Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Therapeutic strategies to target the Ebola virus life cycle

Abstract

Following the Ebola virus disease epidemic in west Africa, there has been increased awareness of the need for improved therapies for emerging diseases, including viral haemorrhagic fevers such as those caused by Ebola virus and other filoviruses. Our continually improving understanding of the virus life cycle coupled with the increased availability of ‘omics’ analyses and high-throughput screening technologies has enhanced our ability to identify potential viral and host factors and aspects involved in the infection process that might be intervention targets. In this Review we address compounds that have shown promise to various degrees in interfering with the filovirus life cycle, including monoclonal antibodies such as ZMapp, mAb114 and REGN-EB3 and inhibitors of viral RNA synthesis such as remdesivir and TKM-Ebola. Furthermore, we discuss the general potential of targeting aspects of the virus life cycle such as the entry process, viral RNA synthesis and gene expression, as well as morphogenesis and budding.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Ebola virus genome structure and life cycle.
Fig. 2: Inhibitors of the viral entry process.
Fig. 3: Targeting viral RNA transcription and replication.
Fig. 4: Theoretical targets in the morphogenesis and budding process.

Similar content being viewed by others

References

  1. Burk, R. et al. Neglected filoviruses. FEMS Microbiol. Rev. 40, 494–519 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Yang, X. L. et al. Characterization of a filovirus (Mengla virus) from Rousettus bats in China. Nat. Microbiol. 4, 390–395 (2019).

    PubMed  Google Scholar 

  3. Miranda, M. E. & Miranda, N. L. Reston ebolavirus in humans and animals in the Philippines: a review. J. Infect. Dis. 204 (Suppl. 3), S757–S760 (2011).

    Google Scholar 

  4. Schuh, A. J., Amman, B. R. & Towner, J. S. Filoviruses and bats. Microbiol. Aust. 38, 12–16 (2017).

    PubMed  PubMed Central  Google Scholar 

  5. Vetter, P. et al. Ebola virus shedding and transmission: review of current evidence. J. Infect. Dis. 214, S177–S184 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Judson, S., Prescott, J. & Munster, V. Understanding Ebola virus transmission. Viruses 7, 511–521 (2015).

    PubMed  PubMed Central  Google Scholar 

  7. Fischer, K. et al. Serological evidence for the circulation of ebolaviruses in pigs From Sierra Leone. J. Infect. Dis. 218, S305–S311 (2018).

    PubMed  Google Scholar 

  8. Kortepeter, M. G., Bausch, D. G. & Bray, M. Basic clinical and laboratory features of filoviral hemorrhagic fever. J. Infect. Dis. 204 (Suppl. 3), S810–S816 (2011).

    Google Scholar 

  9. Hoenen, T., Groseth, A., Falzarano, D. & Feldmann, H. Ebola virus: unravelling pathogenesis to combat a deadly disease. Trends Mol. Med. 12, 206–215 (2006).

    CAS  PubMed  Google Scholar 

  10. Bixler, S. L. & Goff, A. J. The role of cytokines and chemokines in filovirus infection. Viruses 7, 5489–5507 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Baseler, L., Chertow, D. S., Johnson, K. M., Feldmann, H. & Morens, D. M. The pathogenesis of Ebola virus disease. Annu. Rev. Pathol. 12, 387–418 (2017).

    CAS  PubMed  Google Scholar 

  12. Messaoudi, I., Amarasinghe, G. K. & Basler, C. F. Filovirus pathogenesis and immune evasion: insights from Ebola virus and Marburg virus. Nat. Rev. Microbiol. 13, 663–676 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Nidom, C. A. et al. Serological evidence of Ebola virus infection in Indonesian orangutans. PLOS ONE 7, e40740 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Laing, E. D. et al. Serologic evidence of fruit bat exposure to filoviruses, Singapore, 2011–2016. Emerg. Infect. Dis. 24, 114–117 (2018).

    PubMed  Google Scholar 

  15. Yuan, J. et al. Serological evidence of ebolavirus infection in bats, China. Virol. J. 9, 236 (2012).

    PubMed  Google Scholar 

  16. Negredo, A. et al. Discovery of an ebolavirus-like filovirus in Europe. PLOS Pathog. 7, e1002304 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kemenesi, G. et al. Re-emergence of Lloviu virus in Miniopterus schreibersii bats, Hungary, 2016. Emerg. Microbes Infect. 7, 66 (2018).

    PubMed  PubMed Central  Google Scholar 

  18. Goldstein, T. et al. The discovery of Bombali virus adds further support for bats as hosts of ebolaviruses. Nat. Microbiol. 3, 1084–1089 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Yang, X. L. et al. Genetically diverse filoviruses in Rousettus and Eonycteris spp. Bats, China, 2009 and 2015. Emerg. Infect. Dis. 23, 482–486 (2017).

    PubMed  PubMed Central  Google Scholar 

  20. Shi, M. et al. The evolutionary history of vertebrate RNA viruses. Nature 556, 197–202 (2018).

    CAS  PubMed  Google Scholar 

  21. Mayhoub, A. S. & Hepatitis, C. RNA-dependent, RNA polymerase inhibitors: a review of structure-activity and resistance relationships; different scaffolds and mutations. Bioorg. Med. Chem. 20, 3150–3161 (2012).

    CAS  PubMed  Google Scholar 

  22. Zumla, A. et al. Host-directed therapies for infectious diseases: current status, recent progress, and future prospects. Lancet Infect. Dis. 16, e47–e63 (2016).

    PubMed  Google Scholar 

  23. De Clercq, E. & Li, G. Approved antiviral drugs over the past 50 years. Clin. Microbiol. Rev. 29, 695–747 (2016).

    PubMed  PubMed Central  Google Scholar 

  24. CenterWatch. 2019 FDA approved drugs. CenterWatch https://www.centerwatch.com/drug-information/fda-approved-drugs (2019).

  25. Bausch, D. G. & Rojek, A. West Africa 2013: re-examining Ebola. Microbiol. Spectr. 4, EI10-0022-2016 (2016).

    Google Scholar 

  26. Elmahdawy, M. et al. Ebola virus epidemic in West Africa: global health economic challenges, lessons learned, and policy recommendations. Value Health Reg. Issues 13, 67–70 (2017).

    PubMed  Google Scholar 

  27. Cross, R. W., Mire, C. E., Feldmann, H. & Geisbert, T. W. Post-exposure treatments for Ebola and Marburg virus infections. Nat. Rev. Drug Discov. 17, 413–434 (2018).

    CAS  PubMed  Google Scholar 

  28. World Health Organization. Clinical management of patients with viral haemorrhagic fever: a pocket guide for front-line health workers. WHO http://apps.who.int/iris/bitstream/handle/10665/205570/9789241549608_eng.pdf (2016).

  29. Rojek, A., Horby, P. & Dunning, J. Insights from clinical research completed during the west Africa Ebola virus disease epidemic. Lancet Infect. Dis. 17, e280–e292 (2017).

    PubMed  PubMed Central  Google Scholar 

  30. Richardson, T., Johnston, A. M. & Draper, H. A. Systematic review of Ebola treatment trials to assess the extent to which they adhere to ethical guidelines. PLOS ONE 12, e0168975 (2017). The Review provides a critical discussion about the ethical requirements for clinical studies of antivirals against filoviruses.

    PubMed  PubMed Central  Google Scholar 

  31. Maxmen, A. Experimental Ebola drugs face tough test in war zone. Nature 561, 14 (2018).

    CAS  PubMed  Google Scholar 

  32. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03719586 (2019).

  33. Henao-Restrepo, A. M. et al. Efficacy and effectiveness of an rVSV-vectored vaccine in preventing Ebola virus disease: final results from the Guinea ring vaccination, open-label, cluster-randomised trial (Ebola Ca Suffit!). Lancet 389, 505–518 (2017). A clinical trial showing efficacy of the recombinant vesicular stomatitis virus–EBOV vaccine.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. World Health Organization. Preliminary results on the efficacy of rVSV-ZEBOV-GP Ebola vaccine using the ring vaccination strategy in the control of an Ebola outbreak in the Democratic Republic of the Congo: an example of integration of research into epidemic response. WHO https://www.who.int/csr/resources/publications/ebola/ebola-ring-vaccination-results-12-april-2019.pdf (2019).

  35. Martin, S. et al. A genome-wide siRNA screen identifies a druggable host pathway essential for the Ebola virus life cycle. Genome Med. 10, 58 (2018).

    PubMed  PubMed Central  Google Scholar 

  36. Lee, N. et al. High-throughput drug screening using the Ebola virus transcription- and replication-competent virus-like particle system. Antiviral Res. 158, 226–237 (2018). This article illustrates the power of life cycle modelling systems for antiviral screening.

    CAS  PubMed  Google Scholar 

  37. Luthra, P. et al. A high throughput screen identifies benzoquinoline compounds as inhibitors of Ebola virus replication. Antiviral Res. 150, 193–201 (2018).

    CAS  PubMed  Google Scholar 

  38. Luthra, P. et al. Inhibiting pyrimidine biosynthesis impairs Ebola virus replication through depletion of nucleoside pools and activation of innate immune responses. Antiviral Res. 158, 288–302 (2018).

    CAS  PubMed  Google Scholar 

  39. Nelson, E. A. et al. Clomiphene and its isomers block Ebola virus particle entry and infection with similar potency: potential therapeutic implications. Viruses 8, E206 (2016).

    PubMed  Google Scholar 

  40. Nelson, E. A. et al. The phosphatidylinositol-3-phosphate 5-kinase inhibitor apilimod blocks filoviral entry and infection. PLOS Negl Trop. Dis. 11, e0005540 (2017).

    PubMed  PubMed Central  Google Scholar 

  41. Hoenen, T., Groseth, A., Callison, J., Takada, A. & Feldmann, H. A novel Ebola virus expressing luciferase allows for rapid and quantitative testing of antivirals. Antiviral Res. 99, 207–213 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Johansen, L. M. et al. A screen of approved drugs and molecular probes identifies therapeutics with anti-Ebola virus activity. Sci. Transl Med. 7, 290ra89 (2015). This work is one of the few examples in which infectious virus was used in an antiviral screen.

    PubMed  Google Scholar 

  43. Towner, J. S. et al. Generation of eGFP expressing recombinant Zaire ebolavirus for analysis of early pathogenesis events and high-throughput antiviral drug screening. Virology 332, 20–27 (2005).

    CAS  PubMed  Google Scholar 

  44. Yamaoka, S., Banadyga, L., Bray, M. & Ebihara, H. Small animal models for studying filovirus pathogenesis. Curr. Top. Microbiol. Immunol. 411, 195–227 (2017).

    PubMed  Google Scholar 

  45. Cross, R. W., Fenton, K. A. & Geisbert, T. W. Small animal models of filovirus disease: recent advances and future directions. Expert Opin. Drug Discov. 13, 1027–1040 (2018).

    PubMed  Google Scholar 

  46. Banadyga, L., Dolan, M. A. & Ebihara, H. Rodent-adapted filoviruses and the molecular basis of pathogenesis. J. Mol. Biol. 428, 3449–3466 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Sugita, Y., Matsunami, H., Kawaoka, Y., Noda, T. & Wolf, M. Cryo-EM structure of the Ebola virus nucleoprotein-RNA complex at 3.6 A resolution. Nature 563, 137–140 (2018).

    CAS  PubMed  Google Scholar 

  48. Bharat, T. A. et al. Structural dissection of Ebola virus and its assembly determinants using cryo-electron tomography. Proc. Natl Acad. Sci. USA 109, 4275–4280 (2012).

    CAS  PubMed  Google Scholar 

  49. Noda, T. et al. Ebola virus VP40 drives the formation of virus-like filamentous particles along with GP. J. Virol. 76, 4855–4865 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Volchkov, V. E., Feldmann, H., Volchkova, V. A. & Klenk, H. D. Processing of the Ebola virus glycoprotein by the proprotein convertase furin. Proc. Natl Acad. Sci. USA 95, 5762–5767 (1998).

    CAS  PubMed  Google Scholar 

  51. Becker, S., Spiess, M. & Klenk, H. D. The asialoglycoprotein receptor is a potential liver-specific receptor for Marburg virus. J. Gen. Virol. 76, 393–399 (1995).

    CAS  PubMed  Google Scholar 

  52. Takada, A. et al. Human macrophage C-type lectin specific for galactose and N-acetylgalactosamine promotes filovirus entry. J. Virol. 78, 2943–2947 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Simmons, G. et al. DC-SIGN and DC-SIGNR bind Ebola glycoproteins and enhance infection of macrophages and endothelial cells. Virology 305, 115–123 (2003).

    CAS  PubMed  Google Scholar 

  54. Alvarez, C. P. et al. C-Type lectins DC-SIGN and L-SIGN mediate cellular entry by Ebola virus in cis and in trans. J. Virol. 76, 6841–6844 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Takada, A. et al. Downregulation of beta1 integrins by Ebola virus glycoprotein: implication for virus entry. Virology 278, 20–26 (2000).

    CAS  PubMed  Google Scholar 

  56. Chan, S. Y. et al. Folate receptor-alpha is a cofactor for cellular entry by Marburg and Ebola viruses. Cell 106, 117–126 (2001).

    CAS  PubMed  Google Scholar 

  57. Shimojima, M. et al. Tyro3 family-mediated cell entry of Ebola and Marburg viruses. J. Virol. 80, 10109–10116 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Kondratowicz, A. S. et al. T cell immunoglobulin and mucin domain 1 (TIM-1) is a receptor for Zaire Ebolavirus and Lake Victoria Marburgvirus. Proc. Natl Acad. Sci. USA 108, 8426–8431 (2011).

    CAS  PubMed  Google Scholar 

  59. Nanbo, A. & Kawaoka, Y. Molecular mechanism of externalization of phosphatidylserine on the surface of Ebola virus particles. DNA Cell Biol. 38, 115–120 (2019).

    CAS  PubMed  Google Scholar 

  60. Moller-Tank, S., Kondratowicz, A. S., Davey, R. A., Rennert, P. D. & Maury, W. Role of the phosphatidylserine receptor TIM-1 in enveloped-virus entry. J. Virol. 87, 8327–8341 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Aleksandrowicz, P. et al. Ebola virus enters host cells by macropinocytosis and clathrin-mediated endocytosis. J. Infect. Dis. 204 (Suppl. 3), S957–S967 (2011).

    Google Scholar 

  62. Nanbo, A. et al. Ebolavirus is internalized into host cells via macropinocytosis in a viral glycoprotein-dependent manner. PLOS Pathog. 6, e1001121 (2010).

    PubMed  PubMed Central  Google Scholar 

  63. Chandran, K., Sullivan, N. J., Felbor, U., Whelan, S. P. & Cunningham, J. M. Endosomal proteolysis of the Ebola virus glycoprotein is necessary for infection. Science 308, 1643–1645 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Ng, M. et al. Cell entry by a novel European filovirus requires host endosomal cysteine proteases and Niemann-Pick C1. Virology 468–470, 637–646 (2014).

    PubMed  Google Scholar 

  65. Carette, J. E. et al. Ebola virus entry requires the cholesterol transporter Niemann-Pick C1. Nature 477, 340–343 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Cote, M. et al. Small molecule inhibitors reveal Niemann-Pick C1 is essential for Ebola virus infection. Nature 477, 344–348 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. King, L. B. et al. The Marburgvirus-neutralizing human monoclonal antibody MR191 targets a conserved site to block virus receptor binding. Cell Host Microbe 23, 101–109 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Sakurai, Y. et al. Ebola virus. Two-pore channels control Ebola virus host cell entry and are drug targets for disease treatment. Science 347, 995–998 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Simmons, J. A. et al. Ebolavirus glycoprotein directs fusion through NPC1+ endolysosomes. J. Virol. 90, 605–610 (2016).

    CAS  PubMed  Google Scholar 

  70. Banadyga, L. et al. Ebola virus VP24 interacts with NP to facilitate nucleocapsid assembly and genome packaging. Sci. Rep. 7, 7698 (2017).

    PubMed  PubMed Central  Google Scholar 

  71. Watt, A. et al. A novel life cycle modeling system for Ebola virus shows a genome length-dependent role of VP24 in virus infectivity. J. Virol. 88, 10511–10524 (2014).

    PubMed  PubMed Central  Google Scholar 

  72. Muhlberger, E., Weik, M., Volchkov, V. E., Klenk, H. D. & Becker, S. Comparison of the transcription and replication strategies of marburg virus and Ebola virus by using artificial replication systems. J. Virol. 73, 2333–2342 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Muhlberger, E., Lotfering, B., Klenk, H. D. & Becker, S. Three of the four nucleocapsid proteins of Marburg virus, NP, VP35, and L, are sufficient to mediate replication and transcription of Marburg virus-specific monocistronic minigenomes. J. Virol. 72, 8756–8764 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Enterlein, S. et al. Rescue of recombinant Marburg virus from cDNA is dependent on nucleocapsid protein VP30. J. Virol. 80, 1038–1043 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Hoenen, T. et al. Inclusion bodies are a site of ebolavirus replication. J. Virol. 86, 11779–11788 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Lier, C., Becker, S. & Biedenkopf, N. Dynamic phosphorylation of Ebola virus VP30 in NP-induced inclusion bodies. Virology 512, 39–47 (2017).

    CAS  PubMed  Google Scholar 

  77. Mehedi, M. et al. A new Ebola virus nonstructural glycoprotein expressed through RNA editing. J. Virol. 85, 5406–5414 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Volchkov, V. E. et al. GP mRNA of Ebola virus is edited by the Ebola virus polymerase and by T7 and vaccinia virus polymerases. Virology 214, 421–430 (1995).

    CAS  PubMed  Google Scholar 

  79. Takahashi, K. et al. DNA topoisomerase 1 facilitates the transcription and replication of the Ebola virus genome. J. Virol. 87, 8862–8869 (2013). This study provides evidence for the involvement of a component of the host cell DNA replicative machinery, TOP1, in EBOV RNA synthesis.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Fang, J. et al. Staufen1 interacts with multiple components of the Ebola virus ribonucleoprotein and enhances viral RNA synthesis. mBio 9, e01771–18 (2018).

    PubMed  PubMed Central  Google Scholar 

  81. Biedenkopf, N., Hartlieb, B., Hoenen, T. & Becker, S. Phosphorylation of Ebola virus VP30 influences the composition of the viral nucleocapsid complex: impact on viral transcription and replication. J. Biol. Chem. 288, 11165–11174 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Modrof, J., Muhlberger, E., Klenk, H. D. & Becker, S. Phosphorylation of VP30 impairs ebola virus transcription. J. Biol. Chem. 277, 33099–33104 (2002).

    CAS  PubMed  Google Scholar 

  83. Kruse, T. et al. The Ebola virus nucleoprotein recruits the host PP2A-B56 phosphatase to activate transcriptional support activity of VP30. Mol. Cell 69, 136–145 (2018). This article describes a competitive inhibitor that prevents the PP2A–NP association to regulate VP30 phosphorylation.

    CAS  PubMed  Google Scholar 

  84. Batra, J. et al. Protein interaction mapping identifies RBBP6 as a negative regulator of Ebola virus replication. Cell 175, 1917–1930 (2018).

    CAS  PubMed  Google Scholar 

  85. Ammosova, T. et al. Protein phosphatase 1-targeting small-molecule C31 inhibits Ebola virus replication. J. Infect. Dis. 218 (Suppl. 5), S627–S635 (2018).

    Google Scholar 

  86. Schudt, G. et al. Transport of ebolavirus nucleocapsids is dependent on actin polymerization: live-cell imaging analysis of Ebolavirus-infected cells. J. Infect. Dis. 212 (Suppl. 2), S160–S166 (2015).

    CAS  PubMed  Google Scholar 

  87. Takamatsu, Y., Kolesnikova, L. & Becker, S. Ebola virus proteins NP, VP35, and VP24 are essential and sufficient to mediate nucleocapsid transport. Proc. Natl Acad. Sci. USA 115, 1075–1080 (2018).

    CAS  PubMed  Google Scholar 

  88. Adu-Gyamfi, E., Digman, M. A., Gratton, E. & Stahelin, R. V. Single-particle tracking demonstrates that actin coordinates the movement of the Ebola virus matrix protein. Biophys. J. 103, L41–43 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Han, Z. & Harty, R. N. Packaging of actin into Ebola virus VLPs. Virol. J. 2, 92 (2005).

    PubMed  PubMed Central  Google Scholar 

  90. Ruthel, G. et al. Association of Ebola virus matrix protein VP40 with microtubules. J. Virol. 79, 4709–4719 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Noda, T. et al. Assembly and budding of Ebolavirus. PLOS Pathog. 2, e99 (2006).

    PubMed  PubMed Central  Google Scholar 

  92. Lu, J. et al. Host IQGAP1 and Ebola virus VP40 interactions facilitate virus-like particle egress. J. Virol. 87, 7777–7780 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Yamayoshi, S. et al. Ebola virus matrix protein VP40 uses the COPII transport system for its intracellular transport. Cell Host Microbe 3, 168–177 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Feldmann, H., Nichol, S. T., Klenk, H. D., Peters, C. J. & Sanchez, A. Characterization of filoviruses based on differences in structure and antigenicity of the virion glycoprotein. Virology 199, 469–473 (1994).

    CAS  PubMed  Google Scholar 

  95. Wool-Lewis, R. J. & Bates, P. Endoproteolytic processing of the ebola virus envelope glycoprotein: cleavage is not required for function. J. Virol. 73, 1419–1426 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Neumann, G., Feldmann, H., Watanabe, S., Lukashevich, I. & Kawaoka, Y. Reverse genetics demonstrates that proteolytic processing of the Ebola virus glycoprotein is not essential for replication in cell culture. J. Virol. 76, 406–410 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Martin-Serrano, J., Zang, T. & Bieniasz, P. D. HIV-1 and Ebola virus encode small peptide motifs that recruit Tsg101 to sites of particle assembly to facilitate egress. Nat. Med. 7, 1313–1319 (2001).

    CAS  PubMed  Google Scholar 

  98. Licata, J. M. et al. Overlapping motifs (PTAP and PPEY) within the Ebola virus VP40 protein function independently as late budding domains: involvement of host proteins TSG101 and VPS-4. J. Virol. 77, 1812–1819 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Han, Z. et al. ITCH E3 ubiquitin ligase interacts with Ebola virus VP40 to regulate budding. J. Virol. 90, 9163–9171 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Harty, R. N., Brown, M. E., Wang, G., Huibregtse, J. & Hayes, F. P. A. PPxY motif within the VP40 protein of Ebola virus interacts physically and functionally with a ubiquitin ligase: implications for filovirus budding. Proc. Natl Acad. Sci. USA 97, 13871–13876 (2000).

    CAS  PubMed  Google Scholar 

  101. Kolesnikova, L., Mittler, E., Schudt, G., Shams-Eldin, H. & Becker, S. Phosphorylation of Marburg virus matrix protein VP40 triggers assembly of nucleocapsids with the viral envelope at the plasma membrane. Cell. Microbiol. 14, 182–197 (2012).

    CAS  PubMed  Google Scholar 

  102. Nanbo, A. et al. Ebola virus requires a host scramblase for externalization of phosphatidylserine on the surface of viral particles. PLOS Pathog. 14, e1006848 (2018).

    PubMed  PubMed Central  Google Scholar 

  103. Zeitlin, L. et al. Antibody therapeutics for Ebola virus disease. Curr. Opin. Virol. 17, 45–49 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Dye, J. M. et al. Postexposure antibody prophylaxis protects nonhuman primates from filovirus disease. Proc. Natl Acad. Sci. USA 109, 5034–5039 (2012).

    CAS  PubMed  Google Scholar 

  105. Qiu, X. et al. Reversion of advanced Ebola virus disease in nonhuman primates with ZMapp. Nature 514, 47–53 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Davey, R. T. Jr et al. A randomized, controlled trial of ZMapp for Ebola virus infection. N. Engl. J. Med. 375, 1448–1456 (2016). This study describes the clinical trial of ZMapp.

    CAS  PubMed  Google Scholar 

  107. King, L. B., West, B. R., Schendel, S. L. & Saphire, E. O. The structural basis for filovirus neutralization by monoclonal antibodies. Curr. Opin. Immunol. 53, 196–202 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Pallesen, J. et al. Structures of Ebola virus GP and sGP in complex with therapeutic antibodies. Nat. Microbiol. 1, 16128 (2016). The study reports the structural analysis of ZMapp antibodies in complex with their viral target.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Tran, E. E. et al. Mapping of Ebolavirus neutralization by monoclonal antibodies in the ZMapp cocktail using cryo-electron tomography and studies of cellular entry. J. Virol. 90, 7618–7627 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Olinger, G. G. Jr et al. Delayed treatment of Ebola virus infection with plant-derived monoclonal antibodies provides protection in rhesus macaques. Proc. Natl Acad. Sci. USA 109, 18030–18035 (2012).

    CAS  PubMed  Google Scholar 

  111. Corti, D. et al. Protective monotherapy against lethal Ebola virus infection by a potently neutralizing antibody. Science 351, 1339–1342 (2016).

    CAS  PubMed  Google Scholar 

  112. Misasi, J. et al. Structural and molecular basis for Ebola virus neutralization by protective human antibodies. Science 351, 1343–1346 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Sivapalasingam, S. et al. Safety, pharmacokinetics, and immunogenicity of a co-formulated cocktail of three human monoclonal antibodies targeting Ebola virus glycoprotein in healthy adults: a randomised, first-in-human phase 1 study. Lancet Infect. Dis. 18, 884–893 (2018).

    CAS  PubMed  Google Scholar 

  114. Saphire, E. O. et al. Systematic analysis of monoclonal antibodies against Ebola virus GP defines features that contribute to protection. Cell 174, 938–952 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. West, B. R. et al. Structural basis of pan-Ebolavirus neutralization by a human antibody against a conserved, yet cryptic epitope. mBio 9, e01674–18 (2018).

    PubMed  PubMed Central  Google Scholar 

  116. Janus, B. M. et al. Structural basis for broad neutralization of ebolaviruses by an antibody targeting the glycoprotein fusion loop. Nat. Commun. 9, 3934 (2018).

    PubMed  PubMed Central  Google Scholar 

  117. Pettit, D. K. et al. CHO cell production and sequence improvement in the 13C6FR1 anti-Ebola antibody. MAbs 8, 347–357 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Kugelman, J. R. et al. Emergence of Ebola virus escape variants in infected nonhuman primates treated with the MB-003 antibody cocktail. Cell Rep. 12, 2111–2120 (2015).

    CAS  PubMed  Google Scholar 

  119. Hoenen, T. & Feldmann, H. Reverse genetics systems as tools for the development of novel therapies against filoviruses. Expert Rev. Anti Infect. Ther. 12, 1253–1263 (2014).

    CAS  PubMed  Google Scholar 

  120. Anantpadma, M. et al. Large-scale screening and identification of novel Ebola virus and Marburg Virus entry inhibitors. Antimicrob. Agents Chemother. 60, 4471–4481 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Dyall, J. et al. Identification of combinations of approved drugs with synergistic activity against Ebola virus in cell cultures. J. Infect. Dis. 218 (Suppl. 5), S672–S678 (2018). This is one of the few studies exploring the synergistic potential of antivirals against filoviruses.

    Google Scholar 

  122. Bekerman, E. et al. Anticancer kinase inhibitors impair intracellular viral trafficking and exert broad-spectrum antiviral effects. J. Clin. Invest. 127, 1338–1352 (2017).

    PubMed  PubMed Central  Google Scholar 

  123. van der Linden, W. A. et al. Cysteine cathepsin inhibitors as anti-Ebola agents. ACS Infect. Dis. 2, 173–179 (2016).

    Google Scholar 

  124. Liu, H. et al. Identification of potent Ebola virus entry inhibitors with suitable properties for in vivo studies. J. Med. Chem. 61, 6293–6307 (2018).

    CAS  PubMed  Google Scholar 

  125. Zhao, Y. et al. Toremifene interacts with and destabilizes the Ebola virus glycoprotein. Nature 535, 169–172 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Johansen, L. M. et al. FDA-approved selective estrogen receptor modulators inhibit Ebola virus infection. Sci. Transl Med. 5, 190ra79 (2013).

    PubMed  PubMed Central  Google Scholar 

  127. Fan, H. et al. Selective inhibition of Ebola entry with selective estrogen receptor modulators by disrupting the endolysosomal calcium. Sci. Rep. 7, 41226 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. McCarthy, S. D. et al. A rapid screening assay identifies monotherapy with interferon-ss and combination therapies with nucleoside analogs as effective inhibitors of Ebola virus. PLOS Negl. Trop. Dis. 10, e0004364 (2016).

    PubMed  PubMed Central  Google Scholar 

  129. Sun, W. et al. Synergistic drug combination effectively blocks Ebola virus infection. Antiviral Res. 137, 165–172 (2017).

    CAS  PubMed  Google Scholar 

  130. Shrivastava-Ranjan, P. et al. Statins suppress Ebola virus infectivity by interfering with glycoprotein processing. mBio 9, e00660–18 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Geisbert, T. W. et al. Postexposure protection of non-human primates against a lethal Ebola virus challenge with RNA interference: a proof-of-concept study. Lancet 375, 1896–1905 (2010).

    CAS  PubMed  Google Scholar 

  132. Iversen, P. L. et al. Discovery and early development of AVI-7537 and AVI-7288 for the treatment of Ebola virus and Marburg virus infections. Viruses 4, 2806–2830 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Groseth, A. et al. In vitro evaluation of antisense RNA efficacy against filovirus infection, by use of reverse genetics. J. Infect. Dis. 196 (Suppl. 2), S382–S389 (2007).

    CAS  PubMed  Google Scholar 

  134. Filone, C. M. et al. Identification of a broad-spectrum inhibitor of viral RNA synthesis: validation of a prototype virus-based approach. Chem. Biol. 20, 424–433 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Easton, V. et al. Identification of a small molecule inhibitor of Ebola virus genome replication and transcription using in silico screening. Antiviral Res. 156, 46–54 (2018). This article describes the structure-guided design of an NP interaction inhibitor.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Warren, T. K. et al. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature 531, 381–385 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Taylor, R. et al. BCX4430 – a broad-spectrum antiviral adenosine nucleoside analog under development for the treatment of Ebola virus disease. J. Infect. Public Health 9, 220–226 (2016).

    Google Scholar 

  138. Reynard, O. et al. Identification of a new ribonucleoside inhibitor of Ebola virus replication. Viruses 7, 6233–6240 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Guedj, J. et al. Antiviral efficacy of favipiravir against Ebola virus: a translational study in cynomolgus macaques. PLOS Med. 15, e1002535 (2018).

    PubMed  PubMed Central  Google Scholar 

  140. Lo, M. K. et al. Susceptibility of paramyxoviruses and filoviruses to inhibition by 2′-monofluoro- and 2′-difluoro-4′-azidocytidine analogs. Antiviral Res. 153, 101–113 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Tong, X. et al. Merimepodib, an IMPDH inhibitor, suppresses replication of Zika virus and other emerging viral pathogens. Antiviral Res. 149, 34–40 (2018).

    CAS  PubMed  Google Scholar 

  142. Jin, Z., Smith, L. K., Rajwanshi, V. K., Kim, B. & Deval, J. The ambiguous base-pairing and high substrate efficiency of T-705 (Favipiravir) Ribofuranosyl 5′-triphosphate towards influenza A virus polymerase. PLOS ONE 8, e68347 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Furuta, Y. et al. Mechanism of action of T-705 against influenza virus. Antimicrob. Agents Chemother. 49, 981–986 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Eriksson, B. et al. Inhibition of influenza virus ribonucleic acid polymerase by ribavirin triphosphate. Antimicrob. Agents Chemother. 11, 946–951 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Tchesnokov, E. P., Feng, J. Y., Porter, D. P. & Gotte, M. Mechanism of inhibition of Ebola virus RNA-dependent RNA polymerase by remdesivir. Viruses 11, E326 (2019).

    PubMed  Google Scholar 

  146. Lo, M. K. et al. GS-5734 and its parent nucleoside analog inhibit Filo-, Pneumo-, and Paramyxoviruses. Sci. Rep. 7, 43395 (2017).

    PubMed  PubMed Central  Google Scholar 

  147. Gabriel, G. et al. Importin-alpha7 is involved in the formation of Ebola virus inclusion bodies but is not essential for pathogenicity in mice. J. Infect. Dis. 212 (Suppl. 2), S316–S321 (2015).

    CAS  Google Scholar 

  148. Nelson, E. V. et al. Ebola virus does not induce stress granule formation during infection and sequesters stress granule proteins within viral inclusions. J. Virol. 90, 7268–7284 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Dunning, J. et al. Experimental treatment of Ebola virus disease with TKM-130803: a single-arm phase 2 clinical trial. PLOS Med. 13, e1001997 (2016).

    PubMed  PubMed Central  Google Scholar 

  150. Sissoko, D. et al. Experimental treatment with favipiravir for Ebola virus disease (the JIKI Trial): a historically controlled, single-arm proof-of-concept trial in Guinea. PLOS Med. 13, e1001967 (2016).

    PubMed  PubMed Central  Google Scholar 

  151. Bai, C. Q. et al. Clinical and virological characteristics of Ebola virus disease patients treated with favipiravir (T-705)-Sierra Leone, 2014. Clin. Infect. Dis. 63, 1288–1294 (2016).

    PubMed  Google Scholar 

  152. Mudhasani, R. et al. High content image-based screening of a protease inhibitor library reveals compounds broadly active against Rift Valley fever virus and other highly pathogenic RNA viruses. PLOS Negl. Trop. Dis. 8, e3095 (2014).

    PubMed  PubMed Central  Google Scholar 

  153. Garcia, M. et al. Productive replication of Ebola virus is regulated by the c-Abl1 tyrosine kinase. Sci. Transl Med. 4, 123ra24 (2012).

    PubMed  PubMed Central  Google Scholar 

  154. Kolesnikova, L., Nanbo, A., Becker, S. & Kawaoka, Y. Inside the cell: assembly of filoviruses. Curr. Top. Microbiol. Immunol. 411, 353–380 (2017).

    CAS  PubMed  Google Scholar 

  155. Wendt, L., Kamper, L., Schmidt, M. L., Mettenleiter, T. C. & Hoenen, T. Analysis of a putative late domain using an Ebola virus transcription and replication-competent virus-like particle system. J. Infect. Dis. 218 (Suppl. 5), S355–S359 (2018).

    PubMed  Google Scholar 

  156. Bornholdt, Z. A. et al. Structural rearrangement of ebola virus VP40 begets multiple functions in the virus life cycle. Cell 154, 763–774 (2013). This article describes the detailed structural analysis of VP40 and the identification of molecular targets for inhibitors of morphogenesis and/or budding.

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Hoenen, T. et al. Oligomerization of Ebola virus VP40 is essential for particle morphogenesis and regulation of viral transcription. J. Virol. 84, 7053–7063 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Jouvenet, N. et al. Broad-spectrum inhibition of retroviral and filoviral particle release by tetherin. J. Virol. 83, 1837–1844 (2009).

    CAS  PubMed  Google Scholar 

  159. Kaletsky, R. L., Francica, J. R., Agrawal-Gamse, C. & Bates, P. Tetherin-mediated restriction of filovirus budding is antagonized by the Ebola glycoprotein. Proc. Natl Acad. Sci. USA 106, 2886–2891 (2009).

    CAS  PubMed  Google Scholar 

  160. Vande Burgt, N. H., Kaletsky, R. L. & Bates, P. Requirements within the Ebola viral glycoprotein for tetherin antagonism. Viruses 7, 5587–5602 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Radoshitzky, S. R. et al. Infectious Lassa virus, but not filoviruses, is restricted by BST-2/tetherin. J. Virol. 84, 10569–10580 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Kuhl, A. et al. The Ebola virus glycoprotein and HIV-1 Vpu employ different strategies to counteract the antiviral factor tetherin. J. Infect. Dis. 204 (Suppl. 3), S850–S860 (2011).

    PubMed  PubMed Central  Google Scholar 

  163. Gonzalez-Hernandez, M. et al. A GXXXA motif in the transmembrane domain of the Ebola virus glycoprotein is required for tetherin antagonism. J. Virol. 92, e00403–18 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. World Health Organization. Ebola virus disease: Democratic Republic of the Congo: external situation report 40. WHO https://apps.who.int/iris/bitstream/handle/10665/312264/SITREP_EVD_DRC_20190507-eng.pdf (2019).

  165. Marzi, A. & Mire, C. E. Current Ebola virus vaccine progress. BioDrugs 33, 9–14 (2019).

    CAS  PubMed  Google Scholar 

  166. Reynolds, P. & Marzi, A. Ebola and Marburg virus vaccines. Virus Genes 53, 501–515 (2017).

    CAS  PubMed  Google Scholar 

  167. Martins, K. A., Jahrling, P. B., Bavari, S. & Kuhn, J. H. Ebola virus disease candidate vaccines under evaluation in clinical trials. Expert Rev. Vaccines 15, 1101–1112 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Feldmann, H., Feldmann, F. & Marzi, A. Ebola: lessons on vaccine development. Annu. Rev. Microbiol. 72, 423–446 (2018).

    CAS  PubMed  Google Scholar 

  169. Hoenen, T. & Feldmann, H. Ebolavirus in West Africa, and the use of experimental therapies or vaccines. BMC Biol. 12, 80 (2014).

    PubMed  PubMed Central  Google Scholar 

  170. Suder, E., Furuyama, W., Feldmann, H., Marzi, A. & de Wit, E. The vesicular stomatitis virus-based Ebola virus vaccine: from concept to clinical trials. Hum. Vaccin. Immunother. 14, 2107–2113 (2018).

    PubMed  PubMed Central  Google Scholar 

  171. Marzi, A. et al. Efficacy of vesicular stomatitis virus-Ebola virus postexposure treatment in rhesus macaques infected with Ebola virus Makona. J. Infect. Dis. 214, S360–S366 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Feldmann, H. et al. Effective post-exposure treatment of Ebola infection. PLOS Pathog. 3, e2 (2007).

    PubMed  PubMed Central  Google Scholar 

  173. Hoenen, T., Groseth, A., de Kok-Mercado, F., Kuhn, J. H. & Wahl-Jensen, V. Minigenomes, transcription and replication competent virus-like particles and beyond: reverse genetics systems for filoviruses and other negative stranded hemorrhagic fever viruses. Antiviral Res. 91, 195–208 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Schmidt, M. L., Tews, B. A., Groseth, A. & Hoenen, T. Generation and optimization of a green fluorescent protein-expressing transcription and replication-competent virus-like particle system for Ebola virus. J. Infect. Dis. 218, S360–S364 (2018).

    PubMed  Google Scholar 

  175. Steffen, I. & Simmons, G. Pseudotyping viral vectors with emerging virus envelope proteins. Curr. Gene Ther. 16, 47–55 (2016).

    CAS  PubMed  Google Scholar 

  176. Garbutt, M. et al. Properties of replication-competent vesicular stomatitis virus vectors expressing glycoproteins of filoviruses and arenaviruses. J. Virol. 78, 5458–5465 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Warfield, K. L. et al. Development and characterization of a mouse model for Marburg hemorrhagic fever. J. Virol. 83, 6404–6415 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Bray, M., Davis, K., Geisbert, T., Schmaljohn, C. & Huggins, J. A mouse model for evaluation of prophylaxis and therapy of Ebola hemorrhagic fever. J. Infect. Dis. 178, 651–661 (1998).

    CAS  PubMed  Google Scholar 

  179. Connolly, B. M. et al. Pathogenesis of experimental Ebola virus infection in guinea pigs. J. Infect. Dis. 179 (Suppl. 1), S203–S117 (1999).

    PubMed  Google Scholar 

  180. Marzi, A. et al. A hamster model for Marburg virus infection accurately recapitulates Marburg hemorrhagic fever. Sci. Rep. 6, 39214 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Ebihara, H. et al. A Syrian golden hamster model recapitulating Ebola hemorrhagic fever. J. Infect. Dis. 207, 306–318 (2013).

    CAS  PubMed  Google Scholar 

  182. Cross, R. W. et al. The Domestic Ferret (Mustela putorius furo) as a lethal infection model for 3 species of Ebolavirus. J. Infect. Dis. 214, 565–569 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Cross, R. W. et al. Marburg and Ravn viruses fail to cause disease in the Domestic Ferret (Mustela putorius furo). J. Infect. Dis. 218 (Suppl. 5), S448–S452 (2018).

    PubMed  PubMed Central  Google Scholar 

  184. Geisbert, T. W., Strong, J. E. & Feldmann, H. Considerations in the use of nonhuman primate models of Ebola virus and Marburg virus infection. J. Infect. Dis. 212 (Suppl. 2), S91–S97 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Groseth, A. & Hoenen, T. Forty years of Ebolavirus molecular biology: understanding a novel disease agent through the development and application of new technologies. Methods Mol. Biol. 1628, 15–38 (2017).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in the authors’ laboratories was funded in part by the Friedrich-Loeffler-Institut and in part by the Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

T.H., A.G. and H.F. researched data for the article, contributed substantially to the discussion of content, wrote the article and reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Thomas Hoenen or Heinz Feldmann.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Haemorrhagic fever

A disease that is characterized by fever and in severe cases associated with bleeding manifestations as a result of dysregulated coagulation and/or damage to the blood vessels.

Apoptotic mimicry

Exposure of phosphatidylserine on the surface of a pathogen, thereby allowing its interaction with phosphatidylserine receptors on phagocytes to promote uptake and infection.

Macropinocytosis

An actin-driven endocytic process by which large, uncoated and fluid-filled vesicles are formed, thereby allowing the uptake of extracellular material (including viruses) into the cell.

Secretory pathway

A pathway composed of the endoplasmic reticulum, Golgi apparatus, lysosome and cell membrane (as well as the vesicles that transit between them) and responsible for the secretion of proteins into the extracellular environment.

Multivesicular bodies

A specialized type of late endosomes that contain internal membrane-bound vesicles formed by budding of the endosomal membranes into their lumen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoenen, T., Groseth, A. & Feldmann, H. Therapeutic strategies to target the Ebola virus life cycle. Nat Rev Microbiol 17, 593–606 (2019). https://doi.org/10.1038/s41579-019-0233-2

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41579-019-0233-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing