of covalent-organic and metal–organic two-dimensional crystalline polymers. npj 2D Mater. Appl. 2, 26 (2018).

    Google Scholar 

  139. Rideout, D. C. & Breslow, R. Hydrophobic acceleration of Diels–Alder reactions. J. Am. Chem. Soc. 102, 7816–7817 (1980).

    CAS  Google Scholar 

  140. Zhao, C. et al. Urea-linked covalent organic frameworks. J. Am. Chem. Soc. 140, 16438–16441 (2018).

    CAS  PubMed  Google Scholar 

  141. Halder, A. et al. Ultrastable imine‐based covalent organic frameworks for sulfuric acid recovery: an effect of interlayer hydrogen bonding. Angew. Chem. Int. Ed. Engl. 57, 5797–5802 (2018).

    CAS  PubMed  Google Scholar 

  142. Halder, A. et al. Interlayer hydrogen-bonded covalent organic frameworks as high-performance supercapacitors. J. Am. Chem. Soc. 140, 10941–10945 (2018).

    CAS  PubMed  Google Scholar 

  143. Seki, T. et al. Real-time study of on-water chemistry: surfactant monolayer-assisted growth of a crystalline quasi-2D polymer. Chem 7, 2758–2770 (2021).

    CAS  Google Scholar 

  144. Prasoon, A. et al. Site-selective chemical reactions by on-water surface sequential assembly. Nat. Commun. 14, 8313 (2023).

    PubMed  PubMed Central  Google Scholar 

  145. Qi, H. et al. Near-atomic-scale observation of grain boundaries in a layer-stacked two-dimensional polymer. Sci. Adv. 6, eabb5976 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Sahabudeen, H. et al. Highly crystalline and semiconducting imine-based two-dimensional polymers enabled by interfacial synthesis. Angew. Chem. Int. Ed. Engl. 59, 6028–6036 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Park, S. et al. Two‐dimensional boronate ester covalent organic framework thin films with large single crystalline domains for neuromorphic memory device. Angew. Chem. Int. Ed. Engl. 132, 2–9 (2020).

    Google Scholar 

  148. Wang, Z. et al. On-water surface synthesis of charged two-dimensional polymer single crystals via the irreversible Katritzky reaction. Nat. Synth. 1, 69–76 (2022).

    Google Scholar 

  149. Jing, Y. & Heine, T. Two-dimensional kagome lattices made of hetero triangulenes are Dirac semimetals or single-band semiconductors. J. Am. Chem. Soc. 141, 743–747 (2019).

    CAS  PubMed  Google Scholar 

  150. Bian, G., Yin, J. & Zhu, J. Recent advances on conductive 2D covalent organic frameworks. Small 17, 2006043 (2021).

    CAS  Google Scholar 

  151. Chen, S., Dai, J. & Zeng, X. C. Metal–organic kagome lattices M3(2,3,6,7,10,11-hexaiminotriphenylene)2 (M = Ni and Cu): from semiconducting to metallic by metal substitution. Phys. Chem. Chem. Phys. 17, 5954–5958 (2015).

    CAS  PubMed  Google Scholar 

  152. Ni, X., Huang, H. & Brédas, J.-L. Emergence of a two-dimensional topological Dirac semimetal phase in a phthalocyanine-based covalent organic framework. Chem. Mater. 34, 3178–3184 (2022).

    CAS  Google Scholar 

  153. Huang, X. et al. A two-dimensional π–d conjugated coordination polymer with extremely high electrical conductivity and ambipolar transport behaviour. Nat. Commun. 6, 7408 (2015).

    CAS  PubMed  Google Scholar 

  154. Zhang, X., Zhou, Y., Cui, B., Zhao, M. & Liu, F. Theoretical discovery of a superconducting two-dimensional metal–organic framework. Nano Lett. 17, 6166–6170 (2017).

    CAS  PubMed  Google Scholar 

  155. Foster, M. E., Sohlberg, K., Allendorf, M. D. & Talin, A. A. Unraveling the semiconducting/metallic discrepancy in Ni3(HITP)2. J. Phys. Chem. Lett. 9, 481–486 (2018).

    CAS  PubMed  Google Scholar 

  156. Rubio-Giménez, V., Tatay, S. & Martí-Gastaldo, C. Electrical conductivity and magnetic bistability in metal–organic frameworks and coordination polymers: charge transport and spin crossover at the nanoscale. Chem. Soc. Rev. 49, 5601–5638 (2020).

