Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Synthetic methods for high-entropy nanomaterials

Abstract

‘High entropy’ has become a key concept in materials science over the past two decades, with this concept more recently extended to nanomaterials. High-entropy materials, characterized by the incorporation of five or more principal elements in nearly equal proportions, leverage entropy to promote the formation of compositionally complex single-phase materials rather than phase-segregated alternatives. The extensive compositional space of high-entropy nanomaterials, as well as their distinct structural and catalytic properties, has garnered considerable interest. The synthesis of high-quality single-phase high-entropy nanoparticles is important to fully realizing their potential to drive innovation, and numerous synthetic routes exist. Top-down methods begin with bulk high-entropy materials and break them down into nanosized structures, whereas bottom-up strategies start from atoms and build nanomaterials through nucleation and growth. In this Review, we categorize and compare the synthetic methods for high-entropy alloy and high-entropy intermetallic nanoparticles. Our discussion reveals that colloidal synthesis offers excellent control over the composition, size and shape of high-entropy nanoparticles while also providing pathways to metastable states that are not always accessible by other methods.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Key concepts of high-entropy nanomaterials.
Fig. 2: Comparison of HE random alloys and HE intermetallic alloys.
Fig. 3: Control of composition and particle morphology of high-entropy nanomaterials.
Fig. 4: Top-down methods for the synthesis of high-entropy nanomaterials.
Fig. 5: Bottom-up methods for the synthesis of high-entropy nanomaterials.

Similar content being viewed by others

References

  1. George, E. P., Raabe, D. & Ritchie, R. O. High-entropy alloys. Nat. Rev. Mater. 4, 515–534 (2019).

    Article  CAS  Google Scholar 

  2. Pedersen, J. K., Batchelor, T. A. A., Bagger, A. & Rossmeisl, J. High-entropy alloys as catalysts for the CO2 and CO reduction reactions. ACS Catal. 10, 2169–2176 (2020).

    Article  CAS  Google Scholar 

  3. Banko, L. et al. Unravelling composition–activity–stability trends in high entropy alloy electrocatalysts by using a data-guided combinatorial synthesis strategy and computational modeling. Adv. Energy Mater. 12, 2103312 (2022).

    Article  CAS  Google Scholar 

  4. Li, M., Henein, H., Zhou, C. & Liu, J. Towards high-entropy alloys with high-temperature corrosion resistance and structural stability. J. Mater. Sci. Technol. 174, 133–144 (2024).

    Article  CAS  Google Scholar 

  5. Murty, B. S., Yeh, J.-W., Ranganathan, S. & Bhattacharjee, P. P. High-Entropy Alloys (Elsevier, 2019).

  6. Dixit, S. et al. Refractory high-entropy alloy coatings for high-temperature aerospace and energy applications. J. Therm. Spray Technol. 31, 1021–1031 (2022).

    Article  CAS  Google Scholar 

  7. Yang, C. et al. A library of polymetallic alloy nanotubes: from binary to septenary. J. Am. Chem. Soc. 147, 9865–9878 (2025).

    Article  CAS  PubMed  Google Scholar 

  8. Ahmad, A. et al. Unlocking the potential of high entropy alloys in electrochemical water splitting: a review. Small 20, 2311929 (2024).

    Article  CAS  Google Scholar 

  9. Hsu, W.-L., Tsai, C.-W., Yeh, A.-C. & Yeh, J.-W. Clarifying the four core effects of high-entropy materials. Nat. Rev. Chem. 8, 471–485 (2024).

    Article  PubMed  Google Scholar 

  10. Al Zoubi, W., Putri, R. A. K., Abukhadra, M. R. & Ko, Y. G. Recent experimental and theoretical advances in the design and science of high-entropy alloy nanoparticles. Nano Energy 110, 108362 (2023).

    Article  CAS  Google Scholar 

  11. Otto, F., Yang, Y., Bei, H. & George, E. P. Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Mater. 61, 2628–2638 (2013).

    Article  CAS  Google Scholar 

  12. Li, H. et al. Nano high-entropy materials: synthesis strategies and catalytic applications. Small Struct. 1, 2000033 (2020).

    Article  Google Scholar 

  13. Ren, J.-T., Chen, L., Wang, H.-Y. & Yuan, Z.-Y. High-entropy alloys in electrocatalysis: from fundamentals to applications. Chem. Soc. Rev. 52, 8319–8373 (2023).

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, Z. et al. Recent research progress on high-entropy alloys as electrocatalytic materials. J. Alloys Compd. 918, 165585 (2022).

    Article  CAS  Google Scholar 

  15. Qin, Y.-C. et al. Noble metal-based high-entropy alloys as advanced electrocatalysts for energy conversion. Rare Met. 40, 2354–2368 (2021).

    Article  CAS  Google Scholar 

  16. Liu, J. et al. Recent progress in intermetallic nanocrystals for electrocatalysis: from binary to ternary to high-entropy intermetallics. SmartMat 4, e1210 (2023).

    Article  CAS  Google Scholar 

  17. Li, Y. et al. Nanoscale design for high entropy alloy electrocatalysts. Small 20, 2310006 (2024).

    Article  CAS  Google Scholar 

  18. Kusada, K., Wu, D. & Kitagawa, H. New aspects of platinum group metal-based solid-solution alloy nanoparticles: binary to high-entropy alloys. Chem. Eur. J. 26, 5105–5130 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Xu, X., Shao, Z. & Jiang, S. P. High-entropy materials for water electrolysis. Energy Technol. 10, 2200573 (2022).

    Article  CAS  Google Scholar 

  20. Yao, Y. et al. Computationally aided, entropy-driven synthesis of highly efficient and durable multi-elemental alloy catalysts. Sci. Adv. 6, eaaz0510 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang, Z. et al. Research progress on high entropy alloys and high entropy derivatives as OER catalysts. J. Environ. Chem. Eng. 11, 109080 (2023).

    Article  CAS  Google Scholar 

  22. Chang, X., Zeng, M., Liu, K. & Fu, L. Phase engineering of high-entropy alloys. Adv. Mater. 32, 1907226 (2020).

    Article  CAS  Google Scholar 

  23. Sun, Y. & Dai, S. Synthesis of high-entropy materials. Nat. Synth. 3, 1457–1470 (2024).

    Article  CAS  Google Scholar 

  24. Deng, C., Wang, T., Wu, P., Zhu, W. & Dai, S. High entropy materials for catalysis: a critical review of fundamental concepts and applications. Nano Energy 120, 109153 (2024).

    Article  CAS  Google Scholar 

  25. Tomboc, G. M., Kwon, T., Joo, J. & Lee, K. High entropy alloy electrocatalysts: a critical assessment of fabrication and performance. J. Mater. Chem. A 8, 14844–14862 (2020).

    Article  CAS  Google Scholar 

  26. Li, H., Lai, J., Li, Z. & Wang, L. Multi-sites electrocatalysis in high-entropy alloys. Adv. Funct. Mater. 31, 2106715 (2021).

    Article  CAS  Google Scholar 

  27. Yao, Y. et al. High-entropy nanoparticles: synthesis–structure–property relationships and data-driven discovery. Science 376, eabn3103 (2022).

    Article  CAS  PubMed  Google Scholar 

  28. Yu, L. et al. High-entropy alloy catalysts: from bulk to nano toward highly efficient carbon and nitrogen catalysis. Carbon Energy 4, 731–761 (2022).

    Article  CAS  Google Scholar 

  29. Xu, H. et al. Designing strategies and enhancing mechanism for multicomponent high-entropy catalysts. Chem. Sci. 14, 771–790 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zheng, H., Luo, G., Zhang, A., Lu, X. & He, L. The synthesis and catalytic applications of nanosized high-entropy alloys. ChemCatChem 13, 806–817 (2021).

    Article  CAS  Google Scholar 

  31. Kumar Katiyar, N., Biswas, K., Yeh, J.-W., Sharma, S. & Sekhar Tiwary, C. A perspective on the catalysis using the high entropy alloys. Nano Energy 88, 106261 (2021).

    Article  CAS  Google Scholar 

  32. Cantor, B., Chang, I. T. H., Knight, P. & Vincent, A. J. B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375–377, 213–218 (2004).

    Article  Google Scholar 

  33. Yeh, J.-W. et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299–303 (2004).

    Article  CAS  Google Scholar 

  34. Tong, C.-J. et al. Microstructure characterization of Alx CoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall. Mater. Trans. A 36, 881–893 (2005).

    Article  Google Scholar 

  35. Wang, Y. P., Li, B. S. & Fu, H. Z. Solid solution or intermetallics in a high-entropy alloy. Adv. Eng. Mater. 11, 641–644 (2009).

    Article  CAS  Google Scholar 

  36. Ma, Y. et al. High-entropy energy materials: challenges and new opportunities. Energy Environ. Sci. 14, 2883–2905 (2021).

    Article  Google Scholar 

  37. Zhang, Q. et al. Preparation of high entropy alloys and application to catalytical water electrolysis. APL Mater. 10, 070701 (2022).

    Article  CAS  Google Scholar 

  38. Zhao, Y. J. et al. A hexagonal close-packed high-entropy alloy: the effect of entropy. Mater. Des. 96, 10–15 (2016).

    Article  CAS  Google Scholar 

  39. Yao, Y. et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science 359, 1489–1494 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Wang, D. et al. Structurally ordered high-entropy intermetallic nanoparticles with enhanced C–C bond cleavage for ethanol oxidation. SmartMat 4, e1117 (2023).

    Article  CAS  Google Scholar 

  41. Ding, Z. et al. High entropy intermetallic-oxide core–shell nanostructure as superb oxygen evolution reaction catalyst. Adv. Sustain. Syst. 4, 1900105 (2020).

    Article  CAS  Google Scholar 

  42. Firstov, G. et al. Electronic and crystal structure of the high entropy TiZrHfCoNiCu intermetallics undergoing martensitic transformation. MATEC Web Conf. 33, 06006 (2015).

    Article  Google Scholar 

  43. Ferrando, R., Jellinek, J. & Johnston, R. L. Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem. Rev. 108, 845–910 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Zhang, J., Shen, L., Jiang, Y. & Sun, S. Random alloy and intermetallic nanocatalysts in fuel cell reactions. Nanoscale 12, 19557–19581 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Zhou, M., Li, C. & Fang, J. Noble-metal based random alloy and intermetallic nanocrystals: syntheses and applications. Chem. Rev. 121, 736–795 (2021).

    Article  CAS  PubMed  Google Scholar 

  46. Cortie, M. B. & McDonagh, A. M. Synthesis and optical properties of hybrid and alloy plasmonic nanoparticles. Chem. Rev. 111, 3713–3735 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Gamler, J. T. L., Ashberry, H. M., Skrabalak, S. E. & Koczkur, K. M. Random alloyed versus intermetallic nanoparticles: a comparison of electrocatalytic performance. Adv. Mater. 30, 1801563 (2018).

    Article  Google Scholar 

  48. Li, J. & Sun, S. Intermetallic nanoparticles: synthetic control and their enhanced electrocatalysis. Acc. Chem. Res. 52, 2015–2025 (2019).

    Article  CAS  PubMed  Google Scholar 

  49. Xiao, W., Lei, W., Gong, M., Xin, H. L. & Wang, D. Recent advances of structurally ordered intermetallic nanoparticles for electrocatalysis. ACS Catal. 8, 3237–3256 (2018).

    Article  CAS  Google Scholar 

  50. Zerdoumi, R., Ludwig, A. & Schuhmann, W. High entropy intermetallic compounds: a discovery platform for structure–property correlations and materials design principles in electrocatalysis. Curr. Opin. Electrochem. 48, 101590 (2024).

    Article  CAS  Google Scholar 

  51. Hodnik, N. et al. Effect of ordering of PtCu3 nanoparticle structure on the activity and stability for the oxygen reduction reaction. Phys. Chem. Chem. Phys. 16, 13610–13615 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Yan, Y. et al. Intermetallic nanocrystals: syntheses and catalytic applications. Adv. Mater. 29, 1605997 (2017).

    Article  Google Scholar 

  53. Dippo, O. F. & Vecchio, K. S. A universal configurational entropy metric for high-entropy materials. Scr. Mater. 201, 113974 (2021).

    Article  CAS  Google Scholar 

  54. Xing, F., Ma, J., Shimizu, K. & Furukawa, S. High-entropy intermetallics on ceria as efficient catalysts for the oxidative dehydrogenation of propane using CO2. Nat. Commun. 13, 5065 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chen, W. et al. High-entropy intermetallic PtRhBiSnSb nanoplates for highly efficient alcohol oxidation electrocatalysis. Adv. Mater. 34, 2206276 (2022).

    Article  CAS  Google Scholar 

  56. Lin, F., Li, M., Zeng, L., Luo, M. & Guo, S. Intermetallic nanocrystals for fuel-cells-based electrocatalysis. Chem. Rev. 123, 12507–12593 (2023).

    Article  CAS  PubMed  Google Scholar 

  57. Wang, C., Chen, D. P., Sang, X., Unocic, R. R. & Skrabalak, S. E. Size-dependent disorder–order transformation in the synthesis of monodisperse intermetallic PdCu nanocatalysts. ACS Nano 10, 6345–6353 (2016).

    Article  CAS  PubMed  Google Scholar 

  58. Greeley, J. et al. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 1, 552–556 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Pérez-Ramírez, J. & López, N. Strategies to break linear scaling relationships. Nat. Catal. 2, 971–976 (2019).

    Article  Google Scholar 

  60. Chen, Z. W. et al. Unusual Sabatier principle on high entropy alloy catalysts for hydrogen evolution reactions. Nat. Commun. 15, 359 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Narayanan, R. & El-Sayed, M. A. Shape-dependent catalytic activity of platinum nanoparticles in colloidal solution. Nano Lett. 4, 1343–1348 (2004).

    Article  CAS  Google Scholar 

  62. Batchelor, T. A. A. et al. High-entropy alloys as a discovery platform for electrocatalysis. Joule 3, 834–845 (2019).

    Article  CAS  Google Scholar 

  63. Löffler, T., Ludwig, A., Rossmeisl, J. & Schuhmann, W. What makes high-entropy alloys exceptional electrocatalysts? Angew. Chem. Int. Ed. 60, 26894–26903 (2021).

    Article  Google Scholar 

  64. Cao, G. et al. Liquid metal for high-entropy alloy nanoparticles synthesis. Nature 619, 73–77 (2023).

    Article  CAS  PubMed  Google Scholar 

  65. Liao, Y. et al. High-entropy-alloy nanoparticles with 21 ultra-mixed elements for efficient photothermal conversion. Natl Sci. Rev. 9, nwac041 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Skrabalak, S. E. Mashing up metals with carbothermal shock. Science 359, 1467–1467 (2018).

    Article  CAS  PubMed  Google Scholar 

  67. Yao, Y. et al. Extreme mixing in nanoscale transition metal alloys. Matter 4, 2340–2353 (2021).

    Article  CAS  Google Scholar 

  68. Kar, N. et al. Retrosynthetic design of core–shell nanoparticles for thermal conversion to monodisperse high-entropy alloy nanoparticles. Nat. Synth. 3, 175–184 (2023).

    Article  Google Scholar 

  69. Dey, G. R., McCormick, C. R., Soliman, S. S., Darling, A. J. & Schaak, R. E. Chemical insights into the formation of colloidal high entropy alloy nanoparticles. ACS Nano 17, 5943–5955 (2023).

    Article  CAS  PubMed  Google Scholar 

  70. Dey, G. R. et al. Colloidal nanoparticles of high entropy materials: capabilities, challenges, and opportunities in synthesis and characterization. ACS Nanosci. Au 4, 3–20 (2024).

    Article  CAS  PubMed  Google Scholar 

  71. Kamaruddin, H., Jianghong, Z., Yu, L., Yuefan, W. & Yizhong, H. A review of noble metal-free high entropy alloys for water splitting applications. J. Mater. Chem. A 12, 9933–9961 (2024).

    Article  CAS  Google Scholar 

  72. Löffler, T. et al. Discovery of a multinary noble metal-free oxygen reduction catalyst. Adv. Energy Mater. 8, 1802269 (2018).

    Article  Google Scholar 

  73. Xie, P. et al. Highly efficient decomposition of ammonia using high-entropy alloy catalysts. Nat. Commun. 10, 4011 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Pedersen, A. et al. Comparative techno-economic and life-cycle analysis of precious versus non-precious metal electrocatalysts: the case of PEM fuel cell cathodes. Green Chem. 25, 10458–10471 (2023).

    Article  CAS  Google Scholar 

  75. An, K. & Somorjai, G. A. Size and shape control of metal nanoparticles for reaction selectivity in catalysis. ChemCatChem 4, 1512–1524 (2012).

    Article  CAS  Google Scholar 

  76. Zaera, F. Shape-controlled nanostructures in heterogeneous catalysis. ChemSusChem 6, 1797–1820 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Lee, H. Utilization of shape-controlled nanoparticles as catalysts with enhanced activity and selectivity. RSC Adv. 4, 41017–41027 (2014).

    Article  CAS  Google Scholar 

  78. Cobley, C. M., Skrabalak, S. E., Campbell, D. J. & Xia, Y. Shape-controlled synthesis of silver nanoparticles for plasmonic and sensing applications. Plasmonics 4, 171–179 (2009).

    Article  CAS  Google Scholar 

  79. Wu, Z., Yang, S. & Wu, W. Shape control of inorganic nanoparticles from solution. Nanoscale 8, 1237–1259 (2016).

    Article  CAS  PubMed  Google Scholar 

  80. Nguyen, T.-D. From formation mechanisms to synthetic methods toward shape-controlled oxide nanoparticles. Nanoscale 5, 9455–9482 (2013).

    Article  CAS  PubMed  Google Scholar 

  81. Galeano, C. et al. Toward highly stable electrocatalysts via nanoparticle pore confinement. J. Am. Chem. Soc. 134, 20457–20465 (2012).

    Article  CAS  PubMed  Google Scholar 

  82. Peng, H. et al. Large-scale and facile synthesis of a porous high-entropy alloy CrMnFeCoNi as an efficient catalyst. J. Mater. Chem. A 8, 18318–18326 (2020).

    Article  CAS  Google Scholar 

  83. Cai, Z.-X. et al. Nanoporous ultra-high-entropy alloys containing fourteen elements for water splitting electrocatalysis. Chem. Sci. 12, 11306–11315 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Chen, Z., Wen, J., Wang, C. & Kang, X. Convex cube-shaped Pt34Fe5Ni20Cu31Mo9Ru high entropy alloy catalysts toward high-performance multifunctional electrocatalysis. Small 18, 2204255 (2022).

    Article  CAS  Google Scholar 

  85. Abid, N. et al. Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: a review. Adv. Colloid Interface Sci. 300, 102597 (2022).

    Article  CAS  PubMed  Google Scholar 

  86. Sun, X. & Sun, Y. Synthesis of metallic high-entropy alloy nanoparticles. Chem. Soc. Rev. 53, 4400–4433 (2024).

    Article  CAS  PubMed  Google Scholar 

  87. Jamkhande, P. G., Ghule, N. W., Bamer, A. H. & Kalaskar, M. G. Metal nanoparticles synthesis: an overview on methods of preparation, advantages and disadvantages, and applications. J. Drug Deliv. Sci. Technol. 53, 101174 (2019).

    Article  CAS  Google Scholar 

  88. Dwivedi, A., Koch, C. C. & Rajulapati, K. V. On the single phase fcc solid solution in nanocrystalline Cr-Nb-Ti-V-Zn high-entropy alloy. Mater. Lett. 183, 44–47 (2016).

    Article  CAS  Google Scholar 

  89. Wu, H., Huang, S., Zhu, C., Zhu, H. & Xie, Z. Excellent mechanical properties of in-situ TiC/FeCrNiCuV0.1 high entropy alloy matrix composites. Mater. Lett. 257, 126729 (2019).

    Article  CAS  Google Scholar 

  90. Sure, J., Vishnu, D. S. M. & Schwandt, C. Direct electrochemical synthesis of high-entropy alloys from metal oxides. Appl. Mater. Today 9, 111–121 (2017).

    Article  Google Scholar 

  91. Soare, V. et al. Electrochemical deposition and microstructural characterization of AlCrFeMnNi and AlCrCuFeMnNi high entropy alloy thin films. Appl. Surf. Sci. 358, 533–539 (2015).

    Article  CAS  Google Scholar 

  92. Yu, H.-D., Regulacio, M. D., Ye, E. & Han, M.-Y. Chemical routes to top-down nanofabrication. Chem. Soc. Rev. 42, 6006–6018 (2013).

    Article  CAS  PubMed  Google Scholar 

  93. Benjamin, J. S. Dispersion strengthened superalloys by mechanical alloying. Metall. Trans. 1, 2943–2951 (1970).

    Article  CAS  Google Scholar 

  94. Zhang, D. L. Processing of advanced materials using high-energy mechanical milling. Prog. Mater. Sci. 49, 537–560 (2004).

    Article  CAS  Google Scholar 

  95. Murty, B. S. & Ranganathan, S. Novel materials synthesis by mechanical alloying/milling. Int. Mater. Rev. 43, 101–141 (1998).

    Article  CAS  Google Scholar 

  96. Zhang, R.-Z., Gucci, F., Zhu, H., Chen, K. & Reece, M. J. Data-driven design of ecofriendly thermoelectric high-entropy sulfides. Inorg. Chem. 57, 13027–13033 (2018).

    Article  CAS  PubMed  Google Scholar 

  97. Wu, S., Pan, Y., Wang, N., Lu, T. & Dai, W. Azo dye degradation behavior of AlFeMnTiM (M = Cr, Co, Ni) high-entropy alloys. Int. J. Miner. Metall. Mater. 26, 124–132 (2019).

    Article  CAS  Google Scholar 

  98. Rekha, M. Y., Mallik, N. & Srivastava, C. First report on high entropy alloy nanoparticle decorated graphene. Sci. Rep. 8, 8737 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Varalakshmi, S., Kamaraj, M. & Murty, B. S. Synthesis and characterization of nanocrystalline AlFeTiCrZnCu high entropy solid solution by mechanical alloying. J. Alloys Compd. 460, 253–257 (2008).

    Article  CAS  Google Scholar 

  100. Zeng, Y. et al. Electrochemical dealloying with simultaneous phase separation. Acta Mater. 171, 8–17 (2019).

    Article  CAS  Google Scholar 

  101. Yao, R.-Q. et al. Nanoporous surface high-entropy alloys as highly efficient multisite electrocatalysts for nonacidic hydrogen evolution reaction. Adv. Funct. Mater. 31, 2009613 (2021).

    Article  CAS  Google Scholar 

  102. Erlebacher, J., Aziz, M. J., Karma, A., Dimitrov, N. & Sieradzki, K. Evolution of nanoporosity in dealloying. Nature 410, 450–453 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Qiu, H.-J. et al. Nanoporous high-entropy alloys for highly stable and efficient catalysts. J. Mater. Chem. A 7, 6499–6506 (2019).

    Article  CAS  Google Scholar 

  104. Jin, Z. et al. Nanoporous Al-Ni-Co-Ir-Mo high-entropy alloy for record-high water splitting activity in acidic environments. Small 15, 1904180 (2019).

    Article  CAS  Google Scholar 

  105. Yu, T. et al. Twelve-component free-standing nanoporous high-entropy alloys for multifunctional electrocatalysis. ACS Mater. Lett. 4, 181–189 (2022).

    Article  CAS  Google Scholar 

  106. Jia, Z. et al. A self-supported high-entropy metallic glass with a nanosponge architecture for efficient hydrogen evolution under alkaline and acidic conditions. Adv. Funct. Mater. 31, 2101586 (2021).

    Article  CAS  Google Scholar 

  107. Lung, J.-K. et al. Preparation of gold nanoparticles by arc discharge in water. J. Alloys Compd. 434–435, 655–658 (2007).

    Article  Google Scholar 

  108. Wu, Q. et al. High entropy alloys: from bulk metallic materials to nanoparticles. Metall. Mater. Trans. A 49, 4986–4990 (2018).

    Article  CAS  Google Scholar 

  109. Feng, J. et al. Unconventional alloys confined in nanoparticles: building blocks for new matter. Matter 3, 1646–1663 (2020).

    Article  Google Scholar 

  110. Mao, A. et al. Plasma arc discharge synthesis of multicomponent Co-Cr-Cu-Fe-Ni nanoparticles. J. Alloys Compd. 775, 1177–1183 (2019).

    Article  CAS  Google Scholar 

  111. Yan, Z. & Chrisey, D. B. Pulsed laser ablation in liquid for micro-/nanostructure generation. J. Photochem. Photobiol. C Photochem. Rev. 13, 204–223 (2012).

    Article  CAS  Google Scholar 

  112. Waag, F. et al. Kinetically-controlled laser-synthesis of colloidal high-entropy alloy nanoparticles. RSC Adv. 9, 18547–18558 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Fritze, S. et al. Influence of deposition temperature on the phase evolution of HfNbTiVZr high-entropy thin films. Materials 12, 587 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Zhang, Y., Yan, X.-H., Liao, W.-B. & Zhao, K. Effects of nitrogen content on the structure and mechanical properties of (Al0.5CrFeNiTi0.25)Nx high-entropy films by reactive sputtering. Entropy 20, 624 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Tsai, C. F., Wu, P.-W., Lin, P., Chao, C. G. & Yeh, K. Y. Sputter deposition of multi-element nanoparticles as electrocatalysts for methanol oxidation. Jpn J. Appl. Phys. 47, 5755–5761 (2008).

    Article  CAS  Google Scholar 

  116. Li, S.-Y. et al. Sputter-deposited high entropy alloy thin film electrocatalyst for enhanced oxygen evolution reaction performance. Small 18, 2106127 (2022).

    Article  CAS  Google Scholar 

  117. Xin, Y. et al. High-entropy alloys as a platform for catalysis: progress, challenges, and opportunities. ACS Catal. 10, 11280–11306 (2020).

    Article  CAS  Google Scholar 

  118. Raabe, D., Li, Z. & Ponge, D. Metastability alloy design. MRS Bull. 44, 266–272 (2019).

    Article  CAS  Google Scholar 

  119. Oehring, M., Yan, Z. H., Klassen, T. & Bormann, R. Competition between stable and metastable phases during mechanical alloying and ball milling. Phys. Stat. Sol. A 131, 671–689 (1992).

    Article  CAS  Google Scholar 

  120. Lacey, S. D. et al. Stable multimetallic nanoparticles for oxygen electrocatalysis. Nano Lett. 19, 5149–5158 (2019).

    Article  CAS  PubMed  Google Scholar 

  121. Zhang, C., Oliaee, S. N., Hwang, S. Y., Kong, X. & Peng, Z. A generic wet impregnation method for preparing substrate-supported platinum group metal and alloy nanoparticles with controlled particle morphology. Nano Lett. 16, 164–169 (2016).

    Article  CAS  PubMed  Google Scholar 

  122. Cui, M. et al. Multi-principal elemental intermetallic nanoparticles synthesized via a disorder-to-order transition. Sci. Adv. 8, eabm4322 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Ahn, J. et al. Rapid Joule heating synthesis of oxide-socketed high-entropy alloy nanoparticles as CO2 conversion catalysts. ACS Nano 17, 12188–12199 (2023).

    Article  CAS  PubMed  Google Scholar 

  124. Cui, X. et al. Rapid high-temperature liquid shock synthesis of high-entropy alloys for hydrogen evolution reaction. ACS Nano 18, 2948–2957 (2024).

    Article  CAS  PubMed  Google Scholar 

  125. Cha, J.-H. et al. Flash-thermal shock synthesis of high-entropy alloys toward high-performance water splitting. Adv. Mater. 35, 2305222 (2023).

    Article  CAS  Google Scholar 

  126. Liu, Y., Tian, X., Han, Y.-C., Chen, Y. & Hu, W. High-temperature shock synthesis of high-entropy-alloy nanoparticles for catalysis. Chin. J. Catal. 48, 66–89 (2023).

    Article  CAS  Google Scholar 

  127. Yang, Y. et al. Aerosol synthesis of high entropy alloy nanoparticles. Langmuir 36, 1985–1992 (2020).

    Article  CAS  PubMed  Google Scholar 

  128. Didenko, Y. T. & Suslick, K. S. Chemical aerosol flow synthesis of semiconductor nanoparticles. J. Am. Chem. Soc. 127, 12196–12197 (2005).

    Article  CAS  PubMed  Google Scholar 

  129. Motl, N. E., Mann, A. K. P. & Skrabalak, S. E. Aerosol-assisted synthesis and assembly of nanoscale building blocks. J. Mater. Chem. A 1, 5193–5202 (2013).

    Article  CAS  Google Scholar 

  130. Suslick, K. S. & Price, G. J. Applications of ultrasound to materials chemistry. Annu. Rev. Mater. Sci. 29, 295–326 (1999).

    Article  CAS  Google Scholar 

  131. Liu, M. et al. Entropy-maximized synthesis of multimetallic nanoparticle catalysts via a ultrasonication-assisted wet chemistry method under ambient conditions. Adv. Mater. Interfaces 6, 1900015 (2019).

    Article  CAS  Google Scholar 

  132. Rybakov, K. I., Olevsky, E. A. & Krikun, E. V. Microwave sintering: fundamentals and modeling. J. Am. Ceram. Soc. 96, 1003–1020 (2013).

    Article  CAS  Google Scholar 

  133. Roy, R., Agrawal, D., Cheng, J. & Gedevanishvili, S. Full sintering of powdered-metal bodies in a microwave field. Nature 399, 668–670 (1999).

    Article  CAS  Google Scholar 

  134. Qiao, H. et al. Scalable synthesis of high entropy alloy nanoparticles by microwave heating. ACS Nano 15, 14928–14937 (2021).

    Article  CAS  PubMed  Google Scholar 

  135. Kunal, P. et al. Continuous flow synthesis of Rh and RhAg alloy nanoparticle catalysts enables scalable production and improved morphological control. Chem. Mater. 29, 4341–4350 (2017).

    Article  CAS  Google Scholar 

  136. Tang, J., Xu, J. L., Ye, Z. G., Li, X. B. & Luo, J. M. Microwave sintered porous CoCrFeNiMo high entropy alloy as an efficient electrocatalyst for alkaline oxygen evolution reaction. J. Mater. Sci. Technol. 79, 171–177 (2021).

    Article  CAS  Google Scholar 

  137. Mallik, A. & Ray, B. C. Evolution of principle and practice of electrodeposited thin film: a review on effect of temperature and sonication. Int. J. Electrochem. 2011, e568023 (2011).

    Article  Google Scholar 

  138. Glasscott, M. W. et al. Electrosynthesis of high-entropy metallic glass nanoparticles for designer, multi-functional electrocatalysis. Nat. Commun. 10, 2650 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Chang, S.-Q., Cheng, C.-C., Cheng, P.-Y., Huang, C.-L. & Lu, S.-Y. Pulse electrodeposited FeCoNiMnW high entropy alloys as efficient and stable bifunctional electrocatalysts for acidic water splitting. Chem. Eng. J. 446, 137452 (2022).

    Article  CAS  Google Scholar 

  140. Yao, C.-Z. et al. Electrochemical preparation and magnetic study of Bi–Fe–Co–Ni–Mn high entropy alloy. Electrochim. Acta 53, 8359–8365 (2008).

    Article  CAS  Google Scholar 

  141. Zhu, H. et al. A high-entropy atomic environment converts inactive to active sites for electrocatalysis. Energy Environ. Sci. 16, 619–628 (2023).

    Article  CAS  Google Scholar 

  142. Yao, Y. et al. High entropy alloy nanoparticles encapsulated in graphitised hollow carbon tubes for oxygen reduction electrocatalysis. Dalton Trans. 52, 4142–4151 (2023).

    Article  CAS  PubMed  Google Scholar 

  143. Wang, D. et al. Tailoring lattice strain in ultra-fine high-entropy alloys for active and stable methanol oxidation. Sci. China Mater. 64, 2454–2466 (2021).

    Article  CAS  Google Scholar 

  144. Vasquez, Y., Henkes, A. E., Chris Bauer, J. & Schaak, R. E. Nanocrystal conversion chemistry: a unified and materials-general strategy for the template-based synthesis of nanocrystalline solids. J. Solid State Chem. 181, 1509–1523 (2008).

    Article  CAS  Google Scholar 

  145. Wang, Y. et al. Ordering-dependent hydrogen evolution and oxygen reduction electrocatalysis of high-entropy intermetallic Pt4FeCoCuNi. Adv. Mater. 35, 2302067 (2023).

    Article  CAS  Google Scholar 

  146. Gao, S. et al. Synthesis of high-entropy alloy nanoparticles on supports by the fast moving bed pyrolysis. Nat. Commun. 11, 2016 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Wong, A., Liu, Q., Griffin, S., Nicholls, A. & Regalbuto, J. R. Synthesis of ultrasmall, homogeneously alloyed, bimetallic nanoparticles on silica supports. Science 358, 1427–1430 (2017).

    Article  CAS  PubMed  Google Scholar 

  148. Demazeau, G. Solvothermal reactions: an original route for the synthesis of novel materials. J. Mater. Sci. 43, 2104–2114 (2008).

    Article  CAS  Google Scholar 

  149. Lai, J., Niu, W., Luque, R. & Xu, G. Solvothermal synthesis of metal nanocrystals and their applications. Nano Today 10, 240–267 (2015).

    Article  CAS  Google Scholar 

  150. Huo, Y., Xiu, S., Meng, L.-Y. & Quan, B. Solvothermal synthesis and applications of micro/nano carbons: a review. Chem. Eng. J. 451, 138572 (2023).

    Article  CAS  Google Scholar 

  151. Bondesgaard, M., Broge, N. L. N., Mamakhel, A., Bremholm, M. & Iversen, B. B. General solvothermal synthesis method for complete solubility range bimetallic and high-entropy alloy nanocatalysts. Adv. Funct. Mater. 29, 1905933 (2019).

    Article  CAS  Google Scholar 

  152. Broge, N. L. N., Bondesgaard, M., Søndergaard-Pedersen, F., Roelsgaard, M. & Iversen, B. B. Autocatalytic formation of high-entropy alloy nanoparticles. Angew. Chem. Int. Ed. 59, 21920–21924 (2020).

    Article  CAS  Google Scholar 

  153. Broge, N. L. N., Bertelsen, A. D., Søndergaard-Pedersen, F. & Iversen, B. B. Facile solvothermal synthesis of Pt–Ir–Pd–Rh–Ru–Cu–Ni–Co high-entropy alloy nanoparticles. Chem. Mater. 35, 144–153 (2023).

    Article  CAS  Google Scholar 

  154. Mei, Y. et al. High-entropy alloy with Mo-coordination as efficient electrocatalyst for oxygen evolution reaction. ACS Catal. 12, 10808–10817 (2022).

    Article  CAS  Google Scholar 

  155. Zhang, Z. et al. Off-equilibrium hydrothermal synthesis of high-entropy alloy nanoparticles. J. Am. Chem. Soc. 147, 9640–9652 (2025).

    Article  CAS  PubMed  Google Scholar 

  156. Zuo, X. et al. A hollow PdCuMoNiCo high-entropy alloy as an efficient bi-functional electrocatalyst for oxygen reduction and formic acid oxidation. J. Mater. Chem. A 10, 14857–14865 (2022).

    Article  CAS  Google Scholar 

  157. Bondesgaard, M. et al. Supercritical flow synthesis of Pt1–xRux nanoparticles: comparative phase diagram study of nanostructure versus bulk. Chem. Mater. 29, 3265–3273 (2017).

    Article  CAS  Google Scholar 

  158. Kusada, K. et al. Nonequilibrium flow-synthesis of solid-solution alloy nanoparticles: from immiscible binary to high-entropy alloys. J. Phys. Chem. C 125, 458–463 (2021).

    Article  CAS  Google Scholar 

  159. Darr, J. A., Zhang, J., Makwana, N. M. & Weng, X. Continuous hydrothermal synthesis of inorganic nanoparticles: applications and future directions. Chem. Rev. 117, 11125–11238 (2017).

    Article  CAS  PubMed  Google Scholar 

  160. Rodrigues, T. S. et al. Synthesis of colloidal metal nanocrystals: a comprehensive review on the reductants. Chem. Eur. J. 24, 16944–16963 (2018).

    Article  CAS  PubMed  Google Scholar 

  161. Pu, Y., Cai, F., Wang, D., Wang, J.-X. & Chen, J.-F. Colloidal synthesis of semiconductor quantum dots toward large-scale production: a review. Ind. Eng. Chem. Res. 57, 1790–1802 (2018).

    Article  CAS  Google Scholar 

  162. Landfester, K. Synthesis of colloidal particles in miniemulsions. Annu. Rev. Mater. Res. 36, 231–279 (2006).

    Article  CAS  Google Scholar 

  163. Wu, C.-Y. et al. A catalyst family of high-entropy alloy atomic layers with square atomic arrangements comprising iron- and platinum-group metals. Sci. Adv. 10, eadl3693 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Wang, C. et al. Facet-controlled synthesis of platinum-group-metal quaternary alloys: the case of nanocubes and {100} facets. J. Am. Chem. Soc. 145, 2553–2560 (2023).

    Article  CAS  PubMed  Google Scholar 

  165. Wu, D. et al. Platinum-group-metal high-entropy-alloy nanoparticles. J. Am. Chem. Soc. 142, 13833–13838 (2020).

    Article  CAS  PubMed  Google Scholar 

  166. Liu, Y.-H. et al. Toward controllable and predictable synthesis of high-entropy alloy nanocrystals. Sci. Adv. 9, eadf9931 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Wang, C., He, J. & Xia, Y. Controlling the composition and elemental distribution of bi- and multi-metallic nanocrystals via dropwise addition. Nat. Synth. 3, 1076–1082 (2024).

    Article  CAS  Google Scholar 

  168. Zhan, C. et al. Subnanometer high-entropy alloy nanowires enable remarkable hydrogen oxidation catalysis. Nat. Commun. 12, 6261 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Mathiesen, J. K. et al. Why colloidal syntheses of bimetallic nanoparticles cannot be generalized. ACS Nano 18, 26937–26947 (2024).

    Article  CAS  PubMed  Google Scholar 

  170. Chen, Y. et al. Synthesis of monodisperse high entropy alloy nanocatalysts from core@shell nanoparticles. Nanoscale Horiz. 6, 231–237 (2021).

    Article  CAS  PubMed  Google Scholar 

  171. Bueno, S. L. A. et al. Quinary, senary, and septenary high entropy alloy nanoparticle catalysts from core@shell nanoparticles and the significance of intraparticle heterogeneity. ACS Nano 16, 18873–18885 (2022).

    Article  CAS  PubMed  Google Scholar 

  172. Wang, Y. et al. Synthesis of high-entropy alloy nanoparticles by step-alloying strategy as superior multifunctional electrocatalyst. Adv. Mater. 35, 2302499 (2023).

    Article  CAS  Google Scholar 

  173. Kar, N., Leonardi, A., McCoy, M., Selvaraj, R. & Skrabalak, S. E. A programmable nanoparticle conversion pathway to monodisperse polyelemental high entropy alloy, intermetallic, and multiphase nanoparticles. Angew. Chem. Int. Ed. 64, e202505523 (2025) .

    Article  CAS  Google Scholar 

  174. Feng, G. et al. Engineering structurally ordered high-entropy intermetallic nanoparticles with high-activity facets for oxygen reduction in practical fuel cells. J. Am. Chem. Soc. 145, 11140–11150 (2023).

    Article  CAS  PubMed  Google Scholar 

  175. Kar, N. et al. Reaction stoichiometry directs the architecture of trimetallic nanostructures produced via galvanic replacement. Nanoscale 15, 3749–3756 (2023).

    Article  CAS  PubMed  Google Scholar 

  176. Xia, X., Wang, Y., Ruditskiy, A. & Xia, Y. 25th anniversary article: galvanic replacement: a simple and versatile route to hollow nanostructures with tunable and well-controlled properties. Adv. Mater. 25, 6313–6333 (2013).

    Article  CAS  PubMed  Google Scholar 

  177. Tao, L. et al. A general synthetic method for high-entropy alloy subnanometer ribbons. J. Am. Chem. Soc. 144, 10582–10590 (2022).

    Article  CAS  PubMed  Google Scholar 

  178. Li, M. et al. Programmable synthesis of high-entropy nanoalloys for efficient ethanol oxidation reaction. ACS Nano 17, 13659–13671 (2023).

    Article  CAS  PubMed  Google Scholar 

  179. Zheng, S. et al. Ultrathin template approach to synthesize high-entropy intermetallic nanoparticles for hydrogen evolution reaction. Small Struct. 5, 2300537 (2024).

    Article  CAS  Google Scholar 

  180. Garlyyev, B. et al. Revealing the nature of active sites in electrocatalysis. Chem. Sci. 10, 8060–8075 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Somorjai, G. A., McCrea, K. R. & Zhu, J. Active sites in heterogeneous catalysis: development of molecular concepts and future challenges. Top. Catal. 18, 157–166 (2002).

    Article  CAS  Google Scholar 

  182. Somorjai, G. A. in Advances in Catalysis Vol. 26 (eds Eley, D. D., Pines, H. & Weisz, P. B.) 1–68 (Academic Press, 1977).

  183. Hsiao, Y.-C. et al. A library of seed@high-entropy-alloy core–shell nanocrystals with controlled facets for catalysis. Adv. Mater. 37, 2411464 (2025).

    Article  CAS  Google Scholar 

  184. Long, M. et al. IrPdCuFeNiCoMo based core–shell icosahedron nanocrystals and nanocages for efficient and robust acidic oxygen evolution. Angew. Chem. Int. Ed. 137, e202419956 (2025).

    Article  Google Scholar 

  185. Ming, T. et al. Growth of tetrahexahedral gold nanocrystals with high-index facets. J. Am. Chem. Soc. 131, 16350–16351 (2009).

    Article  CAS  PubMed  Google Scholar 

  186. Yu, Y., Zhang, Q., Lu, X. & Lee, J. Y. Seed-mediated synthesis of monodisperse concave trisoctahedral gold nanocrystals with controllable sizes. J. Phys. Chem. C 114, 11119–11126 (2010).

    Article  CAS  Google Scholar 

  187. Zhan, C. et al. Medium/high-entropy amalgamated core/shell nanoplate achieves efficient formic acid catalysis for direct formic acid fuel cell. Angew. Chem. Int. Ed. 135, e202213783 (2023).

    Article  Google Scholar 

  188. Anderson, B. D. & Tracy, J. B. Nanoparticle conversion chemistry: Kirkendall effect, galvanic exchange, and anion exchange. Nanoscale 6, 12195–12216 (2014).

    Article  CAS  PubMed  Google Scholar 

  189. Li, X. et al. A radical-assisted approach to high-entropy alloy nanoparticle electrocatalysts under ambient conditions. ACS Nano 19, 7851–7863 (2025).

    Article  CAS  PubMed  Google Scholar 

  190. Veglak, J. M., Tsai, A., Soliman, S. S., Dey, G. R. & Schaak, R. E. Disentangling competitive and synergistic chemical reactivities during the seeded growth of high-entropy alloys on high-entropy metal sulfide nanoparticles. J. Am. Chem. Soc. 146, 19521–19536 (2024).

    Article  CAS  PubMed  Google Scholar 

  191. Jin, Z. et al. A fourteen-component high-entropy alloy@oxide bifunctional electrocatalyst with a record-low ΔE of 0.61 V for highly reversible Zn–air batteries. Chem. Sci. 13, 12056–12064 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Kar, N. & Skrabalak, S. E. High-entropy alloy nanoparticles through retrosynthetic design. Nat. Synth. 3, 156–157 (2024).

    Google Scholar 

  193. Yan, J. et al. Anomalous size effect on yield strength enabled by compositional heterogeneity in high-entropy alloy nanoparticles. Nat. Commun. 13, 2789 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Moniri, S. et al. Three-dimensional atomic structure and local chemical order of medium- and high-entropy nanoalloys. Nature 624, 564–569 (2023).

    Article  CAS  PubMed  Google Scholar 

  195. Song, B. et al. In situ oxidation studies of high-entropy alloy nanoparticles. ACS Nano 14, 15131–15143 (2020).

    Article  CAS  PubMed  Google Scholar 

  196. Song, B. et al. Revealing high-temperature reduction dynamics of high-entropy alloy nanoparticles via in situ transmission electron microscopy. Nano Lett. 21, 1742–1748 (2021).

    Article  CAS  PubMed  Google Scholar 

  197. Huang, Y. et al. Unraveling reactivity origin of oxygen reduction at high-entropy alloy electrocatalysts with a computational and data-driven approach. J. Phys. Chem. C 128, 11183–11189 (2024).

    Article  CAS  Google Scholar 

  198. Lu, Z., Chen, Z. W. & Singh, C. V. Neural network-assisted development of high-entropy alloy catalysts: decoupling ligand and coordination effects. Matter 3, 1318–1333 (2020).

    Article  Google Scholar 

  199. Aykol, M., Herring, P. & Anapolsky, A. Machine learning for continuous innovation in battery technologies. Nat. Rev. Mater. 5, 725–727 (2020).

    Article  Google Scholar 

  200. Attia, P. M. et al. Closed-loop optimization of fast-charging protocols for batteries with machine learning. Nature 578, 397–402 (2020).

    Article  CAS  PubMed  Google Scholar 

  201. Senkov, O. N., Miller, J. D., Miracle, D. B. & Woodward, C. Accelerated exploration of multi-principal element alloys with solid solution phases. Nat. Commun. 6, 6529 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This article is supported by a US National Science Foundation grant NSF CHE 2203349.

Author information

Authors and Affiliations

Authors

Contributions

N.K. conducted the literature search and prepared the first draft, with S.E.S. providing feedback and revision support.

Corresponding author

Correspondence to Sara E. Skrabalak.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Tung-Han Yang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kar, N., Skrabalak, S.E. Synthetic methods for high-entropy nanomaterials. Nat Rev Mater 10, 638–653 (2025). https://doi.org/10.1038/s41578-025-00829-8

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41578-025-00829-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing