Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Materials and device strategies to enhance spatiotemporal resolution in bioelectronics

Abstract

Spatiotemporal resolution is a cornerstone of bioelectronics, enabling precise observation and control of biological events at the molecular, cellular and tissue levels. In this Review, we analyse recent advancements in spatiotemporal resolution essential for applications such as neuroprosthetics, cardiac monitoring and biosensing, with a focus on devices utilizing electrical, electrochemical and optoelectronic signal transduction. We define the intrinsic and extrinsic parameters of spatial and temporal resolution and highlight high-performance materials and device architectures — including electrodes, transistors and optoelectronic interfaces — that drive these capabilities. Strategies such as device miniaturization, 3D fabrication and multifunctional integration are evaluated for their capacity to improve resolution, particularly within the complex microenvironments of biological tissues. However, challenges persist, including signal interference, device stability and the demand for reliable long-term operation. Overcoming these obstacles requires continuous innovation in materials science, device engineering and computational approaches. Enhanced spatiotemporal resolution holds promise for advancing diagnostic precision, therapeutic responsiveness and our understanding of dynamic biological systems across biomedical disciplines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Spatiotemporal resolutions in biology and bioelectronics.
Fig. 2: Device physics for high-resolution bioelectronic interfaces.
Fig. 3: Representative materials for high-resolution bioelectronic probing, using bottom–up and top–down methods.
Fig. 4: Enhancing neural signal recording through materials and device design.

Similar content being viewed by others

References

  1. Hong, G. S. & Lieber, C. M. Novel electrode technologies for neural recordings. Nat. Rev. Neurosci. 20, 330–345 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bouchez, D., Uyttewaal, M. & Pastuglia, M. Spatiotemporal regulation of plant cell division. Curr. Opin. Plant Biol. 79, 102530 (2024).

    Article  PubMed  Google Scholar 

  3. Ren, J. Y., Luo, S. C., Shi, H. L. & Wang, X. Spatial omics advances for in situ RNA biology. Mol. Cell 84, 3737–3757 (2024).

    Article  CAS  PubMed  Google Scholar 

  4. Velten, B. & Stegle, O. Principles and challenges of modeling temporal and spatial omics data. Nat. Methods 20, 1462–1474 (2023).

    Article  CAS  PubMed  Google Scholar 

  5. Bassett, D. S. & Sporns, O. Network neuroscience. Nat. Neurosci. 20, 353–364 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Choi, J., Ghaffari, R., Baker, L. B. & Rogers, J. A. Skin-interfaced systems for sweat collection and analytics. Sci. Adv. 4, eaar3921 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Shaltout, A. M., Shalaev, V. M. & Brongersma, M. L. Spatiotemporal light control with active metasurfaces. Science 364, 648 (2019).

    Article  Google Scholar 

  8. Ham, D., Park, H., Hwang, S. & Kim, K. Neuromorphic electronics based on copying and pasting the brain. Nat. Electron. 4, 635–644 (2021).

    Article  Google Scholar 

  9. Zhao, Y. L. et al. Scalable ultrasmall three-dimensional nanowire transistor probes for intracellular recording. Nat. Nanotechnol. 14, 783–790 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Duan, X. J. et al. Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor. Nat. Nanotechnol. 7, 174–179 (2012).

    Article  CAS  Google Scholar 

  11. Tian, B. Z. et al. Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science 329, 830–834 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tian, B. Z. & Lieber, C. M. Synthetic nanoelectronic probes for biological cells and tissues. Annu. Rev. Anal. Chem. 6, 31–51 (2013).

    Article  CAS  Google Scholar 

  13. Gu, Y. et al. Three-dimensional transistor arrays for intra- and inter-cellular recording. Nat. Nanotechnol. 17, 292–300 (2022).

    Article  CAS  PubMed  Google Scholar 

  14. Jayant, K. et al. Targeted intracellular voltage recordings from dendritic spines using quantum-dot-coated nanopipettes. Nat. Nanotechnol. 12, 335–342 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Feng, J. D. et al. Identification of single nucleotides in MoS2 nanopores. Nat. Nanotechnol. 10, 1070 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Lee, Y. H. et al. Carbon-nanotube field-effect transistors for resolving single-molecule aptamer-ligand binding kinetics. Nat. Nanotechnol. 19, 660–667 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Laborde, C. et al. Real-time imaging of microparticles and living cells with CMOS nanocapacitor arrays. Nat. Nanotechnol. 10, 791–795 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Abbott, J. et al. A nanoelectrode array for obtaining intracellular recordings from thousands of connected neurons. Nat. Biomed. Eng. 4, 232–241 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Abbott, J. et al. CMOS nanoelectrode array for all-electrical intracellular electrophysiological imaging. Nat. Nanotechnol. 12, 460–466 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Dipalo, M. et al. Plasmonic meta-electrodes allow intracellular recordings at network level on high-density CMOS-multi-electrode arrays. Nat. Nanotechnol. 13, 965–971 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Spira, M. E. & Hai, A. Multi-electrode array technologies for neuroscience and cardiology. Nat. Nanotechnol. 8, 83–94 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Xie, C., Lin, Z. L., Hanson, L., Cui, Y. & Cui, B. X. Intracellular recording of action potentials by nanopillar electroporation. Nat. Nanotechnol. 7, 185–190 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Taal, A. J. et al. Optogenetic stimulation probes with single-neuron resolution based on organic LEDs monolithically integrated on CMOS. Nat. Electron. 6, 669–679 (2023).

    Article  CAS  Google Scholar 

  24. Tsai, D., Sawyer, D., Bradd, A., Yuste, R. & Shepard, K. L. A very large-scale microelectrode array for cellular-resolution electrophysiology. Nat. Commun. 8, 1802 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Shekar, S. et al. A miniaturized multi-clamp CMOS amplifier for intracellular neural recording. Nat. Electron. 2, 343–350 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bellin, D. L. et al. Integrated circuit-based electrochemical sensor for spatially resolved detection of redox-active metabolites in biofilms. Nat. Commun. 5, 3256 (2014).

    Article  PubMed  Google Scholar 

  27. Nakatsuka, N. et al. Aptamer-field-effect transistors overcome Debye length limitations for small-molecule sensing. Science 362, 319–324 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Stern, E. et al. Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature 445, 519–522 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Zheng, G. F., Patolsky, F., Cui, Y., Wang, W. U. & Lieber, C. M. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 23, 1294–1301 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Huffman, B. L., Bredar, A. R. C. & Dempsey, J. L. Origins of non-ideal behaviour in voltammetric analysis of redox-active monolayers. Nat. Rev. Chem. 8, 628–643 (2024).

    Article  CAS  PubMed  Google Scholar 

  31. Sorgenfrei, S. et al. Label-free single-molecule detection of DNA-hybridization kinetics with a carbon nanotube field-effect transistor. Nat. Nanotechnol. 6, 125–131 (2011).

    Article  Google Scholar 

  32. Xie, P., Xiong, Q. H., Fang, Y., Qing, Q. & Lieber, C. M. Local electrical potential detection of DNA by nanowire-nanopore sensors. Nat. Nanotechnol. 7, 119–125 (2012).

    Article  CAS  Google Scholar 

  33. Rosenstein, J. K., Wanunu, M., Merchant, C. A., Drndic, M. & Shepard, K. L. Integrated nanopore sensing platform with sub-microsecond temporal resolution. Nat. Methods 9, 487–492 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Li, P. J. et al. Monolithic silicon for high spatiotemporal translational photostimulation. Nature 626, 990–998 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Luo, Y. F. et al. Technology roadmap for flexible sensors. ACS Nano 17, 5211–5295 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tang, X., Shen, H., Zhao, S. Y., Li, N. & Liu, J. Flexible brain-computer interfaces. Nat. Electron. 6, 109–118 (2023).

    Article  Google Scholar 

  37. Abiri, R., Borhani, S., Sellers, E. W., Jiang, Y. & Zhao, X. P. A comprehensive review of EEG-based brain-computer interface paradigms. J. Neural Eng. 16, 011001 (2019).

    Article  PubMed  Google Scholar 

  38. Chaudhary, U., Birbaumer, N. & Ramos-Murguialday, A. Brain-computer interfaces for communication and rehabilitation. Nat. Rev. Neurol. 12, 513–525 (2016).

    Article  PubMed  Google Scholar 

  39. Zhang, M. L., Tang, Z. J., Liu, X. L. & van der Spiegel, J. Electronic neural interfaces. Nat. Electron. 3, 191–200 (2020).

    Article  Google Scholar 

  40. Nussinovitch, U. & Gepstein, L. Optogenetics for in vivo cardiac pacing and resynchronization therapies. Nat. Biotechnol. 33, 750–754 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Vernooy, K., van Deursen, C. J. M., Strik, M. & Prinzen, F. W. Strategies to improve cardiac resynchronization therapy. Nat. Rev. Cardiol. 11, 481–493 (2014).

    Article  PubMed  Google Scholar 

  42. Lorach, H. et al. Photovoltaic restoration of sight with high visual acuity. Nat. Med. 21, 476–482 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mahato, K. et al. Hybrid multimodal wearable sensors for comprehensive health monitoring. Nat. Electron. 7, 735–750 (2024).

    Article  CAS  Google Scholar 

  44. Sempionatto, J. R., Lasalde-Ramírez, J. A., Mahato, K., Wang, J. & Gao, W. Wearable chemical sensors for biomarker discovery in the omics era. Nat. Rev. Chem. 6, 899–915 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Goh, G. D. et al. Machine learning for bioelectronics on wearable and implantable devices: challenges and potential. Tissue Eng. A 29, 20–46 (2023).

    Article  Google Scholar 

  46. Wang, M. et al. Fusing stretchable sensing technology with machine learning for human-machine interfaces. Adv. Funct. Mater. 31, 2008807 (2021).

    Article  CAS  Google Scholar 

  47. Cheong, W. F., Prahl, S. A. & Welch, A. J. A review of the optical-properties of biological tissues. IEEE J. Quantum Electron. 26, 2166–2185 (1990).

    Article  Google Scholar 

  48. Deisseroth, K. Optogenetics: 10 years of microbial opsins in neuroscience. Nat. Neurosci. 18, 1213–1225 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jahed, Z. et al. Nanocrown electrodes for parallel and robust intracellular recording of cardiomyocytes. Nat. Commun. 13, 2253 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang, M. et al. Printable molecule-selective core–shell nanoparticles for wearable and implantable sensing. Nat. Mater. 24, 589–598 (2025).

    Article  CAS  PubMed  Google Scholar 

  51. Heng, W. et al. A smart mask for exhaled breath condensate harvesting and analysis. Science 385, 954–961 (2024).

    Article  CAS  PubMed  Google Scholar 

  52. Wang, Y., Jia, K. & Suo, Z. Non-faradaic junction sensing. Nat. Rev. Mater. 10, 176–190 (2024).

    Article  CAS  Google Scholar 

  53. Tian, B. Z. & Lieber, C. M. Nanowired bioelectric interfaces. Chem. Rev. 119, 9136–9152 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang, A. Q. & Lieber, C. M. Nano-bioelectronics. Chem. Rev. 116, 215–257 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. Wang, B. et al. High-k gate dielectrics for emerging flexible and stretchable electronics. Chem. Rev. 118, 5690–5754 (2018).

    Article  CAS  PubMed  Google Scholar 

  56. Wang, S. S. et al. Electrochemical impedance spectroscopy. Nat. Rev. Methods Primers 1, 41 (2021).

    Article  CAS  Google Scholar 

  57. Yu, N. et al. Near‐infrared‐light activatable nanoparticles for deep‐tissue‐penetrating wireless optogenetics. Adv. Healthc. Mater. 8, 1801132 (2019).

    Article  Google Scholar 

  58. Sze, S. M. & Lee, M.-K. Semiconductor Devices: Physics and Technology 3rd edn (2012).

  59. Fabbri, L. et al. How to achieve high spatial resolution in organic optobioelectronic devices? Adv. Mater. Interfaces https://doi.org/10.1002/admi.202400822 (2025).

  60. Pan, L. F. et al. High carrier mobility along the 111 orientation in Cu2O photoelectrodes. Nature 628, 765–770 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Xia, Y. et al. Thickness — independent capacitance of vertically aligned liquid-crystalline MXenes. Nature 557, 409–412 (2018).

    Article  CAS  PubMed  Google Scholar 

  62. Cea, C. et al. Enhancement-mode ion-based transistor as a comprehensive interface and real-time processing unit for in vivo electrophysiology. Nat. Mater. 19, 679–686 (2020).

    Article  CAS  PubMed  Google Scholar 

  63. Cheema, S. S. et al. Ultrathin ferroic HfO2-ZrO2 superlattice gate stack for advanced transistors. Nature 604, 65–71 (2022).

    Article  CAS  PubMed  Google Scholar 

  64. Fuentes-Hernandez, C. et al. Large-area low-noise flexible organic photodiodes for detecting faint visible light. Science 370, 698–701 (2020).

    Article  CAS  PubMed  Google Scholar 

  65. Liu, Y. et al. Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions. Nature 557, 696–700 (2018).

    Article  CAS  PubMed  Google Scholar 

  66. Cobb, S. J. et al. Fast CO2 hydration kinetics impair heterogeneous but improve enzymatic CO2 reduction catalysis. Nat. Chem. 14, 417–424 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Costentin, C., Di Giovanni, C., Giraud, M., Savéant, J. M. & Tard, C. Nanodiffusion in electrocatalytic films. Nat. Mater. 16, 1016–1021 (2017).

    Article  CAS  PubMed  Google Scholar 

  68. Graniel, O., Weber, M., Balme, S., Miele, P. & Bechelany, M. Atomic layer deposition for biosensing applications. Biosens. Bioelectron. 122, 147–159 (2018).

    Article  CAS  PubMed  Google Scholar 

  69. Jeong, J. et al. Conformal hermetic sealing of wireless microelectronic implantable chiplets by multilayered atomic layer deposition (ALD). Adv. Funct. Mater. 29, 1806440 (2019).

    Article  Google Scholar 

  70. Prominski, A. et al. Porosity-based heterojunctions enable leadless optoelectronic modulation of tissues. Nat. Mater. 21, 647–655 (2022).

    Article  CAS  PubMed  Google Scholar 

  71. Jiang, Y. W. et al. Topological supramolecular network enabled high-conductivity, stretchable organic bioelectronics. Science 375, 1411–1417 (2022).

    Article  CAS  PubMed  Google Scholar 

  72. Viana, D. et al. Nanoporous graphene-based thin-film microelectrodes for in vivo high-resolution neural recording and stimulation. Nat. Nanotechnol. 19, 514–523 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Dong, C. Q. et al. Electrochemically actuated microelectrodes for minimally invasive peripheral nerve interfaces. Nat. Mater. 23, 969–976 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Liu, Y. X. et al. Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. Nat. Biomed. Eng. 3, 58–68 (2019).

    Article  CAS  PubMed  Google Scholar 

  75. Ledesma, H. A. et al. An atlas of nano-enabled neural interfaces. Nat. Nanotechnol. 14, 645–657 (2019).

    Article  PubMed Central  Google Scholar 

  76. Köhler, M. et al. A silicon carbide-based highly transparent passivating contact for crystalline silicon solar cells approaching efficiencies of 24%. Nat. Energy 6, 529–537 (2021).

    Article  Google Scholar 

  77. Yu, Y. H. et al. Enhanced photoelectrochemical efficiency and stability using a conformal TiO2 film on a black silicon photoanode. Nat. Energy 2, 17045 (2017).

    Article  CAS  Google Scholar 

  78. Jiang, Y. et al. Rational design of silicon structures for optically controlled multiscale biointerfaces. Nat. Biomed. Eng. 2, 508–521 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Dai, Y. et al. Soft hydrogel semiconductors with augmented biointeractive functions. Science 386, 431–439 (2024).

    Article  CAS  PubMed  Google Scholar 

  80. Jiang, Y. et al. A universal interface for plug-and-play assembly of stretchable devices. Nature 614, 456–462 (2023).

    Article  CAS  PubMed  Google Scholar 

  81. Lacour, S. P., Courtine, G. & Guck, J. Materials and technologies for soft implantable neuroprostheses. Nat. Rev. Mater. 1, 16063 (2016).

    Article  CAS  Google Scholar 

  82. Nair, V. et al. Laser writing of nitrogen-doped silicon carbide for biological modulation. Sci. Adv. 6, eaaz2743 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yang, C. W. et al. A bioinspired permeable junction approach for sustainable device microfabrication. Nat. Sustain. 7, 1190–1203 (2024).

    Article  Google Scholar 

  84. Yang, Y. R. et al. A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nat. Biotechnol. 38, 217–224 (2020).

    Article  CAS  PubMed  Google Scholar 

  85. Zeng, M. X. et al. High-throughput printing of combinatorial materials from aerosols. Nature 617, 292–298 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Parameswaran, R. et al. Photoelectrochemical modulation of neuronal activity with free-standing coaxial silicon nanowires. Nat. Nanotechnol. 13, 260 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Chung, W. G. et al. Liquid-metal-based three-dimensional microelectrode arrays integrated with implantable ultrathin retinal prosthesis for vision restoration. Nat. Nanotechnol. 19, 688–697 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wang, Y. Y., Fedin, I., Zhang, H. & Talapin, D. V. Direct optical lithography of functional inorganic nanomaterials. Science 357, 385–388 (2017).

    Article  CAS  PubMed  Google Scholar 

  89. Jung, D. et al. Highly conductive and elastic nanomembrane for skin electronics. Science 373, 1022–1026 (2021).

    Article  CAS  PubMed  Google Scholar 

  90. Feng, H. B. et al. Optimized design of block copolymers with covarying properties for nanolithography. Nat. Mater. 21, 1426–1433 (2022).

    Article  CAS  PubMed  Google Scholar 

  91. Fang, Y. et al. Micelle-enabled self-assembly of porous and monolithic carbon membranes for bioelectronic interfaces. Nat. Nanotechnol. 16, 206–213 (2021).

    Article  CAS  PubMed  Google Scholar 

  92. Capel, A. J., Rimington, R. P., Lewis, M. P. & Christie, S. D. R. 3D printing for chemical, pharmaceutical and biological applications. Nat. Rev. Chem. 2, 422–436 (2018).

    Article  Google Scholar 

  93. MacDonald, E. & Wicker, R. Multiprocess 3D printing for increasing component functionality. Science 353, eaaf2093 (2016).

    Article  Google Scholar 

  94. Zhu, Z. J., Ng, D. W. H., Park, H. S. & McAlpine, M. C. 3D-printed multifunctional materials enabled by artificial-intelligence-assisted fabrication technologies. Nat. Rev. Mater. 6, 27–47 (2021).

    Article  Google Scholar 

  95. Yuk, H. et al. 3D printing of conducting polymers. Nat. Commun. 11, 1604 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wang, F. et al. 3D printed implantable hydrogel bioelectronics for electrophysiological monitoring and electrical modulation. Adv. Funct. Mater. 34. 2314471 (2023).

    Article  Google Scholar 

  97. Tay, R. Y., Song, Y., Yao, D. R. & Gao, W. Direct-ink-writing 3D-printed bioelectronics. Mater. Today 71, 135–151 (2023).

    Article  CAS  Google Scholar 

  98. Kim, S. et al. Three-dimensional electrodes of liquid metals for long-term, wireless cardiac analysis and modulation. ACS Nano 18, 24364–24378 (2024).

    Article  CAS  PubMed  Google Scholar 

  99. Fumeaux, N. & Briand, D. 3D printing of customizable transient bioelectronics and sensors. Adv. Electron. Mater. 10, 2400058 (2024).

    Article  CAS  Google Scholar 

  100. Dominguez‐Alfaro, A. et al. Light‐based 3D multi-material printing of micro-structured bio-shaped, conducting and dry adhesive electrodes for bioelectronics. Adv. Sci. 11, 2306424 (2024).

    Article  Google Scholar 

  101. Zhou, T. et al. 3D printable high-performance conducting polymer hydrogel for all-hydrogel bioelectronic interfaces. Nat. Mater. 22, 895–902 (2023).

    Article  CAS  PubMed  Google Scholar 

  102. Lee, A. et al. 3D bioprinting of collagen to rebuild components of the human heart. Science 365, 482–487 (2019).

    Article  CAS  PubMed  Google Scholar 

  103. Kolesky, D. B., Homan, K. A., Skylar-Scott, M. A. & Lewis, J. A. Three-dimensional bioprinting of thick vascularized tissues. Proc. Natl Acad. Sci. USA 113, 3179–3184 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kang, H.-W. et al. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat. Biotechnol. 34, 312–319 (2016).

    Article  CAS  PubMed  Google Scholar 

  105. Rodrigo-Navarro, A., Sankaran, S., Dalby, M. J., del Campo, A. & Salmeron-Sanchez, M. Engineered living biomaterials. Nat. Rev. Mater. 6, 1175–1190 (2021).

    Article  Google Scholar 

  106. Ershad, F., Patel, S. & Yu, C. Wearable bioelectronics fabricated in situ on skins. npj Flex. Electron. 7, 32 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Freedman, B. R. et al. Enhanced tendon healing by a tough hydrogel with an adhesive side and high drug-loading capacity. Nat. Biomed. Eng. 6, 1167–1179 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Chaudhuri, O., Cooper-White, J., Janmey, P. A., Mooney, D. J. & Shenoy, V. B. Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature 584, 535–546 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Liu, X., Inda, M. E., Lai, Y., Lu, T. K. & Zhao, X. Engineered living hydrogels. Adv. Mater. 34, 2201326 (2022).

    Article  CAS  Google Scholar 

  110. Jiang, Y. W. & Tian, B. Z. Inorganic semiconductor biointerfaces. Nat. Rev. Mater. 3, 473–490 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  111. He, F. et al. Multimodal mapping of neural activity and cerebral blood flow reveals long-lasting neurovascular dissociations after small-scale strokes. Sci. Adv. 6, eaba1933 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Luan, L. et al. Ultraflexible nanoelectronic probes form reliable, glial scar-free neural integration. Sci. Adv. 3, e1601966 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Zhang, A. et al. Ultraflexible endovascular probes for brain recording through micrometer-scale vasculature. Science 381, 306–312 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Han, F. et al. Three-dimensional nanofabrication via ultrafast laser patterning and kinetically regulated material assembly. Science 378, 1325–1331 (2022).

    Article  CAS  PubMed  Google Scholar 

  115. Zheng, Y. Q. et al. Monolithic optical microlithography of high-density elastic circuits. Science 373, 88–94 (2021).

    Article  CAS  PubMed  Google Scholar 

  116. Wang, W. C. et al. Strain-insensitive intrinsically stretchable transistors and circuits. Nat. Electron. 4, 143–150 (2021).

    Article  CAS  Google Scholar 

  117. Xu, J. et al. Multi-scale ordering in highly stretchable polymer semiconducting films. Nat. Mater. 18, 594–601 (2019).

    Article  CAS  PubMed  Google Scholar 

  118. Diao, Y. et al. Solution coating of large-area organic semiconductor thin films with aligned single-crystalline domains. Nat. Mater. 12, 665–671 (2013).

    Article  CAS  PubMed  Google Scholar 

  119. Wang, C. et al. Biomimetic olfactory chips based on large-scale monolithically integrated nanotube sensor arrays. Nat. Electron. 7, 157–167 (2024).

    Article  CAS  Google Scholar 

  120. Yin, J., Wang, S., Tat, T. & Chen, J. Motion artefact management for soft bioelectronics. Nat. Rev. Bioeng. 2, 541–558 (2024).

    Article  CAS  Google Scholar 

  121. Nair, V. et al. Miniature battery-free bioelectronics. Science 382, eabn4732 (2023).

    Article  CAS  PubMed  Google Scholar 

  122. Topalovic, U. et al. A wearable platform for closed-loop stimulation and recording of single-neuron and local field potential activity in freely moving humans. Nat. Neurosci. 26, 517–527 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Khodagholy, D. et al. NeuroGrid: recording action potentials from the surface of the brain. Nat. Neurosci. 18, 310–315 (2015).

    Article  CAS  PubMed  Google Scholar 

  124. Liu, Y. et al. A high-density 1,024-channel probe for brain-wide recordings in non-human primates. Nat. Neurosci. 27, 1620–1631 (2024).

    Article  CAS  PubMed  Google Scholar 

  125. Wei, S. et al. Shape-changing electrode array for minimally invasive large-scale intracranial brain activity mapping. Nat. Commun. 15, 715 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Kauvar, I. V. et al. Cortical observation by synchronous multifocal optical sampling reveals widespread population encoding of actions. Neuron 107, 351–367.e19 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Zhao, Z. T. et al. Ultraflexible electrode arrays for months-long high-density electrophysiological mapping of thousands of neurons in rodents. Nat. Biomed. Eng. 7, 520–532 (2023).

    Article  PubMed  Google Scholar 

  128. Li, J. et al. A tissue-like neurotransmitter sensor for the brain and gut. Nature 606, 94–101 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. van Erp, R., Soleimanzadeh, R., Nela, L., Kampitsis, G. & Matioli, E. Co-designing electronics with microfluidics for more sustainable cooling. Nature 585, 211–216 (2020).

    Article  PubMed  Google Scholar 

  130. Yang, Z. Y., Albrow-Owen, T., Cai, W. W. & Hasan, T. Miniaturization of optical spectrometers. Science 371, 480–532 (2021).

    Article  Google Scholar 

  131. Kim, K., Choi, J. Y., Kim, T., Cho, S. H. & Chung, H. J. A role for graphene in silicon-based semiconductor devices. Nature 479, 338–344 (2011).

    Article  CAS  PubMed  Google Scholar 

  132. Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O. V. & Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2, 17033 (2017).

    Article  CAS  Google Scholar 

  133. Wang, H. M. et al. Graphene nanoribbons for quantum electronics. Nat. Rev. Phys. 3, 791–802 (2021).

    Article  CAS  Google Scholar 

  134. Kim, D. et al. A CMOS-integrated quantum sensor based on nitrogen-vacancy centres. Nat. Electron. 2, 284–289 (2019).

    Article  CAS  Google Scholar 

  135. Kim, B. H. et al. Three-dimensional electronic microfliers inspired by wind-dispersed seeds. Nature 597, 503–510 (2021).

    Article  CAS  PubMed  Google Scholar 

  136. Park, Y., Chung, T. S. & Rogers, J. A. Three dimensional bioelectronic interfaces to small-scale. Curr. Opin. Biotechnol. 72, 1–7 (2021).

    Article  CAS  PubMed  Google Scholar 

  137. Park, Y. et al. Three-dimensional, multifunctional neural interfaces for cortical spheroids and engineered assembloids. Sci. Adv. 7, eabf9153 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Xu, S. et al. Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling. Science 347, 154–159 (2015).

    Article  CAS  PubMed  Google Scholar 

  139. Yan, Z. et al. Three-dimensional mesostructures as high-temperature growth templates, electronic cellular scaffolds, and self-propelled microrobots. Proc. Natl Acad. Sci. USA 114, E9455–E9464 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Huang, Z. L. et al. Three-dimensional integrated stretchable electronics. Nat. Electron. 1, 473–480 (2018).

    Article  Google Scholar 

  141. Lee, H. et al. An endoscope with integrated transparent bioelectronics and theranostic nanoparticles for colon cancer treatment. Nat. Commun. 6, 10059 (2015).

    Article  CAS  PubMed  Google Scholar 

  142. Yang, R. X. et al. Multimodal sensors with decoupled sensing mechanisms. Adv. Sci. 9, 2202470 (2022).

    Article  Google Scholar 

  143. Bai, H. D., Hu, Z. Y. & Rogers, J. A. Hybrid materials approaches for bioelectronics. MRS Bull. 48, 1125–1139 (2023).

    Article  Google Scholar 

  144. Grajales-Reyes, J. G. et al. Surgical implantation of wireless, battery-free optoelectronic epidural implants for optogenetic manipulation of spinal cord circuits in mice. Nat. Protoc. 16, 3072–3088 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Gutruf, P. et al. Wireless, battery-free, fully implantable multimodal and multisite pacemakers for applications in small animal models. Nat. Commun. 10, 5742 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Mickle, A. D. et al. A wireless closed-loop system for optogenetic peripheral neuromodulation. Nature 565, 361–365 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Yang, Y. Y. et al. Wireless multilateral devices for optogenetic studies of individual and social behaviors. Nat. Neurosci. 24, 1035–1045 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Gebrael, T. et al. High-efficiency cooling via the monolithic integration of copper on electronic devices. Nat. Electron. 5, 394–402 (2022).

    Article  CAS  Google Scholar 

  149. Ray, T. R. et al. Bio-integrated wearable systems: a comprehensive review. Chem. Rev. 119, 5461–5533 (2019).

    Article  CAS  PubMed  Google Scholar 

  150. Ding, S. C. et al. A fingertip-wearable microgrid system for autonomous energy management and metabolic monitoring. Nat. Electron. 7, 788–799 (2024).

    Article  CAS  Google Scholar 

  151. Lin, M. Y. et al. A fully integrated wearable ultrasound system to monitor deep tissues in moving subjects. Nat. Biotechnol. 42, 448–457 (2024).

    Article  CAS  PubMed  Google Scholar 

  152. Yin, L. et al. A stretchable epidermal sweat sensing platform with an integrated printed battery and electrochromic display. Nat. Electron. 5, 694–705 (2022).

    Article  Google Scholar 

  153. Jiang, Y. W. et al. Wireless, closed-loop, smart bandage with integrated sensors and stimulators for advanced wound care and accelerated healing. Nat. Biotechnol. 41, 652–662 (2023).

    Article  CAS  PubMed  Google Scholar 

  154. Matsuhisa, N. et al. High-frequency and intrinsically stretchable polymer diodes. Nature 600, 246–252 (2021).

    Article  CAS  PubMed  Google Scholar 

  155. Zhang, Z. T. et al. High-brightness all-polymer stretchable LED with charge-trapping dilution. Nature 603, 624–630 (2022).

    Article  CAS  PubMed  Google Scholar 

  156. Shi, J. Y. et al. Active biointegrated living electronics for managing inflammation. Science 384, 1023–1030 (2024).

    Article  CAS  PubMed  Google Scholar 

  157. Zhang, Y. et al. Millimetre-scale bioresorbable optoelectronic systems for electrotherapy. Nature 640, 77–86 (2025).

    Article  CAS  PubMed  Google Scholar 

  158. Zheng, Y., Zhang, S., Tok, J. B. H. & Bao, Z. N. Molecular design of stretchable polymer semiconductors: current progress and future directions. J. Am. Chem. Soc. 144, 4699–4715 (2022).

    Article  CAS  PubMed  Google Scholar 

  159. Li, N. et al. Bioadhesive polymer semiconductors and transistors for intimate biointerfaces. Science 381, 686–693 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Park, S. et al. Adaptive and multifunctional hydrogel hybrid probes for long-term sensing and modulation of neural activity. Nat. Commun. 12, 3435 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Zhao, C., Park, J., Root, S. E. & Bao, Z. Skin-inspired soft bioelectronic materials, devices and systems. Nat. Rev. Bioeng. 2, 671–690 (2024).

    Article  CAS  Google Scholar 

  162. Yuk, H., Wu, J. & Zhao, X. Hydrogel interfaces for merging humans and machines. Nat. Rev. Mater. 7, 935–952 (2022).

    Article  CAS  Google Scholar 

  163. Yang, C. & Suo, Z. Hydrogel ionotronics. Nat. Rev. Mater. 3, 125–142 (2018).

    Article  CAS  Google Scholar 

  164. Rousche, P. J. & Normann, R. A. Chronic recording capability of the Utah Intracortical Electrode Array in cat sensory cortex. J. Neurosci. Methods 82, 1–15 (1998).

    Article  CAS  PubMed  Google Scholar 

  165. Abidian, M. R. & Martin, D. C. Multifunctional nanobiomaterials for neural interfaces. Adv. Funct. Mater. 19, 573–585 (2009).

    Article  CAS  Google Scholar 

  166. Jun, J. J. et al. Fully integrated silicon probes for high-density recording of neural activity. Nature 551, 232–236 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Chiang, C.-H. et al. Development of a neural interface for high-definition, long-term recording in rodents and nonhuman primates. Sci. Transl Med. 12, eaay4682 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Zhao, S. Y. et al. Tracking neural activity from the same cells during the entire adult life of mice. Nat. Neurosci. 26, 696–710 (2023).

    Article  CAS  PubMed  Google Scholar 

  169. Yang, X. et al. Bioinspired neuron-like electronics. Nat. Mater. 18, 510–517 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Yu, K. J. et al. Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity from the cerebral cortex. Nat. Mater. 15, 782–791 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Yang, X. et al. Laminin-coated electronic scaffolds with vascular topography for tracking and promoting the migration of brain cells after injury. Nat. Biomed. Eng. 7, 1282–1292 (2023).

    Article  CAS  PubMed  Google Scholar 

  172. Robinson, J. T. et al. Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits. Nat. Nanotechnol. 7, 180–184 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Yan, L., Fang, Q., Zhang, X. & Huang, B. Optimal pipette resistance, seal resistance, and zero-current membrane potential for loose patch or breakthrough whole-cell recording in vivo. Front. Neural Circuits 14, 34 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Kyndiah, A. et al. Direct recording of action potentials of cardiomyocytes through solution processed planar electrolyte-gated field-effect transistors. Sens. Actuators B Chem. 393, 134227 (2023).

    Article  CAS  Google Scholar 

  175. Hai, A., Shappir, J. & Spira, M. E. In-cell recordings by extracellular microelectrodes. Nat. Methods 7, 200–202 (2010).

    Article  CAS  PubMed  Google Scholar 

  176. Terrell, J. L. et al. Bioelectronic control of a microbial community using surface-assembled electrogenetic cells to route signals. Nat. Nanotechnol. 16, 688–697 (2021).

    Article  CAS  PubMed  Google Scholar 

  177. Liu, J. et al. Genetically targeted chemical assembly of functional materials in living cells, tissues, and animals. Science 367, 1372–1376 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Zhang, A. Q. et al. Genetically targeted chemical assembly of polymers specifically localized extracellularly to surface membranes of living neurons. Sci. Adv. 9, eadi1870 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Zhang, A. Q., Zhao, S., Tyson, J., Deisseroth, K. & Bao, Z. N. Applications of synthetic polymers directed toward living cells. Nat. Synth. 3, 943–957 (2024).

    Article  CAS  Google Scholar 

  180. Gu, Y. Q. et al. Structure of Geobacter pili reveals secretory rather than nanowire behaviour. Nature 597, 430–434 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Li, Q. et al. Multimodal charting of molecular and functional cell states via in situ electro-sequencing. Cell 186, 2002–2017.e21 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Strakosas, X. et al. Metabolite-induced in vivo fabrication of substrate-free organic bioelectronics. Science 379, 795–802 (2023).

    Article  CAS  PubMed  Google Scholar 

  183. Gu, L. L. et al. A biomimetic eye with a hemispherical perovskite nanowire array retina. Nature 581, 278–282 (2020).

    Article  CAS  PubMed  Google Scholar 

  184. Liu, J. et al. Syringe-injectable electronics. Nat. Nanotechnol. 10, 629–636 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Patel, S. R. & Lieber, C. M. Precision electronic medicine in the brain. Nat. Biotechnol. 37, 1007–1012 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Tian, B. Z. et al. Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nat. Mater. 11, 986–994 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Xie, C. et al. Three-dimensional macroporous nanoelectronic networks as minimally invasive brain probes. Nat. Mater. 14, 1286–1292 (2015).

    Article  CAS  PubMed  Google Scholar 

  188. Park, B. et al. Cuticular pad-inspired selective frequency damper for nearly dynamic noise-free bioelectronics. Science 376, 624–629 (2022).

    Article  CAS  PubMed  Google Scholar 

  189. Nahon, D. M. et al. Standardizing designed and emergent quantitative features in microphysiological systems. Nat. Biomed. Eng. 8, 941–962 (2024).

    Article  PubMed  Google Scholar 

  190. Yang, X. et al. Kirigami electronics for long-term electrophysiological recording of human neural organoids and assembloids. Nat. Biotechnol. 42, 1836–1843 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Tang, J. et al. Flexible CMOS integrated circuits based on carbon nanotubes with sub-10 ns stage delays. Nat. Electron. 1, 191–196 (2018).

    Article  CAS  Google Scholar 

  192. Hussain, A. M. & Hussain, M. M. CMOS‐technology‐enabled flexible and stretchable electronics for internet of everything applications. Adv. Mater. 28, 4219–4249 (2016).

    Article  CAS  PubMed  Google Scholar 

  193. Allen, M. E., Hindley, J. W., Baxani, D. K., Ces, O. & Elan, Y. Hydrogels as functional components in artificial cell systems. Nat. Rev. Chem. 6, 562–578 (2022).

    Article  CAS  PubMed  Google Scholar 

  194. Ganewatta, M. S., Wang, Z. K. & Tang, C. B. Chemical syntheses of bioinspired and biomimetic polymers toward biobased materials. Nat. Rev. Chem. 5, 753–772 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Shi, J. Y. et al. Monolithic-to-focal evolving biointerfaces in tissue regeneration and bioelectronics. Nat. Chem. Eng. 1, 73–86 (2024).

    Article  Google Scholar 

  196. Krauhausen, I., Coen, C. T., Spolaor, S., Gkoupidenis, P. & van de Burgt, Y. Brain-inspired organic electronics: merging neuromorphic computing and bioelectronics using conductive polymers. Adv. Funct. Mater. 34, 2307729 (2024).

    Article  CAS  Google Scholar 

  197. Zhao, X. et al. Conformal neuromorphic bioelectronics for sense digitalization. Adv. Mat. 36. 2403444 (2024).

    Article  CAS  Google Scholar 

  198. Gkoupidenis, P. et al. Organic mixed conductors for bioinspired electronics. Nat. Rev. Mater. 9, 134–149 (2024).

    Article  CAS  Google Scholar 

  199. Harikesh, P. C., Tu, D. Y. & Fabiano, S. Organic electrochemical neurons for neuromorphic perception. Nat. Electron. 7, 525–536 (2024).

    Article  CAS  Google Scholar 

  200. Liang, X. P. et al. Physical reservoir computing with emerging electronics. Nat. Electron. 7, 193–206 (2024).

    Article  Google Scholar 

  201. Luo, J. L., Geng, Y. F., Rana, F. & Fuchs, G. D. Room temperature optically detected magnetic resonance of single spins in GaN. Nat. Mater. 23, 512–518 (2024).

    Article  CAS  PubMed  Google Scholar 

  202. Miller, B. S. et al. Spin-enhanced nanodiamond biosensing for ultrasensitive diagnostics. Nature 587, 588–593 (2020).

    Article  CAS  PubMed  Google Scholar 

  203. Aslam, N. et al. Quantum sensors for biomedical applications. Nat. Rev. Phys. 5, 157–169 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Kucsko, G. et al. Nanometre-scale thermometry in a living cell. Nature 500, 54–58 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Lovchinsky, I. et al. Magnetic resonance spectroscopy of an atomically thin material using a single-spin qubit. Science 355, 503 (2017).

    Article  CAS  PubMed  Google Scholar 

  206. Lovchinsky, I. et al. Applied physics nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic. Science 351, 836–841 (2016).

    Article  CAS  PubMed  Google Scholar 

  207. Stas, P. J. et al. Robust multi-qubit quantum network node with integrated error detection. Science 378, 557–560 (2022).

    Article  CAS  PubMed  Google Scholar 

  208. Chatterjee, S., Thakur, R. S., Yadav, R. N., Gupta, L. & Raghuvanshi, D. K. Review of noise removal techniques in ECG signals. IET Signal Process. 14, 569–590 (2020).

    Article  Google Scholar 

  209. He, Y. T. et al. Brain-machine interfaces for controlling lower-limb powered robotic systems. J. Neural Eng. 15, 021004 (2018).

    Article  PubMed  Google Scholar 

  210. Tian, C. W. et al. Deep learning on image denoising: an overview. Neural Netw. 131, 251–275 (2020).

    Article  PubMed  Google Scholar 

  211. Barbastathis, G., Ozcan, A. & Situ, G. On the use of deep learning for computational imaging. Optica 6, 921–943 (2019).

    Article  Google Scholar 

  212. Alzubaidi, L. et al. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J. Big Data 8, 53 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Biamonte, J. et al. Quantum machine learning. Nature 549, 195–202 (2017).

    Article  CAS  PubMed  Google Scholar 

  214. Ching, T. et al. Opportunities and obstacles for deep learning in biology and medicine. J. R. Soc. Interface 15, 20170387 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Gong, S., Lu, Y., Yin, J. L., Levin, A. & Cheng, W. L. Materials-driven soft wearable bioelectronics for connected healthcare. Chem. Rev. 124, 455–553 (2024).

    Article  CAS  PubMed  Google Scholar 

  216. Xia, X. X., Spadaccini, C. M. & Greer, J. R. Responsive materials architected in space and time. Nat. Rev. Mater. 7, 683–701 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Chen, Y. T. et al. All-analog photoelectronic chip for high-speed vision tasks. Nature 623, 48–57 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Kang, I., Zhang, Q. R., Yu, S. X. & Ji, N. Coordinate-based neural representations for computational adaptive optics in widefield microscopy. Nat. Mach. Intell. 6, 714–725 (2024).

    Article  Google Scholar 

  219. Temma, K. et al. Selective-plane-activation structured illumination microscopy. Nat. Methods 21, 889–896 (2024).

    Article  CAS  PubMed  Google Scholar 

  220. Fang, X. et al. Programmable gear-based mechanical metamaterials. Nat. Mater. 21, 869–876 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Fu, H. R. et al. Morphable 3D mesostructures and microelectronic devices by multistable buckling mechanics. Nat. Mater. 17, 268–276 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Ou, Z. H. et al. Achieving optical transparency in live animals with absorbing molecules. Science 385, eadm6869 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Shemetov, A. A., Nabiev, I. & Sukhanova, A. Molecular interaction of proteins and peptides with nanoparticles. ACS Nano 6, 4585–4602 (2012).

    Article  CAS  PubMed  Google Scholar 

  224. Waduge, P. et al. Nanopore-based measurements of protein size, fluctuations, and conformational changes. ACS Nano 11, 5706–5716 (2017).

    Article  CAS  PubMed  Google Scholar 

  225. Wei, S. et al. Control of protein conformation and orientation on graphene. J. Am. Chem. Soc. 141, 20335–20343 (2019).

    Article  CAS  PubMed  Google Scholar 

  226. Medintz, I. L. et al. A fluorescence resonance energy transfer-derived structure of a quantum dot-protein bioconjugate nanoassembly. Proc. Natl Acad. Sci. USA 101, 9612–9617 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. López‐Andarias, J. et al. Toward bioelectronic nanomaterials: photoconductivity in protein–porphyrin hybrids wrapped around SWCNT. Adv. Funct. Mater. 28, 1704031 (2018).

    Article  Google Scholar 

  228. Elnathan, R. et al. Biointerface design for vertical nanoprobes. Nat. Rev. Mater. 7, 953–973 (2022).

    Article  CAS  Google Scholar 

  229. Morales-Narváez, E. & Dincer, C. The impact of biosensing in a pandemic outbreak: COVID-19. Biosens. Bioelectron. 163, 112274 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Kabay, G. et al. Emerging biosensing technologies for the diagnostics of viral infectious diseases. Adv. Mater. 34, 2201085 (2022).

    Article  CAS  Google Scholar 

  231. Chen, K.-I., Li, B.-R. & Chen, Y.-T. Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation. Nano Today 6, 131–154 (2011).

    Article  CAS  Google Scholar 

  232. Lerner, M. B. et al. Hybrids of a genetically engineered antibody and a carbon nanotube transistor for detection of prostate cancer biomarkers. Acs Nano 6, 5143–5149 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Venturelli, E. et al. Antibody covalent immobilization on carbon nanotubes and assessment of antigen binding. Small 7, 2179–2187 (2011).

    Article  CAS  PubMed  Google Scholar 

  234. Aftab, S. et al. Nanomaterials-based field-effect transistor for protein sensing: new advances. ACS Sens. 9, 9–22 (2023).

    Article  PubMed  Google Scholar 

  235. Callaghan, N. I. et al. Harnessing conserved signaling and metabolic pathways to enhance the maturation of functional engineered tissues. npj Regener. Med. 7, 44 (2022).

    Article  Google Scholar 

  236. Liu, H. et al. Bioenergetic-active materials enhance tissue regeneration by modulating cellular metabolic state. Sci. Adv. 6, eaay7608 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Ren, C., Hu, X. & Zhou, Q. Graphene oxide quantum dots reduce oxidative stress and inhibit neurotoxicity in vitro and in vivo through catalase‐like activity and metabolic regulation. Adv. Sci. 5, 1700595 (2018).

    Article  Google Scholar 

  238. Hu, X., Lu, K., Mu, L., Kang, J. & Zhou, Q. Interactions between graphene oxide and plant cells: regulation of cell morphology, uptake, organelle damage, oxidative effects and metabolic disorders. Carbon 80, 665–676 (2014).

    Article  CAS  Google Scholar 

  239. Xu, S. & Minteer, S. D. Enzymatic biofuel cell for oxidation of glucose to CO2. ACS Catal. 2, 91–94 (2012).

    Article  CAS  Google Scholar 

  240. Wu, J., Liu, H., Chen, W., Ma, B. & Ju, H. Device integration of electrochemical biosensors. Nat. Rev. Bioeng. 1, 346–360 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Rivnay, J. et al. Integrating bioelectronics with cell-based synthetic biology. Nat. Rev. Bioeng. 3, 317–332 (2025).

    Article  CAS  Google Scholar 

  242. Huang, J., Xue, S., Buchmann, P., Teixeira, A. P. & Fussenegger, M. An electrogenetic interface to program mammalian gene expression by direct current. Nat. Metab. 5, 1395–1407 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Li, S., Duan, Y., Zhu, W., Cheng, S. & Hu, W. Sensing interfaces engineering for organic thin film transistors-based biosensors: opportunities and challenges. Adv. Mater. 36, 2412379 (2024).

    Article  CAS  Google Scholar 

  244. Milias-Argeitis, A., Rullan, M., Aoki, S. K., Buchmann, P. & Khammash, M. Automated optogenetic feedback control for precise and robust regulation of gene expression and cell growth. Nat. Commun. 7, 12546 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Ochoa-Fernandez, R. et al. Optogenetic control of gene expression in plants in the presence of ambient white light. Nat. Methods 17, 717–725 (2020).

    Article  CAS  PubMed  Google Scholar 

  246. Rajabi, A. H., Jaffe, M. & Arinzeh, T. L. Piezoelectric materials for tissue regeneration: a review. Acta Biomater. 24, 12–23 (2015).

    Article  CAS  PubMed  Google Scholar 

  247. Abramson, A. et al. A flexible electronic strain sensor for the real-time monitoring of tumor regression. Sci. Adv. 8, eabn6550 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Boutry, C. M. et al. A stretchable and biodegradable strain and pressure sensor for orthopaedic application. Nat. Electron. 1, 314–321 (2018).

    Article  Google Scholar 

  249. Nguyen, T. D. et al. Piezoelectric nanoribbons for monitoring cellular deformations. Nat. Nanotechnol. 7, 587–593 (2012).

    Article  CAS  PubMed  Google Scholar 

  250. Kapat, K., Shubhra, Q. T., Zhou, M. & Leeuwenburgh, S. Piezoelectric nano‐biomaterials for biomedicine and tissue regeneration. Adv. Funct. Mater. 30, 1909045 (2020).

    Article  CAS  Google Scholar 

  251. Qin, J. et al. Flexible and stretchable capacitive sensors with different microstructures. Adv. Mater. 33, 2008267 (2021).

    Article  CAS  Google Scholar 

  252. Frank, J. A., Antonini, M. J. & Anikeeva, P. Next-generation interfaces for studying neural function. Nat. Biotechnol. 37, 1013–1023 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Xu, Y.-T. et al. A nanofluidic spiking synapse. Proc. Natl Acad. Sci. USA 121, e2403143121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Jayant, K. et al. Flexible nanopipettes for minimally invasive intracellular electrophysiology in vivo. Cell Rep. 26, 266–278.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Huffman, M. L. & Venton, B. J. Carbon-fiber microelectrodes for in vivo applications. Analyst 134, 18–24 (2009).

    Article  CAS  PubMed  Google Scholar 

  256. Kim, S. et al. Modulating synaptic plasticity with metal–organic framework for information-filterable artificial retina. Nat. Commun. 16, 162 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  257. Lewis, C. M. et al. Electrochemically driven photosynthetic electron transport in cyanobacteria lacking photosystem II. J. Am. Chem. Soc. 144, 2933–2942 (2022).

    Article  CAS  PubMed  Google Scholar 

  258. Du, Z. et al. Plasmonic effect with tailored Au@TiO2 nanorods in photoanode for quantum dot sensitized solar cells. ACS Appl. Energy Mater. 2, 5917–5924 (2019).

    Article  CAS  Google Scholar 

  259. Yu, S. & Jain, P. K. Plasmonic photosynthesis of C1–C3 hydrocarbons from carbon dioxide assisted by an ionic liquid. Nat. Commun. 10, 2022 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  260. Park, J. et al. Electrically conductive hydrogel nerve guidance conduits for peripheral nerve regeneration. Adv. Funct. Mater. 30, 2003759 (2020).

    Article  CAS  Google Scholar 

  261. Namhongsa, M. et al. Surface-modified polypyrrole-coated PLCL and PLGA nerve guide conduits fabricated by 3D printing and electrospinning. Biomacromolecules 23, 4532–4546 (2022).

    Article  CAS  PubMed  Google Scholar 

  262. Jia, M. & Rolandi, M. Soft and ion-conducting materials in bioelectronics: from conducting polymers to hydrogels. Adv. Healthc. Mater. 9, 1901372 (2020).

    Article  CAS  Google Scholar 

  263. Wang, T. et al. A dual‐mode, scalable, machine‐learning‐enhanced wearable sensing system for synergetic muscular activity monitoring. Adv. Mater. Technol. 10, 2400857 (2024).

    Article  Google Scholar 

  264. Tang, H. et al. In situ forming epidermal bioelectronics for daily monitoring and comprehensive exercise. ACS Nano 16, 17931–17947 (2022).

    Article  CAS  PubMed  Google Scholar 

  265. Yang, S. et al. Stretchable surface electromyography electrode array patch for tendon location and muscle injury prevention. Nat. Commun. 14, 6494 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Yoon, H. et al. Decoding tissue biomechanics using conformable electronic devices. Nat. Rev. Mater. 10, 4–27 (2025).

    Article  CAS  Google Scholar 

  267. Stoyanov, H., Kollosche, M., Risse, S., Waché, R. & Kofod, G. Soft conductive elastomer materials for stretchable electronics and voltage controlled artificial muscles. Adv. Mater. 25, 578–583 (2013).

    Article  CAS  PubMed  Google Scholar 

  268. Dong, R., Ma, P. X. & Guo, B. Conductive biomaterials for muscle tissue engineering. Biomaterials 229, 119584 (2020).

    Article  CAS  PubMed  Google Scholar 

  269. Guha Ray, P., Maity, D., Huang, J., Zulewski, H. & Fussenegger, M. A versatile bioelectronic interface programmed for hormone sensing. Nat. Commun. 14, 3151 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Vignesh, V. et al. Advancements in cortisol detection: from conventional methods to next-generation technologies for enhanced hormone monitoring. ACS Sens. 9, 1666–1681 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Bernacka‐Wojcik, I. et al. Implantable organic electronic ion pump enables ABA hormone delivery for control of stomata in an intact tobacco plant. Small 15, 1902189 (2019).

    Article  Google Scholar 

  272. Ye, C. et al. A wearable aptamer nanobiosensor for non-invasive female hormone monitoring. Nat. Nanotechnol. 19, 330–337 (2024).

    Article  CAS  PubMed  Google Scholar 

  273. Rodriguez-Moncayo, R., Jimenez-Valdes, R. J., Gonzalez-Suarez, A. M. & Garcia-Cordero, J. L. Integrated microfluidic device for functional secretory immunophenotyping of immune cells. ACS Sens. 5, 353–361 (2020).

    Article  CAS  PubMed  Google Scholar 

  274. Dellacherie, M. O., Seo, B. R. & Mooney, D. J. Macroscale biomaterials strategies for local immunomodulation. Nat. Rev. Mater. 4, 379–397 (2019).

    Article  Google Scholar 

  275. Xing, J. et al. Lentinan-modified carbon nanotubes as an antigen delivery system modulate immune response in vitro and in vivo. ACS Appl. Mater. Interfaces 8, 19276–19283 (2016).

    Article  CAS  PubMed  Google Scholar 

  276. Mariani, F. et al. Advanced wound dressing for real-time pH monitoring. ACS Sens. 6, 2366–2377 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Kaveti, R. et al. Water-powered, electronics-free dressings that electrically stimulate wounds for rapid wound closure. Sci. Adv. 10, eado7538 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Khan, M. U. A. et al. Role of graphene oxide in bacterial cellulose–gelatin hydrogels for wound dressing applications. ACS Omega 8, 15909–15919 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Yang, Y., Du, Y., Zhang, J., Zhang, H. & Guo, B. Structural and functional design of electrospun nanofibers for hemostasis and wound healing. Adv. Fiber Mater. 4, 1027–1057 (2022).

    Article  CAS  Google Scholar 

  280. Sasaki, M. et al. Highly conductive stretchable and biocompatible electrode–hydrogel hybrids for advanced tissue engineering. Adv. Healthc. Mater. 3, 1919–1927 (2014).

    Article  CAS  PubMed  Google Scholar 

  281. Burnstine‐Townley, A., Eshel, Y. & Amdursky, N. Conductive scaffolds for cardiac and neuronal tissue engineering: governing factors and mechanisms. Adv. Funct. Mater. 30, 1901369 (2020).

    Article  Google Scholar 

  282. Pinho, T. S., Cunha, C. B., Lanceros-Méndez, S. & Salgado, A. J. Electroactive smart materials for neural tissue regeneration. ACS Appl. Bio Mater. 4, 6604–6618 (2021).

    Article  CAS  PubMed  Google Scholar 

  283. Yadid, M., Feiner, R. & Dvir, T. Gold nanoparticle-integrated scaffolds for tissue engineering and regenerative medicine. Nano Lett. 19, 2198–2206 (2019).

    Article  CAS  PubMed  Google Scholar 

  284. Eivazzadeh‐Keihan, R. et al. Metal‐based nanoparticles for bone tissue engineering. J. Tissue Eng. Regener. Med. 14, 1687–1714 (2020).

    Article  Google Scholar 

  285. Choi, H. et al. Adhesive bioelectronics for sutureless epicardial interfacing. Nat. Electron. 6, 779–789 (2023).

    Article  Google Scholar 

  286. Lai, J. et al. Practical intelligent diagnostic algorithm for wearable 12-lead ECG via self-supervised learning on large-scale dataset. Nat. Commun. 14, 3741 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Kireev, D. et al. Fabrication, characterization and applications of graphene electronic tattoos. Nat. Protoc. 16, 2395–2417 (2021).

    Article  CAS  PubMed  Google Scholar 

  288. Sim, K. et al. An epicardial bioelectronic patch made from soft rubbery materials and capable of spatiotemporal mapping of electrophysiological activity. Nat. Electron. 3, 775–784 (2020).

    Article  CAS  Google Scholar 

  289. Shim, J., Fleisch, E. & Barata, F. Circadian rhythm analysis using wearable-based accelerometry as a digital biomarker of aging and healthspan. npj Digit. Med. 7, 146 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  290. Wang, B. et al. Wearable aptamer-field-effect transistor sensing system for noninvasive cortisol monitoring. Sci. Adv. 8, eabk0967 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Zhang, R. & Jia, Y. A disposable printed liquid gate graphene field effect transistor for a salivary cortisol test. ACS Sens. 6, 3024–3031 (2021).

    Article  CAS  PubMed  Google Scholar 

  292. Lee, G.-H. et al. Multifunctional materials for implantable and wearable photonic healthcare devices. Nat. Rev. Mater. 5, 149–165 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  293. Kim, J. et al. Skin-interfaced wireless biosensors for perinatal and paediatric health. Nat. Rev. Bioeng. 1, 631–647 (2023).

    Article  CAS  Google Scholar 

  294. Chung, H. U. et al. Skin-interfaced biosensors for advanced wireless physiological monitoring in neonatal and pediatric intensive-care units. Nat. Med. 26, 418–429 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Liu, Z., Wan, X., Wang, Z. L. & Li, L. Electroactive biomaterials and systems for cell fate determination and tissue regeneration: design and applications. Adv. Mater. 33, 2007429 (2021).

    Article  CAS  Google Scholar 

  296. Ang, M. C.-Y. et al. Nanosensor detection of synthetic auxins in planta using corona phase molecular recognition. ACS Sens. 6, 3032–3046 (2021).

    Article  CAS  PubMed  Google Scholar 

  297. Qu, C. C. et al. Flexible wearables for plants. Small 17, 2104482 (2021).

    Article  CAS  Google Scholar 

  298. Boonyaves, K. et al. Near-infrared fluorescent carbon nanotube sensors for the plant hormone family gibberellins. Nano Lett. 23, 916–924 (2023).

    Article  CAS  PubMed  Google Scholar 

  299. Wang, W. et al. Imperceptible augmentation of living systems with organic bioelectronic fibres. Nat. Electron. 7, 586–597 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Ni, J. et al. Strong fatigue-resistant nanofibrous hydrogels inspired by lobster underbelly. Matter 4, 1919–1934 (2021).

    Article  CAS  Google Scholar 

  301. Yang, R. et al. Assessment of visual function in blind mice and monkeys with subretinally implanted nanowire arrays as artificial photoreceptors. Nat. Biomed. Eng. 8, 1018–1039 (2024).

    Article  CAS  PubMed  Google Scholar 

  302. Glennon, E. et al. Locus coeruleus activity improves cochlear implant performance. Nature 613, 317–323 (2023).

    Article  CAS  PubMed  Google Scholar 

  303. Prévot, P.-H. et al. Behavioural responses to a photovoltaic subretinal prosthesis implanted in non-human primates. Nat. Biomed. Eng. 4, 172–180 (2020).

    Article  PubMed  Google Scholar 

  304. Yang, Y. et al. Preparation and use of wireless reprogrammable multilateral optogenetic devices for behavioral neuroscience. Nat. Protoc. 17, 1073–1096 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. Jin, S. et al. Injectable tissue prosthesis for instantaneous closed-loop rehabilitation. Nature 623, 58–65 (2023).

    Article  CAS  PubMed  Google Scholar 

  306. Raspopovic, S., Valle, G. & Petrini, F. M. Sensory feedback for limb prostheses in amputees. Nat. Mater. 20, 925–939 (2021).

    Article  CAS  PubMed  Google Scholar 

  307. Liu, S., Zhang, J., Zhang, Y. & Zhu, R. A wearable motion capture device able to detect dynamic motion of human limbs. Nat. Commun. 11, 5615 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Kainz, A. et al. Distortion-free measurement of electric field strength with a MEMS sensor. Nat. Electron. 1, 68–73 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  309. Tian, X. et al. Wireless body sensor networks based on metamaterial textiles. Nat. Electron. 2, 243–251 (2019).

    Article  Google Scholar 

  310. Slade, P., Kochenderfer, M. J., Delp, S. L. & Collins, S. H. Sensing leg movement enhances wearable monitoring of energy expenditure. Nat. Commun. 12, 4312 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. Selberg, J., Gomez, M. & Rolandi, M. The potential for convergence between synthetic biology and bioelectronics. Cell Syst. 7, 231–244 (2018).

    Article  CAS  PubMed  Google Scholar 

  312. He, R. et al. Flexible miniaturized sensor technologies for long-term physiological monitoring. npj Flex. Electron. 6, 20 (2022).

    Article  Google Scholar 

  313. Mao, Y. et al. Genetically encoded biosensor engineering for application in directed evolution. J. Microbiol. Biotechnol. 33, 1257–1267 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Townshend, B., Xiang, J. S., Manzanarez, G., Hayden, E. J. & Smolke, C. D. A multiplexed, automated evolution pipeline enables scalable discovery and characterization of biosensors. Nat. Commun. 12, 1437 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. Rivas, L. A. et al. A 200-antibody microarray biochip for environmental monitoring: searching for universal microbial biomarkers through immunoprofiling. Anal. Chem. 80, 7970–7979 (2008).

    Article  CAS  PubMed  Google Scholar 

  316. Pereira, E. et al. RFID technology for animal tracking: a survey. IEEE J. Radio Freq. Identif. 7, 609–620 (2023).

    Article  Google Scholar 

  317. Rafiq, K. et al. WildWID: an open‐source active RFID system for wildlife research. Methods Ecol. Evol. 12, 1580–1587 (2021).

    Article  Google Scholar 

  318. Kaberniuk, A. A., Baloban, M., Monakhov, M. V., Shcherbakova, D. M. & Verkhusha, V. V. Single-component near-infrared optogenetic systems for gene transcription regulation. Nat. Commun. 12, 3859 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  319. Molesky, S. et al. Inverse design in nanophotonics. Nat. Photon. 12, 659–670 (2018).

    Article  CAS  Google Scholar 

  320. Yu, N. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139–150 (2014).

    Article  CAS  PubMed  Google Scholar 

  321. Jakešová, M. et al. Coupling of photovoltaics with neurostimulation electrodes — optical to electrolytic transduction. J. Neural Eng. 21, 046003 (2024).

    Article  Google Scholar 

  322. Hu, S. et al. Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation. Science 344, 1005–1009 (2014).

    Article  CAS  PubMed  Google Scholar 

  323. Yu, Y. et al. Enhanced photoelectrochemical efficiency and stability using a conformal TiO2 film on a black silicon photoanode. Nat. Energy 2, 17045 (2017).

    Article  CAS  Google Scholar 

  324. Chen, F.-D. et al. Implantable silicon neural probes with nanophotonic phased arrays for single-lobe beam steering. Commun. Eng. 3, 182 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  325. Balena, A. et al. Fabrication of nonplanar tapered fibers to integrate optical and electrical signals for neural interfaces in vivo. Nat. Protoc. https://doi.org/10.1038/s41596-024-01105-9 (2025).

  326. Cardozo Pinto, D. F. & Lammel, S. Hot topic in optogenetics: new implications of in vivo tissue heating. Nat. Neurosci. 22, 1039–1041 (2019).

    Article  CAS  PubMed  Google Scholar 

  327. Kozai, T. D. Y. et al. Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces. Nat. Mater. 11, 1065–1073 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  328. Nam, J. et al. Supramolecular peptide hydrogel-based soft neural interface augments brain signals through a three-dimensional electrical network. ACS Nano 14, 664–675 (2020).

    Article  CAS  PubMed  Google Scholar 

  329. Olejnik, A. et al. Tailoring diffusional fields in zwitterion/dopamine copolymer electropolymerized at carbon nanowalls for sensitive recognition of neurotransmitters. ACS Nano 16, 13183–13198 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  330. Wu, Y., Chen, H. & Guo, L. Opportunities and dilemmas of in vitro nano neural electrodes. RSC Adv. 10, 187–200 (2020).

    Article  Google Scholar 

  331. Liu, L. et al. Cell membrane coating integrity affects the internalization mechanism of biomimetic nanoparticles. Nat. Commun. 12, 5726 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  332. Mun, S. et al. Electro-active polymer based soft tactile interface for wearable devices. IEEE Trans. Haptics 11, 15–21 (2018).

    Article  PubMed  Google Scholar 

  333. Yoo, S. et al. Responsive materials and mechanisms as thermal safety systems for skin-interfaced electronic devices. Nat. Commun. 14, 1024 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  334. Nie, S. et al. Soft, stretchable thermal protective substrates for wearable electronics. npj Flex. Electron. 6, 36 (2022).

    Article  CAS  Google Scholar 

  335. Xie, Z., Liu, D., Gao, C., Dong, H. & Hu, W. High-mobility emissive organic semiconductors: an emerging class of multifunctional materials. Nat. Rev. Mater. 9, 837–839 (2024).

    Article  CAS  Google Scholar 

  336. Fratini, S., Nikolka, M., Salleo, A., Schweicher, G. & Sirringhaus, H. Charge transport in high-mobility conjugated polymers and molecular semiconductors. Nat. Mater. 19, 491–502 (2020).

    Article  CAS  PubMed  Google Scholar 

  337. Fang, H. et al. Capacitively coupled arrays of multiplexed flexible silicon transistors for long-term cardiac electrophysiology. Nat. Biomed. Eng. 1, 0038 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  338. Phan, H.-P. et al. Long-lived, transferred crystalline silicon carbide nanomembranes for implantable flexible electronics. ACS Nano 13, 11572–11581 (2019).

    Article  CAS  PubMed  Google Scholar 

  339. Rana, D. & Matsuura, T. Surface modifications for antifouling membranes. Chem. Rev. 110, 2448–2471 (2010).

    Article  CAS  PubMed  Google Scholar 

  340. Picca, R. A. et al. Ultimately sensitive organic bioelectronic transistor sensors by materials and device structure design. Adv. Funct. Mater. 30, 1904513 (2020).

    Article  CAS  Google Scholar 

  341. Dweiri, Y. M., Eggers, T., McCallum, G. & Durand, D. M. Ultra-low noise miniaturized neural amplifier with hardware averaging. J. Neural Eng. 12, 046024 (2015).

    Article  PubMed  Google Scholar 

  342. Lee, J. et al. Neural recording and stimulation using wireless networks of microimplants. Nat. Electron. 4, 604–614 (2021).

    Article  Google Scholar 

  343. Cui, F., Yue, Y., Zhang, Y., Zhang, Z. & Zhou, H. S. Advancing biosensors with machine learning. ACS Sens. 5, 3346–3364 (2020).

    Article  CAS  PubMed  Google Scholar 

  344. Wang, C. et al. Bioadhesive ultrasound for long-term continuous imaging of diverse organs. Science 377, 517–523 (2022).

    Article  CAS  PubMed  Google Scholar 

  345. Zhou, L., Guess, M., Kim, K. R. & Yeo, W.-H. Skin-interfacing wearable biosensors for smart health monitoring of infants and neonates. Commun. Mater. 5, 72 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  346. Zhang, J. et al. Stretchable transparent electrode arrays for simultaneous electrical and optical interrogation of neural circuits in vivo. Nano Lett. 18, 2903–2911 (2018).

    Article  CAS  PubMed  Google Scholar 

  347. Miklavčič, D., Pavšelj, N. & Hart, F. H. Electric properties of tissues. Wiley Encycl. Biomed. Eng. 6, 3578–3589 (2006).

    Google Scholar 

  348. Marino, M., Cordero-Grande, L., Mantini, D. & Ferrazzi, G. Conductivity tensor imaging of the human brain using water mapping techniques. Front. Neurosci. 15, 694645 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  349. Ramon, C., Garguilo, P., Fridgeirsson, E. A. & Haueisen, J. Changes in scalp potentials and spatial smoothing effects of inclusion of dura layer in human head models for EEG simulations. Front. Neuroeng. 7, 32 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

B.T. acknowledges support from the US Army Research Office (W911NF-24-1-0053) and the National Institutes of Health (1R01EB036091-01).

Author information

Authors and Affiliations

Authors

Contributions

B.T. and P.L. conceived the manuscript. All authors contributed to the writing, discussion and reviewing of the manuscript.

Corresponding authors

Correspondence to Pengju Li  (黎鹏举) or Bozhi Tian  (田博之).

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Guosong Hong, who co-reviewed with Han Cui; Mario Caironi, who co-reviewed with Adrica Kyndiah; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Cheng, Z., Li, P. et al. Materials and device strategies to enhance spatiotemporal resolution in bioelectronics. Nat Rev Mater 10, 425–448 (2025). https://doi.org/10.1038/s41578-025-00798-y

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41578-025-00798-y

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research