    PubMed  Google Scholar 

  157. Un, H.-I. et al. Controlling film formation and host–guest interactions to enhance the thermoelectric properties of nickel–nitrogen-based 2D conjugated coordination polymers. Adv. Mater. 36, 2312325 (2024).

    CAS  Google Scholar 

  158. Dou, J.-H. et al. Atomically precise single-crystal structures of electrically conducting 2D metal–organic frameworks. Nat. Mater. 20, 222–228 (2021).

    CAS  PubMed  Google Scholar 

  159. Sheberla, D. et al. High electrical conductivity in Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2, a semiconducting metal–organic graphene analogue. J. Am. Chem. Soc. 136, 8859–8862 (2014).

    CAS  PubMed  Google Scholar 

  160. Saeki, A., Koizumi, Y., Aida, T. & Seki, S. Comprehensive approach to intrinsic charge carrier mobility in conjugated organic molecules, macromolecules, and supramolecular architectures. Acc. Chem. Res. 45, 1193–1202 (2012).

    CAS  PubMed  Google Scholar 

  161. Ulbricht, R., Hendry, E., Shan, J., Heinz, T. F. & Bonn, M. Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy. Rev. Mod. Phys. 83, 543–586 (2011).

    CAS  Google Scholar 

  162. Fu, S. et al. Outstanding charge mobility by band transport in two-dimensional semiconducting covalent organic frameworks. J. Am. Chem. Soc. 144, 7489–7496 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Ding, X. et al. Synthesis of metallophthalocyanine covalent organic frameworks that exhibit high carrier mobility and photoconductivity. Angew. Chem. Int. Ed. Engl. 50, 1289–1293 (2011).

    CAS  PubMed  Google Scholar 

  164. Ding, X. et al. Conducting metallophthalocyanine 2D covalent organic frameworks: the role of central metals in controlling π-electronic functions. Chem. Comm. 48, 8952–8954 (2012).

    CAS  PubMed  Google Scholar 

  165. Wan, S. et al. Covalent organic frameworks with high charge carrier mobility. Chem. Mater. 23, 4094–4097 (2011).

    CAS  Google Scholar 

  166. Dalapati, S. et al. Rational design of crystalline supermicroporous covalent organic frameworks with triangular topologies. Nat. Commun. 6, 7786 (2015).

    CAS  PubMed  Google Scholar 

  167. Feng, X. et al. High‐rate charge‐carrier transport in porphyrin covalent organic frameworks: switching from hole to electron to ambipolar conduction. Angew. Chem. Int. Ed. Engl. 51, 2618–2622 (2012).

    CAS  PubMed  Google Scholar 

  168. Guo, J. et al. Conjugated organic framework with three-dimensionally ordered stable structure and delocalized π clouds. Nat. Commun. 4, 2736 (2013).

    PubMed  Google Scholar 

  169. Jin, E. et al. A nanographene-based two-dimensional covalent organic framework as a stable and efficient photocatalyst. Angew. Chem. Int. Ed. Engl. 61, e202114059 (2022).

    CAS  PubMed  Google Scholar 

  170. Lu, Y. et al. Tunable charge transport and spin dynamics in two-dimensional conjugated metal–organic frameworks. J. Am. Chem. Soc. 146, 2574–2582 (2024).

    CAS  PubMed  Google Scholar 

  171. Jin, E. et al. Module-patterned polymerization towards crystalline 2D sp2-carbon covalent organic framework semiconductors. Angew. Chem. Int. Ed. Engl. 61, e202115020 (2022).

    CAS  PubMed  Google Scholar 

  172. Xing, G. et al. Nonplanar rhombus and kagome 2D covalent organic frameworks from distorted aromatics for electrical conduction. J. Am. Chem. Soc. 144, 5042–5050 (2022).

    CAS  PubMed  Google Scholar 

  173. Sporrer, L. et al. Near IR bandgap semiconducting 2D conjugated metal–organic framework with rhombic lattice and high mobility. Angew. Chem. Int. Ed. Engl. 62, e202300186 (2023).

    CAS  PubMed  Google Scholar 

  174. Deng, T. et al. Designing intrinsic topological insulators in two-dimensional metal–organic frameworks. J. Phys. Chem. Lett. 12, 6934–6940 (2021).

    CAS  PubMed  Google Scholar 

  175. Wang, Z. F., Liu, Z. & Liu, F. Organic topological insulators in organometallic lattices. Nat. Commun. 4, 1471 (2013).

    CAS  PubMed  Google Scholar 

  176. Dong, L., Kim, Y., Er, D., Rappe, A. M. & Shenoy, V. B. Two-dimensional π-conjugated covalent-organic frameworks as quantum anomalous Hall topological insulators. Phys. Rev. Lett. 116, 096601 (2016).

    PubMed  Google Scholar 

  177. Zhang, L. Z. et al. Intrinsic two-dimensional organic topological insulators in metal-dicyanoanthracene lattices. Nano Lett. 16, 2072–2075 (2016).

    CAS  PubMed  Google Scholar 

  178. Jiang, W., Zhang, S., Wang, Z., Liu, F. & Low, T. Topological band engineering of Lieb lattice in phthalocyanine-based metal–organic frameworks. Nano Lett. 20, 1959–1966 (2020).

    CAS  PubMed  Google Scholar 

  179. Wang, Z., Liu, Z. & Liu, F. Quantum anomalous Hall effect in 2D organic topological insulators. Phys. Rev. Lett. 110, 196801 (2013).

    CAS  PubMed  Google Scholar 

  180. Hu, T., Zhang, T., Mu, H. & Wang, Z. Intrinsic second-order topological insulator in two-dimensional covalent organic frameworks. J. Phys. Chem. Lett. 13, 10905–10911 (2022).

    CAS  PubMed  Google Scholar 

  181. Ni, X., Huang, H. & Brédas, J.-L. Organic higher-order topological insulators: heterotriangulene-based covalent organic frameworks. J. Am. Chem. Soc. 144, 22778–22786 (2022).

    CAS  PubMed  Google Scholar 

  182. López-Cabrelles, J. et al. Isoreticular two-dimensional magnetic coordination polymers prepared through pre-synthetic ligand functionalization. Nat. Chem. 10, 1001–1007 (2018).

    PubMed  Google Scholar 

  183. López-Cabrelles, J. et al. Chemical design and magnetic ordering in thin layers of 2D metal–organic frameworks (MOFs). J. Am. Chem. Soc. 143, 18502–18510 (2021).

    PubMed  PubMed Central  Google Scholar 

  184. Thomas, S., Li, H. & Bredas, J.-L. Emergence of an antiferromagnetic Mott insulating phase in hexagonal π-conjugated covalent organic frameworks. Adv. Mater. 31, 1900355 (2019).

    Google Scholar 

  185. Phan, H. et al. Room-temperature magnets based on 1,3,5-triazine-linked porous organic radical frameworks. Chem 5, 1223–1234 (2019).

    CAS  Google Scholar 

  186. Yu, H. & Wang, D. Metal-free magnetism in chemically doped covalent organic frameworks. J. Am. Chem. Soc. 142, 11013–11021 (2020).

    CAS  PubMed  Google Scholar 

  187. Cui, Y. et al. Synthetic route to a triphenylenehexaselenol-based metal organic framework with semi-conductive and glassy magnetic properties. iScience 23, 100812 (2020).

    CAS  PubMed  Google Scholar 

  188. DeGayner, J. A., Jeon, I.-R., Sun, L., Dincă, M. & Harris, T. D. 2D conductive iron-quinoid magnets ordering up to Tc = 105 K via heterogenous redox chemistry. J. Am. Chem. Soc. 139, 4175–4184 (2017).

    CAS  PubMed  Google Scholar 

  189. Yu, H. & Heine, T. Prediction of metal-free Stoner and Mott-Hubbard magnetism in triangulene-based two-dimensional polymers. Sci. Adv. 10,eadq7954 (2024).

    CAS  PubMed  Google Scholar 

  190. Jiang, W., Huang, H. & Liu, F. A Lieb-like lattice in a covalent-organic framework and its Stoner ferromagnetism. Nat. Commun. 10, 2207 (2019).

    PubMed  PubMed Central  Google Scholar 

  191. Cui, B. et al. Realization of Lieb lattice in covalent-organic frameworks with tunable topology and magnetism. Nat. Commun. 11, 66 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Chatterjee, A. et al. Semiconductor qubits in practice. Nat. Rev. Phys. 3, 157–177 (2021).

    Google Scholar 

  193. Oanta, A. K. et al. Electronic spin qubit candidates arrayed within layered two-dimensional polymers. J. Am. Chem. Soc. 145, 689–696 (2023).

    CAS  PubMed  Google Scholar 

  194. Evans, A. M. et al. Controlled n-doping of naphthalene diimide-based two-dimensional polymers. Adv. Mater. 34, 2101932 (2021).

    Google Scholar 

  195. Yu, C.-J., Krzyaniak, M. D., Fataftah, M. S., Wasielewski, M. R. & Freedman, D. E. A concentrated array of copper porphyrin candidate qubits. Chem. Sci. 10, 1702–1708 (2019).

    CAS  PubMed  Google Scholar 

  196. Misumi, Y. et al. Quantum spin liquid state in a two-dimensional semiconductive metal–organic framework. J. Am. Chem. Soc. 142, 16513–16517 (2020).

    CAS  PubMed  Google Scholar 

  197. Murphy, R. A. et al. Exchange bias in a layered metal–organic topological spin glass. ACS Cent. Sci. 7, 1317–1326 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Chandra, P., Coleman, P. & Ritchey, I. The anisotropic kagome antiferromagnet: a topological spin glass? J. Phys. I 3, 591–610 (1993).

    CAS  Google Scholar 

  199. Yang, J. et al. Spin jam induced by quantum fluctuations in a frustrated magnet. Proc. Natl Acad. Sci. USA 112, 11519–11523 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Feng, S. et al. Classical spin liquid state in a rhombic lattice metal–organic framework. Nano Res. 17, 3407–3412 (2023).

    Google Scholar 

  201. Yan, X., Su, X., Chen, J., Jin, C. & Chen, L. Two-dimensional metal–organic frameworks towards spintronics. Angew. Chem. Int. Ed. Engl. 62, e202305408 (2023).

    CAS  PubMed  Google Scholar 

  202. Allendorf, M. D. et al. Electronic devices using open framework materials. Chem. Rev. 120, 8581–8640 (2020).

    CAS  PubMed  Google Scholar 

  203. Yang, F. & et al. 2D organic materials for optoelectronic applications. Adv. Mater. 30, 1702415 (2018).

    Google Scholar 

  204. Wu, G., Huang, J., Zang, Y., He, J. & Xu, G. Porous field-effect transistors based on a semiconductive metal–organic framework. J. Am. Chem. Soc. 139, 1360–1363 (2017).

    CAS  PubMed  Google Scholar 

  205. Feldblyum, J. I. et al. Few-layer, large-area, 2D covalent organic framework semiconductor thin films. Chem. Commun. 51, 13894–13897 (2015).

    CAS  Google Scholar 

  206. Wang, B., Luo, Y., Liu, B. & Duan, G. Field-effect transistor based on an in situ grown metal–organic framework film as a liquid-gated sensing device. ACS Appl. Mater. Interfaces 11, 35935–35940 (2019).

    CAS  PubMed  Google Scholar 

  207. Sun, B. et al. Oriented covalent organic framework film on graphene for robust ambipolar vertical organic field-effect transistor. Chem. Mater. 29, 4367–4374 (2017).

    CAS  Google Scholar 

  208. Rivnay, J. et al. Organic electrochemical transistors. Nat. Rev. Mater. 3, 17086 (2018).

    CAS  Google Scholar 

  209. Gkoupidenis, P. et al. Organic mixed conductors for bioinspired electronics. Nat. Rev. Mater. 9, 134–149 (2024).

    CAS  Google Scholar 

  210. Rashid, R. B. et al. A semiconducting two-dimensional polymer as an organic electrochemical transistor active layer. Adv. Mater. 34, 2110703 (2022).

    CAS  Google Scholar 

  211. Song, J. et al. 2D metal–organic frameworks for ultraflexible electrochemical transistors with high transconductance and fast response speeds. Sci. Adv. 9, eadd9627 (2023).

    PubMed  PubMed Central  Google Scholar 

  212. Zhang, Z. et al. Cation-selective two-dimensional polyimine membranes for high-performance osmotic energy conversion. Nat. Commun. 13, 3935 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Sabaghi, D. et al. Ultrathin positively charged electrode skin for durable anion-intercalation battery chemistries. Nat. Commun. 14, 760 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Majhi, S. M., Mirzaei, A., Kim, H. W., Kim, S. S. & Kim, T. W. Recent advances in energy-saving chemiresistive gas sensors: a review. Nano Energy 79, 105369 (2021).

    CAS  PubMed  Google Scholar 

  215. Jo, Y.-M. et al. MOF-based chemiresistive gas sensors: toward new functionalities. Adv. Mater. 35, 2206842 (2023).

    CAS  Google Scholar 

  216. Koo, W.-T., Jang, J.-S. & Kim, I.-D. Metal–organic frameworks for chemiresistive sensors. Chem 5, 1938–1963 (2019).

    CAS  Google Scholar 

  217. Stassen, I., Dou, J.-H., Hendon, C. & Dincă, M. Chemiresistive sensing of ambient CO2 by an autogenously hydrated Cu3(hexaiminobenzene)2 framework. ACS Cent. Sci. 5, 1425–1431 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Chen, X. et al. Ultrafast in situ synthesis of large-area conductive metal–organic frameworks on substrates for flexible chemiresistive sensing. ACS Appl. Mater. Interfaces 12, 57235–57244 (2020).

    CAS  PubMed  Google Scholar 

  219. Rubio‐Giménez, V. et al. Origin of the chemiresistive response of ultrathin films of conductive metal–organic frameworks. Angew. Chem. Int. Ed. Engl. 130, 15306–15310 (2018).

    Google Scholar 

  220. Smith, M. K. & Mirica, K. A. Self-organized frameworks on textiles (SOFT): conductive fabrics for simultaneous sensing, capture, and filtration of gases. J. Am. Chem. Soc. 139, 16759–16767 (2017).

    CAS  PubMed  Google Scholar 

  221. Meng, Z., Stolz, R. M. & Mirica, K. A. Two-dimensional chemiresistive covalent organic framework with high intrinsic conductivity. J. Am. Chem. Soc. 141, 11929–11937 (2019).

    CAS  PubMed  Google Scholar 

  222. Wang, M. et al. Surface-modified phthalocyanine-based two-dimensional conjugated metal–organic framework films for polarity-selective chemiresistive sensing. Angew. Chem. Int. Ed. Engl. 133, 18814–18820 (2021).

    Google Scholar 

  223. Liu, M. et al. Porphyrin-based COF 2D materials: variable modification of sensing performances by post-metallization. Angew. Chem. Int. Ed. Engl. 61, e202115308 (2022).

    PubMed  Google Scholar 

  224. Yao, M.-S. et al. Layer-by-layer assembled conductive metal-organic framework nanofilms for room-temperature chemiresistive sensing. Angew. Chem. Int. Ed. Engl. 56, 16510–16514 (2017).

    CAS  PubMed  Google Scholar 

  225. Yao, P. et al. Fully hardware-implemented memristor convolutional neural network. Nature 577, 641–646 (2020).

    CAS  PubMed  Google Scholar 

  226. Wang, Z. et al. Nanoionics-enabled memristive devices: strategies and materials for neuromorphic applications. Adv. Electron. Mater. 3, 1600510 (2017).

    Google Scholar 

  227. Wang, Z. et al. Signal filtering enabled by spike voltage-dependent plasticity in metalloporphyrin-based memristors. Adv. Mater. 33, 2104370 (2021).

    CAS  Google Scholar 

  228. Wang, Z. et al. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 16, 101–108 (2017).

    CAS  PubMed  Google Scholar 

  229. Ling, H. et al. Electrolyte-gated transistors for synaptic electronics, neuromorphic computing, and adaptable biointerfacing. Appl. Phys. Rev. 7, 011307 (2020).

    CAS  Google Scholar 

  230. Li, T. et al. 2D oriented covalent organic frameworks for alcohol-sensory synapses. Mater. Horiz. 8, 2041–2049 (2021).

    CAS  PubMed  Google Scholar 

  231. Ding, G. et al. Porous crystalline materials for memories and neuromorphic computing systems. Chem. Soc. Rev. 52, 7071–7136 (2023).

    CAS  PubMed  Google Scholar 

  232. Liu, J. et al. A robust nonvolatile resistive memory device based on a freestanding ultrathin 2D imine polymer film. Adv. Mater. 31, 1902264 (2019).

    Google Scholar 

  233. Liu, L. et al. A highly crystalline single layer 2D polymer for low variability and excellent scalability molecular memristors. Adv. Mater. 35, 2208377 (2023).

    CAS  Google Scholar 

  234. Hota, M. K. et al. Electrochemical thin-film transistors using covalent organic framework channel. Adv. Funct. Mater. 32, 2201120 (2022).

    CAS  Google Scholar 

  235. Gu, C., Jia, A.-B., Zhang, Y.-M. & Zhang, S. X.-A. Emerging electrochromic materials and devices for future displays. Chem. Rev. 122, 14679–14721 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Yang, G. et al. Advances in nanomaterials for electrochromic devices. Chem. Soc. Rev. 49, 8687–8720 (2020).

    CAS  PubMed  Google Scholar 

  237. Hao, Q. et al. Oriented two-dimensional covalent organic framework films for near-infrared electrochromic application. J. Am. Chem. Soc. 141, 19831–19838 (2019).

    CAS  PubMed  Google Scholar 

  238. Hao, Q. et al. A covalent organic framework film for three‐state near‐infrared electrochromism and a molecular logic gate. Angew. Chem. Int. Ed. Engl. 133, 12606–12611 (2021).

    Google Scholar 

  239. Wang, Z. et al. Viologen-immobilized 2D polymer film enabling highly efficient electrochromic device for solar-powered smart window. Adv. Mater. 34, 2106073 (2022).

    CAS  PubMed  Google Scholar 

  240. Cao, L. et al. Two-dimensional covalent organic framework–graphene photodetectors: insight into the relationship between the microscopic interfacial structure and performance. ACS Omega 4, 18780–18786 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  241. Li, C. et al. Two‐dimensional conjugated polymer synthesized by interfacial Suzuki reaction: towards electronic device applications. Angew. Chem. Int. Ed. Engl. 132, 9489–9493 (2020).

    Google Scholar 

  242. Xiong, Y. et al. Ultrahigh responsivity photodetectors of 2D covalent organic frameworks integrated on graphene. Adv. Mater. 32, 1907242 (2020).

    CAS  Google Scholar 

  243. Arora, H. et al. Demonstration of a broadband photodetector based on a two-dimensional metal–organic framework. Adv. Mater. 32, 1907063 (2020).

    CAS  Google Scholar 

  244. Chappert, C., Fert, A. & Van Dau, F. N. The emergence of spin electronics in data storage. Nat. Mater. 6, 813–823 (2007).

    CAS  PubMed  Google Scholar 

  245. Coronado, E. Molecular magnetism: from chemical design to spin control in molecules, materials and devices. Nat. Rev. Mater. 5, 87–104 (2020).

    Google Scholar 

  246. Song, X. et al. 2D semiconducting metal–organic framework thin films for organic spin valves. Angew. Chem. Int. Ed. Engl. 59, 1118–1123 (2020).

    CAS  PubMed  Google Scholar 

  247. Song, X. et al. Two-dimensional conductive metal–organic framework reinforced spinterface in organic spin valves. CCS Chem. 6, 208–217 (2024).

    CAS  Google Scholar 

  248. Chen, D., Su, S.-J. & Cao, Y. Nitrogen heterocycle-containing materials for highly efficient phosphorescent OLEDs with low operating voltage. J. Mater. Chem. C 2, 9565–9578 (2014).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by an ERC Consolidator Grant (T2DCP, no. 819698) and DFG projects (2D polyanilines, no. 426572620; GRK2861, no. 491865171; and CRC 1415, Chemistry of Synthetic Two-Dimensional Materials, no. 417590517). The authors thank P. L. Koko and R. Zhao for providing the energy levels in Fig. 1b,f.

Author information

Authors and Affiliations

Authors

Contributions

Z.W. researched data and wrote the article. All authors contributed to the content discussion and edited the manuscript before submission.

Corresponding author

Correspondence to Xinliang Feng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Dima Perepichka and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Wang, M., Heine, T. et al. Electronic and quantum properties of organic two-dimensional crystals. Nat Rev Mater 10, 147–166 (2025). https://doi.org/10.1038/s41578-024-00740-8

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41578-024-00740-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing