Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Visible-to-THz near-field nanoscopy

Abstract

Optical microscopy has a key role in research, development and quality control across a wide range of scientific, technological and medical fields. However, diffraction limits the spatial resolution of conventional optical instruments to about half the illumination wavelength. A technique that surpasses the diffraction limit in the wide spectral range between visible and terahertz frequencies is scattering-type scanning near-field optical microscopy (s-SNOM). The basis of s-SNOM is an atomic force microscope in which the tip is illuminated with light from the visible to the terahertz spectral range. By recording the elastically tip-scattered light while scanning the sample below the tip, s-SNOM yields near-field optical images with a remarkable resolution of 10 nm, simultaneously with the standard atomic force microscopic topography image. This resolution is independent of the illumination wavelength, rendering s-SNOM a versatile nanoimaging and nanospectroscopy technique for fundamental and applied studies of materials, structures and phenomena. This Review presents an overview of the fundamental principles governing the measurement and interpretation of near-field contrasts and discusses key applications of s-SNOM. We also showcase emerging developments that enable s-SNOM to operate under various environmental conditions, including cryogenic temperatures, electric and magnetic fields, electrical currents, strain and liquid environments. All these recent developments broaden the applicability of s-SNOMs for exploring fundamental solid-state and quantum phenomena, biological matter, catalytic reactions and more.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Basic concept of s-SNOM for probing material properties and phenomena throughout various length, time and energy scales.
Fig. 2: Basic near-field probing mechanism of scattering-type scanning near-field optical microscopy.
Fig. 3: Modern dual-path scattering-type scanning near-field optical microscopy setup.
Fig. 4: Comparison of near-field probing mechanisms.
Fig. 5: Near-field spectroscopic material contrast.
Fig. 6: Analysing near-field optical data by analytical modelling, numerical simulations and data-driven machine learning.
Fig. 7: Scattering-type scanning near-field optical microscopy setup with distinct sample environments.
Fig. 8: Overview of s-SNOM applications.

Similar content being viewed by others

References

  1. Abbe, E. Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung: I. Die construction von mikroskopen auf grund der theorie. Arch. Mikroskop. Anat. 9, 413–418 (1873).

    Article  Google Scholar 

  2. Hell, S. W. Far-field optical nanoscopy. Science 316, 1153–1158 (2007).

    Article  PubMed  CAS  Google Scholar 

  3. Huang, B., Bates, M. & Zhuang, X. Super-resolution fluorescence microscopy. Ann. Rev. Biochem. 78, 993–1016 (2009).

    Article  PubMed  CAS  Google Scholar 

  4. Liu, Z., Lavis, L. D. & Betzig, E. Imaging live-cell dynamics and structure at the single-molecule level. Mol. Cell 58, 644–659 (2015).

    Article  PubMed  CAS  Google Scholar 

  5. Synge, E. H. XXXVIII. A suggested method for extending microscopic resolution into the ultra-microscopic region. Lond. Edin. Dubl. Philos. Mag. J. Sci. 6, 356–362 (1928).

    Article  CAS  Google Scholar 

  6. Ash, E. A. & Nicholls, G. Super-resolution aperture scanning microscope. Nature 237, 510–512 (1972).

    Article  PubMed  CAS  Google Scholar 

  7. Pohl, D. W., Denk, W. & Lanz, M. Optical stethoscopy: image recording with resolution λ/20. Appl. Phys. Lett. 44, 651–653 (1984).

    Article  Google Scholar 

  8. Lewis, A., Isaacson, M., Harootunian, A. & Muray, A. Development of a 500 Å spatial resolution light microscope. I. Light is efficiently transmitted through λ/16 diameter apertures. Ultramicroscopy 13, 227–231 (1984).

    Article  Google Scholar 

  9. Zenhausern, F., Martin, Y. & Wickramasinghe, H. K. Scanning interferometric apertureless microscopy: optical imaging at 10 angstrom resolution. Science 269, 1083–1085 (1995).

    Article  PubMed  CAS  Google Scholar 

  10. Knoll, B. & Keilmann, F. Near-field probing of vibrational absorption for chemical microscopy. Nature 399, 134–137 (1999).

    Article  CAS  Google Scholar 

  11. Bachelot, R., Gleyzes, P. & Boccara, A. C. Apertureless near field optical microscopy by local perturbation of a diffraction spot. Ultramicroscopy 61, 111–116 (1995).

    Article  CAS  Google Scholar 

  12. Kawata, S., Inouye, Y. & Sugiura, T. Near-field scanning optical microscope with a laser trapped probe. Jpn. J. Appl. Phys. 33, L1725–L1727 (1994).

    Article  CAS  Google Scholar 

  13. Keilmann, F., Van Der Weide, D. W., Eickelkamp, T., Merz, R. & Stöckle, D. Extreme sub-wavelength resolution with a scanning radio-frequency transmission microscope. Opt. Commun. 129, 15–18 (1996).

    Article  CAS  Google Scholar 

  14. Wurtz, G., Bachelot, R. & Royer, P. Imaging a GaAlAs laser diode in operation using apertureless scanning near-field optical microscopy. EPJ Appl. Phys. 5, 269–275 (1999).

    Article  CAS  Google Scholar 

  15. Knoll, B. & Keilmann, F. Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy. Opt. Commun. 182, 321–328 (2000). This paper introduces the PDM of s-SNOM.

    Article  CAS  Google Scholar 

  16. Hillenbrand, R. & Keilmann, F. Complex optical constants on a subwavelength scale. Phys. Rev. Lett. 85, 3029–3032 (2000). This paper introduces amplitude-resolved and phase-resolved interferometric detection of the tip-scattered light combined with higher-harmonic signal demodulation, as well as the expression s-SNOM.

    Article  PubMed  CAS  Google Scholar 

  17. Keilmann, F. & Hillenbrand, R. Near-field microscopy by elastic light scattering from a tip. Phil. Trans. R. Soc. A 362, 787 (2004).

    Article  PubMed  CAS  Google Scholar 

  18. Atkin, J. M., Berweger, S., Jones, A. C. & Raschke, M. B. Nano-optical imaging and spectroscopy of order, phases, and domains in complex solids. Adv. Phys. 61, 745–842 (2012).

    Article  CAS  Google Scholar 

  19. Khatib, O., Bechtel, H. A., Martin, M. C., Raschke, M. B. & Carr, G. L. Far infrared synchrotron near-field nanoimaging and nanospectroscopy. ACS Photon. 5, 2773–2779 (2018).

    Article  CAS  Google Scholar 

  20. Chen, X. et al. Modern scattering-type scanning near-field optical microscopy for advanced material research. Adv. Mater. 31, 1804774 (2019). This work reviews the recent progress of s-SNOM, serving as a good overview of the s-SNOM technique and their applications in condensed matter research.

    Article  Google Scholar 

  21. Barcelos, I. D. et al. Probing polaritons in 2D materials with synchrotron infrared nanospectroscopy. Adv. Opt. Mater. 8, 1901091 (2020).

    Article  CAS  Google Scholar 

  22. Cocker, T. L., Jelic, V., Hillenbrand, R. & Hegmann, F. A. Nanoscale terahertz scanning probe microscopy. Nat. Photon. 15, 558–569 (2021).

    Article  CAS  Google Scholar 

  23. Choi, B., Jeong, G., Shin, H. H. & Kim, Z. H. Molecular vibrational imaging at nanoscale. J. Chem. Phys. 156, 160902 (2022).

    Article  PubMed  CAS  Google Scholar 

  24. Muller, E. A., Pollard, B. & Raschke, M. B. Infrared chemical nano-imaging: accessing structure, coupling, and dynamics on molecular length scales. J. Phys. Chem. Lett. 6, 1275–1284 (2015).

    Article  PubMed  CAS  Google Scholar 

  25. Bechtel, H. A., Johnson, S. C., Khatib, O., Muller, E. A. & Raschke, M. B. Synchrotron infrared nano-spectroscopy and -imaging. Surf. Sci. Rep. 75, 100493 (2020).

    Article  CAS  Google Scholar 

  26. Guo, X. et al. Terahertz nanoscopy: advances, challenges, and the road ahead. Appl. Phys. Rev. 11, 021306 (2024).

    Article  CAS  Google Scholar 

  27. Novotny, L. From near-field optics to optical antennas. Phys. Today 64, 47–52 (2011).

    Article  Google Scholar 

  28. Novotny, L. & Hecht, B. Principles of Nano-Optics (Cambridge Univ. Press, 2009).

  29. Labardi, M., Patanè, S. & Allegrini, M. Artifact-free near-field optical imaging by apertureless microscopy. Appl. Phys. Lett. 77, 621–623 (2000).

    Article  CAS  Google Scholar 

  30. Mooshammer, F. et al. Quantifying nanoscale electromagnetic fields in near-field microscopy by Fourier demodulation analysis. ACS Photon. 7, 344–351 (2020).

    Article  CAS  Google Scholar 

  31. Cvitkovic, A., Ocelic, N. & Hillenbrand, R. Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy. Opt. Express 15, 8550–8565 (2007). This paper introduces and describes the FDM of s-SNOM and provides a corrected version of the PDM.

    Article  PubMed  CAS  Google Scholar 

  32. Ocelic, N., Huber, A. & Hillenbrand, R. Pseudoheterodyne detection for background-free near-field spectroscopy. Appl. Phys. Lett. 89, 101124 (2006). This paper introduces s-SNOM with pseudo-heterodyne detection combined with higher-harmonic signal demodulation.

    Article  Google Scholar 

  33. Hillenbrand, R., Knoll, B. & Keilmann, F. Pure optical contrast in scattering-type scanning near-field microscopy. J. Microsc. 202, 77–83 (2001).

    Article  PubMed  CAS  Google Scholar 

  34. Gomez, L. et al. Apertureless scanning near-field optical microscopy: a comparison between homodyne and heterodyne approaches. J. Opt. Soc. Am. B 23, 823 (2006).

    Article  CAS  Google Scholar 

  35. Stiegler, J. M. et al. Nanoscale free-carrier profiling of individual semiconductor nanowires by infrared near-field nanoscopy. Nano Lett. 10, 1387–1392 (2010).

    Article  PubMed  CAS  Google Scholar 

  36. Brehm, M., Taubner, T., Hillenbrand, R. & Keilmann, F. Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution. Nano Lett. 6, 1307–1310 (2006).

    Article  PubMed  CAS  Google Scholar 

  37. Amarie, S. & Keilmann, F. Broadband-infrared assessment of phonon resonance in scattering-type near-field microscopy. Phys. Rev. B 83, 45404 (2011).

    Article  Google Scholar 

  38. Pollard, B., Muller, E. A., Hinrichs, K. & Raschke, M. B. Vibrational nano-spectroscopic imaging correlating structure with intermolecular coupling and dynamics. Nat. Commun. 5, 3587 (2014).

    Article  PubMed  Google Scholar 

  39. Bechtel, H. A., Muller, E. A., Olmon, R. L., Martin, M. C. & Raschke, M. B. Ultrabroadband infrared nanospectroscopic imaging. Proc. Natl Acad. Sci. USA 111, 7191–7196 (2014). This work demonstrates nano-FTIR spectroscopy of semiconductor, biomineral and protein nanostructures using synchrotron radiation.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Hillenbrand, R., Keilmann, F., Hanarp, P., Sutherland, D. S. & Aizpurua, J. Coherent imaging of nanoscale plasmon patterns with a carbon nanotube optical probe. Appl. Phys. Lett. 83, 368–370 (2003).

    Article  CAS  Google Scholar 

  41. Esteban, R. et al. Direct near-field optical imaging of higher order plasmonic resonances. Nano Lett. 8, 3155–3159 (2008). This work introduces s-polarized illumination for minimally perturbed mapping of the near-field distribution in nanoresonators.

    Article  PubMed  CAS  Google Scholar 

  42. Rang, M. et al. Optical near-field mapping of plasmonic nanoprisms. Nano Lett. 8, 3357–3363 (2008).

    Article  PubMed  CAS  Google Scholar 

  43. Govyadinov, A. A., Amenabar, I., Huth, F., Scott Carney, P. & Hillenbrand, R. Quantitative measurement of local infrared absorption and dielectric function with tip-enhanced near-field microscopy. J. Phys. Chem. Lett. 4, 1526–1531 (2013).

    Article  PubMed  CAS  Google Scholar 

  44. Huth, F. et al. Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution. Nano Lett. 12, 3973 (2012). This paper demonstrates nano-FTIR spectroscopy of molecular vibrations and their correlation with conventional FTIR absorption spectra.

    Article  PubMed  CAS  Google Scholar 

  45. Hillenbrand, R., Taubner, T. & Keilmann, F. Phonon-enhanced light–matter interaction at the nanometre scale. Nature 418, 159 (2002). This work demonstrates polariton-resonant near-field interaction in s-SNOM.

    Article  PubMed  CAS  Google Scholar 

  46. Taubner, T., Hillenbrand, R. & Keilmann, F. Nanoscale polymer recognition by spectral signature in scattering infrared near-field microscopy. Appl. Phys. Lett. 85, 5064–5066 (2004).

    Article  CAS  Google Scholar 

  47. Mester, L., Govyadinov, A. A. & Hillenbrand, R. High-fidelity nano-FTIR spectroscopy by on-pixel normalization of signal harmonics. Nanophotonics 11, 377–390 (2022).

    Article  PubMed  CAS  Google Scholar 

  48. Aizpurua, J., Taubner, T., de Abajo, F. J. G., Brehm, M. & Hillenbrand, R. Substrate-enhanced infrared near-field spectroscopy. Opt. Express 16, 1529–1545 (2008).

    Article  PubMed  Google Scholar 

  49. Autore, M., Mester, L., Goikoetxea, M. & Hillenbrand, R. Substrate matters: surface-polariton enhanced infrared nanospectroscopy of molecular vibrations. Nano Lett. 19, 8066–8073 (2019).

    Article  PubMed  CAS  Google Scholar 

  50. Wirth, K. G. et al. Tunable s-SNOM for nanoscale infrared optical measurement of electronic properties of bilayer graphene. ACS Photon. 8, 418–423 (2021).

    Article  CAS  Google Scholar 

  51. Kaltenecker, K. J., Gölz, T., Bau, E. & Keilmann, F. Infrared-spectroscopic, dynamic near-field microscopy of living cells and nanoparticles in water. Sci. Rep. 11, 21860 (2021). This paper demonstrates infrared s-SNOM and nano-FTIR spectroscopy of water-suspended living cells through the 10 nm thick SiN membrane of a liquid cell.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. McLeod, A. S. et al. Nano-imaging of strain-tuned stripe textures in a Mott crystal. npj Quant. Mater. 6, 46 (2021).

    Article  CAS  Google Scholar 

  53. Malovichko, I., Govyadinov, A., Huth, F. & Diem, M. Method for referencing a near-field measurement with drift and fluctuation correction. Patent EP3940393A1 (2022).

  54. Mastel, S., Govyadinov, A. A., de Oliveira, T. V. A. G., Amenabar, I. & Hillenbrand, R. Nanoscale-resolved chemical identification of thin organic films using infrared near-field spectroscopy and standard Fourier transform infrared references. Appl. Phys. Lett. 106, 023113 (2015).

    Article  Google Scholar 

  55. Heberle, J. & Pfitzner, E. Infrared scattering-type scanning near-field optical microscopy of biomembranes in water. J. Phys. Chem. Lett. 11, 8183–8188 (2020).

    Article  PubMed  Google Scholar 

  56. Man, T. et al. Hierarchically encapsulating enzymes with multi-shelled metal-organic frameworks for tandem biocatalytic reactions. Nat. Commun. 13, 305 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Niehues, I. et al. Identification of weak molecular absorption in single-wavelength s-SNOM images. Opt. Express 31, 7012–7022 (2023).

    Article  PubMed  CAS  Google Scholar 

  58. Paul, S. et al. 13C- and 15N-labeling of amyloid-β and inhibitory peptides to study their interaction via nanoscale infrared spectroscopy. Commun. Chem. 6, 163 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Raschke, M. B. & Lienau, C. Apertureless near-field optical microscopy: tip–sample coupling in elastic light scattering. Appl. Phys. Lett. 83, 5089–5091 (2003).

    Article  CAS  Google Scholar 

  60. Hillenbrand, R. & Keilmann, F. Material-specific mapping of metal/semiconductor/dielectric nanosystems at 10 nm resolution by backscattering near-field optical microscopy. Appl. Phys. Lett. 80, 25–27 (2002).

    Article  CAS  Google Scholar 

  61. Mastel, S. et al. Understanding the image contrast of material boundaries in IR nanoscopy reaching 5 nm spatial resolution. ACS Photon. 5, 3372 (2018).

    Article  CAS  Google Scholar 

  62. Chen, X. et al. THz near-field imaging of extreme subwavelength metal structures. ACS Photon. 7, 687–694 (2020).

    Article  CAS  Google Scholar 

  63. Bijeon, J. L., Adam, P. M., Barchiesi, D. & Royer, P. Definition of a simple resolution criterion in an apertureless scanning near-field optical microscope (A-SNOM): contribution of the tip vibration and lock-in detection. EPJ Appl. Phys. 26, 45–52 (2004).

    Article  Google Scholar 

  64. Krutokhvostov, R. et al. Enhanced resolution in subsurface near-field optical microscopy. Opt. Express 20, 593–600 (2012).

    Article  PubMed  Google Scholar 

  65. Walford, J. N. et al. Influence of tip modulation on image formation in scanning near-field optical microscopy. J. Appl. Phys. 89, 5159–5169 (2001).

    Article  CAS  Google Scholar 

  66. Esteban, R., Vogelgesang, R. & Kern, K. Full simulations of the apertureless scanning near field optical microscopy signal: achievable resolution and contrast. Opt. Express 17, 2518–2529 (2009).

    Article  PubMed  CAS  Google Scholar 

  67. Nishida, J. et al. Sub-tip-radius near-field interactions in nano-FTIR vibrational spectroscopy on single proteins. Nano Lett. 24, 836–843 (2024).

    Article  PubMed  CAS  Google Scholar 

  68. Maissen, C., Chen, S., Nikulina, E., Govyadinov, A. & Hillenbrand, R. Probes for ultrasensitive THz nanoscopy. ACS Photon. 6, 1279 (2019).

    Article  CAS  Google Scholar 

  69. Taubner, T., Keilmann, F. & Hillenbrand, R. Nanoscale-resolved subsurface imaging by scattering-type near-field optical microscopy. Opt. Express 13, 8893 (2005).

    Article  PubMed  CAS  Google Scholar 

  70. Mester, L., Govyadinov, A. A., Chen, S., Goikoetxea, M. & Hillenbrand, R. Subsurface chemical nanoidentification by nano-FTIR spectroscopy. Nat. Commun. 11, 3359 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Moon, K. et al. Subsurface nanoimaging by broadband terahertz pulse near-field microscopy. Nano Lett. 15, 549–552 (2015).

    Article  PubMed  CAS  Google Scholar 

  72. Jacob, R. et al. Intersublevel spectroscopy on single InAs-quantum dots by terahertz near-field microscopy. Nano Lett. 12, 4336–4340 (2012).

    Article  PubMed  CAS  Google Scholar 

  73. Raschke, M. B. et al. Apertureless near-field vibrational imaging of block-copolymer nanostructures with ultrahigh spatial resolution. ChemPhysChem 6, 2197–2203 (2005).

    Article  PubMed  CAS  Google Scholar 

  74. Govyadinov, A. A. et al. Recovery of permittivity and depth from near-field data as a step toward infrared nanotomography. ACS Nano 8, 6911–6921 (2014).

    Article  PubMed  CAS  Google Scholar 

  75. Engelhardt, A. P., Hauer, B. & Taubner, T. Visibility of weak contrasts in subsurface scattering near-field microscopy. Ultramicroscopy 126, 40–43 (2013).

    Article  PubMed  CAS  Google Scholar 

  76. Mooshammer, F. et al. Nanoscale near-field tomography of surface states on (Bi0.5Sb0.5)2Te3. Nano Lett. 18, 7515–7523 (2018).

    Article  PubMed  CAS  Google Scholar 

  77. Sun, J., Schotland, J. C., Hillenbrand, R. & Carney, P. S. Nanoscale optical tomography using volume-scanning near-field microscopy. Appl. Phys. Lett. 95, 121108 (2009).

    Article  Google Scholar 

  78. Eisele, M. et al. Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution. Nat. Photon. 8, 841–845 (2014). This work demonstrates time-resolved multi-THz nanospectroscopy using electro-optic sampling.

    Article  CAS  Google Scholar 

  79. Cvitkovic, A., Ocelic, N., Aizpurua, J., Guckenberger, R. & Hillenbrand, R. Infrared imaging of single nanoparticles via strong field enhancement in a scanning nanogap. Phys. Rev. Lett. 97, 60801 (2006).

    Article  CAS  Google Scholar 

  80. Mattis Hoffmann, J., Hauer, B. & Taubner, T. Antenna-enhanced infrared near-field nanospectroscopy of a polymer. Appl. Phys. Lett. 101, 193105 (2012).

    Article  Google Scholar 

  81. von Ribbeck, H.-G. et al. Spectroscopic THz near-field microscope. Opt. Express 16, 3430–3438 (2008).

    Article  Google Scholar 

  82. Siday, T., Hale, L. L., Hermans, R. I. & Mitrofanov, O. Resonance-enhanced terahertz nanoscopy probes. ACS Photon. 7, 596–601 (2020).

    Article  CAS  Google Scholar 

  83. Mastel, S. et al. Terahertz nanofocusing with cantilevered terahertz-resonant antenna tips. Nano Lett. 17, 6526–6533 (2017).

    Article  PubMed  CAS  Google Scholar 

  84. Moon, Y. et al. Reference-free self-calibrating tip-based scattering-type THz near-field microscopy. AIP Adv. 13, 065211 (2023).

    Article  CAS  Google Scholar 

  85. Pistore, V. et al. Near-field probes for sensitive detectorless near-field nanoscopy in the 2.0–4.6 THz range. Appl. Phys. Lett. 124, 221105 (2024).

    Article  CAS  Google Scholar 

  86. Huth, F. et al. Resonant antenna probes for tip-enhanced infrared near-field microscopy. Nano Lett. 13, 1065–1072 (2013).

    Article  PubMed  CAS  Google Scholar 

  87. Deutsch, B., Hillenbrand, R. & Novotny, L. Near-field amplitude and phase recovery using phase-shifting interferometry. Opt. Express 16, 494–501 (2008).

    Article  PubMed  CAS  Google Scholar 

  88. Schnell, M., Carney, P. S. & Hillenbrand, R. Synthetic optical holography for rapid nanoimaging. Nat. Commun. 5, 3499 (2014).

    Article  PubMed  CAS  Google Scholar 

  89. Berweger, S. et al. Nano-chemical infrared imaging of membrane proteins in lipid bilayers. J. Am. Chem. Soc. 135, 18292–18295 (2013).

    Article  PubMed  CAS  Google Scholar 

  90. Huber, A. J., Keilmann, F., Wittborn, J., Aizpurua, J. & Hillenbrand, R. Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices. Nano Lett. 8, 3766–3770 (2008). This work demonstrates THz s-SNOM with a spatial resolution below 100 nm.

    Article  PubMed  CAS  Google Scholar 

  91. Thomas, L. et al. Imaging of THz photonic modes by scattering scanning near-field optical microscopy. ACS Appl. Mater. Interfaces 14, 32608–32617 (2022).

    Article  PubMed  CAS  Google Scholar 

  92. Dean, P. et al. Apertureless near-field terahertz imaging using the self-mixing effect in a quantum cascade laser. Appl. Phys. Lett. 108, 091113 (2016).

    Article  Google Scholar 

  93. Giordano, M. C. et al. Phase-resolved terahertz self-detection near-field microscopy. Opt. Express 26, 18423–18435 (2018).

    Article  PubMed  CAS  Google Scholar 

  94. Liewald, C. et al. All-electronic terahertz nanoscopy. Optica 5, 159 (2018).

    Article  CAS  Google Scholar 

  95. Kehr, S. C. et al. Anisotropy contrast in phonon-enhanced apertureless near-field microscopy using a free-electron laser. Phys. Rev. Lett. 100, 256403 (2008).

    Article  PubMed  CAS  Google Scholar 

  96. de Oliveira, T. V. A. G. et al. Nanoscale-confined terahertz polaritons in a van der Waals crystal. Adv. Mater. 33, 2005777 (2021).

    Article  PubMed  Google Scholar 

  97. Kuschewski, F. et al. Narrow-band near-field nanoscopy in the spectral range from 1.3 to 8.5 THz. Appl. Phys. Lett. 108, 113102 (2016).

    Article  Google Scholar 

  98. Hegenbarth, R. et al. High-power femtosecond mid-IR sources for s-SNOM applications. J. Opt. 16, 094003 (2014).

    Article  CAS  Google Scholar 

  99. Matson, J. et al. Controlling the propagation asymmetry of hyperbolic shear polaritons in beta-gallium oxide. Nat. Commun. 14, 5240 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Sternbach, A. J. et al. Negative refraction in hyperbolic hetero-bicrystals. Science 379, 555–557 (2023).

    Article  PubMed  CAS  Google Scholar 

  101. Karst, J. et al. Watching in situ the hydrogen diffusion dynamics in magnesium on the nanoscale. Sci. Adv. 6, eaaz0566 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Beddoe, M. et al. Probing the micro- and nanoscopic properties of dental materials using infrared spectroscopy: a proof-of-principle study. Acta Biomater. 168, 309–322 (2023).

    Article  PubMed  CAS  Google Scholar 

  103. Chen, S. et al. Real-space nanoimaging of THz polaritons in the topological insulator Bi2Se3. Nat. Commun. 13, 1374 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Chen, C. et al. Terahertz nanoimaging and nanospectroscopy of chalcogenide phase-change materials. ACS Photon. 7, 3499–3506 (2020).

    Article  CAS  Google Scholar 

  105. Pogna, E. A. A. et al. Mapping propagation of collective modes in Bi2Se3 and Bi2Te2.2Se0.8 topological insulators by near-field terahertz nanoscopy. Nat. Commun. 12, 6672 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Chen, S. et al. Real-space observation of ultraconfined in-plane anisotropic acoustic terahertz plasmon polaritons. Nat. Mater. 22, 860–866 (2023).

    Article  PubMed  CAS  Google Scholar 

  107. Fei, Z. et al. Infrared nanoscopy of dirac plasmons at the graphene–SiO2 interface. Nano Lett. 11, 4701–4705 (2011).

    Article  PubMed  CAS  Google Scholar 

  108. Zhang, S. et al. Nano-spectroscopy of excitons in atomically thin transition metal dichalcogenides. Nat. Commun. 13, 542 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Yoxall, E., Schnell, M., Mastel, S. & Hillenbrand, R. Magnitude and phase-resolved infrared vibrational nanospectroscopy with a swept quantum cascade laser. Opt. Express 23, 13358–13369 (2015).

    Article  PubMed  CAS  Google Scholar 

  110. Barnett, J. et al. Mid-infrared near-field fingerprint spectroscopy of the 2D electron gas in LaAlO3/SrTiO3 at low temperatures. Preprint at https://doi.org/10.48550/arXiv.2311.07354 (2023).

  111. Brehm, M., Schliesser, A. & Keilmann, F. Spectroscopic near-field microscopy using frequency combs in the mid-infrared. Opt. Express 14, 11222–11233 (2006).

    Article  PubMed  Google Scholar 

  112. Amarie, S., Ganz, T. & Keilmann, F. Mid-infrared near-field spectroscopy. Opt. Express 17, 21794–21801 (2009).

    Article  PubMed  CAS  Google Scholar 

  113. Xu, X. G., Rang, M., Craig, I. M. & Raschke, M. B. Pushing the sample-size limit of infrared vibrational nanospectroscopy: from monolayer toward single molecule sensitivity. J. Phys. Chem. Lett. 3, 1836–1841 (2012). This paper demonstrates nano-FTIR spectroscopy of molecular monolayers.

    Article  PubMed  CAS  Google Scholar 

  114. Huth, F., Schnell, M., Wittborn, J., Ocelic, N. & Hillenbrand, R. Infrared-spectroscopic nanoimaging with a thermal source. Nat. Mater. 10, 352 (2011).

    Article  PubMed  CAS  Google Scholar 

  115. Németh, G., Bechtel, H. A. & Borondics, F. Origins and consequences of asymmetric nano-FTIR interferograms. Opt. Express 32, 15280 (2024).

    Article  PubMed  Google Scholar 

  116. Larson, J. M., Bechtel, H. A. & Kostecki, R. Detection and signal processing for near-field nanoscale Fourier transform infrared spectroscopy. Adv. Funct. Mater. 34, 2406643 (2024).

    Article  CAS  Google Scholar 

  117. Wehmeier, L. et al. Ultrabroadband terahertz near-field nanospectroscopy with a HgCdTe detector. ACS Photon. 10, 4329–4339 (2023).

    Article  CAS  Google Scholar 

  118. Peragut, F., Brubach, J.-B., Roy, P. & De Wilde, Y. Infrared near-field imaging and spectroscopy based on thermal or synchrotron radiation. Appl. Phys. Lett. 104, 251118 (2014).

    Article  Google Scholar 

  119. Hermann, P. et al. Near-field imaging and nano-Fourier-transform infrared spectroscopy using broadband synchrotron radiation. Opt. Express 21, 2913–2919 (2013).

    Article  PubMed  CAS  Google Scholar 

  120. Lahneman, D. J. et al. Broadband near-field infrared spectroscopy with a high temperature plasma light source. Opt. Express 25, 20421–20430 (2017).

    Article  PubMed  CAS  Google Scholar 

  121. Wagner, M. et al. Ultrabroadband nanospectroscopy with a laser-driven plasma source. ACS Photon. 5, 1467–1475 (2018).

    Article  CAS  Google Scholar 

  122. Santos, T. M. et al. Synchrotron infrared nanospectroscopy in fourth-generation storage rings. J. Synchrotron Radiat. 31, 547–556 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Amenabar, I. et al. Hyperspectral infrared nanoimaging of organic samples based on Fourier transform infrared nanospectroscopy. Nat. Commun. 8, 14402 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Schnell, M., Goikoetxea, M., Amenabar, I., Carney, P. S. & Hillenbrand, R. Rapid infrared spectroscopic nanoimaging with nano-FTIR holography. ACS Photon. 7, 2878 (2020).

    Article  CAS  Google Scholar 

  125. Fu, M. et al. Accelerated nano-optical imaging through sparse sampling. Nano Lett. 24, 2149–2156 (2024).

    Article  PubMed  CAS  Google Scholar 

  126. Johnson, S. C. et al. Infrared nanospectroscopic imaging in the rotating frame. Optica 6, 424–429 (2019).

    Article  CAS  Google Scholar 

  127. Labouesse, S., Johnson, S. C., Bechtel, H. A., Raschke, M. B. & Piestun, R. Smart scattering scanning near-field optical microscopy. ACS Photon. 7, 3346–3352 (2020).

    Article  CAS  Google Scholar 

  128. Kästner, B. et al. Compressed sensing FTIR nano-spectroscopy and nano-imaging. Opt. Express 26, 18115–18124 (2018).

    Article  PubMed  Google Scholar 

  129. Koch, M., Mittleman, D. M., Ornik, J. & Castro-Camus, E. Terahertz time-domain spectroscopy. Nat. Rev. Methods Primers 3, 48 (2023).

    Article  CAS  Google Scholar 

  130. Chen, H.-T., Kersting, R. & Cho, G. C. Terahertz imaging with nanometer resolution. Appl. Phys. Lett. 83, 3009–3011 (2003).

    Article  CAS  Google Scholar 

  131. Stinson, H. T. et al. Imaging the nanoscale phase separation in vanadium dioxide thin films at terahertz frequencies. Nat. Commun. 9, 3604 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Moon, K. et al. Computed terahertz near-field mapping of molecular resonances of lactose stereo-isomer impurities with sub-attomole sensitivity. Sci. Rep. 9, 16915 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Aghamiri, N. A. et al. Hyperspectral time-domain terahertz nano-imaging. Opt. Express 27, 24231 (2019).

    Article  PubMed  CAS  Google Scholar 

  134. Tranca, D. E., Stanciu, S. G., Hristu, R., Latterini, L. & Stanciu, G. A. Surface optical characterization at nanoscale using phasor representation of data acquired by scattering scanning near-field optical microscopy. Appl. Surf. Sci. 509, 145347 (2020).

    Article  CAS  Google Scholar 

  135. Chen, J. et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77–81 (2012). In this work, s-SNOM is used to visualize the frequency-dependent propagation of graphene plasmons, as well as the tuning of resonant localized modes by electrical gating.

    Article  PubMed  CAS  Google Scholar 

  136. Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82 (2012). In this work, s-SNOM is employed to image propagating graphene plasmons and to visualize how their wavelengths can be tuned by electrical gating.

    Article  PubMed  CAS  Google Scholar 

  137. Shi, Z. et al. Observation of a Luttinger-liquid plasmon in metallic single-walled carbon nanotubes. Nat. Photon. 9, 515–519 (2015).

    Article  CAS  Google Scholar 

  138. Zhou, Y. et al. Tunable low loss 1D surface plasmons in InAs nanowires. Adv. Mater. 30, 1802551 (2018).

    Article  Google Scholar 

  139. Shi, Z. et al. Amplitude- and phase-resolved nanospectral imaging of phonon polaritons in hexagonal boron nitride. ACS Photon. 2, 790–796 (2015).

    Article  CAS  Google Scholar 

  140. Dai, S. et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014). In this work, s-SNOM is used to image out-of-plane hyperbolic phonon polaritons in van der Waals materials.

    Article  PubMed  CAS  Google Scholar 

  141. Xu, X. G. et al. One-dimensional surface phonon polaritons in boron nitride nanotubes. Nat. Commun. 5, 4782 (2014).

    Article  PubMed  CAS  Google Scholar 

  142. Mancini, A. et al. Near-field retrieval of the surface phonon polariton dispersion in free-standing silicon carbide thin films. ACS Photon. 9, 3696–3704 (2022).

    Article  CAS  Google Scholar 

  143. Li, P. et al. Reversible optical switching of highly confined phonon–polaritons with an ultrathin phase-change material. Nat. Mater. 15, 870–875 (2016).

    Article  PubMed  CAS  Google Scholar 

  144. Ma, W. et al. In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature 562, 557–562 (2018). In this work, s-SNOM is used to visualize in real space in-plane hyperbolic phonon polaritons in a natural van der Waals crystal.

    Article  PubMed  CAS  Google Scholar 

  145. Zheng, Z. et al. Highly confined and tunable hyperbolic phonon polaritons in van der Waals semiconducting transition metal oxides. Adv. Mater. 30, 1705318 (2018).

    Article  Google Scholar 

  146. Hu, F. et al. Imaging exciton–polariton transport in MoSe2 waveguides. Nat. Photon. 11, 356–360 (2017).

    Article  CAS  Google Scholar 

  147. Hu, D. et al. Probing optical anisotropy of nanometer-thin van der Waals microcrystals by near-field imaging. Nat. Commun. 8, 1471 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Walla, F. et al. Anisotropic excitation of surface plasmon polaritons on a metal film by a scattering-type scanning near-field microscope with a non-rotationally-symmetric probe tip. Nanophotonics 7, 269–276 (2018).

    Article  Google Scholar 

  149. Kaltenecker, K. J. et al. Mono-crystalline gold platelets: a high-quality platform for surface plasmon polaritons. Nanophotonics 9, 509–522 (2020).

    Article  CAS  Google Scholar 

  150. Nikitin, A. Y. et al. Real-space mapping of tailored sheet and edge plasmons in graphene nanoresonators. Nat. Photon. 10, 239–243 (2016).

    Article  CAS  Google Scholar 

  151. Fei, Z. et al. Edge and surface plasmons in graphene nanoribbons. Nano Lett. 15, 8271–8276 (2015).

    Article  PubMed  CAS  Google Scholar 

  152. Li, P. et al. Optical nanoimaging of hyperbolic surface polaritons at the edges of van der Waals materials. Nano Lett. 17, 228 (2017).

    Article  PubMed  CAS  Google Scholar 

  153. Hauer, B. et al. Exploiting phonon-resonant near-field interaction for the nanoscale investigation of extended defects. Adv. Funct. Mater. 30, 1907357 (2020).

    Article  CAS  Google Scholar 

  154. Fei, Z. et al. Electronic and plasmonic phenomena at graphene grain boundaries. Nat. Nanotechnol. 8, 821–825 (2013).

    Article  PubMed  CAS  Google Scholar 

  155. Gerber, J. A., Berweger, S., O’Callahan, B. T. & Raschke, M. B. Phase-resolved surface plasmon interferometry of graphene. Phys. Rev. Lett. 113, 55502 (2014).

    Article  CAS  Google Scholar 

  156. Luo, Y. et al. In situ nanoscale imaging of moiré superlattices in twisted van der Waals heterostructures. Nat. Commun. 11, 4209 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Sunku, S. S. et al. Photonic crystals for nano-light in moiré graphene superlattices. Science 362, 1153–1156 (2018).

    Article  PubMed  CAS  Google Scholar 

  158. Woessner, A. et al. Highly confined low-loss plasmons in graphene–boron nitride heterostructures. Nat. Mater. 14, 421–425 (2015).

    Article  PubMed  CAS  Google Scholar 

  159. Álvarez-Pérez, G. et al. Infrared permittivity of the biaxial van der waals semiconductor α-MoO3 from near- and far-field correlative studies. Adv. Mater. 32, 1908176 (2020).

    Article  Google Scholar 

  160. Lyu, B. et al. Phonon polariton-assisted infrared nanoimaging of local strain in hexagonal boron nitride. Nano Lett. 19, 1982 (2019).

    Article  PubMed  CAS  Google Scholar 

  161. Alfaro-Mozaz, F. J. et al. Nanoimaging of resonating hyperbolic polaritons in linear boron nitride antennas. Nat. Commun. 8, 15624 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Feres, F. H. et al. Sub-diffractional cavity modes of terahertz hyperbolic phonon polaritons in tin oxide. Nat. Commun. 12, 1995 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Yu, S. J. et al. Ultrahigh-quality infrared polaritonic resonators based on bottom-up-synthesized van der Waals nanoribbons. ACS Nano 16, 3027–3035 (2022).

    Article  PubMed  CAS  Google Scholar 

  164. Tamagnone, M. et al. Ultra-confined mid-infrared resonant phonon polaritons in van der Waals nanostructures. Sci. Adv. 4, eaat7189 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Conrads, L., Schüler, L., Wirth, K. G., Wuttig, M. & Taubner, T. Direct programming of confined surface phonon polariton resonators with the plasmonic phase-change material In3SbTe2. Nat. Commun. 15, 3472 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Dai, S. et al. Efficiency of launching highly confined polaritons by infrared light incident on a hyperbolic material. Nano Lett. 17, 5285–5290 (2017).

    Article  PubMed  CAS  Google Scholar 

  167. Yoxall, E. et al. Direct observation of ultraslow hyperbolic polariton propagation with negative phase velocity. Nat. Photon. 9, 674 (2015).

    Article  CAS  Google Scholar 

  168. Huber, A., Ocelic, N., Kazantsev, D. & Hillenbrand, R. Near-field imaging of mid-infrared surface phonon polariton propagation. Appl. Phys. Lett. 87, 081103 (2005).

    Article  Google Scholar 

  169. Ni, G. X. et al. Fundamental limits to graphene plasmonics. Nature 557, 530–533 (2018). This work investigates graphene plasmons at cryogenic temperatures down to 60 K.

    Article  PubMed  CAS  Google Scholar 

  170. Li, P. et al. Infrared hyperbolic metasurface based on nanostructured van der Waals materials. Science 359, 892–896 (2018).

    Article  PubMed  CAS  Google Scholar 

  171. Hu, H. et al. Gate-tunable negative refraction of mid-infrared polaritons. Science 379, 558–561 (2023).

    Article  PubMed  CAS  Google Scholar 

  172. Barnett, J. et al. Investigation of low-confinement surface phonon polariton launching on SiC and SrTiO3 using scanning near-field optical microscopy. Appl. Phys. Lett. 120, 211107 (2022).

    Article  CAS  Google Scholar 

  173. Zheng, Z. et al. A mid-infrared biaxial hyperbolic van der Waals crystal. Sci. Adv. 5, eaav8690 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Hu, G. et al. Real-space nanoimaging of hyperbolic shear polaritons in a monoclinic crystal. Nat. Nanotechnol. 18, 64–70 (2023).

    Article  PubMed  CAS  Google Scholar 

  175. Zhang, Q. et al. Unidirectionally excited phonon polaritons in high-symmetry orthorhombic crystals. Sci. Adv. 8, eabn9774 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Schnell, M. et al. Nanofocusing of mid-infrared energy with tapered transmission lines. Nat. Photon. 5, 283–287 (2011).

    Article  CAS  Google Scholar 

  177. Zenin, V. A. et al. Boosting local field enhancement by on-chip nanofocusing and impedance-matched plasmonic antennas. Nano Lett. 15, 8148–8154 (2015).

    Article  PubMed  CAS  Google Scholar 

  178. Alonso-González, P. et al. Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns. Science 344, 1369–1373 (2014).

    Article  PubMed  Google Scholar 

  179. Andryieuski, A. et al. Direct characterization of plasmonic slot waveguides and nanocouplers. Nano Lett. 14, 3925–3929 (2014).

    Article  PubMed  CAS  Google Scholar 

  180. Sarriugarte, P., Schnell, M., Chuvilin, A. & Hillenbrand, R. Polarization-resolved near-field characterization of nanoscale infrared modes in transmission lines fabricated by gallium and helium ion beam milling. ACS Photon. 1, 604–611 (2014).

    Article  CAS  Google Scholar 

  181. Prämassing, M., Liebtrau, M., Schill, H. J., Irsen, S. & Linden, S. Interferometric near-field characterization of plasmonic slot waveguides in single- and poly-crystalline gold films. Opt. Express 28, 12998–13007 (2020).

    Article  PubMed  Google Scholar 

  182. Tsesses, S. et al. Optical skyrmion lattice in evanescent electromagnetic fields. Science 361, 993–996 (2018).

    Article  PubMed  CAS  Google Scholar 

  183. Dorfmüller, J. et al. Fabry–Pérot resonances in one-dimensional plasmonic nanostructures. Nano Lett. 9, 2372–2377 (2009).

    Article  PubMed  Google Scholar 

  184. Schnell, M. et al. Controlling the near-field oscillations of loaded plasmonic nanoantennas. Nat. Photon. 3, 287–291 (2009).

    Article  CAS  Google Scholar 

  185. Wang, T., Li, P., Hauer, B., Chigrin, D. N. & Taubner, T. Optical properties of single infrared resonant circular microcavities for surface phonon polaritons. Nano Lett. 13, 5051–5055 (2013).

    Article  PubMed  CAS  Google Scholar 

  186. Alonso-González, P. et al. Resolving the electromagnetic mechanism of surface-enhanced light scattering at single hot spots. Nat. Commun. 3, 684 (2012).

    Article  PubMed  Google Scholar 

  187. Kim, D.-S. et al. Real-space mapping of the strongly coupled plasmons of nanoparticle dimers. Nano Lett. 9, 3619–3625 (2009).

    Article  PubMed  CAS  Google Scholar 

  188. Olmon, R. L. et al. Determination of electric-field, magnetic-field, and electric-current distributions of infrared optical antennas: a near-field optical vector network analyzer. Phys. Rev. Lett. 105, 167403 (2010).

    Article  PubMed  Google Scholar 

  189. Neuman, T. et al. Mapping the near fields of plasmonic nanoantennas by scattering-type scanning near-field optical microscopy. Laser Photon. Rev. 9, 637–649 (2015).

    Article  CAS  Google Scholar 

  190. Paulite, M. et al. Imaging secondary structure of individual amyloid fibrils of a β2-microglobulin fragment using near-field infrared spectroscopy. J. Am. Chem. Soc. 133, 7376–7383 (2011).

    Article  PubMed  CAS  Google Scholar 

  191. Amenabar, I. et al. Structural analysis and mapping of individual protein complexes by infrared nanospectroscopy. Nat. Commun. 4, 2890 (2013). This work demonstrates the capability of s-SNOM and nano-FTIR spectroscopy for analysing the secondary structure of individual protein complexes, membranes and fibrils.

    Article  PubMed  Google Scholar 

  192. Meyns, M., Primpke, S. & Gerdts, G. Library based identification and characterisation of polymers with nano-FTIR and IR-sSNOM imaging. Anal. Methods 11, 5195–5202 (2019).

    Article  CAS  Google Scholar 

  193. Wollny, G., Bründermann, E., Arsov, Z., Quaroni, L. & Havenith, M. Nanoscale depth resolution in scanning near-field infrared microscopy. Opt. Express 16, 7453–7459 (2008).

    Article  PubMed  CAS  Google Scholar 

  194. Knoll, B. & Keilmann, F. Infrared conductivity mapping for nanoelectronics. Appl. Phys. Lett. 77, 3980–3982 (2000).

    Article  CAS  Google Scholar 

  195. Wagner, M. et al. Ultrafast dynamics of surface plasmons in InAs by time-resolved infrared nanospectroscopy. Nano Lett. 14, 4529 (2014).

    Article  PubMed  CAS  Google Scholar 

  196. Huber, A. J., Kazantsev, D., Keilmann, F., Wittborn, J. & Hillenbrand, R. Simultaneous IR material recognition and conductivity mapping by nanoscale near-field microscopy. Adv. Mater. 19, 2209–2212 (2007).

    Article  CAS  Google Scholar 

  197. Lewin, M. et al. Nanospectroscopy of infrared phonon resonance enables local quantification of electronic properties in doped SrTiO3 ceramics. Adv. Funct. Mater. 28, 1802834 (2018).

    Article  Google Scholar 

  198. McLeod, A. S. et al. Model for quantitative tip-enhanced spectroscopy and the extraction of nanoscale-resolved optical constants. Phys. Rev. B 90, 85136 (2014).

    Article  CAS  Google Scholar 

  199. Xu, R. et al. Highly confined epsilon-near-zero and surface phonon polaritons in SrTiO3 membranes. Nat. Commun. 15, 4743 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  200. Amarie, S. et al. Nano-FTIR chemical mapping of minerals in biological materials. Beilstein J. Nanotechnol. 3, 312–323 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  201. Dominguez, G. et al. Nanoscale infrared spectroscopy as a non-destructive probe of extraterrestrial samples. Nat. Commun. 5, 5445 (2014).

    Article  PubMed  CAS  Google Scholar 

  202. Huber, A., Ocelic, N., Taubner, T. & Hillenbrand, R. Nanoscale resolved infrared probing of crystal structure and of plasmon–phonon coupling. Nano Lett. 6, 774–778 (2006).

    Article  PubMed  CAS  Google Scholar 

  203. Ocelic, N. & Hillenbrand, R. Subwavelength-scale tailoring of surface phonon polaritons by focused ion-beam implantation. Nat. Mater. 3, 606–609 (2004).

    Article  PubMed  CAS  Google Scholar 

  204. Huber, A. J., Ziegler, A., Köck, T. & Hillenbrand, R. Infrared nanoscopy of strained semiconductors. Nat. Nanotechnol. 4, 153– 157 (2009).

    Article  PubMed  CAS  Google Scholar 

  205. Bensmann, S. et al. Near-field imaging and spectroscopy of locally strained GaN using an IR broadband laser. Opt. Express 22, 22369–22381 (2014).

    Article  PubMed  Google Scholar 

  206. Barnett, J. et al. Phonon-enhanced near-field spectroscopy to extract the local electronic properties of buried 2D electron systems in oxide heterostructures. Adv. Funct. Mater. 30, 2004767 (2020).

    Article  CAS  Google Scholar 

  207. Qin, T.-X. et al. Revealing the interaction of charge carrier–phonon coupling by quantification of electronic properties at the SrTiO3/TiO2 heterointerface. Nano Lett. 22, 2755–2761 (2022).

    Article  PubMed  CAS  Google Scholar 

  208. Ritchie, E. T. et al. Mapping free-carriers in multijunction silicon nanowires using infrared near-field optical microscopy. Nano Lett. 17, 6591–6597 (2017).

    Article  PubMed  CAS  Google Scholar 

  209. Hauer, B., Engelhardt, A. P. & Taubner, T. Quasi-analytical model for scattering infrared near-field microscopy on layered systems. Opt. Express 20, 13173–13188 (2012).

    Article  PubMed  Google Scholar 

  210. Vincent, T. et al. snompy: a package for modelling scattering-type scanning near-field optical microscopy. Preprint at https://arxiv.org/abs/2405.20948 (2024).

  211. Jiang, B. Y., Zhang, L. M., Castro Neto, A. H., Basov, D. N. & Fogler, M. M. Generalized spectral method for near-field optical microscopy. J. Appl. Phys. 119, 054305 (2016).

    Article  Google Scholar 

  212. Chui, S. T., Chen, X., Liu, M., Lin, Z. & Zi, J. Scattering of electromagnetic waves from a cone with conformal mapping: application to scanning near-field optical microscope. Phys. Rev. B 97, 81406 (2018).

    Article  CAS  Google Scholar 

  213. Chen, X. et al. Rapid simulations of hyperspectral near-field images of three-dimensional heterogeneous surfaces — part II. Opt. Express 30, 11228 (2022).

    Article  PubMed  CAS  Google Scholar 

  214. Ruta, F. L., Sternbach, A. J., Dieng, A. B., McLeod, A. S. & Basov, D. N. Quantitative nanoinfrared spectroscopy of anisotropic van der Waals materials. Nano Lett. 20, 7933–7940 (2020).

    Article  PubMed  CAS  Google Scholar 

  215. Babicheva, V. E., Gamage, S., Stockman, M. I. & Abate, Y. Near-field edge fringes at sharp material boundaries. Opt. Express 25, 23935 (2017).

    Article  PubMed  CAS  Google Scholar 

  216. Luan, Y., McDermott, L., Hu, F. & Fei, Z. Tip- and plasmon-enhanced infrared nanoscopy for ultrasensitive molecular characterizations. Phys. Rev. Appl. 13, 34020 (2020).

    Article  CAS  Google Scholar 

  217. McArdle, P., Lahneman, D. J., Biswas, A., Keilmann, F. & Qazilbash, M. M. Near-field infrared nanospectroscopy of surface phonon–polariton resonances. Phys. Rev. Res. 2, 23272 (2020).

    Article  CAS  Google Scholar 

  218. Zhao, Y., Chen, X., Yao, Z., Liu, M. K. & Fogler, M. M. Deep-learning-aided extraction of optical constants in scanning near-field optical microscopy. J. Appl. Phys. 133, 133105 (2023).

    Article  CAS  Google Scholar 

  219. Chen, X. et al. Machine learning for optical scanning probe nanoscopy. Adv. Mater. 35, 2109171 (2023).

    Article  CAS  Google Scholar 

  220. Chen, X., Ren, R. & Liu, M. Validity of machine learning in the quantitative analysis of complex scanning near-field optical microscopy signals using simulated data. Phys. Rev. Appl. 15, 14001 (2021).

    Article  CAS  Google Scholar 

  221. Qazilbash, M. M. et al. Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging. Science 318, 1750–1753 (2007). In this work, s-SNOM is used to demonstrate phase separation in correlated electron material systems.

    Article  PubMed  CAS  Google Scholar 

  222. Liu, M. et al. Symmetry breaking and geometric confinement in VO2: results from a three-dimensional infrared nano-imaging. Appl. Phys. Lett. 104, 121905 (2014).

    Article  Google Scholar 

  223. O’Callahan, B. T. et al. Inhomogeneity of the ultrafast insulator-to-metal transition dynamics of VO2. Nat. Commun. 6, 6849 (2015).

    Article  PubMed  Google Scholar 

  224. Liu, M. K. et al. Anisotropic electronic state via spontaneous phase separation in strained vanadium dioxide films. Phys. Rev. Lett. 111, 96602 (2013).

    Article  CAS  Google Scholar 

  225. Jones, A. C., Berweger, S., Wei, J., Cobden, D. & Raschke, M. B. Nano-optical investigations of the metal−insulator phase behavior of individual VO2 microcrystals. Nano Lett. 10, 1574–1581 (2010).

    Article  PubMed  CAS  Google Scholar 

  226. McLeod, A. S. et al. Nanotextured phase coexistence in the correlated insulator V2O3. Nat. Phys. 13, 80–86 (2017).

    Article  CAS  Google Scholar 

  227. Lee, W. et al. A rewritable optical storage medium of silk proteins using near-field nano-optics. Nat. Nanotechnol. 15, 941–947 (2020).

    Article  PubMed  CAS  Google Scholar 

  228. Luo, W. et al. High sensitivity variable-temperature infrared nanoscopy of conducting oxide interfaces. Nat. Commun. 10, 2774 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Post, K. W. et al. Coexisting first- and second-order electronic phase transitions in a correlated oxide. Nat. Phys. 14, 1056–1061 (2018).

    Article  CAS  Google Scholar 

  230. Yang, H. U., Hebestreit, E., Josberger, E. E. & Raschke, M. B. A cryogenic scattering-type scanning near-field optical microscope.Rev. Sci. Instrum. 84, 023701 (2013).

    Article  PubMed  Google Scholar 

  231. Döring, J. et al. Low-temperature nanospectroscopy of the structural ferroelectric phases in single-crystalline barium titanate. Nanoscale 10, 18074–18079 (2018).

    Article  PubMed  Google Scholar 

  232. Kim, R. H. J., Park, J. M., Haeuser, S. J., Luo, L. & Wang, J. A sub-2 Kelvin cryogenic magneto-terahertz scattering-type scanning near-field optical microscope (cm-THz-sSNOM). Rev. Sci. Instrum. 94, 043702 (2023).

    Article  PubMed  CAS  Google Scholar 

  233. McLeod, A. S. et al. Multi-messenger nanoprobes of hidden magnetism in a strained manganite. Nat. Mater. 19, 397–404 (2020).

    Article  PubMed  CAS  Google Scholar 

  234. Zhou, Y. et al. Thermal and electrostatic tuning of surface phonon-polaritons in LaAlO3/SrTiO3 heterostructures. Nat. Commun. 14, 7686 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  235. Ni, G. et al. Long-lived phonon polaritons in hyperbolic materials. Nano Lett. 21, 5767–5773 (2021).

    Article  PubMed  CAS  Google Scholar 

  236. Nishida, J. et al. Ultrafast infrared nano-imaging of far-from-equilibrium carrier and vibrational dynamics. Nat. Commun. 13, 1083 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  237. Wagner, M. et al. Ultrafast and nanoscale plasmonic phenomena in exfoliated graphene revealed by infrared pump–probe nanoscopy. Nano Lett. 14, 894–900 (2014). This work demonstrates ultrafast time-resolved s-SNOM with a time resolution below 100 fs.

    Article  PubMed  CAS  Google Scholar 

  238. Sternbach, A. J. et al. Artifact free time resolved near-field spectroscopy. Opt. Express 25, 28589 (2017).

    Article  CAS  Google Scholar 

  239. Plankl, M. et al. Subcycle contact-free nanoscopy of ultrafast interlayer transport in atomically thin heterostructures. Nat. Photon. 15, 594–600 (2021).

    Article  CAS  Google Scholar 

  240. Dönges, S. A. et al. Ultrafast nanoimaging of the photoinduced phase transition dynamics in VO2. Nano Lett. 16, 3029–3035 (2016).

    Article  PubMed  Google Scholar 

  241. Pushkarev, V. et al. Charge transport in single-crystalline GaAs nanobars: impact of band bending revealed by terahertz spectroscopy. Adv. Funct. Mater. 32, 2107403 (2022).

    Article  CAS  Google Scholar 

  242. Pizzuto, A. et al. Nonlocal time-resolved terahertz spectroscopy in the near field. ACS Photon. 8, 2904–2911 (2021).

    Article  CAS  Google Scholar 

  243. Siday, T. et al. Ultrafast nanoscopy of high-density exciton phases in WSe2. Nano Lett. 22, 2561–2568 (2022).

    Article  PubMed  CAS  Google Scholar 

  244. Mrejen, M., Yadgarov, L., Levanon, A. & Suchowski, H. Transient exciton–polariton dynamics in WSe2 by ultrafast near-field imaging. Sci. Adv. 5, eaat9618 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  245. Vitalone, R. A. et al. Nanoscale femtosecond dynamics of mott insulator (Ca0.99Sr0.01)2RuO4. Nano Lett. 22, 5689–5697 (2022).

    Article  PubMed  CAS  Google Scholar 

  246. Sternbach, A. J. et al. Nanotextured dynamics of a light-induced phase transition in VO2. Nano Lett. 21, 9052–9060 (2021).

    Article  PubMed  CAS  Google Scholar 

  247. Charnukha, A. et al. Ultrafast nonlocal collective dynamics of Kane plasmon-polaritons in a narrow-gap semiconductor. Sci. Adv. 5, eaau9956 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  248. Li, J. et al. Ultrafast optical nanoscopy of carrier dynamics in silicon nanowires. Nano Lett. 23, 1445–1450 (2023).

    Article  PubMed  CAS  Google Scholar 

  249. Sternbach, A. J. et al. Programmable hyperbolic polaritons in van der Waals semiconductors. Science 371, 617–620 (2021).

    Article  PubMed  CAS  Google Scholar 

  250. Huber, M. A. et al. Femtosecond photo-switching of interface polaritons in black phosphorus heterostructures. Nat. Nanotechnol. 12, 207–211 (2017).

    Article  PubMed  CAS  Google Scholar 

  251. Ni, G. X. et al. Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene. Nat. Photon. 10, 244–247 (2016).

    Article  CAS  Google Scholar 

  252. He, M. et al. Polariton design and modulation via van der Waals/doped semiconductor heterostructures. Nat. Commun. 14, 7965 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  253. Luferau, A. et al. Hot-electron dynamics in a semiconductor nanowire under intense THz excitation. ACS Photon. 11, 3123–3130 (2024).

    Article  CAS  Google Scholar 

  254. Dong, Y. et al. Fizeau drag in graphene plasmonics. Nature 594, 513–516 (2021).

    Article  PubMed  CAS  Google Scholar 

  255. Zhao, W. et al. Efficient Fizeau drag from Dirac electrons in monolayer graphene. Nature 594, 517–521 (2021).

    Article  PubMed  CAS  Google Scholar 

  256. Zhang, J. et al. Nano-resolved current-induced insulator–metal transition in the Mott insulator Ca2RuO4. Phys. Rev. X 9, 11032 (2019).

    CAS  Google Scholar 

  257. Dapolito, M. et al. Infrared nano-imaging of Dirac magnetoexcitons in graphene. Nat. Nanotechnol. 18, 1409–1415 (2023). This work demonstrates s-SNOM nano-imaging in a magnetic field up to 7 T.

    Article  PubMed  CAS  Google Scholar 

  258. Blundo, E. et al. Vibrational properties in highly strained hexagonal boron nitride bubbles. Nano Lett. 22, 1525–1533 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  259. Khatib, O. et al. Graphene-based platform for infrared near-field nanospectroscopy of water and biological materials in an aqueous environment. ACS Nano 9, 7968–7975 (2015).

    Article  PubMed  CAS  Google Scholar 

  260. Meireles, L. M. et al. Synchrotron infrared nanospectroscopy on a graphene chip. Lab Chip 19, 3678–3684 (2019).

    Article  PubMed  CAS  Google Scholar 

  261. Zhao, X. et al. In vitro investigation of protein assembly by combined microscopy and infrared spectroscopy at the nanometer scale. Proc. Natl Acad. Sci. USA 119, e2200019119 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  262. Lu, Y.-H. et al. Infrared nanospectroscopy at the graphene–electrolyte interface. Nano Lett. 19, 5388–5393 (2019). This work introduces a suspended graphene liquid cell device that enables in situ nano-FTIR spectroscopy of solidliquid interfaces.

    Article  PubMed  CAS  Google Scholar 

  263. He, X., Larson, J. M., Bechtel, H. A. & Kostecki, R. In situ infrared nanospectroscopy of the local processes at the Li/polymer electrolyte interface. Nat. Commun. 13, 1398 (2022). In this work, nano-FTIR spectroscopy is used to show how the local chemistry of an Li/polymer electrolyte interface is modified by Li plating.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  264. Baù, E., Gölz, T., Benoit, M., Tittl, A. & Keilmann, F. Nanoscale mechanical manipulation of ultrathin SiN membranes enabling infrared near-field microscopy of liquid-immersed samples. Small 20, 2402568 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  265. O’Callahan, B. T. et al. In liquid infrared scattering scanning near-field optical microscopy for chemical and biological nanoimaging. Nano Lett. 20, 4497–4504 (2020).

    Article  PubMed  Google Scholar 

  266. Virmani, D. et al. Amplitude- and phase-resolved infrared nanoimaging and nanospectroscopy of polaritons in a liquid environment. Nano Lett. 21, 1360 (2021).

    Article  PubMed  CAS  Google Scholar 

  267. Emelianov, N. A. et al. Nanoscale visualization of photodegradation dynamics of MAPbI3 perovskite films. J. Phys. Chem. Lett. 13, 2744–2749 (2022).

    Article  PubMed  CAS  Google Scholar 

  268. Szostak, R. et al. Nanoscale mapping of chemical composition in organic–inorganic hybrid perovskite films. Sci. Adv. 5, eaaw6619 (2023). This paper demonstrates nano-FTIR spectroscopy of the chemical composition in organicinorganic hybrid perovskite films.

    Article  Google Scholar 

  269. Gross, E. Challenges and opportunities in IR nanospectroscopy measurements of energy materials. Nano Res. 12, 2200–2210 (2019).

    Article  Google Scholar 

  270. Zhao, W. & Johnson, C. M. Perspective — nano infrared microscopy: obtaining chemical information on the nanoscale in corrosion studies. J. Electrochem. Soc. 166, C3456 (2019).

    Article  CAS  Google Scholar 

  271. Hu, X., Zhou, L., Wu, X. & Peng, Y. Review on near-field detection technology in the biomedical field. Adv. Photon. Nexus 2, 044002 (2023).

    Article  Google Scholar 

  272. Wang, H., Xie, Q. & Xu, X. G. Super-resolution mid-infrared spectro-microscopy of biological applications through tapping mode and peak force tapping mode atomic force microscope. Adv. Drug Deliv. Rev. 180, 114080 (2022).

    Article  PubMed  CAS  Google Scholar 

  273. Ho, K. et al. Nanoscale subsurface morphologies in block copolymer thin films revealed by combined near-field infrared microscopy and mechanical mapping. ACS Appl. Polym. Mater. 1, 933–938 (2019).

    Article  CAS  Google Scholar 

  274. Kotov, N. et al. Elucidating the fine-scale structural morphology of nanocellulose by nano infrared spectroscopy. Carbohydr. Polym. 302, 120320 (2023).

    Article  PubMed  CAS  Google Scholar 

  275. De Los Santos Pereira, A. et al. Conformation in ultrathin polymer brush coatings resolved by infrared nanoscopy. Anal. Chem. 92, 4716–4720 (2020).

    Article  Google Scholar 

  276. Peñas, M. I. et al. Nanostructural organization of thin films prepared by sequential dip-coating deposition of poly(butylene succinate), poly(ε-caprolactone) and their copolyesters (PBS-ran-PCL). Polymer 226, 123812 (2021).

    Article  Google Scholar 

  277. Eliaz, D. et al. Micro and nano-scale compartments guide the structural transition of silk protein monomers into silk fibers. Nat. Commun. 13, 7856 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  278. Qin, N. et al. Nanoscale probing of electron-regulated structural transitions in silk proteins by near-field IR imaging and nano-spectroscopy. Nat. Commun. 7, 13079 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  279. Kästner, B. et al. Infrared nanospectroscopy of phospholipid and surfactin monolayer domains. ACS Omega 3, 4141–4147 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  280. Cernescu, A. et al. Label-free infrared spectroscopy and imaging of single phospholipid bilayers with nanoscale resolution. Anal. Chem. 90, 10179–10186 (2018).

    Article  PubMed  CAS  Google Scholar 

  281. Geith, T., Amarie, S., Milz, S., Bamberg, F. & Keilmann, F. Visualisation of methacrylate-embedded human bone sections by infrared nanoscopy. J. Biophoton. 7, 418–424 (2014).

    Article  CAS  Google Scholar 

  282. Zancajo, V. M. R. et al. FTIR nanospectroscopy shows molecular structures of plant biominerals and cell walls. Anal. Chem. 92, 13694–13701 (2020).

    Article  PubMed  CAS  Google Scholar 

  283. Yesiltas, M. et al. Biconical reflectance, micro-Raman, and nano-FTIR spectroscopy of the Didim (H3-5) meteorite: chemical content and molecular variations. Meteorit. Planet. Sci. 55, 2404–2421 (2020).

    Article  CAS  Google Scholar 

  284. David, O. et al. Correlating gas permeability and morphology of bio-based polyether-block-amide copolymer membranes by IR nanospectroscopy. J. Membr. Sci. 708, 123001 (2024).

    Article  CAS  Google Scholar 

  285. Muller, E. A., Pollard, B., Bechtel, H. A., Van Blerkom, P. & Raschke, M. B. Infrared vibrational nano-crystallography and nano-imaging. Sci. Adv. 2, e1601006 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  286. Xue, M. et al. Single-vesicle infrared nanoscopy for noninvasive tumor malignancy diagnosis. J. Am. Chem. Soc. 144, 20278–20287 (2022).

    Article  PubMed  CAS  Google Scholar 

  287. Chevigny, R. et al. Nanoscale probing of the supramolecular assembly in a two-component gel by near-field infrared spectroscopy. Chem. Eur. J. 29, e202300155 (2023).

    Article  PubMed  CAS  Google Scholar 

  288. Qin, T.-X. et al. Quantification of electron accumulation at grain boundaries in perovskite polycrystalline films by correlative infrared-spectroscopic nanoimaging and Kelvin probe force microscopy. Light Sci. Appl. 10, 84 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  289. Schäffer, S. et al. Imaging the terahertz nanoscale conductivity of polycrystalline CsPbBr3 perovskite thin films. Nano Lett. 23, 2074–2080 (2023).

    Article  PubMed  Google Scholar 

  290. Zhang, H.-T. et al. Reconfigurable perovskite nickelate electronics for artificial intelligence. Science 375, 533–539 (2022).

    Article  PubMed  CAS  Google Scholar 

  291. Latypova, A. F. et al. Design principles for organic small molecule hole-transport materials for perovskite solar cells: film morphology matters. ACS Appl. Energy Mater. 5, 5395–5403 (2022).

    Article  CAS  Google Scholar 

  292. Komissarova, E. A. et al. Novel benzodithiophene-TTBTBTT copolymers: synthesis and investigation in organic and perovskite solar cells. Sustain. Energy Fuels 6, 3542–3550 (2022).

    Article  CAS  Google Scholar 

  293. Lucas, I. T. et al. IR near-field spectroscopy and imaging of single LixFePO4 microcrystals. Nano Lett. 15, 1–7 (2015).

    Article  PubMed  CAS  Google Scholar 

  294. Gamage, S. et al. Probing structural changes in single enveloped virus particles using nano-infrared spectroscopic imaging. PLoS ONE 13, e0199112 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  295. Bakir, G. et al. Orientation matters: polarization dependent IR spectroscopy of collagen from intact tendon down to the single fibril level. Molecules 25, 4295 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  296. Greaves, G. E., Kiryushko, D., Auner, H. W., Porter, A. E. & Phillips, C. C. Label-free nanoscale mapping of intracellular organelle chemistry. Commun. Biol. 6, 583 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  297. Kanevche, K. et al. Infrared nanoscopy and tomography of intracellular structures. Commun. Biol. 4, 1341 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  298. Freitas, R. O. et al. Nano-infrared imaging of primary neurons. Cells 10, 2559 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  299. Goikoetxea, M. et al. Cross-sectional chemical nanoimaging of composite polymer nanoparticles by infrared nanospectroscopy. Macromolecules 54, 995–1005 (2021).

    Article  CAS  Google Scholar 

  300. Rose, M.-A. et al. Local inhomogeneities resolved by scanning probe techniques and their impact on local 2DEG formation in oxide heterostructures. Nanoscale Adv. 3, 4145–4155 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  301. Hesp, N. C. H. et al. Nano-imaging photoresponse in a moiré unit cell of minimally twisted bilayer graphene. Nat. Commun. 12, 1640 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  302. Alonso-González, P. et al. Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy. Nat. Nanotechnol. 12, 31 (2017).

    Article  PubMed  Google Scholar 

  303. Soltani, A. et al. Direct nanoscopic observation of plasma waves in the channel of a graphene field-effect transistor. Light Sci. Appl. 9, 97 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  304. Pogna, E. A. A. et al. Unveiling the detection dynamics of semiconductor nanowire photodetectors by terahertz near-field nanoscopy. Light Sci. Appl. 9, 189 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  305. Yao, K. et al. Plasmon-induced trap filling at grain boundaries in perovskite solar cells. Light Sci. Appl. 10, 219 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  306. Chaudhary, K. et al. Polariton nanophotonics using phase-change materials. Nat. Commun. 10, 4487 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  307. Dolado, I. et al. Nanoscale guiding of infrared light with hyperbolic volume and surface polaritons in van der Waals material ribbons. Adv. Mater. 32, 1906530 (2020).

    Article  CAS  Google Scholar 

  308. Zenin, V. A. et al. Direct amplitude-phase near-field observation of higher-order anapole states. Nano Lett. 17, 7152–7159 (2017).

    Article  PubMed  CAS  Google Scholar 

  309. Alfaro-Mozaz, F. J. et al. Hyperspectral nanoimaging of van der waals polaritonic crystals. Nano Lett. 21, 7109–7115 (2021).

    Article  PubMed  CAS  Google Scholar 

  310. Herzig Sheinfux, H. et al. Transverse hypercrystals formed by periodically modulated phonon polaritons. ACS Nano 17, 7377–7383 (2023).

    Article  PubMed  CAS  Google Scholar 

  311. Xiong, L. et al. Photonic crystal for graphene plasmons. Nat. Commun. 10, 4780 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  312. Yang, J. et al. Near-field excited archimedean-like tiling patterns in phonon-polaritonic crystals. ACS Nano 15, 9134–9142 (2021).

    Article  PubMed  CAS  Google Scholar 

  313. Duan, J. et al. Multiple and spectrally robust photonic magic angles in reconfigurable α-MoO3 trilayers. Nat. Mater. 22, 867–872 (2023).

    Article  PubMed  CAS  Google Scholar 

  314. Hu, G. et al. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature 582, 209–213 (2020).

    Article  PubMed  CAS  Google Scholar 

  315. Folland, T. G. et al. Reconfigurable infrared hyperbolic metasurfaces using phase change materials. Nat. Commun. 9, 4371 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  316. Wu, C. Y. et al. High-spatial-resolution mapping of catalytic reactions on single particles. Nature 541, 511–515 (2017). In this work, nano-FTIR spectroscopy using synchrotron radiation shows that the peripheries of Pt particles are more active in catalysing oxidation and reduction reactions.

    Article  PubMed  CAS  Google Scholar 

  317. Say, Z. et al. Unraveling molecular fingerprints of catalytic sulfur poisoning at the nanometer scale with near-field infrared spectroscopy. J. Am. Chem. Soc. 144, 8848–8860 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  318. Johnson, C. M. & Böhmler, M. Nano-FTIR microscopy and spectroscopy studies of atmospheric corrosion with a spatial resolution of 20 nm. Corros. Sci. 108, 60–65 (2016).

    Article  CAS  Google Scholar 

  319. Zhao, W., Chang, T., Leygraf, C. & Johnson, C. M. Corrosion inhibition of copper with octadecylphosphonic acid (ODPA) in a simulated indoor atmospheric environment. Corros. Sci. 192, 109777 (2021).

    Article  CAS  Google Scholar 

  320. Vogel, C. et al. Air and chlorine gas corrosion of different silicon carbides analyzed by nano-Fourier-transform infrared (nano-FTIR) spectroscopy. Corros. Sci. 131, 324–329 (2018).

    Article  CAS  Google Scholar 

  321. Nepel, T. C. M. et al. In situ infrared micro and nanospectroscopy for discharge chemical composition investigation of non-aqueous lithium–air cells. Adv. Energy Mater. 11, 2101884 (2021).

    Article  CAS  Google Scholar 

  322. Yalcin, S. E., Legg, B. A., Yeşilbaş, M., Malvankar, N. S. & Boily, J.-F. Direct observation of anisotropic growth of water films on minerals driven by defects and surface tension. Sci. Adv. 6, eaaz9708 (2024).

    Article  Google Scholar 

  323. Bai, Y. et al. Protein nanoribbons template enamel mineralization. Proc. Natl Acad. Sci. USA 117, 19201–19208 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  324. Luibrand, T. et al. Characteristic length scales of the electrically induced insulator-to-metal transition. Phys. Rev. Res. 5, 13108 (2023).

    Article  CAS  Google Scholar 

  325. Aghamiri, N. A. et al. Reconfigurable hyperbolic polaritonics with correlated oxide metasurfaces. Nat. Commun. 13, 4511 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  326. Zhang, S. S. et al. Nano-infrared imaging of metal insulator transition in few-layer 1T-TaS2. Nanophotonics 12, 2841–2847 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  327. Walter, B. et al. Terahertz near-field imaging using batch-fabricated cantilevers with 70 μm long tips. In Int. Conf. Infrared Millimeter Terahertz Waves (IEEE, 2019).

  328. Xia-Hou, Y.-J. et al. Graphene-coated conductive probes with enhanced sensitivity for nanoIR spectroscopy. Nano Res. 16, 11326–11333 (2023).

    Article  CAS  Google Scholar 

  329. Xu, S. et al. Electronic interactions in Dirac fluids visualized by nano-terahertz spacetime interference of electron–photon quasiparticles. Sci. Adv. 10, eado5553 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  330. Siday, T. et al. All-optical subcycle microscopy on atomic length scales. Nature 629, 329–334 (2024).

    Article  PubMed  CAS  Google Scholar 

  331. Heeres, R. W., Kouwenhoven, L. P. & Zwiller, V. Quantum interference in plasmonic circuits. Nat. Nanotechnol. 8, 719–722 (2013).

    Article  PubMed  CAS  Google Scholar 

  332. Leon, C. C. et al. Photon superbunching from a generic tunnel junction. Sci. Adv. 5, eaav4986 (2023).

    Article  Google Scholar 

  333. Pollard, B. & Raschke, M. B. Correlative infrared nanospectroscopic and nanomechanical imaging of block copolymer microdomains. Beilstein J. Nanotechnol. 7, 605–612 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  334. Barnett, J. et al. Far-infrared near-field optical imaging and Kelvin probe force microscopy of laser-crystallized and -amorphized phase change material Ge3Sb2Te6. Nano Lett. 21, 9012–9020 (2021).

    Article  PubMed  CAS  Google Scholar 

  335. Zhang, S. et al. Visualizing moiré ferroelectricity via plasmons and nano-photocurrent in graphene/twisted-WSe2 structures. Nat. Commun. 14, 6200 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  336. Wang, H., Wang, L., Jakob, D. S. & Xu, X. G. Tomographic and multimodal scattering-type scanning near-field optical microscopy with peak force tapping mode. Nat. Commun. 9, 2005 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  337. Palato, S., Schwendke, P., Grosse, N. B. & Stähler, J. Pseudoheterodyne near-field imaging at kHz repetition rates via quadrature-assisted discrete demodulation. Appl. Phys. Lett. 120, 131601 (2022).

    Article  CAS  Google Scholar 

  338. Wang, H., Wang, L. & Xu, X. G. Scattering-type scanning near-field optical microscopy with low-repetition-rate pulsed light source through phase-domain sampling. Nat. Commun. 7, 13212 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  339. Xu, S. et al. Deep learning analysis of polaritonic wave images. ACS Nano 15, 18182–18191 (2021).

    Article  PubMed  CAS  Google Scholar 

  340. Guo, X., Bertling, K. & Rakić, A. D. Optical constants from scattering-type scanning near-field optical microscope. Appl. Phys. Lett. 118, 041103 (2021).

    Article  CAS  Google Scholar 

  341. Gamage, S. et al. Nanoscopy of black phosphorus degradation. Adv. Mater. Interfaces 3, 1600121 (2016).

    Article  Google Scholar 

  342. Gamage, S. et al. Infrared nanoimaging of hydrogenated perovskite nickelate memristive devices. ACS Nano 18, 2105–2116 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  343. Dopilka, A., Gu, Y., Larson, J. M., Zorba, V. & Kostecki, R. Nano-FTIR spectroscopy of the solid electrolyte interphase layer on a thin-film silicon li-ion anode. ACS Appl. Mater. Interfaces 15, 6755–6767 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  344. Ayache, M., Lux, S. F. & Kostecki, R. IR near-field study of the solid electrolyte interphase on a tin electrode. J. Phys. Chem. Lett. 6, 1126–1129 (2015).

    Article  PubMed  CAS  Google Scholar 

  345. Ayache, M., Jang, D., Syzdek, J. & Kostecki, R. Near-field IR nanoscale imaging of the solid electrolyte interphase on a HOPG electrode. J. Electrochem. Soc. 162, A7078 (2015).

    Article  CAS  Google Scholar 

  346. Shan, Y. et al. Nanometre-resolved observation of electrochemical microenvironment formation at the nanoparticle–ligand interface. Nat. Catal. 7, 422–431 (2024).

    Article  CAS  Google Scholar 

  347. Tesema, T. E., Mcfarland-Porter, R., Zerai, E., Grey, J. & Habteyes, T. G. Hierarchical self-assembly and chemical imaging of nanoscale domains in polymer blend thin films. J. Phys. Chem. C 126, 7764–7772 (2022).

    Article  CAS  Google Scholar 

  348. Meyns, M. et al. Multi-feature round silicon membrane filters enable fractionation and analysis of small micro- and nanoplastics with Raman spectroscopy and nano-FTIR. Anal. Methods 15, 606–617 (2022).

    Article  Google Scholar 

  349. Hartmann, N., Wang, X. & Huber, A. J. Nanoscale THz imaging and spectroscopy at ambient and cryogenic sub 10 K temperatures. In Int. Conf. Infrared Millimeter Terahertz Waves (IEEE, 2021).

  350. Kim, R. H. J. et al. Terahertz nano-imaging of electronic strip heterogeneity in a Dirac semimetal. ACS Photon. 8, 1873–1880 (2021).

    Article  CAS  Google Scholar 

  351. Jing, R. et al. Phase-resolved terahertz nanoimaging of WTe2 microcrystals. Phys. Rev. B 107, 155413 (2023).

    Article  CAS  Google Scholar 

  352. Jing, R. et al. Terahertz response of monolayer and few-layer WTe2 at the nanoscale. Nat. Commun. 12, 5594 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  353. Sun, Z., Fogler, M. M., Basov, D. N. & Millis, A. J. Collective modes and terahertz near-field response of superconductors. Phys. Rev. Res. 2, 23413 (2020).

    Article  CAS  Google Scholar 

  354. Stinson, H. T. et al. Infrared nanospectroscopy and imaging of collective superfluid excitations in anisotropic superconductors. Phys. Rev. B 90, 14502 (2014).

    Article  CAS  Google Scholar 

  355. Lu, Q. et al. Surface Josephson plasma waves in a high-temperature superconductor. npj Quantum Mater. 5, 69 (2020).

    Article  CAS  Google Scholar 

  356. Wilcken, R. et al. Antenna-coupled infrared nanospectroscopy of intramolecular vibrational interaction. Proc. Natl Acad. Sci. USA 120, e2220852120 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  357. Muller, E. A. et al. Nanoimaging and control of molecular vibrations through electromagnetically induced scattering reaching the strong coupling regime. ACS Photon. 5, 3594 (2018).

    Article  CAS  Google Scholar 

  358. Dolado, I. et al. Remote near-field spectroscopy of vibrational strong coupling between organic molecules and phononic nanoresonators. Nat. Commun. 13, 6850 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  359. Bylinkin, A. et al. Real-space observation of vibrational strong coupling between propagating phonon polaritons and organic molecules. Nat. Photon. 15, 197–202 (2021).

    Article  CAS  Google Scholar 

  360. Wang, C.-F. et al. Observation of intersubband polaritons in a single nanoantenna using nano-FTIR spectroscopy. Nano Lett. 19, 4620–4626 (2019).

    Article  PubMed  CAS  Google Scholar 

  361. Casses, L. N. et al. Full quantitative near-field characterization of strongly coupled exciton–plasmon polaritons in thin-layered WSe2 on a monocrystalline gold platelet. ACS Photon. 11, 3593–3601 (2024).

    Article  CAS  Google Scholar 

  362. Hirschmann, O., Bhakta, H. H., Kort-Kamp, W. J. M., Jones, A. C. & Xiong, W. Spatially resolved near field spectroscopy of vibrational polaritons at the small N limit. ACS Photon. 11, 2650–2658 (2024).

    Article  CAS  Google Scholar 

  363. Wang, Y. et al. Tip-enhanced imaging and control of infrared strong light–matter interaction. Laser Photon. Rev. 18, 2301148 (2024).

    Article  Google Scholar 

  364. Wehmeier, L. et al. Landau-phonon polaritons in Dirac heterostructures. Sci. Adv. 10, eadp3487 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  365. Kurouski, D., Dazzi, A., Zenobi, R. & Centrone, A. Infrared and Raman chemical imaging and spectroscopy at the nanoscale. Chem. Soc. Rev. 49, 3315–3347 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  366. Bailo, E. & Deckert, V. Tip-enhanced Raman scattering. Chem. Soc. Rev. 37, 921–930 (2008).

    Article  PubMed  CAS  Google Scholar 

  367. Mauser, N. & Hartschuh, A. Tip-enhanced near-field optical microscopy. Chem. Soc. Rev. 43, 1248–1262 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  368. Verma, P. Tip-enhanced Raman spectroscopy: technique and recent advances. Chem. Rev. 117, 6447–6466 (2017).

    Article  PubMed  CAS  Google Scholar 

  369. Centrone, A. Infrared imaging and spectroscopy beyond the diffraction limit. Ann. Rev. Anal. Chem. 8, 101–126 (2015).

    Article  CAS  Google Scholar 

  370. Sifat, A. A., Jahng, J. & Potma, E. O. Photo-induced force microscopy (PiFM) — principles and implementations. Chem. Soc. Rev. 51, 4208–4222 (2022).

    Article  PubMed  CAS  Google Scholar 

  371. Klarskov, P., Kim, H., Colvin, V. L. & Mittleman, D. M. Nanoscale laser terahertz emission microscopy. ACS Photon. 4, 2676–2680 (2017).

    Article  CAS  Google Scholar 

  372. Pizzuto, A., Mittleman, D. M. & Klarskov, P. Laser THz emission nanoscopy and THz nanoscopy. Opt. Express 28, 18778–18789 (2020).

    Article  PubMed  Google Scholar 

  373. Barber, M. E., Ma, E. Y. & Shen, Z.-X. Microwave impedance microscopy and its application to quantum materials. Nat. Rev. Phys. 4, 61–74 (2022).

    Article  Google Scholar 

  374. Ma, Q., Krishna Kumar, R., Xu, S. Y., Koppens, F. H. L. & Song, J. C. W. Photocurrent as a multiphysics diagnostic of quantum materials. Nat. Rev. Phys. 5, 170–184 (2023).

    Article  Google Scholar 

  375. Woessner, A. et al. Near-field photocurrent nanoscopy on bare and encapsulated graphene. Nat. Commun. 7, 10783 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  376. Ni, G. X. et al. Nanoscale infrared spectroscopy and imaging of catalytic reactions in Cu2O crystals. ACS Photon. 7, 576–580 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

R.H. received financial support from Grant CEX2020-001038-M funded by MICIU/AEI/10.13039/501100011033 and Grant PID2021-123949OB-I00 (NANOSPEC) funded by MICIU/AEI/10.13039/501100011033 and by ERDF/EU. Y.A. acknowledges K.C. Goretta, the Air Force Office of Scientific Research (AFOSR) grant number FA9550-23-1-0375 and the Gordon and Betty Moore Foundation, GBMF12246. X.C., M.L. and D.N.B acknowledge support from Programmable Quantum Materials, an Energy Frontier Research Center funded by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under award DE-SC0019443. M.L. also acknowledges Gordon and Betty Moore Foundation. Research at Columbia in van der Waals materials is supported as part of Programmable Quantum Materials, an Energy Frontier Research Center funded by the US DOE, Office of Science, BES, DE-SC0019443. Research at Columbia at charge transfer structures is supported by DOE-BES DE-SC0018426. Research at Columbia in topological materials is supported NSF-DMR DMR 2210186. D.N.B. is a Moore Investigator in quantum materials EPIQS GBMF9455. R.H. thanks F. Keilmann, L. Mester, M. Goikoetxea, A. Govyadinov, I. Niehues and M. Quijada for discussions and feedback on the manuscript. Y.A. acknowledges H. Bechtel, Z.H. Kim, M. Asjad and A. Alu for their constructive input. X.C. and M.L. acknowledge discussions with L. Wehmeier and J. Zhang.

Author information

Authors and Affiliations

Authors

Contributions

Y.A. proposed the initial idea and structure of this Review. R.H. completed the main text, with contributions and figures from Y.A., M.L. and X.C., and input from D.N.B. All authors contributed to the selection of key references used in this Review.

Corresponding authors

Correspondence to Rainer Hillenbrand, Yohannes Abate or Mengkun Liu.

Ethics declarations

Competing interests

R.H. is a co-founder of Neaspec, now part of attocube systems, a company producing scattering-type scanning near-field optical microscope systems, such as the one described in this Review. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Raul Freitas, who co-reviewed with Flavio Henrique Feres, and Eric Muller for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hillenbrand, R., Abate, Y., Liu, M. et al. Visible-to-THz near-field nanoscopy. Nat Rev Mater 10, 285–310 (2025). https://doi.org/10.1038/s41578-024-00761-3

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41578-024-00761-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing