Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Respiratory syncytial virus entry and how to block it

Abstract

Respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract disease in young children and elderly people. Although the virus was isolated in 1955, an effective RSV vaccine has not been developed, and the only licensed intervention is passive immunoprophylaxis of high-risk infants with a humanized monoclonal antibody. During the past 5 years, however, there has been substantial progress in our understanding of the structure and function of the RSV glycoproteins and their interactions with host cell factors that mediate entry. This period has coincided with renewed interest in developing effective interventions, including the isolation of potent monoclonal antibodies and small molecules and the design of novel vaccine candidates. In this Review, we summarize the recent findings that have begun to elucidate RSV entry mechanisms, describe progress on the development of new interventions and conclude with a perspective on gaps in our knowledge that require further investigation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Respiratory syncytial virus virion.
Fig. 2: Attachment protein structure.
Fig. 3: Fusion protein structure.
Fig. 4: Attachment and fusion.
Fig. 5: Fusion protein binding sites for antibodies and small molecules.

Similar content being viewed by others

References

  1. Blount, R. E. Jr, Morris, J. A. & Savage, R. E. Recovery of cytopathogenic agent from chimpanzees with coryza. Proc. Soc. Exp. Biol. Med. 92, 544–549 (1956).

    Article  PubMed  Google Scholar 

  2. Chanock, R., Roizman, B. & Myers, R. Recovery from infants with respiratory illness of a virus related to chimpanzee coryza agent (CCA). I. Isolation, properties and characterization. Am. J. Hyg. 66, 281–290 (1957). This study reports the first isolation of RSV from infants.

    CAS  PubMed  Google Scholar 

  3. Chanock, R. & Finberg, L. Recovery from infants with respiratory illness of a virus related to chimpanzee coryza agent (CCA). II. Epidemiologic aspects of infection in infants and young children. Am. J. Hyg. 66, 291–300 (1957).

    CAS  PubMed  Google Scholar 

  4. Glezen, W. P., Taber, L. H., Frank, A. L. & Kasel, J. A. Risk of primary infection and reinfection with respiratory syncytial virus. Am. J. Dis. Child 140, 543–546 (1986).

    CAS  PubMed  Google Scholar 

  5. Shi, T. et al. Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in young children in 2015: a systematic review and modelling study. Lancet 390, 946–958 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Falsey, A. R., Hennessey, P. A., Formica, M. A., Cox, C. & Walsh, E. E. Respiratory syncytial virus infection in elderly and high-risk adults. N. Engl. J. Med. 352, 1749–1759 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. van den Hoogen, B. G. et al. A newly discovered human pneumovirus isolated from young children with respiratory tract disease. Nat. Med. 7, 719–724 (2001). This work describes the first isolation of human metapneumovirus from children.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Panda, S., Mohakud, N. K., Pena, L. & Kumar, S. Human metapneumovirus: review of an important respiratory pathogen. Int. J. Infect. Dis. 25, 45–52 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hall, C. B. Respiratory syncytial virus: its transmission in the hospital environment. Yale J. Biol. Med. 55, 219–223 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Haas, L. E., Thijsen, S. F., van Elden, L. & Heemstra, K. A. Human metapneumovirus in adults. Viruses 5, 87–110 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Grayson, S. A., Griffiths, P. S., Perez, M. K. & Piedimonte, G. Detection of airborne respiratory syncytial virus in a pediatric acute care clinic. Pediatr. Pulmonol. 52, 684–688 (2017).

    Article  PubMed  Google Scholar 

  12. Collins, P. L. & Graham, B. S. Viral and host factors in human respiratory syncytial virus pathogenesis. J. Virol. 82, 2040–2055 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Peebles, R. S. Jr & Graham, B. S. Pathogenesis of respiratory syncytial virus infection in the murine model. Proc. Am. Thorac Soc. 2, 110–115 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kim, H. W. et al. Respiratory syncytial virus disease in infants despite prior administration of antigenic inactivated vaccine. Am. J. Epidemiol. 89, 422–434 (1969).

    Article  CAS  PubMed  Google Scholar 

  15. Kapikian, A. Z., Mitchell, R. H., Chanock, R. M., Shvedoff, R. A. & Stewart, C. E. An epidemiologic study of altered clinical reactivity to respiratory syncytial (RS) virus infection in children previously vaccinated with an inactivated RS virus vaccine. Am. J. Epidemiol. 89, 405–421 (1969).

    Article  CAS  PubMed  Google Scholar 

  16. Fulginiti, V. A. et al. Respiratory virus immunization. I. A field trial of two inactivated respiratory virus vaccines; an aqueous trivalent parainfluenza virus vaccine and an alum-precipitated respiratory syncytial virus vaccine. Am. J. Epidemiol. 89, 435–448 (1969).

    Article  CAS  PubMed  Google Scholar 

  17. Chin, J., Magoffin, R. L., Shearer, L. A., Schieble, J. H. & Lennette, E. H. Field evaluation of a respiratory syncytial virus vaccine and a trivalent parainfluenza virus vaccine in a pediatric population. Am. J. Epidemiol. 89, 449–463 (1969).

    Article  CAS  PubMed  Google Scholar 

  18. Prince, G. A., Curtis, S. J., Yim, K. C. & Porter, D. D. Vaccine-enhanced respiratory syncytial virus disease in cotton rats following immunization with Lot 100 or a newly prepared reference vaccine. J. Gen. Virol. 82, 2881–2888 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Polack, F. P. et al. A role for immune complexes in enhanced respiratory syncytial virus disease. J. Exp. Med. 196, 859–865 (2002). This manuscript demonstrates that vaccine-enhanced disease is mediated by immune complexes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Homaira, N., Rawlinson, W., Snelling, T. L. & Jaffe, A. Effectiveness of palivizumab in preventing RSV hospitalization in high risk children: a real-world perspective. Int. J. Pediatr. 2014, 571609 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Fearns, R. & Collins, P. L. Role of the M2-1 transcription antitermination protein of respiratory syncytial virus in sequential transcription. J. Virol. 73, 5852–5864 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Collins, P. L., Hill, M. G., Cristina, J. & Grosfeld, H. Transcription elongation factor of respiratory syncytial virus, a nonsegmented negative-strand RNA virus. Proc. Natl Acad. Sci. USA 93, 81–85 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bermingham, A. & Collins, P. L. The M2-2 protein of human respiratory syncytial virus is a regulatory factor involved in the balance between RNA replication and transcription. Proc. Natl Acad. Sci. USA 96, 11259–11264 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bitko, V. et al. Nonstructural proteins of respiratory syncytial virus suppress premature apoptosis by an NF-κB-dependent, interferon-independent mechanism and facilitate virus growth. J. Virol. 81, 1786–1795 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Spann, K. M., Tran, K. C. & Collins, P. L. Effects of nonstructural proteins NS1 and NS2 of human respiratory syncytial virus on interferon regulatory factor 3, NF-κB, and proinflammatory cytokines. J. Virol. 79, 5353–5362 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gan, S. W. et al. The small hydrophobic protein of the human respiratory syncytial virus forms pentameric ion channels. J. Biol. Chem. 287, 24671–24689 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fuentes, S., Tran, K. C., Luthra, P., Teng, M. N. & He, B. Function of the respiratory syncytial virus small hydrophobic protein. J. Virol. 81, 8361–8366 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Baviskar, P. S., Hotard, A. L., Moore, M. L. & Oomens, A. G. The respiratory syncytial virus fusion protein targets to the perimeter of inclusion bodies and facilitates filament formation by a cytoplasmic tail-dependent mechanism. J. Virol. 87, 10730–10741 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shaikh, F. Y. et al. A critical phenylalanine residue in the respiratory syncytial virus fusion protein cytoplasmic tail mediates assembly of internal viral proteins into viral filaments and particles. mBio 3, e00270-11 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Oomens, A. G., Bevis, K. P. & Wertz, G. W. The cytoplasmic tail of the human respiratory syncytial virus F protein plays critical roles in cellular localization of the F protein and infectious progeny production. J. Virol. 80, 10465–10477 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Marty, A., Meanger, J., Mills, J., Shields, B. & Ghildyal, R. Association of matrix protein of respiratory syncytial virus with the host cell membrane of infected cells. Arch. Virol. 149, 199–210 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Kiss, G. et al. Structural analysis of respiratory syncytial virus reveals the position of M2-1 between the matrix protein and the ribonucleoprotein complex. J. Virol. 88, 7602–7617 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Tawar, R. G. et al. Crystal structure of a nucleocapsid-like nucleoprotein-RNA complex of respiratory syncytial virus. Science 326, 1279–1283 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Rixon, H. W. et al. The small hydrophobic (SH) protein accumulates within lipid-raft structures of the Golgi complex during respiratory syncytial virus infection. J. Gen. Virol. 85, 1153–1165 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Bukreyev, A., Whitehead, S. S., Murphy, B. R. & Collins, P. L. Recombinant respiratory syncytial virus from which the entire SH gene has been deleted grows efficiently in cell culture and exhibits site-specific attenuation in the respiratory tract of the mouse. J. Virol. 71, 8973–8982 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Levine, S., Klaiber-Franco, R. & Paradiso, P. R. Demonstration that glycoprotein G is the attachment protein of respiratory syncytial virus. J. Gen. Virol. 68, 2521–2524 (1987).

    Article  CAS  PubMed  Google Scholar 

  37. Hendricks, D. A., Baradaran, K., McIntosh, K. & Patterson, J. L. Appearance of a soluble form of the G protein of respiratory syncytial virus in fluids of infected cells. J. Gen. Virol. 68, 1705–1714 (1987).

    Article  CAS  PubMed  Google Scholar 

  38. Wertz, G. W. et al. Nucleotide sequence of the G protein gene of human respiratory syncytial virus reveals an unusual type of viral membrane protein. Proc. Natl Acad. Sci. USA 82, 4075–4079 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Collins, P. L. & Mottet, G. Oligomerization and post-translational processing of glycoprotein G of human respiratory syncytial virus: altered O-glycosylation in the presence of brefeldin A. J. Gen. Virol. 73, 849–863 (1992).

    Article  CAS  PubMed  Google Scholar 

  40. Satake, M., Coligan, J. E., Elango, N., Norrby, E. & Venkatesan, S. Respiratory syncytial virus envelope glycoprotein (G) has a novel structure. Nucleic Acids Res. 13, 7795–7812 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Garcia-Beato, R. et al. Host cell effect upon glycosylation and antigenicity of human respiratory syncytial virus G glycoprotein. Virology 221, 301–309 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Kwilas, S. et al. Respiratory syncytial virus grown in Vero cells contains a truncated attachment protein that alters its infectivity and dependence on glycosaminoglycans. J. Virol. 83, 10710–10718 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Roberts, S. R., Lichtenstein, D., Ball, L. A. & Wertz, G. W. The membrane-associated and secreted forms of the respiratory syncytial virus attachment glycoprotein G are synthesized from alternative initiation codons. J. Virol. 68, 4538–4546 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Hendricks, D. A., McIntosh, K. & Patterson, J. L. Further characterization of the soluble form of the G glycoprotein of respiratory syncytial virus. J. Virol. 62, 2228–2233 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Bukreyev, A., Yang, L. & Collins, P. L. The secreted G protein of human respiratory syncytial virus antagonizes antibody-mediated restriction of replication involving macrophages and complement. J. Virol. 86, 10880–10884 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bukreyev, A. et al. The secreted form of respiratory syncytial virus G glycoprotein helps the virus evade antibody-mediated restriction of replication by acting as an antigen decoy and through effects on Fc receptor-bearing leukocytes. J. Virol. 82, 12191–12204 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gorman, J. J., Ferguson, B. L., Speelman, D. & Mills, J. Determination of the disulfide bond arrangement of human respiratory syncytial virus attachment (G) protein by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Protein Sci. 6, 1308–1315 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Langedijk, J. P., Schaaper, W. M., Meloen, R. H. & van Oirschot, J. T. Proposed three-dimensional model for the attachment protein G of respiratory syncytial virus. J. Gen. Virol. 77, 1249–1257 (1996).

    Article  CAS  PubMed  Google Scholar 

  49. Doreleijers, J. F. et al. Solution structure of the immunodominant region of protein G of bovine respiratory syncytial virus. Biochemistry 35, 14684–14688 (1996). This study determines the first 3D structure of the RSV G cystine noose.

    Article  CAS  PubMed  Google Scholar 

  50. Sugawara, M. et al. Structure-antigenicity relationship studies of the central conserved region of human respiratory syncytial virus protein G. J. Pept. Res. 60, 271–282 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Langedijk, J. P., de Groot, B. L., Berendsen, H. J. & van Oirschot, J. T. Structural homology of the central conserved region of the attachment protein G of respiratory syncytial virus with the fourth subdomain of 55-kDa tumor necrosis factor receptor. Virology 243, 293–302 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Jones, H. G. et al. Structural basis for recognition of the central conserved region of RSV G by neutralizing human antibodies. PLOS Pathog. 14, e1006935 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Fedechkin, S. O., George, N. L., Wolff, J. T., Kauvar, L. M. & DuBois, R. M. Structures of respiratory syncytial virus G antigen bound to broadly neutralizing antibodies. Sci. Immunol. 3, eaar3534 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Pangesti, K. N. A., Abd El Ghany, M., Walsh, M. G., Kesson, A. M. & Hill-Cawthorne, G. A. Molecular epidemiology of respiratory syncytial virus. Rev. Med. Virol. 28, e1968 (2018).

    Article  Google Scholar 

  55. Mufson, M. A., Orvell, C., Rafnar, B. & Norrby, E. Two distinct subtypes of human respiratory syncytial virus. J. Gen. Virol. 66, 2111–2124 (1985).

    Article  CAS  PubMed  Google Scholar 

  56. Anderson, L. J. et al. Antigenic characterization of respiratory syncytial virus strains with monoclonal antibodies. J. Infect. Dis. 151, 626–633 (1985).

    Article  CAS  PubMed  Google Scholar 

  57. Hall, C. B. et al. Occurrence of groups A and B of respiratory syncytial virus over 15 years: associated epidemiologic and clinical characteristics in hospitalized and ambulatory children. J. Infect. Dis. 162, 1283–1290 (1990).

    Article  CAS  PubMed  Google Scholar 

  58. Trento, A. et al. Major changes in the G protein of human respiratory syncytial virus isolates introduced by a duplication of 60 nucleotides. J. Gen. Virol. 84, 3115–3120 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Trento, A. et al. Natural history of human respiratory syncytial virus inferred from phylogenetic analysis of the attachment (G) glycoprotein with a 60-nucleotide duplication. J. Virol. 80, 975–984 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Trento, A. et al. Ten years of global evolution of the human respiratory syncytial virus BA genotype with a 60-nucleotide duplication in the G protein gene. J. Virol. 84, 7500–7512 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Eshaghi, A. et al. Genetic variability of human respiratory syncytial virus A strains circulating in Ontario: a novel genotype with a 72 nucleotide G gene duplication. PLOS ONE 7, e32807 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Duvvuri, V. R. et al. Genetic diversity and evolutionary insights of respiratory syncytial virus A ON1 genotype: global and local transmission dynamics. Sci. Rep. 5, 14268 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hirano, E. et al. Molecular evolution of human respiratory syncytial virus attachment glycoprotein (G) gene of new genotype ON1 and ancestor NA1. Infect. Genet. Evol. 28, 183–191 (2014).

    Article  CAS  PubMed  Google Scholar 

  64. Hotard, A. L., Laikhter, E., Brooks, K., Hartert, T. V. & Moore, M. L. Functional analysis of the 60-nucleotide duplication in the respiratory syncytial virus buenos aires strain attachment glycoprotein. J. Virol. 89, 8258–8266 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Leyrat, C., Paesen, G. C., Charleston, J., Renner, M. & Grimes, J. M. Structural insights into the human metapneumovirus glycoprotein ectodomain. J. Virol. 88, 11611–11616 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Yin, H. S., Wen, X., Paterson, R. G., Lamb, R. A. & Jardetzky, T. S. Structure of the parainfluenza virus 5 F protein in its metastable, prefusion conformation. Nature 439, 38–44 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yin, H. S., Paterson, R. G., Wen, X., Lamb, R. A. & Jardetzky, T. S. Structure of the uncleaved ectodomain of the paramyxovirus (hPIV3) fusion protein. Proc. Natl Acad. Sci. USA 102, 9288–9293 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Collins, P. L., Huang, Y. T. & Wertz, G. W. Nucleotide sequence of the gene encoding the fusion (F) glycoprotein of human respiratory syncytial virus. Proc. Natl Acad. Sci. USA 81, 7683–7687 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zimmer, G., Budz, L. & Herrler, G. Proteolytic activation of respiratory syncytial virus fusion protein. Cleavage at two furin consensus sequences. J. Biol. Chem. 276, 31642–31650 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Gonzalez-Reyes, L. et al. Cleavage of the human respiratory syncytial virus fusion protein at two distinct sites is required for activation of membrane fusion. Proc. Natl Acad. Sci. USA 98, 9859–9864 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bolt, G., Pedersen, L. O. & Birkeslund, H. H. Cleavage of the respiratory syncytial virus fusion protein is required for its surface expression: role of furin. Virus Res. 68, 25–33 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Collins, P. L. & Mottet, G. Post-translational processing and oligomerization of the fusion glycoprotein of human respiratory syncytial virus. J. Gen. Virol. 72, 3095–3101 (1991).

    Article  CAS  PubMed  Google Scholar 

  73. Day, N. D. et al. Contribution of cysteine residues in the extracellular domain of the F protein of human respiratory syncytial virus to its function. Virol. J. 3, 34 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Gilman, M. S. et al. Characterization of a prefusion-specific antibody that recognizes a quaternary, cleavage-dependent epitope on the RSV fusion glycoprotein. PLOS Pathog. 11, e1005035 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Krarup, A. et al. A highly stable prefusion RSV F vaccine derived from structural analysis of the fusion mechanism. Nat. Commun. 6, 8143 (2015).

    Article  PubMed  Google Scholar 

  76. McLellan, J. S. et al. Structure of RSV fusion glycoprotein trimer bound to a prefusion-specific neutralizing antibody. Science 340, 1113–1117 (2013). This work provides the first 3D structure of the prefusion conformation of RSV F and defines a major antigenic site recognized by prefusion-specific antibodies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Liljeroos, L., Krzyzaniak, M. A., Helenius, A. & Butcher, S. J. Architecture of respiratory syncytial virus revealed by electron cryotomography. Proc. Natl Acad. Sci. USA 110, 11133–11138 (2013). This manuscript reveals the organization and morphology of RSV virions by cryo-electron tomography.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Killikelly, A. M., Kanekiyo, M. & Graham, B. S. Pre-fusion F is absent on the surface of formalin-inactivated respiratory syncytial virus. Sci. Rep. 6, 34108 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kim, Y. H. et al. Capture and imaging of a prehairpin fusion intermediate of the paramyxovirus PIV5. Proc. Natl Acad. Sci. USA 108, 20992–20997 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhao, X., Singh, M., Malashkevich, V. N. & Kim, P. S. Structural characterization of the human respiratory syncytial virus fusion protein core. Proc. Natl Acad. Sci. USA 97, 14172–14177 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. McLellan, J. S., Yang, Y., Graham, B. S. & Kwong, P. D. Structure of respiratory syncytial virus fusion glycoprotein in the postfusion conformation reveals preservation of neutralizing epitopes. J. Virol. 85, 7788–7796 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Swanson, K. A. et al. Structural basis for immunization with postfusion respiratory syncytial virus fusion F glycoprotein (RSV F) to elicit high neutralizing antibody titers. Proc. Natl Acad. Sci. USA 108, 9619–9624 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Johnson, J. E., Gonzales, R. A., Olson, S. J., Wright, P. F. & Graham, B. S. The histopathology of fatal untreated human respiratory syncytial virus infection. Mod. Pathol. 20, 108–119 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Xu, L. et al. A fatal case associated with respiratory syncytial virus infection in a young child. BMC Infect. Dis. 18, 217 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Pitkaranta, A., Virolainen, A., Jero, J., Arruda, E. & Hayden, F. G. Detection of rhinovirus, respiratory syncytial virus, and coronavirus infections in acute otitis media by reverse transcriptase polymerase chain reaction. Pediatrics 102, 291–295 (1998).

    Article  CAS  PubMed  Google Scholar 

  86. Rohwedder, A. et al. Detection of respiratory syncytial virus RNA in blood of neonates by polymerase chain reaction. J. Med. Virol. 54, 320–327 (1998).

    Article  CAS  PubMed  Google Scholar 

  87. Escribano-Romero, E., Rawling, J., Garcia-Barreno, B. & Melero, J. A. The soluble form of human respiratory syncytial virus attachment protein differs from the membrane-bound form in its oligomeric state but is still capable of binding to cell surface proteoglycans. J. Virol. 78, 3524–3532 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Krusat, T. & Streckert, H. J. Heparin-dependent attachment of respiratory syncytial virus (RSV) to host cells. Arch. Virol. 142, 1247–1254 (1997).

    Article  CAS  PubMed  Google Scholar 

  89. Feldman, S. A., Hendry, R. M. & Beeler, J. A. Identification of a linear heparin binding domain for human respiratory syncytial virus attachment glycoprotein G. J. Virol. 73, 6610–6617 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Hallak, L. K., Spillmann, D., Collins, P. L. & Peeples, M. E. Glycosaminoglycan sulfation requirements for respiratory syncytial virus infection. J. Virol. 74, 10508–10513 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Martinez, I. & Melero, J. A. Binding of human respiratory syncytial virus to cells: implication of sulfated cell surface proteoglycans. J. Gen. Virol. 81, 2715–2722 (2000).

    Article  CAS  PubMed  Google Scholar 

  92. Hallak, L. K., Collins, P. L., Knudson, W. & Peeples, M. E. Iduronic acid-containing glycosaminoglycans on target cells are required for efficient respiratory syncytial virus infection. Virology 271, 264–275 (2000).

    Article  CAS  PubMed  Google Scholar 

  93. Chirkova, T. et al. CX3CR1 is an important surface molecule for respiratory syncytial virus infection in human airway epithelial cells. J. Gen. Virol. 96, 2543–2556 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhang, L. et al. Infection of ciliated cells by human parainfluenza virus type 3 in an in vitro model of human airway epithelium. J. Virol. 79, 1113–1124 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhang, L., Peeples, M. E., Boucher, R. C., Collins, P. L. & Pickles, R. J. Respiratory syncytial virus infection of human airway epithelial cells is polarized, specific to ciliated cells, and without obvious cytopathology. J. Virol. 76, 5654–5666 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Johnson, S. M. et al. Respiratory syncytial virus uses CX3CR1 as a receptor on primary human airway epithelial cultures. PLOS Pathog. 11, e1005318 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Tripp, R. A. et al. CX3C chemokine mimicry by respiratory syncytial virus G glycoprotein. Nat. Immunol. 2, 732–738 (2001). This study identifies the CX 3 C motif in RSV G and demonstrates that CX 3 CR1 facilitates RSV entry.

    Article  CAS  PubMed  Google Scholar 

  98. Bazan, J. F. et al. A new class of membrane-bound chemokine with a CX3C motif. Nature 385, 640–644 (1997).

    Article  CAS  PubMed  Google Scholar 

  99. Jeong, K. I. et al. CX3CR1 is expressed in differentiated human ciliated airway cells and co-localizes with respiratory syncytial virus on cilia in a G protein-dependent manner. PLOS ONE 10, e0130517 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Karron, R. A. et al. Respiratory syncytial virus (RSV) SH and G proteins are not essential for viral replication in vitro: clinical evaluation and molecular characterization of a cold-passaged, attenuated RSV subgroup B mutant. Proc. Natl Acad. Sci. USA 94, 13961–13966 (1997). This work demonstrates that infectious RSV requires only the F protein on its surface.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Techaarpornkul, S., Barretto, N. & Peeples, M. E. Functional analysis of recombinant respiratory syncytial virus deletion mutants lacking the small hydrophobic and/or attachment glycoprotein gene. J. Virol. 75, 6825–6834 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Feldman, S. A., Audet, S. & Beeler, J. A. The fusion glycoprotein of human respiratory syncytial virus facilitates virus attachment and infectivity via an interaction with cellular heparan sulfate. J. Virol. 74, 6442–6447 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Behera, A. K. et al. Blocking intercellular adhesion molecule-1 on human epithelial cells decreases respiratory syncytial virus infection. Biochem. Biophys. Res. Commun. 280, 188–195 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Currier, M. G. et al. EGFR interacts with the fusion protein of respiratory syncytial virus strain 2–20 and mediates infection and mucin expression. PLOS Pathog. 12, e1005622 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Tayyari, F. et al. Identification of nucleolin as a cellular receptor for human respiratory syncytial virus. Nat. Med. 17, 1132–1135 (2011). This manuscript identifies nucleolin as a host cell factor that interacts with the F protein and facilitates RSV entry.

    Article  CAS  PubMed  Google Scholar 

  106. Bose, S., Basu, M. & Banerjee, A. K. Role of nucleolin in human parainfluenza virus type 3 infection of human lung epithelial cells. J. Virol. 78, 8146–8158 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Su, P. Y. et al. Cell surface nucleolin facilitates enterovirus 71 binding and infection. J. Virol. 89, 4527–4538 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Xiao, X., Feng, Y., Zhu, Z. & Dimitrov, D. S. Identification of a putative Crimean-Congo hemorrhagic fever virus entry factor. Biochem. Biophys. Res. Commun. 411, 253–258 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Qiu, J. & Brown, K. E. A. 110-kDa nuclear shuttle protein, nucleolin, specifically binds to adeno-associated virus type 2 (AAV-2) capsid. Virology 257, 373–382 (1999).

    Article  CAS  PubMed  Google Scholar 

  110. Callebaut, C. et al. Identification of V3 loop-binding proteins as potential receptors implicated in the binding of HIV particles to CD4+ cells. J. Biol. Chem. 273, 21988–21997 (1998).

    Article  CAS  PubMed  Google Scholar 

  111. Srinivasakumar, N., Ogra, P. L. & Flanagan, T. D. Characteristics of fusion of respiratory syncytial virus with HEp-2 cells as measured by R18 fluorescence dequenching assay. J. Virol. 65, 4063–4069 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Kahn, J. S., Schnell, M. J., Buonocore, L. & Rose, J. K. Recombinant vesicular stomatitis virus expressing respiratory syncytial virus (RSV) glycoproteins: RSV fusion protein can mediate infection and cell fusion. Virology 254, 81–91 (1999).

    Article  CAS  PubMed  Google Scholar 

  113. White, J. M. & Whittaker, G. R. Fusion of enveloped viruses in endosomes. Traffic 17, 593–614 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. San-Juan-Vergara, H. et al. Cholesterol-rich microdomains as docking platforms for respiratory syncytial virus in normal human bronchial epithelial cells. J. Virol. 86, 1832–1843 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Krzyzaniak, M. A., Zumstein, M. T., Gerez, J. A., Picotti, P. & Helenius, A. Host cell entry of respiratory syncytial virus involves macropinocytosis followed by proteolytic activation of the F protein. PLOS Pathog. 9, e1003309 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Schlender, J., Zimmer, G., Herrler, G. & Conzelmann, K. K. Respiratory syncytial virus (RSV) fusion protein subunit F2, not attachment protein G, determines the specificity of RSV infection. J. Virol. 77, 4609–4616 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Yuan, P. et al. Structural studies of the parainfluenza virus 5 hemagglutinin-neuraminidase tetramer in complex with its receptor, sialyllactose. Structure 13, 803–815 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Crennell, S., Takimoto, T., Portner, A. & Taylor, G. Crystal structure of the multifunctional paramyxovirus hemagglutinin-neuraminidase. Nat. Struct. Biol. 7, 1068–1074 (2000).

    Article  CAS  PubMed  Google Scholar 

  119. Bose, S., Jardetzky, T. S. & Lamb, R. A. Timing is everything: fine-tuned molecular machines orchestrate paramyxovirus entry. Virology 479–480, 518–531 (2015).

    Article  PubMed  CAS  Google Scholar 

  120. Yunus, A. S. et al. Elevated temperature triggers human respiratory syncytial virus F protein six-helix bundle formation. Virology 396, 226–237 (2010).

    Article  CAS  PubMed  Google Scholar 

  121. Fearns, R. & Deval, J. New antiviral approaches for respiratory syncytial virus and other mononegaviruses: inhibiting the RNA polymerase. Antiviral Res. 134, 63–76 (2016).

    Article  CAS  PubMed  Google Scholar 

  122. Falsey, A. R. & Walsh, E. E. Relationship of serum antibody to risk of respiratory syncytial virus infection in elderly adults. J. Infect. Dis. 177, 463–466 (1998).

    Article  CAS  PubMed  Google Scholar 

  123. Hall, C. B., Walsh, E. E., Long, C. E. & Schnabel, K. C. Immunity to and frequency of reinfection with respiratory syncytial virus. J. Infect. Dis. 163, 693–698 (1991).

    Article  CAS  PubMed  Google Scholar 

  124. American Academy of Pediatrics. Respiratory syncytial virus immune globulin intravenous: indications for use. Committee on Infectious Diseases, Committee on Fetus and Newborn. Pediatrics 99, 645–650 (1997).

    Article  Google Scholar 

  125. The IMpact-RSV Study Group. Palivizumab, a humanized respiratory syncytial virus monoclonal antibody, reduces hospitalization from respiratory syncytial virus infection in high-risk infants. Pediatrics 102, 531–537 (1998).

    Article  Google Scholar 

  126. Beeler, J. A. & Coelingh, K. V. Neutralization epitopes of the F-glycoprotein of respiratory syncytial virus - effect of mutation upon fusion function. J. Virol. 63, 2941–2950 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Kwakkenbos, M. J. et al. Generation of stable monoclonal antibody-producing B cell receptor-positive human memory B cells by genetic programming. Nat. Med. 16, 123–128 (2010). This study reports the isolation and characterization of the first prefusion F-specific monoclonal antibodies, although their specificity was not known at the time.

    Article  CAS  PubMed  Google Scholar 

  128. Goodwin, E. et al. Infants infected with respiratory syncytial virus generate potent neutralizing antibodies that lack somatic hypermutation. Immunity 48, 339–349 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Gilman, M. S. et al. Rapid profiling of RSV antibody repertoires from the memory B cells of naturally infected adult donors. Sci. Immunol. 1 (2016).

  130. Collarini, E. J. et al. Potent high-affinity antibodies for treatment and prophylaxis of respiratory syncytial virus derived from B cells of infected patients. J. Immunol. 183, 6338–6345 (2009).

    Article  CAS  PubMed  Google Scholar 

  131. Mousa, J. J., Kose, N., Matta, P., Gilchuk, P. & Crowe, J. E. Jr. A novel pre-fusion conformation-specific neutralizing epitope on the respiratory syncytial virus fusion protein. Nat. Microbiol. 2, 16271 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Corti, D. et al. Cross-neutralization of four paramyxoviruses by a human monoclonal antibody. Nature 501, 439–443 (2013).

    Article  CAS  PubMed  Google Scholar 

  133. Zhu, Q. et al. A highly potent extended half-life antibody as a potential RSV vaccine surrogate for all infants. Sci. Transl Med. 9, eaaj1928 (2017).

    Article  PubMed  Google Scholar 

  134. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02878330 (2018).

  135. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02325791 (2018).

  136. Costello, H. M., Ray, W. C., Chaiwatpongsakorn, S. & Peeples, M. E. Targeting RSV with vaccines and small molecule drugs. Infect. Disord. Drug Targets 12, 110–128 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Heylen, E., Neyts, J. & Jochmans, D. Drug candidates and model systems in respiratory syncytial virus antiviral drug discovery. Biochem. Pharmacol. 127, 1–12 (2017).

    Article  CAS  PubMed  Google Scholar 

  138. Cianci, C. et al. Targeting a binding pocket within the trimer-of-hairpins: small-molecule inhibition of viral fusion. Proc. Natl Acad. Sci. USA 101, 15046–15051 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Roymans, D. et al. Binding of a potent small-molecule inhibitor of six-helix bundle formation requires interactions with both heptad-repeats of the RSV fusion protein. Proc. Natl Acad. Sci. USA 107, 308–313 (2010).

    Article  CAS  PubMed  Google Scholar 

  140. Yan, D. et al. Cross-resistance mechanism of respiratory syncytial virus against structurally diverse entry inhibitors. Proc. Natl Acad. Sci. USA 111, E3441–E3449 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Battles, M. B. et al. Molecular mechanism of respiratory syncytial virus fusion inhibitors. Nat. Chem. Biol. 12, 87–93 (2016). This work describes the binding site and mechanism of action for small-molecule fusion inhibitors.

    Article  CAS  PubMed  Google Scholar 

  142. Samuel, D. et al. GS-5806 inhibits pre- to postfusion conformational changes of the respiratory syncytial virus fusion protein. Antimicrob. Agents Chemother. 59, 7109–7112 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. DeVincenzo, J. P. et al. Oral GS-5806 activity in a respiratory syncytial virus challenge study. N. Engl. J. Med. 371, 711–722 (2014).

    Article  PubMed  CAS  Google Scholar 

  144. Stevens, M. et al. Antiviral activity of oral JNJ-53718678 in healthy adult volunteers challenged with respiratory syncytial virus: a placebo-controlled study. J. Infect. Dis. 218, 748–756 (2018).

    Article  PubMed  Google Scholar 

  145. Mazur, N. I. et al. The respiratory syncytial virus vaccine landscape: lessons from the graveyard and promising candidates. Lancet Infect. Dis. 18, e295–e311 (2018).

    Article  PubMed  Google Scholar 

  146. Graham, B. S. Vaccine development for respiratory syncytial virus. Curr. Opin. Virol. 23, 107–112 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Magro, M. et al. Neutralizing antibodies against the preactive form of respiratory syncytial virus fusion protein offer unique possibilities for clinical intervention. Proc. Natl Acad. Sci. USA 109, 3089–3094 (2012). This study provides the first evidence for the existence of prefusion F-specific antibodies and their dominant contribution to the RSV-neutralizing activity of human sera.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Ngwuta, J. O. et al. Prefusion F-specific antibodies determine the magnitude of RSV neutralizing activity in human sera. Sci. Transl Med. 7, 309ra162 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. McLellan, J. S. et al. Structure-based design of a fusion glycoprotein vaccine for respiratory syncytial virus. Science 342, 592–598 (2013). This manuscript reports the first structure-based design of a prefusion F vaccine antigen and demonstrates its superior immunogenicity to postfusion F antigens.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03049488 (2018).

  151. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03529773 (2018).

  152. Falloon, J. et al. An adjuvanted, postfusion F protein-based vaccine did not prevent respiratory syncytial virus illness in older adults. J. Infect. Dis. 216, 1362–1370 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02608502 (2017).

  154. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02508194 (2017).

  155. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02624947 (2018).

  156. Karron, R. A., Buchholz, U. J. & Collins, P. L. Live-attenuated respiratory syncytial virus vaccines. Curr. Top. Microbiol. Immunol. 372, 259–284 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Karron, R. A. et al. A gene deletion that up-regulates viral gene expression yields an attenuated RSV vaccine with improved antibody responses in children. Sci. Transl Med. 7, 312ra175 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Liang, B. et al. Improved prefusion stability, optimized codon usage, and augmented virion packaging enhance the immunogenicity of respiratory syncytial virus fusion protein in a vectored-vaccine candidate. J. Virol. 91, e00189-17 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Stobart, C. C. et al. A live RSV vaccine with engineered thermostability is immunogenic in cotton rats despite high attenuation. Nat. Commun. 7, 13916 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03303625 (2018).

  161. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02927873 (2018).

  162. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02873286 (2018).

  163. Levine, S. Polypeptides of respiratory syncytial virus. J. Virol. 21, 427–431 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Walsh, E. E. & Hruska, J. Monoclonal antibodies to respiratory syncytial virus proteins: identification of the fusion protein. J. Virol. 47, 171–177 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Garcia, J., Garcia-Barreno, B., Vivo, A. & Melero, J. A. Cytoplasmic inclusions of respiratory syncytial virus-infected cells: formation of inclusion bodies in transfected cells that coexpress the nucleoprotein, the phosphoprotein, and the 22K protein. Virology 195, 243–247 (1993).

    Article  CAS  PubMed  Google Scholar 

  166. Garcia-Barreno, B., Delgado, T. & Melero, J. A. Identification of protein regions involved in the interaction of human respiratory syncytial virus phosphoprotein and nucleoprotein: significance for nucleocapsid assembly and formation of cytoplasmic inclusions. J. Virol. 70, 801–808 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Rincheval, V. et al. Functional organization of cytoplasmic inclusion bodies in cells infected by respiratory syncytial virus. Nat. Commun. 8, 563 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Noton, S. L. & Fearns, R. Initiation and regulation of paramyxovirus transcription and replication. Virology 479–480, 545–554 (2015).

    Article  PubMed  CAS  Google Scholar 

  169. Gower, T. L. et al. RhoA signaling is required for respiratory syncytial virus-induced syncytium formation and filamentous virion morphology. J. Virol. 79, 5326–5336 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Ke, Z. et al. The morphology and assembly of respiratory syncytial virus revealed by cryo-electron tomography. Viruses 10, E446 (2018). This work conclusively demonstrates that RSV is a filamentous virus upon budding from infected cells.

    Article  PubMed  Google Scholar 

  171. Mehedi, M. et al. Actin-related protein 2 (ARP2) and virus-induced filopodia facilitate human respiratory syncytial virus spread. PLOS Pathog. 12, e1006062 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Vanover, D. et al. RSV glycoprotein and genomic RNA dynamics reveal filament assembly prior to the plasma membrane. Nat. Commun. 8, 667 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Forster, A., Maertens, G. N., Farrell, P. J. & Bajorek, M. Dimerization of matrix protein is required for budding of respiratory syncytial virus. J. Virol. 89, 4624–4635 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Roberts, S. R., Compans, R. W. & Wertz, G. W. Respiratory syncytial virus matures at the apical surfaces of polarized epithelial cells. J. Virol. 69, 2667–2673 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Jardetzky, T. S. & Lamb, R. A. Activation of paramyxovirus membrane fusion and virus entry. Curr. Opin. Virol. 5, 24–33 (2014).

    Article  CAS  PubMed  Google Scholar 

  176. Yuan, P. et al. Structure of the Newcastle disease virus hemagglutinin-neuraminidase (HN) ectodomain reveals a four-helix bundle stalk. Proc. Natl Acad. Sci. USA 108, 14920–14925 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Welch, B. D. et al. Structure of the parainfluenza virus 5 (PIV5) hemagglutinin-neuraminidase (HN) ectodomain. PLOS Pathog. 9, e1003534 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Bose, S. et al. Fusion activation by a headless parainfluenza virus 5 hemagglutinin-neuraminidase stalk suggests a modular mechanism for triggering. Proc. Natl Acad. Sci. USA 109, E2625–E2634 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Brindley, M. A. et al. A stabilized headless measles virus attachment protein stalk efficiently triggers membrane fusion. J. Virol. 87, 11693–11703 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Liu, Q. et al. Unraveling a three-step spatiotemporal mechanism of triggering of receptor-induced Nipah virus fusion and cell entry. PLOS Pathog. 9, e1003770 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Iorio, R. M., Melanson, V. R. & Mahon, P. J. Glycoprotein interactions in paramyxovirus fusion. Future Virol. 4, 335–351 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. McLellan, J. S. Neutralizing epitopes on the respiratory syncytial virus fusion glycoprotein. Curr. Opin. Virol. 11, 70–75 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors dedicate this Review to the memory of José A. Melero, a wonderful colleague and scientist who contributed much to the study of the RSV F and G proteins. The authors thank B. Graham, J. Langedijk and members of the McLellan laboratory for helpful comments on the manuscript, and M. Gilman for assistance with the figures.

Reviewer information

Nature Reviews Microbiology thanks L. Bont and other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

M.B.B. researched data for the article. M.B.B. and J.S.M. made substantial contributions to discussions of the content. M.B.B. and J.S.M. wrote the article. J.S.M. reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Jason S. McLellan.

Ethics declarations

Competing interests

J.S.M. is a named inventor on patents for vaccines and/or monoclonal antibodies for RSV and coronaviruses, has received research funding from MedImmune and Janssen Pharmaceuticals, has been a paid consultant for MedImmune and is on the scientific advisory board for Calder Biosciences. M.B.B. is currently employed by Adimab.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Nasopharynx

The upper part of the pharynx that connects with the nasal cavity.

Bronchioles

Small tubes in the lung through which air is delivered to the alveoli.

Alveoli

Small air sacs in the lung that provide rapid gas exchange with blood.

Bronchiolitis

Inflammation of the bronchioles that reduces air passage.

Formalin

An aqueous solution of formaldehyde.

Neutrophil

Most abundant type of white blood cell.

Immune complex

An antibody bound to its antigen.

Passive immunoprophylaxis

The administration of an exogenously produced antibody given before infection occurs.

Apoptosis

Programmed cell death.

Glycoproteins

Proteins to which carbohydrates are covalently attached.

Ectodomain

The portion of a membrane protein that resides outside the cell or virion.

Cystine noose

A surface-accessible loop structure containing one or more disulfide bonds.

Serotype

A serologically distinguishable strain of a microorganism.

Protomer

A structural unit of an oligomeric protein.

Heptad repeat

A seven-amino-acid motif ‘abcdefg’ where a and d are hydrophobic.

Antigenic drift

The accumulation of amino acid substitutions that reduce antibody binding.

Apical surface

The surface of a polarized cell that faces the lumen or external environment.

Type 1 alveolar pneumocytes

Surface epithelial cells of alveoli involved in gas exchange.

Chemokine

A small secreted protein that stimulates recruitment of white blood cells.

Macropinocytosis

The nonselective uptake of extracellular molecules into endocytic vesicles.

Bronchopulmonary dysplasia

A chronic lung disease caused by mechanical ventilation and long-term oxygen use that results in damage to alveoli.

Antigenic site

A group of spatially related antibody epitopes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Battles, M.B., McLellan, J.S. Respiratory syncytial virus entry and how to block it. Nat Rev Microbiol 17, 233–245 (2019). https://doi.org/10.1038/s41579-019-0149-x

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41579-019-0149-x

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research