Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Multimaterial extrusion 3D printing printheads

Abstract

Printheads are the cornerstone of material extrusion 3D printing systems, now capable of processing virtually any material — organic or inorganic. Multimaterial capabilities have further expanded their versatility, enabling coextrusion, mixing and material switching. Advanced multifunctional printhead features allow for nozzle size and shape adjustments, printhead rotation and in situ property modulation. These improvements enable unprecedented design complexity, higher throughput and the fabrication of intricate material compositions across multiple length scales. Applications span from architected metamaterials with tunable properties to functional tissue from living cells and soft robotics with integrated sensing. This Review provides a comprehensive overview of this rapidly evolving field, introducing eight archetypal printhead categories and their hybrids. It explores their role in materials design, ability to overcome processing limitations and impact on emerging applications. Additionally, it identifies open challenges and offers an outlook on the future of multimaterial 3D printing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Multimaterial extrusion additive manufacturing.
Fig. 2: Material printability and modification.
Fig. 3: Shape-modulation printheads.
Fig. 4: Property-modulation printheads.
Fig. 5: Multimaterial printheads.
Fig. 6: Hybrid printheads.
Fig. 7: Emerging applications in material extrusion additive manufacturing.

Similar content being viewed by others

References

  1. Khan, N. & Riccio, A. A systematic review of design for additive manufacturing of aerospace lattice structures: current trends and future directions. Prog. Aerosp. Sci. 149, 101021 (2024).

    Article  Google Scholar 

  2. Altıparmak, S. C. & Xiao, B. A market assessment of additive manufacturing potential for the aerospace industry. J. Manuf. Process. 68, 728–738 (2021).

    Article  Google Scholar 

  3. Chaudhary, S., Avinashi, S. K., Rao, J. & Gautam, C. Recent advances in additive manufacturing, applications and challenges for dentistry: a review. ACS Biomater. Sci. Eng. 9, 3987–4019 (2023).

    Article  CAS  PubMed  Google Scholar 

  4. Zhu, C., Gemeda, H. B., Duoss, E. B. & Spadaccini, C. M. Toward multiscale, multimaterial 3D printing. Adv. Mater. 36, 2314204 (2024).

    Article  CAS  Google Scholar 

  5. Gibson, I. et al. Additive Manufacturing Technologies Vol. 17 (Springer, 2021).

  6. Subedi, S. et al. Multi-material vat photopolymerization 3D printing: a review of mechanisms and applications. NPJ Adv. Manuf. 1, 9 (2024).

    Article  Google Scholar 

  7. Mehrpouya, M. et al. Multimaterial powder bed fusion techniques. Rapid Prototyp. J. 28, 1–19 (2022).

    Article  Google Scholar 

  8. Wei, C. & Li, L. Recent progress and scientific challenges in multi-material additive manufacturing via laser-based powder bed fusion. Virtual Phys. Prototyp. 16, 347–371 (2021).

    Article  Google Scholar 

  9. Truby, R. L. & Lewis, J. A. Printing soft matter in three dimensions. Nature 540, 371–378 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Lewis, J. A. Direct ink writing of 3D functional materials. Adv. Funct. Mater. 16, 2193–2204 (2006).

    Article  CAS  Google Scholar 

  11. Siqueira, G. et al. Cellulose nanocrystal inks for 3D printing of textured cellular architectures. Adv. Funct. Mater. 27, 1604619 (2017).

    Article  Google Scholar 

  12. Kolesky, D. B. et al. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv. Mater. 26, 3124–3130 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Kolesky, D. B., Homan, K. A., Skylar-Scott, M. A. & Lewis, J. A. Three-dimensional bioprinting of thick vascularized tissues. Proc. Natl Acad. Sci. USA 113, 3179–3184 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schaffner, M., Rühs, P. A., Coulter, F., Kilcher, S. & Studart, A. R. 3D printing of bacteria into functional complex materials. Sci. Adv. 3, eaao6804 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Johnson, B. N. et al. 3D printed anatomical nerve regeneration pathways. Adv. Funct. Mater. 25, 6205–6217 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Joung, D. et al. 3D printed stem-cell derived neural progenitors generate spinal cord scaffolds. Adv. Funct. Mater. 28, 1801850 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gantenbein, S. et al. Three-dimensional printing of mycelium hydrogels into living complex materials. Nat. Mater. 22, 128–134 (2023).

    Article  CAS  PubMed  Google Scholar 

  18. Studart, A. R. & Masania, K. Self-regenerating living material made of printed fungi. Nat. Mater. 22, 16–17 (2023).

    Article  Google Scholar 

  19. Lewis, J. A. Colloidal processing of ceramics. J. Am. Ceram. Soc. 83, 2341–2359 (2000).

    Article  CAS  Google Scholar 

  20. Minas, C., Carnelli, D., Tervoort, E. & Studart, A. R. 3D printing of emulsions and foams into hierarchical porous ceramics. Adv. Mater. 28, 9993–9999 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Moore, D. G., Barbera, L., Masania, K. & Studart, A. R. Three-dimensional printing of multicomponent glasses using phase-separating resins. Nat. Mater. 19, 212–217 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Hossain, S. S. & Lu, K. Recent progress of alumina ceramics by direct ink writing: ink design, printing and post-processing. Ceram. Int. 49, 10199–10212 (2023).

    Article  CAS  Google Scholar 

  23. Huang, K., Elsayed, H., Franchin, G. & Colombo, P. Embedded direct ink writing of freeform ceramic components. Appl. Mater. Today 23, 101005 (2021).

    Article  Google Scholar 

  24. Kleger, N., Cihova, M., Masania, K., Studart, A. R. & Löffler, J. F. 3D printing of salt as a template for magnesium with structured porosity. Adv. Mater. 31, 1903783 (2019).

    Article  Google Scholar 

  25. Xu, C., Quinn, B., Lebel, L. L., Therriault, D. & L’Espérance, G. Multi-material direct ink writing (DIW) for complex 3D metallic structures with removable supports. ACS Appl. Mater. Interfaces 11, 8499–8506 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Muth, J. T. et al. Embedded 3D printing of strain sensors within highly stretchable elastomers. Adv. Mater. 26, 6307–6312 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Li, Y. & Li, B. Direct ink writing 3D printing of polydimethylsiloxane-based soft and composite materials: a mini review. Oxf. Open Mater. Sci. 2, itac008 (2022).

    Article  CAS  Google Scholar 

  28. Compton, B. G. & Lewis, J. A. 3D-printing of lightweight cellular composites. Adv. Mater. 26, 5930–5935 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Kokkinis, D., Schaffner, M. & Studart, A. R. Multimaterial magnetically assisted 3D printing of composite materials. Nat. Commun. 6, 8643 (2015).

    Article  PubMed  Google Scholar 

  30. Raney, J. R. et al. Rotational 3D printing of damage-tolerant composites with programmable mechanics. Proc. Natl Acad. Sci. USA 115, 1198–1203 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Franchin, G., Wahl, L. & Colombo, P. Direct ink writing of ceramic matrix composite structures. J. Am. Ceram. Soc. 100, 4397–4401 (2017).

    Article  CAS  Google Scholar 

  32. Farahani, R. D., Dubé, M. & Therriault, D. Three-dimensional printing of multifunctional nanocomposites: manufacturing techniques and applications. Adv. Mater. 28, 5794–5821 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Smay, J. E., Cesarano, J. & Lewis, J. A. Colloidal inks for directed assembly of 3-D periodic structures. Langmuir 18, 5429–5437 (2002).

    Article  CAS  Google Scholar 

  34. Saadi, M. et al. Direct ink writing: a 3D printing technology for diverse materials. Adv. Mater. 34, 2108855 (2022).

    Article  CAS  Google Scholar 

  35. del Mazo-Barbara, L. & Ginebra, M.-P. Rheological characterisation of ceramic inks for 3D direct ink writing: a review. J. Eur. Ceram. Soc. 41, 18–33 (2021).

    Article  Google Scholar 

  36. Buswell, R. A., De Silva, W. L., Jones, S. Z. & Dirrenberger, J. 3D printing using concrete extrusion: a roadmap for research. Cem. Concr. Res. 112, 37–49 (2018).

    Article  CAS  Google Scholar 

  37. Ahn, B. Y. et al. Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes. Science 323, 1590–1593 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Skylar-Scott, M. A., Mueller, J., Visser, C. W. & Lewis, J. A. Voxelated soft matter via multimaterial multinozzle 3D printing. Nature 575, 330–335 (2019).

    Article  CAS  PubMed  Google Scholar 

  39. Ladd, C. et al. 3D printing of free standing liquid metal microstructures. Adv. Mater. 25, 5081–5085 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Kokkinis, D., Bouville, F. & Studart, A. R. 3D printing of materials with tunable failure via bioinspired mechanical gradients. Adv. Mater. 30, 1705808 (2018).

    Article  Google Scholar 

  41. Mueller, J., Raney, J. R., Shea, K. & Lewis, J. A. Architected lattices with high stiffness and toughness via multicore–shell 3D printing. Adv. Mater. 30, 1705001 (2018).

    Article  Google Scholar 

  42. Larson, N. M. et al. Rotational multimaterial printing of filaments with subvoxel control. Nature 613, 682–688 (2023).

    Article  CAS  PubMed  Google Scholar 

  43. Kim, Y., Yuk, H., Zhao, R., Chester, S. A. & Zhao, X. Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature 558, 274–279 (2018).

    Article  CAS  PubMed  Google Scholar 

  44. Mostafaei, A. et al. Additive manufacturing of nickel-based superalloys: a state-of-the-art review on process–structure–defect–property relationship. Prog. Mater. Sci. 136, 101108 (2023).

    Article  CAS  Google Scholar 

  45. Dutta, B. & Froes, F. S. The additive manufacturing (AM) of titanium alloys. Met. Powder Rep. 72, 96–106 (2017).

    Article  Google Scholar 

  46. Galante, R., Figueiredo-Pina, C. G. & Serro, A. P. Additive manufacturing of ceramics for dental applications: a review. Dent. Mater. 35, 825–846 (2019).

    Article  CAS  PubMed  Google Scholar 

  47. Dawood, A., Marti, B. M., Sauret-Jackson, V. & Darwood, A. 3D printing in dentistry. Br. Dent. J. 219, 521–529 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Tumbleston, J. R. et al. Continuous liquid interface production of 3D objects. Science 347, 1349–1352 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Janusziewicz, R., Tumbleston, J. R., Quintanilla, A. L., Mecham, S. J. & DeSimone, J. M. Layerless fabrication with continuous liquid interface production. Proc. Natl. Acad. Sci. USA 113, 11703–11708 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Oropallo, W. & Piegl, L. A. Ten challenges in 3D printing. Eng. Comput. 32, 135–148 (2016).

    Article  Google Scholar 

  51. Rafiee, M., Farahani, R. D. & Therriault, D. Multi-material 3D and 4D printing: a survey. Adv. Sci. 7, 1902307 (2020).

    Article  CAS  Google Scholar 

  52. Frazier, W. E. Metal additive manufacturing: a review. J. Mater. Eng. Perform. 23, 1917–1928 (2014).

    Article  CAS  Google Scholar 

  53. Wang, Z., Wang, L., Tang, F. & Chen, J. Multi-material additive manufacturing via fused deposition modeling 3D printing: a systematic review on the material feeding mechanism. In Proc. Inst. Mech. Eng. E (Sage Publications, 2024).

  54. Lewandowski, J. J. & Seifi, M. Metal additive manufacturing: a review of mechanical properties. Annu. Rev. Mater. Res. 46, 151–186 (2016).

    Article  CAS  Google Scholar 

  55. Ngo, T. D., Kashani, A., Imbalzano, G., Nguyen, K. T. & Hui, D. Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos. B Eng. 143, 172–196 (2018).

    Article  CAS  Google Scholar 

  56. Nazir, A. et al. Multi-material additive manufacturing: a systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Mater. Des. 226, 111661 (2023).

    Article  Google Scholar 

  57. Zhang, Y. S. et al. 3D extrusion bioprinting. Nat. Rev. Methods Primers 1, 75 (2021).

    Article  CAS  Google Scholar 

  58. Rocha, V. G., Saiz, E., Tirichenko, I. S. & García-Tuñón, E. Direct ink writing advances in multi-material structures for a sustainable future. J. Mater. Chem. A 8, 15646–15657 (2020).

    Article  CAS  Google Scholar 

  59. Wan, X., Luo, L., Liu, Y. & Leng, J. Direct ink writing based 4D printing of materials and their applications. Adv. Sci. 7, 2001000 (2020).

    Article  CAS  Google Scholar 

  60. Zhang, Y. et al. Recent progress of direct ink writing of electronic components for advanced wearable devices. ACS Appl. Electron. Mater. 1, 1718–1734 (2019).

    Article  CAS  Google Scholar 

  61. Han, D. & Lee, H. Recent advances in multi-material additive manufacturing: methods and applications. Curr. Opin. Chem. Eng. 28, 158–166 (2020).

    Article  Google Scholar 

  62. Rau, D. A., Williams, C. B. & Bortner, M. J. Rheology and printability: a survey of critical relationships for direct ink write materials design. Prog. Mater. Sci. 140, 101188 (2023).

    Article  Google Scholar 

  63. Herschel, W. H. & Bulkley, R. Konsistenzmessungen von gummi-benzollösungen. Kolloid Z. 39, 291–300 (1926).

    Article  Google Scholar 

  64. Wilt, J. K., Gilmer, D., Kim, S., Compton, B. G. & Saito, T. Direct ink writing techniques for in situ gelation and solidification. MRS Commun. 11, 106–121 (2021).

    Article  CAS  Google Scholar 

  65. Yuk, H. & Zhao, X. A new 3D printing strategy by harnessing deformation, instability, and fracture of viscoelastic inks. Adv. Mater. 30, 1704028 (2018).

    Article  Google Scholar 

  66. Colon, A. R., Kazmer, D. O., Peterson, A. M. & Seppala, J. E. Characterization of die-swell in thermoplastic material extrusion. Addit. Manuf. 73, 103700 (2023).

    CAS  Google Scholar 

  67. Wei, P. et al. Go with the flow: rheological requirements for direct ink write printability. J. Appl. Phys. 134, 100701 (2023).

    Article  CAS  Google Scholar 

  68. Corker, A., Ng, H. C.-H., Poole, R. J. & García-Tuñón, E. 3D printing with 2D colloids: designing rheology protocols to predict ‘printability’ of soft-materials. Soft Matter 15, 1444–1456 (2019).

    Article  CAS  PubMed  Google Scholar 

  69. Tagliaferri, S., Panagiotopoulos, A. & Mattevi, C. Direct ink writing of energy materials. Mater. Adv. 2, 540–563 (2021).

    Article  CAS  Google Scholar 

  70. M’barki, A., Bocquet, L. & Stevenson, A. Linking rheology and printability for dense and strong ceramics by direct ink writing. Sci. Rep. 7, 6017 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Chaisong, K., Phuruangrat, A., Kanesom, T., Soongprasit, K. & Lertwittayanon, K. Direct ink writing of tubular Al2O3 membrane support using agar-based ink in 3D-printing. Mat. Sci. Forum 1090, 67–73 (2023).

    Article  Google Scholar 

  72. Valentine, A. D. et al. Hybrid 3D printing of soft electronics. Adv. Mater. 29, 1703817 (2017).

    Article  Google Scholar 

  73. Nie, J., Li, M., Liu, W., Li, W. & Xing, Z. The role of plasticizer in optimizing the rheological behavior of ceramic pastes intended for stereolithography-based additive manufacturing. J. Eur. Ceram. Soc. 41, 646–654 (2021).

    Article  CAS  Google Scholar 

  74. Shahzad, A. & Lazoglu, I. Direct ink writing (DIW) of structural and functional ceramics: recent achievements and future challenges. Compos. B Eng. 225, 109249 (2021).

    Article  CAS  Google Scholar 

  75. Muth, J. T., Dixon, P. G., Woish, L., Gibson, L. J. & Lewis, J. A. Architected cellular ceramics with tailored stiffness via direct foam writing. Proc. Natl Acad. Sci. USA 114, 1832–1837 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Boley, J. W. et al. High-operating-temperature direct ink writing of mesoscale eutectic architectures. Adv. Mater. 29, 1604778 (2017).

    Article  Google Scholar 

  77. Khondoker, M. A., Ostashek, A. & Sameoto, D. Direct 3D printing of stretchable circuits via liquid metal co-extrusion within thermoplastic filaments. Adv. Eng. Mater. 21, 1900060 (2019).

    Article  Google Scholar 

  78. Garciamendez-Mijares, C. E. et al. Development of an affordable extrusion 3D bioprinter equipped with a temperature-controlled printhead. Int. J. Bioprint. 9, 0244 (2023).

    Article  CAS  Google Scholar 

  79. Kokol, V., Pottathara, Y. B., Mihelčič, M. & Perše, L. S. Rheological properties of gelatine hydrogels affected by flow- and horizontally-induced cooling rates during 3D cryo-printing. Colloids Surf. A Physicochem. Eng. 616, 126356 (2021).

    Article  CAS  Google Scholar 

  80. Skylar-Scott, M. A., Gunasekaran, S. & Lewis, J. A. Laser-assisted direct ink writing of planar and 3D metal architectures. Proc. Natl Acad. Sci. USA 113, 6137–6142 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Visser, C. W., Amato, D. N., Mueller, J. & Lewis, J. A. Architected polymer foams via direct bubble writing. Adv. Mater. 31, 1904668 (2019).

    Article  CAS  Google Scholar 

  82. Ji, Z., Jiang, D., Zhang, X., Guo, Y. & Wang, X. Facile photo and thermal two-stage curing for high-performance 3D printing of poly (dimethylsiloxane). Macromol. Rapid Commun. 41, 2000064 (2020).

    Article  CAS  Google Scholar 

  83. Jackson, S., Zaragoza, L., Kumar, B. K. & Dickens, T. Tuning of ultraviolet-curable ink printability via in situ ultraviolet irradiation during direct ink write applications. J. Appl. Polym. Sci. 141, e55360 (2024).

    Article  CAS  Google Scholar 

  84. Wu, T. et al. Additively manufacturing high-performance bismaleimide architectures with ultraviolet-assisted direct ink writing. Mater. Des. 180, 107947 (2019).

    Article  Google Scholar 

  85. Rau, D. A., Herzberger, J., Long, T. E. & Williams, C. B. Ultraviolet-assisted direct ink write to additively manufacture all-aromatic polyimides. ACS Appl. Mater. Interfaces 10, 34828–34833 (2018).

    Article  CAS  PubMed  Google Scholar 

  86. Li, Q. et al. Advances in frontal polymerization strategy: from fundamentals to applications. Prog. Polym. Sci. 127, 101514 (2022).

    Article  CAS  Google Scholar 

  87. Aw, J. E. et al. Self-regulative direct ink writing of frontally polymerizing thermoset polymers. Adv. Mater. Technol. 7, 2200230 (2022).

    Article  CAS  Google Scholar 

  88. Robertson, I. D. et al. Rapid energy-efficient manufacturing of polymers and composites via frontal polymerization. Nature 557, 223–227 (2018).

    Article  CAS  PubMed  Google Scholar 

  89. Ziaee, M., Johnson, J. W. & Yourdkhani, M. 3D printing of short-carbon-fiber-reinforced thermoset polymer composites via frontal polymerization. ACS Appl. Mater. Interfaces 14, 16694–16702 (2022).

    Article  CAS  PubMed  Google Scholar 

  90. Zhang, Z. et al. Frontal polymerization-assisted 3D printing of short carbon fibers/dicyclopentadiene composites. J. Manuf. Process. 71, 753–762 (2021).

    Article  Google Scholar 

  91. Guo, S.-Z. et al. Solvent-cast three-dimensional printing of multifunctional microsystems. Small 9, 4118–4122 (2013).

    Article  CAS  PubMed  Google Scholar 

  92. Wu, W., DeConinck, A. & Lewis, J. A. Omnidirectional printing of 3D microvascular networks. Adv. Mater. 23, H178–H183 (2011).

    CAS  PubMed  Google Scholar 

  93. Wu, W. et al. Direct-write assembly of biomimetic microvascular networks for efficient fluid transport. Soft Matter 6, 739–742 (2010).

    Article  CAS  Google Scholar 

  94. Hajash, K., Sparrman, B., Guberan, C., Laucks, J. & Tibbits, S. Large-scale rapid liquid printing. 3D Print. Addit. Manuf. 4, 123–132 (2017).

    Article  Google Scholar 

  95. Grosskopf, A. K. et al. Viscoplastic matrix materials for embedded 3D printing. ACS Appl. Mater. Interfaces 10, 23353–23361 (2018).

    Article  CAS  PubMed  Google Scholar 

  96. Zhang, Y. et al. Coaxially printed magnetic mechanical electrical hybrid structures with actuation and sensing functionalities. Nat. Commun. 14, 4428 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gao, J. et al. Foaming photothermal inks for direct-ink writing: hierarchical design and enhanced solar-powered interfacial evaporation. J. Mater. Chem. A 12, 6592–6609 (2024).

    Article  CAS  Google Scholar 

  98. Zheng, S., Zlatin, M., Selvaganapathy, P. R. & Brook, M. A. Multiple modulus silicone elastomers using 3D extrusion printing of low viscosity inks. Addit. Manuf. 24, 86–92 (2018).

    CAS  Google Scholar 

  99. Larson, N. M. Opportunities at the frontier of multimaterial additive manufacturing with subvoxel control. MRS Bull. 49, 1217–1225 (2024).

    Article  Google Scholar 

  100. Rao, R. B., Krafcik, K. L., Morales, A. M. & Lewis, J. A. Microfabricated deposition nozzles for direct-write assembly of three-dimensional periodic structures. Adv. Mater. 17, 289–293 (2005).

    Article  CAS  Google Scholar 

  101. Yang, L., Sepasgozar, S. M., Shirowzhan, S., Kashani, A. & Edwards, D.Nozzle criteria for enhancing extrudability, buildability and interlayer bonding in 3D printing concrete. Autom. Constr. 146, 104671 (2023).

    Article  Google Scholar 

  102. Kim, T., Trangkanukulkij, R. & Kim, W. S. Nozzle shape guided filler orientation in 3D printed photo-curable nanocomposites. Sci. Rep. 8, 3805 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Dreier, L. et al. Liquid lace: regular pattern formation by under-extrusion. Phys. Rev. Fluids 9, 110512 (2024).

    Article  Google Scholar 

  104. Kuipers, T., Doubrovski, E. L., Wu, J. & Wang, C. C. A framework for adaptive width control of dense contour-parallel toolpaths in fused deposition modeling. Comput. Aided Des. 128, 102907 (2020).

    Article  Google Scholar 

  105. Qu, H. et al. Gradient matters via filament diameter-adjustable 3D printing. Nat. Commun. 15, 2930 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Houriet, C. et al. 3D printing of flow-inspired anisotropic patterns with liquid crystalline polymers. Adv. Mater. 36, 2307444 (2024).

    Article  CAS  Google Scholar 

  107. Zhan, Q., Wu, H., Zhang, L., Yuan, P. F. & Gao, T. 3D concrete printing with variable width filament. In Proc. Int. Conf. Educ. Res. Comput. Aided Archit. Des. Eur. Vol. 2 (eds Stojakovic, V. & Tepavcevic, B.) 153–160 (Univ. Novi Sad, 2021).

  108. Moetazedian, A., Budisuharto, A. S., Silberschmidt, V. V. & Gleadall, A. Convex (continuously varied extrusion): a new scale of design for additive manufacturing. Addit. Manuf. 37, 101576 (2021).

    CAS  Google Scholar 

  109. Parilusyan, B. et al. Local layer splitting: an additive manufacturing method to define the mechanical properties of soft pneumatic actuators during fabrication. In 2023 IEEE Int. Conf. Robot. Autom. 12331–12337 (IEEE, 2023).

  110. Li, M., Tian, X., Schreyer, D. J. & Chen, X. Effect of needle geometry on flow rate and cell damage in the dispensing-based biofabrication process. Biotechnol. Prog. 27, 1777–1784 (2011).

    Article  CAS  PubMed  Google Scholar 

  111. Martanto, W., Baisch, S. M., Costner, E. A., Prausnitz, M. R. & Smith, M. K. Fluid dynamics in conically tapered microneedles. AIChE J. 51, 1599–1607 (2005).

    Article  CAS  Google Scholar 

  112. James, D. F. & Roos, C. A. Pressure drop of a Boger fluid in a converging channel. J. Nonnewton. Fluid Mech. 293, 104557 (2021).

    Article  CAS  Google Scholar 

  113. Schuller, T., Jalaal, M., Fanzio, P. & Galindo-Rosales, F. J. Optimal shape design of printing nozzles for extrusion-based additive manufacturing. Addit. Manuf. 84, 104130 (2024).

    Google Scholar 

  114. Sydney Gladman, A., Matsumoto, E. A., Nuzzo, R. G., Mahadevan, L. & Lewis, J. A. Biomimetic 4D printing. Nat. Mater. 15, 413–418 (2016).

    Article  CAS  PubMed  Google Scholar 

  115. Fergerson, A. S., Gorse, B. H., Maguire, S. M., Ostermann, E. C. & Davidson, E. C. Reprocessable and mechanically tailored soft architectures through 3D printing of elastomeric block copolymers. Adv. Funct. Mater. 34, 2411812 (2024).

    Article  CAS  Google Scholar 

  116. Gantenbein, S. et al. Three-dimensional printing of hierarchical liquid-crystal-polymer structures. Nature 561, 226–230 (2018).

    Article  CAS  PubMed  Google Scholar 

  117. Vassilakos, A., Giannatsis, J. & Dedoussis, V. Fabrication of parts with heterogeneous structure using material extrusion additive manufacturing. Virtual Phys. Prototyp. 16, 267–290 (2021).

    Article  Google Scholar 

  118. Sow, M. et al. Influence of beam diameter on laser powder bed fusion (L-PBF) process. Addit. Manuf. 36, 101532 (2020).

    CAS  Google Scholar 

  119. Yadroitsev, I., Yadroitsava, I. & Du Plessis, A. in Fundamentals of Laser Powder Bed Fusion of Metals (eds Yadroitsev, I. et al.) 15–38 (Elsevier, 2021).

  120. Paral, S. K., Lin, D.-Z., Cheng, Y.-L., Lin, S.-C. & Jeng, J.-Y. A review of critical issues in high-speed vat photopolymerization. Polymers 15, 2716 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Tezel, T. & Kovan, V. Determination of optimum production parameters for 3D printers based on nozzle diameter. Rapid Prototyp. J. 28, 185–194 (2022).

    Article  Google Scholar 

  122. Pan, Y., Zhao, X., Zhou, C. & Chen, Y. Smooth surface fabrication in mask projection based stereolithography. J. Manuf. Process. 14, 460–470 (2012).

    Article  Google Scholar 

  123. Lettori, J., Raffaeli, R., Bilancia, P., Peruzzini, M. & Pellicciari, M. A review of geometry representation and processing methods for Cartesian and multiaxial robot-based additive manufacturing. Int. J. Adv. Manuf. Technol. 123, 3767–3794 (2022).

    Article  Google Scholar 

  124. Chesser, P. et al. Extrusion control for high quality printing on big area additive manufacturing (BAAM) systems. Addit. Manuf. 28, 445–455 (2019).

    Google Scholar 

  125. Lao, W., Li, M. & Tjahjowidodo, T. Variable-geometry nozzle for surface quality enhancement in 3D concrete printing. Addit. Manuf. 37, 101638 (2021).

    Google Scholar 

  126. Xu, J. et al. Volume-forming 3D concrete printing using a variable-size square nozzle. Autom. Constr. 104, 95–106 (2019).

    Article  Google Scholar 

  127. Armstrong, C. D., Todd, N., Alsharhan, A. T., Bigio, D. I. & Sochol, R. D. A 3D printed morphing nozzle to control fiber orientation during composite additive manufacturing. Adv. Mater. Technol. 6, 2000829 (2021).

    Article  CAS  Google Scholar 

  128. Kang, S. W. & Mueller, J. Multiscale 3D printing via active nozzle size and shape control. Sci. Adv. 10, eadn7772 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Liu, Z. et al. Modelling and parameter optimization for filament deformation in 3D cementitious material printing using support vector machine. Compos. B Eng. 193, 108018 (2020).

    Article  CAS  Google Scholar 

  130. Dhakal, N., Wang, X., Espejo, C., Morina, A. & Emami, N. Impact of processing defects on microstructure, surface quality, and tribological performance in 3D printed polymers. J. Mater. Res. Technol. 23, 1252–1272 (2023).

    Article  CAS  Google Scholar 

  131. Gharehpapagh, B., Dilberoglu, U. M., Yaman, U. & Dolen, M. Adaptive toolpath generation for material extrusion additive manufacturing using a nozzle with rectangular orifice. Addit. Manuf. 78, 103873 (2023).

    Google Scholar 

  132. Gao, Z. et al. Simultaneous multi-material embedded printing for 3D heterogeneous structures. Int. J. Extreme Manuf. 5, 035001 (2023).

    Article  Google Scholar 

  133. Cheng, P. et al. A novel dual-nozzle 3D printing method for continuous fiber reinforced composite cellular structures. Compos. Commun. 37, 101448 (2023).

    Article  Google Scholar 

  134. Hansen, C. J. et al. High-throughput printing via microvascular multinozzle arrays. Adv. Mater. 25, 96–102 (2013).

    Article  CAS  PubMed  Google Scholar 

  135. Lewis, J. A., Skylar-Scott, M. A., Mueller, J. & Kolesky, D. Systems and methods for automated nozzle design and 3D printing. US patent 10,946,588 (2021).

  136. Uzel, S. G., Weeks, R. D., Eriksson, M., Kokkinis, D. & Lewis, J. A. Multimaterial multinozzle adaptive 3D printing of soft materials. Adv. Mater. Technol. 7, 2101710 (2022).

    Article  Google Scholar 

  137. Wilt, J. K., Hmeidat, N. S., Bohling, J. W. & Compton, B. G. High through-thickness thermal conductivity of 3D-printed composites via rotational direct ink writing. Addit. Manuf. Lett. 7, 100167 (2023).

    Article  Google Scholar 

  138. Ren, L. et al. Rotational co-extrusion 4D printing of heterogeneous filaments to enable sophisticated shape morphing. Addit. Manuf. 73, 103661 (2023).

    Google Scholar 

  139. Gunduz, I. et al. 3D printing of extremely viscous materials using ultrasonic vibrations. Addit. Manuf. 22, 98–103 (2018).

    CAS  Google Scholar 

  140. Tofangchi, A., Han, P., Izquierdo, J., Iyengar, A. & Hsu, K. Effect of ultrasonic vibration on interlayer adhesion in fused filament fabrication 3D printed abs. Polymers 11, 315 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Nawafleh, N., Wright, W., Dariavach, N. & Celik, E. 3D-printed thermoset syntactic foams with tailorable mechanical performance. J. Mater. Sci. 55, 16048–16057 (2020).

    Article  CAS  Google Scholar 

  142. Lin, S., Zhang, L. & Cong, L. A micro-vibration-driven direct ink write printing method of gallium–indium alloys. Sci. Rep. 13, 3914 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Friedrich, L. & Begley, M. Printing direction dependent microstructures in direct ink writing. Addit. Manuf. 34, 101192 (2020).

    Google Scholar 

  144. Wu, S. et al. Evolutionary algorithm-guided voxel-encoding printing of functional hard-magnetic soft active materials. Adv. Intell. Syst. 2, 2000060 (2020).

    Article  Google Scholar 

  145. Yuran, A. F. & Yavuz, I. Effect of heat break geometry on the thermal performance of a 3D printer extruder. IJSTR 6, 41–50 (2020).

    Google Scholar 

  146. Zhang, P., Gao, Q., Yu, K., Yao, Y. & Lu, L. Investigation on the temperature control accuracy of a print head for extrusion 3D printing and its improved design. Biomedicines 10, 1233 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Khan, Z., Koltay, P., Zengerle, R., Kartmann, S. & Shu, Z. One-stop hybrid printing of bulk metal and polymer for 3D electronics. Adv. Eng. Mater. 26, 2300922 (2024).

    Article  CAS  Google Scholar 

  148. Wang, L. et al. Development of high-frequency and high-viscosity piezoelectric DOD print head and its jet performance. Sensor Actuat. A Phys. 337, 113409 (2022).

    Article  CAS  Google Scholar 

  149. Sanz-Garcia, A., Sodupe-Ortega, E., Pernía-Espinoza, A., Shimizu, T. & Escobedo-Lucea, C. A versatile open-source printhead for low-cost 3D microextrusion-based bioprinting. Polymers 12, 2346 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Kotikian, A., Truby, R. L., Boley, J. W., White, T. J. & Lewis, J. A. 3D printing of liquid crystal elastomeric actuators with spatially programed nematic order. Adv. Mater. 30, 1706164 (2018).

    Article  Google Scholar 

  151. Kotikian, A. et al. Innervated, self-sensing liquid crystal elastomer actuators with closed loop control. Adv. Mater. 33, 2101814 (2021).

    Article  CAS  Google Scholar 

  152. Sun, Y. et al. 3D printing of thermosets with diverse rheological and functional applicabilities. Nat. Commun. 14, 245 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Shang, E. et al. Laser-assisted direct ink writing for high-fidelity fabrication of elastomeric complex structures. Adv. Mater. Interfaces 10, 2300300 (2023).

    Article  CAS  Google Scholar 

  154. Peng, X. et al. 4D printing of freestanding liquid crystal elastomers via hybrid additive manufacturing. Adv. Mater. 34, 2204890 (2022).

    Article  CAS  Google Scholar 

  155. Lenshof, A. & Laurell, T. in Encyclopedia of Nanotechnology (ed. Bhushan, B.) 45–50 (Springer, 2012).

  156. Friedrich, L., Collino, R., Ray, T. & Begley, M. Acoustic control of microstructures during direct ink writing of two-phase materials. Sensor Actuat. A Phys. 268, 213–221 (2017).

    Article  CAS  Google Scholar 

  157. Foresti, D. et al. Acoustophoretic printing. Sci. Adv. 4, eaat1659 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Wadsworth, P., Nelson, I., Porter, D. L., Raeymaekers, B. & Naleway, S. E. Manufacturing bioinspired flexible materials using ultrasound directed self-assembly and 3D printing. Mater. Des. 185, 108243 (2020).

    Article  CAS  Google Scholar 

  159. Ma, C. et al. Magnetic multimaterial printing for multimodal shape transformation with tunable properties and shiftable mechanical behaviors. ACS Appl. Mater. Interfaces 13, 12639–12648 (2020).

    Article  PubMed  Google Scholar 

  160. Lebel, L. L., Aissa, B., Khakani, M. A. E. & Therriault, D. Ultraviolet-assisted direct-write fabrication of carbon nanotube/polymer nanocomposite microcoils. Adv. Mater. 22, 592–596 (2010).

    Article  CAS  PubMed  Google Scholar 

  161. Huang, K., De Marzi, A., Franchin, G. & Colombo, P. UV-assisted robotic arm freeforming of SiOC ceramics from a preceramic polymer. Addit. Manuf. 83, 104051 (2024).

    CAS  Google Scholar 

  162. Lipkowitz, G. et al. Growing three-dimensional objects with light. Proc. Natl Acad. Sci. USA 121, e2303648121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Hausladen, M. M., Gorbea, G. D., Francis, L. F. & Ellison, C. J. UV-assisted direct ink writing of dual-cure polyurethanes. ACS Appl. Polym. Mater. 6, 2253–2265 (2024).

    Article  CAS  Google Scholar 

  164. Brown, T. D., Dalton, P. D. & Hutmacher, D. W. Melt electrospinning today: an opportune time for an emerging polymer process. Prog. Polym. Sci. 56, 116–166 (2016).

    Article  CAS  Google Scholar 

  165. Dalton, P. D. Melt electrowriting with additive manufacturing principles. Curr. Opin. Biomed. Eng. 2, 49–57 (2017).

    Article  Google Scholar 

  166. Zhong, H., Huang, J., Wu, J. & Du, J. Electrospinning nanofibers to 1D, 2D, and 3D scaffolds and their biomedical applications. Nano Res. 15, 787–804 (2022).

    Article  CAS  Google Scholar 

  167. Wang, X., Kim, Y. I., Yarin, A. L. & Pan, Y. Electric field-assisted micro-scale direct ink writing for electronic textiles. Manuf. Lett. 41, 841–849 (2024).

    Article  Google Scholar 

  168. Plog, J., Wang, X., Lichade, K. M., Pan, Y. & Yarin, A. L. Extremely-fast electrostatically-assisted direct ink writing of 2D, 2.5D and 3D functional traces of conducting polymer Poly (3,4-ethylenedioxythiophene) polystyrene sulfonate-polyethylene oxide (PEDOT: PSS-PEO). J. Colloid Interface Sci. 651, 1043–1053 (2023).

    Article  CAS  PubMed  Google Scholar 

  169. Hardin, J. O., Ober, T. J., Valentine, A. D. & Lewis, J. A. Microfluidic printheads for multimaterial 3D printing of viscoelastic inks. Adv. Mater. 27, 3279–3284 (2015).

    Article  CAS  PubMed  Google Scholar 

  170. Hassan, I. & Selvaganapathy, P. R. Microfluidic printheads for highly switchable multimaterial 3D printing of soft materials. Adv. Mater. Technol. 7, 2101709 (2022).

    Article  Google Scholar 

  171. Habib, A., Quigley, C., Sarah, R., Hurd, W. & Clark, S. Design and fabrication of in-house nozzle system to extrude multi-hydrogels for 3D bioprinting process. J. Manuf. Sci. Eng. 146, 021003 (2024).

    Article  Google Scholar 

  172. Ober, T. J., Foresti, D. & Lewis, J. A. Active mixing of complex fluids at the microscale. Proc. Natl Acad. Sci. USA 112, 12293–12298 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Rahman, T. T., Wood, N., Rahman, A. M., Pei, Z. & Qin, H. Applying in situ ionic crosslinking in bioprinting using algae cells. J. Manuf. Sci. Eng. 146, 034501 (2024).

    Article  Google Scholar 

  174. Therriault, D., White, S. R. & Lewis, J. A. Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly. Nat. Mater. 2, 265–271 (2003).

    Article  CAS  PubMed  Google Scholar 

  175. Meijer, H. E., Singh, M. K. & Anderson, P. D. On the performance of static mixers: a quantitative comparison. Prog. Polym. Sci. 37, 1333–1349 (2012).

    Article  CAS  Google Scholar 

  176. Hessel, V., Löwe, H. & Schönfeld, F. Micromixers — a review on passive and active mixing principles. Chem. Eng. Sci. 60, 2479–2501 (2005).

    Article  CAS  Google Scholar 

  177. Liu, Y. et al. On the selection of rheological tests for the prediction of 3D printability. J. Rheol. 67, 791 (2023).

    Article  CAS  Google Scholar 

  178. Zeng, M. et al. High-throughput printing of combinatorial materials from aerosols. Nature 617, 292–298 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Khatri, N. R. et al. Integrating helicoid channels for passive control of fiber alignment in direct-write 3D printing. Addit. Manuf. 48, 102419 (2021).

    CAS  Google Scholar 

  180. Wang, P. et al. Novel stirring-rod-inspired mixer-integrated printhead for fabricating gradient tissue structures. Mater. Des. 229, 111866 (2023).

    Article  Google Scholar 

  181. Bolívar-Monsalve, E. J. et al. Continuous chaotic bioprinting of skeletal muscle-like constructs. Bioprinting 21, e00125 (2021).

    Article  Google Scholar 

  182. Bolívar-Monsalve, E. J. et al. One-step bioprinting of multi-channel hydrogel filaments using chaotic advection: fabrication of pre-vascularized muscle-like tissues. Adv. Healthc. Mater. 11, 2200448 (2022).

    Article  Google Scholar 

  183. Guo, W. et al. 3D printing of multifunctional gradient bone scaffolds with programmable component distribution and hierarchical pore structure. Compos. Part A Appl. Sci. Manuf. 166, 107361 (2023).

    Article  CAS  Google Scholar 

  184. Ceballos-González, C. F. et al. High-throughput and continuous chaotic bioprinting of spatially controlled bacterial microcosms. ACS Biomater. Sci. Eng. 7, 2408–2419 (2021).

    Article  PubMed  Google Scholar 

  185. Ceballos-González, C. F. et al. Plug-and-play multimaterial chaotic printing/bioprinting to produce radial and axial micropatterns in hydrogel filaments. Adv. Mater. Technol. 8, 2202208 (2023).

    Article  Google Scholar 

  186. Idaszek, J. et al. 3D bioprinting of hydrogel constructs with cell and material gradients for the regeneration of full-thickness chondral defect using a microfluidic printing head. Biofabrication 11, 044101 (2019).

    Article  CAS  PubMed  Google Scholar 

  187. Khondoker, M. A. H., Asad, A. & Sameoto, D. Printing with mechanically interlocked extrudates using a custom bi-extruder for fused deposition modelling. Rapid Prototyp. J. 24, 921–934 (2018).

    Article  Google Scholar 

  188. Ortega, J. M. et al. Active mixing of disparate inks for multimaterial 3D printing. Adv. Mater. Technol. 4, 1800717 (2019).

    Article  CAS  Google Scholar 

  189. Golobic, A. M. et al. Active mixing of reactive materials for 3D printing. Adv. Eng. Mater. 21, 1900147 (2019).

    Article  Google Scholar 

  190. Zhang, N. & Sanjayan, J. Extrusion nozzle design and print parameter selections for 3D concrete printing. Cem. Concr. Compos. 137, 104939 (2023).

    Article  CAS  Google Scholar 

  191. Ramakrishnan, S., Kanagasuntharam, S. & Sanjayan, J. In-line activation of cementitious materials for 3D concrete printing. Cem. Concr. Compos. 131, 104598 (2022).

    Article  CAS  Google Scholar 

  192. Wangler, T., Pileggi, R., Gürel, S. & Flatt, R. J. A chemical process engineering look at digital concrete processes: critical step design, inline mixing, and scaleup. Cem. Concr. Res. 155, 106782 (2022).

    Article  CAS  Google Scholar 

  193. Diañez, I. et al. Implementation of a novel continuous solid/liquid mixing accessory for 3D printing of dysphagia-oriented thickened fluids. Food Hydrocoll. 120, 106900 (2021).

    Article  Google Scholar 

  194. Kennedy, Z. C. & Christ, J. F. Printing polymer blends through in situ active mixing during fused filament fabrication. Addit. Manuf. 36, 101233 (2020).

    CAS  Google Scholar 

  195. Justino Netto, J. M. & Silveira, Zd. C. Design of an innovative three-dimensional print head based on twin-screw extrusion. J. Mech. Des. 140, 125002 (2018).

    Article  Google Scholar 

  196. Hassan, I. & Selvaganapathy, P. R. A microfluidic printhead with integrated hybrid mixing by sequential injection for multimaterial 3D printing. Addit. Manuf. 50, 102559 (2022).

    CAS  Google Scholar 

  197. Teves, S. et al. Active-mixing printhead for on-the-fly composition adjustment of multi component materials in direct ink writing. Add. Manuf. Lett. 10, 100217 (2024).

    Google Scholar 

  198. Gratson, G. M. et al. Direct-write assembly of three-dimensional photonic crystals: conversion of polymer scaffolds to silicon hollow-woodpile structures. Adv. Mater. 18, 461–465 (2006).

    Article  CAS  Google Scholar 

  199. Cornock, R., Beirne, S. & Wallace, G. G. Development of a coaxial melt extrusion printing process for specialised composite bioscaffold fabrication. In IEEE/ASME Int. Conf. Adv. Intell. Mechatron. 973–978 (IEEE, 2013).

  200. Frutiger, A. et al. Capacitive soft strain sensors via multicore–shell fiber printing. Adv. Mater. 27, 2440–2446 (2015).

    Article  CAS  PubMed  Google Scholar 

  201. Ritchie, R. O. The conflicts between strength and toughness. Nat. Mater. 10, 817–822 (2011).

    Article  CAS  PubMed  Google Scholar 

  202. Mueller, J. & Shea, K. Stepwise graded struts for maximizing energy absorption in lattices. Extreme Mech. Lett. 25, 7–15 (2018).

    Article  Google Scholar 

  203. Mueller, J., Raney, J. R., Kochmann, D. M. & Shea, K. Stiffness-independent toughening of beams through coaxial interfaces. Adv. Sci. 5, 1800728 (2018).

    Article  Google Scholar 

  204. Xia, Y. et al. Microstructure and mechanical property of Cf/SiC core/shell composite fabricated by direct ink writing. Scr. Mater. 165, 84–88 (2019).

    Article  CAS  Google Scholar 

  205. Abdullah, A. M., Ding, Y., He, X., Dunn, M. & Yu, K. Direct-write 3D printing of UV-curable composites with continuous carbon fiber. J. Compos. Mater. 57, 851–863 (2023).

    Article  CAS  Google Scholar 

  206. Sweeney, C. B. et al. Welding of 3D-printed carbon nanotube–polymer composites by locally induced microwave heating. Sci. Adv. 3, e1700262 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Liu, D. et al. Customizable and stretchable fibre-shaped electroluminescent devices via multicore-shell direct ink writing. J. Mater. Chem. C 8, 15092–15098 (2020).

    Article  CAS  Google Scholar 

  208. Ji, D., Zheng, H., Zhang, H., Liu, W. & Ding, J. Coaxial 3D-printing constructing all-in-one fibrous lithium-, sodium-, and zinc-ion batteries. Chem. Eng. J. 433, 133815 (2022).

    Article  CAS  Google Scholar 

  209. Chortos, A. et al. Printing reconfigurable bundles of dielectric elastomer fibers. Adv. Funct. Mater. 31, 2010643 (2021).

    Article  CAS  Google Scholar 

  210. Li, S. et al. Direct ink writing of cephalopod skin-like core–shell fibers from cholesteric liquid crystal elastomers and dyed solutions. Adv. Funct. Mater. 35, 2413965 (2024).

    Article  Google Scholar 

  211. Zhao, J. et al. Direct coherent multi-ink printing of fabric supercapacitors. Sci. Adv. 7, eabd6978 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Yu, Y., Zhang, Y., Martin, J. A. & Ozbolat, I. T. Evaluation of cell viability and functionality in vessel-like bioprintable cell-laden tubular channels. J. Biomech. Eng. 135, 091011 (2013).

    Article  Google Scholar 

  213. Gao, Q., He, Y., Fu, J.-z, Liu, A. & Ma, L. Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery. Biomaterials 61, 203–215 (2015).

    Article  CAS  PubMed  Google Scholar 

  214. Akkineni, A. R., Ahlfeld, T., Lode, A. & Gelinsky, M. A versatile method for combining different biopolymers in a core/shell fashion by 3D plotting to achieve mechanically robust constructs. Biofabrication 8, 045001 (2016).

    Article  PubMed  Google Scholar 

  215. Cui, H. et al. In vitro and in vivo evaluation of 3D bioprinted small-diameter vasculature with smooth muscle and endothelium. Biofabrication 12, 015004 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Shao, L. et al. Directly coaxial 3D bioprinting of large-scale vascularized tissue constructs. Biofabrication 12, 035014 (2020).

    Article  CAS  PubMed  Google Scholar 

  217. Peng, F., Zhao, Z., Xia, X., Cakmak, M. & Vogt, B. D. Enhanced impact resistance of three-dimensional-printed parts with structured filaments. ACS Appl. Mater. Interfaces 10, 16087–16094 (2018).

    Article  CAS  PubMed  Google Scholar 

  218. Naqi, A., Swain, Z. & Mackay, M. E. Dual material fused filament fabrication via core–shell die design. ACS Appl. Polym. Mater. 5, 2481–2489 (2023).

    Article  CAS  Google Scholar 

  219. Leschok, M., Reiter, L. & Dillenburger, B. Large-scale hollow-core 3D printing (HC3DP): a polymer 3D printing technology for large-scale ultralightweight components. Addit. Manuf. 78, 103874 (2023).

    CAS  Google Scholar 

  220. Ames, D., Lazarus, N. & Mueller, J. Liquid metal core–shell 3D printing. Adv. Eng. Mater. https://doi.org/10.1002/adem.202402959 (2025).

  221. Ren, J. et al. Multicore–shell direct ink writing of coaxial transmission lines. ACS Appl. Eng. Mater. 2, 67–75 (2024).

    Article  CAS  Google Scholar 

  222. Ames, D. C., Propst, S., Shah, A. & Mueller, J. Voxel interface control in multimaterial extrusion 3D printing. Adv. Mater. 36, 2407599 (2024).

    Article  CAS  Google Scholar 

  223. Hassan, S. et al. Tunable and compartmentalized multimaterial bioprinting for complex living tissue constructs. ACS Appl. Mater. Interfaces 14, 51602–51618 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Liu, W. et al. Rapid continuous multimaterial extrusion bioprinting. Adv. Mater. 29, 1604630 (2017).

    Article  Google Scholar 

  225. Biedermann, M. & Meboldt, M. Computational design synthesis of additive manufactured multi-flow nozzles. Addit. Manuf. 35, 101231 (2020).

    Google Scholar 

  226. Ravichandran, D. et al. Multiphase direct ink writing (MDIW) for multilayered polymer/nanoparticle composites. Addit. Manuf. 47, 102322 (2021).

    CAS  Google Scholar 

  227. Bayles, A. V. et al. Structuring hydrogel cross-link density using hierarchical filament 3D printing. ACS Appl. Mater. Interfaces 14, 15667–15677 (2022).

    Article  CAS  PubMed  Google Scholar 

  228. Ravichandran, D. et al. Multi-material 3D printing-enabled multilayers for smart actuation via magnetic and thermal stimuli. J. Mater. Chem. C 10, 13762–13770 (2022).

    Article  CAS  Google Scholar 

  229. Pleij, T., Bayles, A. V. & Vermant, J. Advective assembler-enhanced support bath rotational direct ink writing. Adv. Mater. Technol. 9, 2400005 (2024).

    Article  CAS  Google Scholar 

  230. Bayles, A. V. & Vermant, J. Divide, conquer, and stabilize: engineering strong fluid–fluid interfaces. Langmuir 38, 6499–6505 (2022).

    Article  CAS  PubMed  Google Scholar 

  231. Bai, Z. et al. Subvoxel-controlled microfluidic printing of dual-material and multi-structural filaments. Adv. Mater. Technol. 9, 2301150 (2024).

    Article  CAS  Google Scholar 

  232. O’Neill, K. L. & Dalton, P. D. A decade of melt electrowriting. Small Methods 7, 2201589 (2023).

    Article  Google Scholar 

  233. Zheng, X. et al. Ultralight, ultrastiff mechanical metamaterials. Science 344, 1373–1377 (2014).

    Article  CAS  PubMed  Google Scholar 

  234. Weiss, J. D. et al. A low-cost, open-source 3D printer for multimaterial and high-throughput direct ink writing of soft and living materials. Adv. Mater. 37, 2414971 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Jeon, S. et al. Direct-ink-write cross-linkable bottlebrush block copolymers for on-the-fly control of structural color. Proc. Natl Acad. Sci. USA 121, e2313617121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Li, M., Pal, A., Aghakhani, A., Pena-Francesch, A. & Sitti, M. Soft actuators for real-world applications. Nat. Rev. Mater. 7, 235–249 (2022).

    Article  CAS  PubMed  Google Scholar 

  237. Zhou, C. et al. Ferromagnetic soft catheter robots for minimally invasive bioprinting. Nat. Commun. 12, 5072 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Du Pasquier, C. & Shea, K. A nonlinear optimization method for large shape morphing in 3D printed pneumatic lattice structures. Smart Mater. Struct. 31, 065016 (2022).

    Article  Google Scholar 

  239. Sparrman, B. et al. Printed silicone pneumatic actuators for soft robotics. Addit. Manuf. 40, 101860 (2021).

    CAS  Google Scholar 

  240. Brown, N. & Mueller, J. Hybrid formative-additive manufacturing. Adv. Mater. https://doi.org/10.1002/adma.202417609 (2025).

  241. Wehner, M. et al. An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536, 451–455 (2016).

    Article  CAS  PubMed  Google Scholar 

  242. Tibbits, S. 4D printing: multi-material shape change. Arch. Des. 84, 116–121 (2014).

    Google Scholar 

  243. Boley, J. W. et al. Shape-shifting structured lattices via multimaterial 4D printing. Proc. Natl Acad. Sci. USA 116, 20856–20862 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Lu, X. et al. 4D-printing of photoswitchable actuators. Angew. Chem. Int. Ed. 60, 5536–5543 (2021).

    Article  CAS  Google Scholar 

  245. Stankey, P. P. et al. Embedding biomimetic vascular networks via coaxial sacrificial writing into functional tissue. Adv. Mater. 36, 2401528 (2024).

    Article  CAS  Google Scholar 

  246. Gleadall, A. FullControl GCode Designer: Open-source software for unconstrained design in additive manufacturing. Addit. Manuf. 46, 102109 (2021).

    Google Scholar 

  247. Propst, S. & Mueller, J. Time code for multifunctional 3D printhead controls. Nat. Commun. 16, 1035 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Weeks, R. D., Truby, R. L., Uzel, S. G. & Lewis, J. A. Embedded 3D printing of multimaterial polymer lattices via graph-based print path planning. Adv. Mater. 35, 2206958 (2023).

    Article  CAS  Google Scholar 

  249. Kajtez, J. et al. Embedded 3D printing in self-healing annealable composites for precise patterning of functionally mature human neural constructs. Adv. Sci. 9, 2201392 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J.M. discloses support for this work from the Jean-Jacques and Felicia Lopez-Loreta Foundation for Academic Excellence through the 2020 Prize.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Jochen Mueller.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Fergal Coulter, Michael Dickey, Qi Ge and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, N.C., Ames, D.C. & Mueller, J. Multimaterial extrusion 3D printing printheads. Nat Rev Mater (2025). https://doi.org/10.1038/s41578-025-00809-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41578-025-00809-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing