Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Materials and systems for large-scale photocatalytic water splitting

Abstract

Sunlight-driven photocatalytic water splitting has been studied as a means of producing renewable green solar hydrogen on a large scale at low cost. However, the research community has yet to define a common vision for practical solar hydrogen production, which requires not only photocatalyst materials that drive water-splitting reactions with high efficiency under sunlight but also systems and processes that can be scaled up. Herein, we discuss the current status and challenges in the development of materials, systems and processes for solar hydrogen production via photocatalytic water splitting. Despite the remarkable scientific progress in the development of photocatalyst materials and reaction systems over the past decade, many technological challenges remain before this technology can be put to practical use in terms of efficiency improvement, mass production, large-scale application of photocatalysts, cost reduction, process-efficiency improvement for reaction systems, and societal acceptance. It is, therefore, imperative to stimulate and accelerate research and development and large-scale demonstrations of hydrogen production via photocatalytic water splitting through collaborative efforts among industry, government and academia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Technological developments required for the large-scale implementation of green hydrogen produced via photocatalytic water splitting.
Fig. 2: Energy diagrams for photocatalytic water splitting.
Fig. 3: Co-loading of an Al-doped SrTiO3 photocatalyst.
Fig. 4: Comparison of the AQY of various photocatalysts.
Fig. 5: Photocatalyst sheets for Z-scheme water splitting.
Fig. 6: A 100-m2 water-splitting photocatalyst panel reactor.
Fig. 7: Gas-separation performance at a large-scale water-splitting photocatalyst panel reactor.

Similar content being viewed by others

References

  1. Hisatomi, T. & Domen, K. Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts. Nat. Catal. 2, 387–399 (2019).

    Article  CAS  Google Scholar 

  2. Farmer, J. D. & Lafond, F. How predictable is technological progress? Res. Policy 45, 647–665 (2016).

    Article  Google Scholar 

  3. AlMallahi, M. N., Swailmeen, Y. A., Abdelkareem, M. A., Olabi, A. G. & Elgendi, M. A path to sustainable development goals: a case study on the thirteen largest photovoltaic power plants. Energy Convers. Manag. X 22, 100553 (2024).

    Google Scholar 

  4. Victoria, M. et al. Solar photovoltaics is ready to power a sustainable future. Joule 5, 1041–1056 (2021).

    Article  CAS  Google Scholar 

  5. Kim, J. H., Hansora, D., Sharma, P., Jang, J.-W. & Lee, J. S. Toward practical solar hydrogen production — an artificial photosynthetic leaf-to-farm challenge. Chem. Soc. Rev. 48, 1908–1971 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. Wang, Y. et al. Mimicking natural photosynthesis: solar to renewable H2 fuel synthesis by Z-scheme water splitting systems. Chem. Rev. 118, 5201–5241 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kranz, C. & Wächtler, M. Characterizing photocatalysts for water splitting: from atoms to bulk and from slow to ultrafast processes. Chem. Soc. Rev. 50, 1407–1437 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Tao, X., Zhao, Y., Wang, S., Li, C. & Li, R. Recent advances and perspectives for solar-driven water splitting using particulate photocatalysts. Chem. Soc. Rev. 51, 3561–3608 (2022).

    Article  CAS  PubMed  Google Scholar 

  9. Ivanova, M. E. et al. Technological pathways to produce compressed and highly pure hydrogen from solar power. Angew. Chem. Int. Ed. 62, e202218850 (2023).

    Article  CAS  Google Scholar 

  10. Gunawan, D. et al. Materials advances in photocatalytic solar hydrogen production: integrating systems and economics for a sustainable future. Adv. Mater. 36, 2404618 (2024).

    Article  CAS  Google Scholar 

  11. Hisatomi, T. & Domen, K. Introductory lecture: sunlight-driven water splitting and carbon dioxide reduction by heterogeneous semiconductor systems as key processes in artificial photosynthesis. Faraday Discuss. 198, 11–35 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Miseki, Y. & Sayama, K. Highly efficient Fe(III) reduction and solar-energy accumulation over a BiVO4 photocatalyst. Chem. Commun. 54, 2670–2673 (2018).

    Article  CAS  Google Scholar 

  13. Zhao, Y. et al. A hydrogen farm strategy for scalable solar hydrogen production with particulate photocatalysts. Angew. Chem. Int. Ed. 59, 9653–9658 (2020).

    Article  CAS  Google Scholar 

  14. Fu, H. et al. A scalable solar-driven photocatalytic system for separated H2 and O2 production from water. Nat. Commun. 16, 990 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nakamura, A. et al. A 24.4% solar to hydrogen energy conversion efficiency by combining concentrator photovoltaic modules and electrochemical cells. Appl. Phys. Express 8, 107101 (2015).

    Article  Google Scholar 

  16. Jia, J. et al. Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%. Nat. Commun. 7, 13237 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shaner, M. R., Atwater, H. A., Lewis, N. S. & McFarland, E. W. A comparative technoeconomic analysis of renewable hydrogen production using solar energy. Energy Environ. Sci. 9, 2354–2371 (2016).

    Article  CAS  Google Scholar 

  18. Sathre, R. et al. Opportunities to improve the net energy performance of photoelectrochemical water-splitting technology. Energy Environ. Sci. 9, 803–819 (2016).

    Article  CAS  Google Scholar 

  19. Takata, T. et al. Photocatalytic water splitting with a quantum efficiency of almost unity. Nature 581, 411–414 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Wang, Q. et al. Oxysulfide photocatalyst for visible-light-driven overall water splitting. Nat. Mater. 18, 827–832 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Li, H. et al. One-step excitation overall water splitting over a modified Mg-doped BaTaO2N photocatalyst. ACS Catal. 12, 10179–10185 (2022).

    Article  CAS  Google Scholar 

  22. Kaiya, K. et al. Water splitting over transition metal-doped SrTiO3 photocatalysts with response to visible light up to 660 nm. Chem. Sci. 15, 16025–16033 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nishiyama, H. et al. Photocatalytic solar hydrogen production from water on a 100-m2 scale. Nature 598, 304–307 (2021).

    Article  CAS  PubMed  Google Scholar 

  24. Yamada, T. et al. Production of methane by sunlight-driven photocatalytic water splitting and carbon dioxide methanation as a means of artificial photosynthesis. ACS Eng. Au 3, 352–363 (2023).

    Article  CAS  Google Scholar 

  25. Wang, Q. et al. Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%. Nat. Mater. 15, 611–615 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Wang, Q. et al. Particulate photocatalyst sheets based on carbon conductor layer for efficient Z-scheme pure-water splitting at ambient pressure. J. Am. Chem. Soc. 139, 1675–1683 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Domen, K., Kondo, J. N., Hara, M. & Takata, T. Photo- and mechano-catalytic overall water splitting reactions to form hydrogen and oxygen on heterogeneous catalysts. Bull. Chem. Soc. Jpn 73, 1307–1331 (2000).

    Article  CAS  Google Scholar 

  28. Kudo, A. & Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253–278 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Maeda, K. Photocatalytic water splitting using semiconductor particles: history and recent developments. J. Photochem. Photobiol. C Photochem. Rev. 12, 237–268 (2011).

    Article  CAS  Google Scholar 

  30. Lin, L. et al. Photocatalytic overall water splitting by conjugated semiconductors with crystalline poly(triazine imide) frameworks. Chem. Sci. 8, 5506–5511 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lin, L. et al. Molecular-level insights on the reactive facet of carbon nitride single crystals photocatalysing overall water splitting. Nat. Catal. 3, 649–655 (2020).

    Article  CAS  Google Scholar 

  32. Hisatomi, T., Kubota, J. & Domen, K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 43, 7520–7535 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Hisatomi, T., Takanabe, K. & Domen, K. Photocatalytic water-splitting reaction from catalytic and kinetic perspectives. Catal. Lett. 145, 95–108 (2015).

    Article  CAS  Google Scholar 

  34. Sato, S. & White, J. M. Photodecomposition of water over Pt/TiO2 catalysts. Chem. Phys. Lett. 72, 83–86 (1980).

    Article  CAS  Google Scholar 

  35. Domen, K., Naito, S., Soma, M., Onishi, T. & Tamaru, K. Photocatalytic decomposition of water vapour on an NiO–SrTiO3 catalyst. J. Chem. Soc. Chem. Commun. 12, 543–544 (1980).

    Article  Google Scholar 

  36. Lehn, J. M., Sauvage, J. P. & Ziessel, R. Photochemical water splitting. Continuous generation of hydrogen and oxygen on irradiation of aqueous suspensions of metal loaded strontium titanate. Nouv. J. Chim. 4, 623–627 (1980).

    CAS  Google Scholar 

  37. Chen, S., Takata, T. & Domen, K. Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2, 17050 (2017).

    Article  CAS  Google Scholar 

  38. Nishioka, S., Osterloh, F. E., Wang, X., Mallouk, T. E. & Maeda, K. Photocatalytic water splitting. Nat. Rev. Methods Primers 3, 42 (2023).

    Article  CAS  Google Scholar 

  39. Takata, T. & Domen, K. Defect engineering of photocatalysts by doping of aliovalent metal cations for efficient water splitting. J. Phys. Chem. C 113, 19386–19388 (2009).

    Article  CAS  Google Scholar 

  40. Kato, H., Kobayashi, M., Hara, M. & Kakihana, M. Fabrication of SrTiO3 exposing characteristic facets using molten salt flux and improvement of photocatalytic activity for water splitting. Catal. Sci. Technol. 3, 1733–1738 (2013).

    Article  CAS  Google Scholar 

  41. Ham, Y. et al. Flux-mediated doping of SrTiO3 photocatalysts for efficient overall water splitting. J. Mater. Chem. A 4, 3027–3033 (2016).

    Article  CAS  Google Scholar 

  42. Lyu, H. et al. An Al-doped SrTiO3 photocatalyst maintaining sunlight-driven overall water splitting activity for over 1000 h of constant illumination. Chem. Sci. 10, 3196–3201 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Goto, Y. et al. A particulate photocatalyst water-splitting panel for large-scale solar hydrogen generation. Joule 2, 509–520 (2018).

    Article  CAS  Google Scholar 

  44. Yoshida, M. et al. Role and function of noble-metal/Cr-layer core/shell structure cocatalysts for photocatalytic overall water splitting studied by model electrodes. J. Phys. Chem. C 113, 10151–10157 (2009).

    Article  CAS  Google Scholar 

  45. Scaife, D. E. Oxide semiconductors in photoelectrochemical conversion of solar energy. Sol. Energy 25, 41–54 (1980).

    Article  CAS  Google Scholar 

  46. Maeda, K. & Domen, K. New non-oxide photocatalysts designed for overall water splitting under visible light. J. Phys. Chem. C 111, 7851–7861 (2007).

    Article  CAS  Google Scholar 

  47. Maeda, K. et al. Photocatalyst releasing hydrogen from water. Nature 440, 295 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Liu, K. et al. Synthesis of narrow-band-gap GaN:ZnO solid solution for photocatalytic overall water splitting. ACS Catal. 12, 14637–14646 (2022).

    Article  CAS  Google Scholar 

  49. Lee, Y., Teramura, K., Hara, M. & Domen, K. Modification of (Zn1+xGe)(N2Ox) solid solution as a visible light driven photocatalyst for overall water splitting. Chem. Mater. 19, 2120–2127 (2007).

    Article  CAS  Google Scholar 

  50. Maeda, K., Lu, D. & Domen, K. Direct water splitting into hydrogen and oxygen under visible light by using modified TaON photocatalysts with d0 electronic configuration. Chem. Eur. J. 19, 4986–4991 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Pan, C. et al. A complex perovskite-type oxynitride: the first photocatalyst for water splitting operable at up to 600 nm. Angew. Chem. Int. Ed. 54, 2955–2959 (2015).

    Article  CAS  Google Scholar 

  52. Pan, C., Takata, T. & Domen, K. Overall water splitting on the transition-metal oxynitride photocatalyst LaMg1/3Ta2/3O2N over a large portion of the visible-light spectrum. Chem. Eur. J. 22, 1854–1862 (2016).

    Article  CAS  PubMed  Google Scholar 

  53. Wang, Z. et al. Overall water splitting by Ta3N5 nanorod single crystals grown on the edges of KTaO3 particles. Nat. Catal. 1, 756–763 (2018).

    Article  CAS  Google Scholar 

  54. Xiao, J. et al. Enhanced overall water splitting by a zirconium-doped TaON-based photocatalyst. Angew. Chem. Int. Ed. 61, e202116573 (2022).

    Article  CAS  Google Scholar 

  55. Chen, K. et al. Overall water splitting by a SrTaO2N-based photocatalyst decorated with an Ir-promoted Ru-based cocatalyst. J. Am. Chem. Soc. 145, 3839–3843 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Liu, X. et al. Enhancing the photocatalytic activity of CaTaO2N for overall water splitting through surface nitride ion enrichment. ACS Catal. 14, 10561–10567 (2024).

    Article  CAS  Google Scholar 

  57. Yu, J. et al. Single-crystalline LaTiO2N nanosheets with regulated defects for photocatalytic overall water splitting under visible light up to 600 nm. ACS Catal. 14, 608–618 (2024).

    Article  CAS  Google Scholar 

  58. Iwase, A. & Misono, H. Development of visible-light-responsive Ir and La-codoped KTaO3 photocatalysts for water splitting. Chem. Commun. 57, 10331–10334 (2021).

    Article  CAS  Google Scholar 

  59. Iwase, A., Kasahara, M. & Misono, H. Development of visible-light-responsive Ru-doped KTaO3 photocatalyst for overall water splitting with one-step photoexcitation and the effects of codoping with La. J. Mater. Chem. A 11, 22161–22166 (2023).

    Article  CAS  Google Scholar 

  60. Iwase, A. & Sato, T. Overall water splitting under visible light irradiation over Ir and La-codoped NaTaO3 photocatalysts. J. Mater. Chem. A 12, 28346–28352 (2024).

    Article  CAS  Google Scholar 

  61. Takata, T., Pan, C., Nakabayashi, M., Shibata, N. & Domen, K. Fabrication of a core–shell-type photocatalyst via photodeposition of group IV and V transition metal oxyhydroxides: an effective surface modification method for overall water splitting. J. Am. Chem. Soc. 137, 9627–9634 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. Bau, J. A. & Takanabe, K. Ultrathin microporous SiO2 membranes photodeposited on hydrogen evolving catalysts enabling overall water splitting. ACS Catal. 7, 7931–7940 (2017).

    Article  CAS  Google Scholar 

  63. Galvão, R. A. et al. Nanoparticulate TiN loading to promote Z-scheme water splitting using a narrow-bandgap nonoxide-based photocatalyst sheet. Small 20, 2311170 (2024).

    Article  Google Scholar 

  64. Hisatomi, T. & Domen, K. Best practices for photocatalytic water splitting. Nat. Sustain. 7, 1082–1084 (2024).

    Article  Google Scholar 

  65. Abe, R. Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation. J. Photochem. Photobiol. C Photochem. Rev. 11, 179–209 (2010).

    Article  Google Scholar 

  66. Abe, R., Sayama, K., Domen, K. & Arakawa, H. A new type of water splitting system composed of two different TiO2 photocatalysts (anatase, rutile) and a IO3/I shuttle redox mediator. Chem. Phys. Lett. 344, 339–344 (2001).

    Article  CAS  Google Scholar 

  67. Maeda, K. Z-scheme water splitting using two different semiconductor photocatalysts. ACS Catal. 3, 1486–1503 (2013).

    Article  CAS  Google Scholar 

  68. Kato, H., Sasaki, Y., Shirakura, N. & Kudo, A. Synthesis of highly active rhodium-doped SrTiO3 powders in Z-scheme systems for visible-light-driven photocatalytic overall water splitting. J. Mater. Chem. A 1, 12327–12333 (2013).

    Article  CAS  Google Scholar 

  69. Oshima, T. et al. An artificial Z-scheme constructed from dye-sensitized metal oxide nanosheets for visible light-driven overall water splitting. J. Am. Chem. Soc. 142, 8412–8420 (2020).

    Article  CAS  PubMed  Google Scholar 

  70. Xiao, J. et al. Sub-50 nm perovskite-type tantalum-based oxynitride single crystals with enhanced photoactivity for water splitting. Nat. Commun. 14, 8030 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Li, W. et al. Enhanced Z-scheme water splitting at atmospheric pressure with suppression of reverse reactions using Zr-doped BaTaO2N as hydrogen evolution photocatalyst. J. Catal. 428, 115187 (2023).

    Article  CAS  Google Scholar 

  72. Liu, L. et al. Synthesis of highly active GaN:ZnO photocatalysts applicable to Z-scheme overall water splitting system. ACS Catal. 14, 10138–10147 (2024).

    Article  CAS  Google Scholar 

  73. Lin, L. et al. Efficient and stable visible-light-driven Z-scheme overall water splitting using an oxysulfide H2 evolution photocatalyst. Nat. Commun. 15, 397 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Nakada, A., Saeki, A., Higashi, M., Kageyama, H. & Abe, R. Two-step synthesis of Sillén–Aurivillius type oxychlorides to enhance their photocatalytic activity for visible-light-induced water splitting. J. Mater. Chem. A 6, 10909–10917 (2018).

    Article  CAS  Google Scholar 

  75. Hu, H. et al. Metal–organic frameworks embedded in a liposome facilitate overall photocatalytic water splitting. Nat. Chem. 13, 358–366 (2021).

    Article  CAS  PubMed  Google Scholar 

  76. Wang, W., Chen, J., Li, C. & Tian, W. Achieving solar overall water splitting with hybrid photosystems of photosystem II and artificial photocatalysts. Nat. Commun. 5, 4647 (2014).

    Article  CAS  PubMed  Google Scholar 

  77. Zhang, J. Z. & Reisner, E. Advancing photosystem II photoelectrochemistry for semi-artificial photosynthesis. Nat. Rev. Chem. 4, 6–21 (2020).

    Article  CAS  Google Scholar 

  78. Qi, Y. et al. Unraveling of cocatalysts photodeposited selectively on facets of BiVO4 to boost solar water splitting. Nat. Commun. 13, 484 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sasaki, Y., Nemoto, H., Saito, K. & Kudo, A. Solar water splitting using powdered photocatalysts driven by Z-schematic interparticle electron transfer without an electron mediator. J. Phys. Chem. C 113, 17536–17542 (2009).

    Article  CAS  Google Scholar 

  80. Iwase, A., Ng, Y. H., Ishiguro, Y., Kudo, A. & Amal, R. Reduced graphene oxide as a solid-state electron mediator in Z-scheme photocatalytic water splitting under visible light. J. Am. Chem. Soc. 133, 11054–11057 (2011).

    Article  CAS  PubMed  Google Scholar 

  81. Jia, Q., Iwase, A. & Kudo, A. BiVO4–Ru/SrTiO3:Rh composite Z-scheme photocatalyst for solar water splitting. Chem. Sci. 5, 1513–1519 (2014).

    Article  CAS  Google Scholar 

  82. Wang, Q. et al. Particulate photocatalyst sheets for Z-scheme water splitting: advantages over powder suspension and photoelectrochemical systems and future challenges. Faraday Discuss. 197, 491–504 (2017).

    Article  CAS  PubMed  Google Scholar 

  83. Wang, Q. et al. Printable photocatalyst sheets incorporating a transparent conductive mediator for Z-scheme water splitting. Joule 2, 2667–2680 (2018).

    Article  CAS  Google Scholar 

  84. Minegishi, T., Nishimura, N., Kubota, J. & Domen, K. Photoelectrochemical properties of LaTiO2N electrodes prepared by particle transfer for sunlight-driven water splitting. Chem. Sci. 4, 1120–1124 (2013).

    Article  CAS  Google Scholar 

  85. Gu, C. et al. Carbon-conductor-based photocatalyst sheets fabricated by a facile filtration process for efficient, stable, and scalable water splitting. Chem. Catal. 5, 101233 (2025).

    CAS  Google Scholar 

  86. Xiong, A. et al. Fabrication of photocatalyst panels and the factors determining their activity for water splitting. Catal. Sci. Technol. 4, 325–328 (2014).

    Article  CAS  Google Scholar 

  87. Pan, Z. et al. Photoreduced graphene oxide as a conductive binder to improve the water splitting activity of photocatalyst sheets. Adv. Funct. Mater. 26, 7011–7019 (2016).

    Article  CAS  Google Scholar 

  88. Nandy, S. et al. Oxide layer coating enabling oxysulfide-based photocatalyst sheet to drive Z-scheme water splitting at atmospheric pressure. Joule 7, 1641–1651 (2023).

    Article  CAS  Google Scholar 

  89. Hisatomi, T. et al. Particulate photocatalyst sheets based on non-oxide semiconductor materials for water splitting under visible light irradiation. Catal. Sci. Technol. 8, 3918–3925 (2018).

    Article  CAS  Google Scholar 

  90. Nandy, S. et al. Activation of nonoxide photocatalyst sheet operable under visible light irradiation up to 600 nm by conductive bilayer. ACS Energy Lett. 9, 4708–4714 (2024).

    Article  CAS  Google Scholar 

  91. Schröder, M. et al. Hydrogen evolution reaction in a large-scale reactor using a carbon nitride photocatalyst under natural sunlight irradiation. Energy Technol. 3, 1014–1017 (2015).

    Article  Google Scholar 

  92. Tanihara, N., Nakanishi, S. & Yoshinaga, T. Gas and vapor separation through polyimide membranes. J. Jpn Pet. Inst. 59, 276–282 (2016).

    Article  CAS  Google Scholar 

  93. Shahabi, M. P., McHugh, A., Anda, M. & Ho, G. Environmental life cycle assessment of seawater reverse osmosis desalination plant powered by renewable energy. Renew. Energy 67, 53–58 (2014).

    Article  Google Scholar 

  94. Voutchkov, N. Energy use for membrane seawater desalination — current status and trends. Desalination 431, 2–14 (2018).

    Article  CAS  Google Scholar 

  95. Suguro, T., Kishimoto, F. & Takanabe, K. Photocatalytic hydrogen production under water vapor feeding — a minireview. Energy Fuels 36, 8978–8994 (2022).

    Article  CAS  Google Scholar 

  96. Hisatomi, T. & Domen, K. Overall water splitting: what’s next? Energy 1, 100006 (2023).

    Google Scholar 

  97. Sakata, Y., Hayashi, T., Yasunaga, R., Yanaga, N. & Imamura, H. Remarkably high apparent quantum yield of the overall photocatalytic H2O splitting achieved by utilizing Zn ion added Ga2O3 prepared using dilute CaCl2 solution. Chem. Commun. 51, 12935–12938 (2015).

    Article  CAS  Google Scholar 

  98. Kato, H. & Kudo, A. Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure. J. Am. Chem. Soc. 125, 3082–3089 (2003).

    Article  CAS  PubMed  Google Scholar 

  99. Maeda, K. & Domen, K. Photocatalytic water splitting: recent progress and future challenges. J. Phys. Chem. Lett. 1, 2655–2661 (2010).

    Article  CAS  Google Scholar 

  100. Maeda, K., Higashi, M., Lu, D., Abe, R. & Domen, K. Efficient nonsacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst. J. Am. Chem. Soc. 132, 5858–5868 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the New Energy and Industrial Technology Development Organization (NEDO, project number P21021).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Kazunari Domen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks David Tilley, who co-reviewed with Sanghyun Bae; Elena Selli; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hisatomi, T., Yamada, T., Nishiyama, H. et al. Materials and systems for large-scale photocatalytic water splitting. Nat Rev Mater 10, 769–782 (2025). https://doi.org/10.1038/s41578-025-00823-0

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41578-025-00823-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing