Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Viral and host heterogeneity and their effects on the viral life cycle

Abstract

Traditionally, the viral replication cycle is envisioned as a single, well-defined loop with four major steps: attachment and entry into a target cell, replication of the viral genome, maturation of viral proteins and genome packaging into infectious progeny, and egress and dissemination to the next target cell. However, for many viruses, a growing body of evidence points towards extreme heterogeneity in each of these steps. In this Review, we reassess the major steps of the viral replication cycle by highlighting recent advances that show considerable variability during viral infection. First, we discuss heterogeneity in entry receptors, followed by a discussion on error-prone and low-fidelity polymerases and their impact on viral diversity. Next, we cover the implications of heterogeneity in genome packaging and assembly on virion morphology. Last, we explore alternative egress mechanisms, including tunnelling nanotubes and host microvesicles. In summary, we discuss the implications of viral phenotypic, morphological and genetic heterogeneity on pathogenesis and medicine. This Review highlights common themes and unique features that give nuance to the viral replication cycle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Heterogeneity in the virus replication cycle.
Fig. 2: Heterogeneity in glycosylation of entry receptors.
Fig. 3: Heterogeneity in influenza virus particle morphology.

Similar content being viewed by others

References

  1. Fields, B. N., Knipe, D. M., Howley, P. M. Fields Virology 6th edn (Lippincott Williams & Wilkins, 2013).

  2. Shulla, A. & Randall, G. (+) RNA virus replication compartments: a safe home for (most) viral replication. Curr. Opin. Microbiol. 32, 82–88 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. El Najjar, F. et al. Human metapneumovirus induces reorganization of the actin cytoskeleton for direct cell-to-cell spread. PLoS Pathog. 12, e1005922 (2016). This paper shows that HMPV viral proteins and genomic material use actin filaments to disseminate through the airway epithelium and evade neutralizing antibodies.

    PubMed  PubMed Central  Google Scholar 

  4. Roberts, K. L., Manicassamy, B. & Lamb, R. A. Influenza A virus uses intercellular connections to spread to neighboring cells. J. Virol. 89, 1537 (2015).

    PubMed  Google Scholar 

  5. Singh, B. K., Pfaller, C. K., Cattaneo, R. & Sinn, P. L. Measles virus ribonucleoprotein complexes rapidly spread across well-differentiated primary human airway epithelial cells along F-actin rings. mBio 10, e02434-19 (2019).

    PubMed  PubMed Central  Google Scholar 

  6. O’Neal, J. T. et al. West Nile virus-inclusive single-cell RNA sequencing reveals heterogeneity in the type I interferon response within single cells. J. Virol. 93, e01778-18 (2019).

    PubMed  PubMed Central  Google Scholar 

  7. Vignuzzi, M. & López, C. B. Defective viral genomes are key drivers of the virus–host interaction. Nat. Microbiol. 4, 1075–1087 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Russell, A. B., Elshina, E., Kowalsky, J. R., Te Velthuis, A. J. W. & Bloom, J. D. Single-cell virus sequencing of influenza infections that trigger innate immunity. J. Virol. 93, e00500-19 (2019).

    PubMed  PubMed Central  Google Scholar 

  9. Schulte, M. B. & Andino, R. Single-cell analysis uncovers extensive biological noise in poliovirus replication. J. Virol. 88, 6205 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Patil, S. et al. Single-cell analysis shows that paracrine signaling by first responder cells shapes the interferon-β response to viral infection. Sci. Signal. 8, ra16 (2015).

    PubMed  Google Scholar 

  11. Zanini, F., Pu, S.-Y., Bekerman, E., Einav, S. & Quake, S. R. Single-cell transcriptional dynamics of flavivirus infection. eLife 7, e32942 (2018).

    PubMed  PubMed Central  Google Scholar 

  12. Russell, A. B., Trapnell, C. & Bloom, J. D. Extreme heterogeneity of influenza virus infection in single cells. eLife 7, e32303 (2018).

    PubMed  PubMed Central  Google Scholar 

  13. Heldt, F. S., Kupke, S. Y., Dorl, S., Reichl, U. & Frensing, T. Single-cell analysis and stochastic modelling unveil large cell-to-cell variability in influenza A virus infection. Nat. Commun. 6, 8938 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Wimmers, F. et al. Single-cell analysis reveals that stochasticity and paracrine signaling control interferon-α production by plasmacytoid dendritic cells. Nat. Commun. 9, 3317 (2018).

    PubMed  PubMed Central  Google Scholar 

  15. Shalek, A. K. et al. Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature 510, 363–369 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Killip, M. J., Jackson, D., Pérez-Cidoncha, M., Fodor, E. & Randall, R. E. Single-cell studies of IFN-β promoter activation by wild-type and NS1-defective influenza A viruses. J. Gen. Virol. 98, 357–363 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Steuerman, Y. et al. Dissection of influenza infection in vivo by single-cell RNA sequencing. Cell Syst. 6, 679–691.e4 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Bhagwat, A. R. et al. Quantitative live cell imaging reveals influenza virus manipulation of Rab11A transport through reduced dynein association. Nat. Commun. 11, 23 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Mangala Prasad, V., Klose, T. & Rossmann, M. G. Assembly, maturation and three-dimensional helical structure of the teratogenic rubella virus. PLoS Pathog. 13, e1006377 (2017).

    PubMed  PubMed Central  Google Scholar 

  20. Liu, J., Bartesaghi, A., Borgnia, M. J., Sapiro, G. & Subramaniam, S. Molecular architecture of native HIV-1 gp120 trimers. Nature 455, 109–113 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. White, T. A. et al. Molecular architectures of trimeric SIV and HIV-1 envelope glycoproteins on intact viruses: strain-dependent variation in quaternary structure. PLoS Pathog. 6, e1001249 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Shaw M. L., Palese P. in Fields Virology Ch. 40 (eds Howley, P. & Knipe, D. M.) 1152–1181 (Lippincott Williams & Wilkins, 2013).

  23. Sakai, T., Nishimura, S. I., Naito, T. & Saito, M. Influenza A virus hemagglutinin and neuraminidase act as novel motile machinery. Sci. Rep. 7, 45043 (2017). This paper shows that IAV HA and NA proteins coordinate iterative receptor binding and release, resulting in accelerated viral motility and endocytosis into target cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Sakai, T., Takagi, H., Muraki, Y. & Saito, M. Unique directional motility of influenza C virus controlled by its filamentous morphology and short-range motions. J. Virol. 92, e01522-17 (2018).

    PubMed  PubMed Central  Google Scholar 

  25. Vahey, M. D. & Fletcher, D. A. Influenza A virus surface proteins are organized to help penetrate host mucus. eLife 8, e43764 (2019). This paper shows that HA and NA proteins are asymmetrically distributed on filamentous IAV particles, contributing to directional motility.

    PubMed  PubMed Central  Google Scholar 

  26. Hensley, S. E. et al. Hemagglutinin receptor binding avidity drives influenza A virus antigenic drift. Science 326, 734 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Nobusawa, E., Ishihara, H., Morishita, T., Sato, K. & Nakajima, K. Change in receptor-binding specificity of recent human influenza A viruses (H3N2): a single amino acid change in hemagglutinin altered its recognition of sialyloligosaccharides. Virology 278, 587–596 (2000).

    CAS  PubMed  Google Scholar 

  28. Centers for Disease Control and Prevention. Summary of the 2017–2018 influenza season (CDC, 2019).

  29. Jester, B. J., Uyeki, T. M. & Jernigan, D. B. Fifty years of influenza A (H3N2) following the pandemic of 1968. Am. J. Public Health 110, 669–676 (2020).

    PubMed  PubMed Central  Google Scholar 

  30. Peng, W. et al. Recent H3N2 viruses have evolved specificity for extended, branched human-type receptors, conferring potential for increased avidity. Cell Host Microbe 21, 23–34 (2017). This paper uses an influenza virus receptor glycan microarray to demonstrate that H3N2 viruses have evolved to retain specificity for human-type sialic acid but gain selectivity for elongated, branched glycans with greater avidity for HA.

    CAS  PubMed  Google Scholar 

  31. Yoshida-Moriguchi, T. & Campbell, K. P. Matriglycan: a novel polysaccharide that links dystroglycan to the basement membrane. Glycobiology 25, 702–713 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Fedeli, C. et al. Axl can serve as entry factor for Lassa virus depending on the functional glycosylation of dystroglycan. J. Virol. 92, e01613-17 (2018).

    PubMed  PubMed Central  Google Scholar 

  33. Chadwick, A. C. & Sahoo, D. Functional characterization of newly-discovered mutations in Human SR-BI. PLoS ONE 7, e45660 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Huang, J. et al. SR-BI interactome analysis reveals a proviral role for UGGT1 in hepatitis C virus entry. Front. Microbiol. 10, 2043 (2019).

    PubMed  PubMed Central  Google Scholar 

  35. de Graaf, M. & Fouchier, R. A. M. Role of receptor binding specificity in influenza A virus transmission and pathogenesis. EMBO J. 33, 823–841 (2014).

    PubMed  PubMed Central  Google Scholar 

  36. Peck, K. M. et al. Glycosylation of mouse DPP4 plays a role in inhibiting Middle East respiratory syndrome coronavirus infection. J. Virol. 89, 4696 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Peck, K. M. et al. Permissivity of dipeptidyl peptidase 4 orthologs to Middle East respiratory syndrome coronavirus is governed by glycosylation and other complex determinants. J. Virol. 91, e00534-17 (2017).

    PubMed  PubMed Central  Google Scholar 

  38. Li, F. Receptor recognition and cross-species infections of SARS coronavirus. Antivir. Res. 100, 246–254 (2013).

    CAS  PubMed  Google Scholar 

  39. Hastie, K. M. et al. Structural basis for antibody-mediated neutralization of Lassa virus. Science 356, 923–928 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Shimojima, M., Ströher, U., Ebihara, H., Feldmann, H. & Kawaoka, Y. Identification of cell surface molecules involved in dystroglycan-independent Lassa virus cell entry. J. Virol. 86, 2067–2078 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Zeisel, M. B., Felmlee, D. J. & Baumert, T. F. in Hepatitis C Virus: From Molecular Virology to Antiviral Therapy (ed. Bartenschlager, R.) 87–112 (Springer, 2013).

  42. Ding, Q., von Schaewen, M. & Ploss, A. The impact of hepatitis C virus entry on viral tropism. Cell Host Microbe 16, 562–568 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Westhaus, S. et al. Scavenger receptor class B member 1 (SCARB1) variants modulate hepatitis C virus replication cycle and viral load. J. Hepatol. 67, 237–245 (2017).

    CAS  PubMed  Google Scholar 

  44. Li, W. et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426, 450–454 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Yan, R. et al. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 367, 1444 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Raj, V. S. et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 495, 251–254 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Wan, Y., Shang, J., Graham, R., Baric, R. S. & Li, F. Receptor recognition by the novel coronavirus from wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J. Virol. 94, e00127-20 (2020).

    PubMed  PubMed Central  Google Scholar 

  48. Raman, R., Tharakaraman, K., Sasisekharan, V. & Sasisekharan, R. Glycan–protein interactions in viral pathogenesis. Curr. Opin. Struct. Biol. 40, 153–162 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Walther, T. et al. Glycomic analysis of human respiratory tract tissues and correlation with influenza virus infection. PLoS Pathog. 9, e1003223 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Sanjuán, R., Nebot, M. R., Chirico, N., Mansky, L. M. & Belshaw, R. Viral mutation rates. J. Virol. 84, 9733 (2010).

    PubMed  PubMed Central  Google Scholar 

  51. Vignuzzi, M., Stone, J. K., Arnold, J. J., Cameron, C. E. & Andino, R. Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population. Nature 439, 344–348 (2006).

    CAS  PubMed  Google Scholar 

  52. Bordería, A. V. et al. Group selection and contribution of minority variants during virus adaptation determines virus fitness and phenotype. PLoS Pathog. 11, e1004838 (2015).

    PubMed  PubMed Central  Google Scholar 

  53. Lauring, A. S., Frydman, J. & Andino, R. The role of mutational robustness in RNA virus evolution. Nat. Rev. Microbiol. 11, 327–336 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Sanjuán, R. & Domingo-Calap, P. Mechanisms of viral mutation. Cell Mol. Life Sci. 73, 4433–4448 (2016).

    PubMed  PubMed Central  Google Scholar 

  55. Crosse, K. M., Monson, E. A., Beard, M. R. & Helbig, K. J. Interferon-stimulated genes as enhancers of antiviral innate immune signaling. J. Innate Immun. 10, 85–93 (2018).

    CAS  PubMed  Google Scholar 

  56. Iwasaki, A. & Pillai, P. S. Innate immunity to influenza virus infection. Nat. Rev. Immunol. 14, 315–328 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Kallfass, C., Lienenklaus, S., Weiss, S. & Staeheli, P. Visualizing the β-interferon response in mice during infection with influenza A viruses expressing or lacking nonstructural protein 1. J. Virol. 87, 6925–6930 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Brooke, C. B. et al. Most influenza a virions fail to express at least one essential viral protein. J. Virol. 87, 3155–3162 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Dou, D. et al. Analysis of IAV replication and co-infection dynamics by a versatile RNA viral genome labeling method. Cell Rep. 20, 251–263 (2017).

    CAS  PubMed  Google Scholar 

  60. Sjaastad, L. E. et al. Distinct antiviral signatures revealed by the magnitude and round of influenza virus replication in vivo. Proc. Natl Acad. Sci. USA 115, 9610–9615 (2018).

    CAS  PubMed  Google Scholar 

  61. Wang, C. et al. Cell-to-cell variation in defective virus expression and effects on host responses during influenza virus infection. mBio 11, e02880-19 (2020).

    PubMed  PubMed Central  Google Scholar 

  62. Sun, Y. et al. A specific sequence in the genome of respiratory syncytial virus regulates the generation of copy-back defective viral genomes. PLoS Pathog. 15, e1007707 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Genoyer, E. & López, C. B. Defective viral genomes alter how Sendai virus interacts with cellular trafficking machinery, leading to heterogeneity in the production of viral particles among infected cells. J. Virol. 93, e01579-18 (2019). This paper uses fluorescent in situ hybridization to reveal heterogeneity in the intracellular localization of DVGs compared with full-length genomes during Sendai virus infection.

    PubMed  PubMed Central  Google Scholar 

  64. Xu, J. et al. Replication defective viral genomes exploit a cellular pro-survival mechanism to establish paramyxovirus persistence. Nat. Commun. 8, 799 (2017). This paper uses single-cell analysis to reveal that DVGs promote a MAVS-dependent TNF pro-survival pathway, driving persistence of paramyxoviruses.

    PubMed  PubMed Central  Google Scholar 

  65. Geoghegan, J. L., Duchêne, S. & Holmes, E. C. Comparative analysis estimates the relative frequencies of co-divergence and cross-species transmission within viral families. PLoS Pathog. 13, e1006215 (2017).

    PubMed  PubMed Central  Google Scholar 

  66. Tsetsarkin, K. A., Vanlandingham, D. L., McGee, C. E. & Higgs, S. A single mutation in chikungunya virus affects vector specificity and epidemic potential. PLoS Pathog. 3, e201 (2007).

    PubMed  PubMed Central  Google Scholar 

  67. Tsetsarkin, K. A. et al. Multi-peaked adaptive landscape for chikungunya virus evolution predicts continued fitness optimization in Aedes albopictus mosquitoes. Nat. Commun. 5, 4084 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Silva, L. A. & Dermody, T. S. Chikungunya virus: epidemiology, replication, disease mechanisms, and prospective intervention strategies. J. Clin. Invest. 127, 737–749 (2017).

    PubMed  PubMed Central  Google Scholar 

  69. Bonnaud, E. M. et al. Comparison of intra- and inter-host genetic diversity in rabies virus during experimental cross-species transmission. PLoS Pathog. 15, e1007799 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Parrish, C. R., Murcia, P. R. & Holmes, E. C. Influenza virus reservoirs and intermediate hosts: dogs, horses, and new possibilities for influenza virus exposure of humans. J. Virol. 89, 2990 (2015).

    CAS  PubMed  Google Scholar 

  71. Wang, L.-F. & Anderson, D. E. Viruses in bats and potential spillover to animals and humans. Curr. Opin. Virol. 34, 79–89 (2019).

    PubMed  PubMed Central  Google Scholar 

  72. Calisher, C. H., Childs, J. E., Field, H. E., Holmes, K. V. & Schountz, T. Bats: important reservoir hosts of emerging viruses. Clin.l Microbiol. Rev. 19, 531 (2006).

    Google Scholar 

  73. Kan, B. et al. Molecular evolution analysis and geographic investigation of severe acute respiratory syndrome coronavirus-like virus in palm civets at an animal market and on farms. J. Virol. 79, 11892–11900 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Gralinski, L. E. & Menachery, V. D. Return of the coronavirus: 2019-nCoV. Viruses 12, E135 (2020).

    PubMed  Google Scholar 

  75. Raghwani, J. et al. Exceptional heterogeneity in viral evolutionary dynamics characterises chronic hepatitis C virus infection. PLoS Pathog. 12, e1005894 (2016).

    PubMed  PubMed Central  Google Scholar 

  76. Gray, R. R. et al. Unexpected maintenance of hepatitis C viral diversity following liver transplantation. J. Virol. 86, 8432 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Raghwani, J. et al. High-resolution evolutionary analysis of within-host hepatitis C virus infection. J. Infect. Dis. 219, 1722–1729 (2019).

    PubMed  PubMed Central  Google Scholar 

  78. Salemi, M. The intra-host evolutionary and population dynamics of human immunodeficiency virus type 1: a phylogenetic perspective. Infect. Dis. Rep. 5, e3 (2013).

    PubMed  PubMed Central  Google Scholar 

  79. Centers for Disease Control and Prevention. Hepatitis C questions and answers for health professionals (CDC, 2019).

  80. Bednar, M. M. et al. Compartmentalization, viral evolution, and viral latency of HIV in the CNS. Curr. HIV/AIDS Rep. 12, 262–271 (2015).

    PubMed  PubMed Central  Google Scholar 

  81. Schnell, G., Price, R. W., Swanstrom, R. & Spudich, S. Compartmentalization and clonal amplification of HIV-1 variants in the cerebrospinal fluid during primary infection. J. Virol. 84, 2395–2407 (2010).

    CAS  PubMed  Google Scholar 

  82. Anderson, J. A. et al. HIV-1 populations in semen arise through multiple mechanisms. PLoS Pathog. 6, e1001053 (2010).

    PubMed  PubMed Central  Google Scholar 

  83. Abrahams, M. R. et al. Quantitating the multiplicity of infection with human immunodeficiency virus type 1 subtype C reveals a non-poisson distribution of transmitted variants. J. Virol. 83, 3556–3567 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Ritola, K., Robertson, K., Fiscus, S. A., Hall, C. & Swanstrom, R. Increased human immunodeficiency virus type 1 (HIV-1) env compartmentalization in the presence of HIV-1-associated dementia. J. Virol. 79, 10830 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Harrington, P. R. et al. Cross-sectional characterization of HIV-1 env compartmentalization in cerebrospinal fluid over the full disease course. AIDS 23, 907–915 (2009).

    PubMed  PubMed Central  Google Scholar 

  86. Vahey, M. D. & Fletcher, D. A. Low-fidelity assembly of influenza a virus promotes escape from host cells. Cell 176, 281–294.e19 (2019). This paper uses site-specific labelling of IAV particles to reveal substantial heterogeneity in the size and composition of virions produced in individual cells.

    CAS  PubMed  Google Scholar 

  87. Jacobs, N. T. et al. Incomplete influenza A virus genomes occur frequently but are readily complemented during localized viral spread. Nat. Commun. 10, 3526 (2019).

    PubMed  PubMed Central  Google Scholar 

  88. Campbell, P. J. et al. The M segment of the 2009 pandemic influenza virus confers increased neuraminidase activity, filamentous morphology, and efficient contact transmissibility to A/Puerto Rico/8/1934-based reassortant viruses. J. Virol. 88, 3802 (2014).

    PubMed  PubMed Central  Google Scholar 

  89. Seladi-Schulman, J., Steel, J. & Lowen, A. C. Spherical influenza viruses have a fitness advantage in embryonated eggs, while filament-producing strains are selected are selected in vivo. J. Virol. 87, 13343 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Lakdawala, S. S. et al. Eurasian-origin gene segments contribute to the transmissibility, aerosol release, and morphology of the 2009 pandemic H1N1 influenza virus. PLoS Pathog. 7, e1002443 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Kuhn, R. J., Dowd, K. A., Beth Post, C. & Pierson, T. C. Shake, rattle, and roll: impact of the dynamics of flavivirus particles on their interactions with the host. Virology 479–480, 508–517 (2015).

    PubMed  PubMed Central  Google Scholar 

  92. Sirohi, D. & Kuhn, R. J. Zika virus structure, maturation, and receptors. J. Infect. Dis. 216, S935–S944 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Mukhopadhyay, S., Kuhn, R. J. & Rossmann, M. G. A structural perspective of the flavivirus life cycle. Nat. Rev. Microbiol. 3, 13–22 (2005).

    CAS  PubMed  Google Scholar 

  94. Rager, M., Vongpunsawad, S., Duprex, W. P. & Cattaneo, R. Polyploid measles virus with hexameric genome length. EMBO J. 21, 2364–2372 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Cattaneo, R., Donohue, R. C., Generous, A. R., Navaratnarajah, C. K. & Pfaller, C. K. Stronger together: multi-genome transmission of measles virus. Virus Res. 265, 74–79 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Klasse, P. J. Molecular determinants of the ratio of inert to infectious virus particles. Prog. Mol. Biol. Transl. Sci. 129, 285–326 (2015).

    CAS  PubMed  Google Scholar 

  97. Wichgers Schreur, P. J. & Kortekaas, J. Single-molecule FISH reveals non-selective packaging of Rift Valley fever virus genome segments. PLoS Pathog. 12, e1005800 (2016).

    PubMed  PubMed Central  Google Scholar 

  98. Lakdawala, S. S., Fodor, E. & Subbarao, K. Moving on out: transport and packaging of influenza viral RNA into virions. Annu. Rev. Virol. 3, 411–427 (2016).

    CAS  PubMed  Google Scholar 

  99. Nakatsu, S. et al. Complete and incomplete genome packaging of influenza A and B viruses. mBio 7, e01248-16 (2016).

    PubMed  PubMed Central  Google Scholar 

  100. Kuznetsov, Y. G., Victoria, J. G., Robinson, W. E. & McPherson, A. Atomic force microscopy investigation of human immunodeficiency virus (HIV) and HIV-infected lymphocytes. J. Virol. 77, 11896 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Cox, R. M. & Plemper, R. K. Structure and organization of paramyxovirus particles. Curr. Opin. Virol. 24, 105–114 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Dadonaite, B., Vijayakrishnan, S., Fodor, E., Bhella, D. & Hutchinson, E. C. Filamentous influenza viruses. J. Gen. Virol. 97, 1755–1764 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Ke, Z. et al. The morphology and assembly of respiratory syncytial virus revealed by cryo-electron tomography. Viruses 10, 446 (2018).

    PubMed Central  Google Scholar 

  104. Dahlberg, J. E. & Simon, E. H. Physical and genetic studies of Newcastle disease virus: evidence for multiploid particles. Virology 38, 666–678 (1969).

    CAS  PubMed  Google Scholar 

  105. Hausmann, S., Jacques, J. P. & Kolakofsky, D. Paramyxovirus RNA editing and the requirement for hexamer genome length. RNA 2, 1033–1045 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Tahara, M., Takeda, M. & Yanagi, Y. Altered interaction of the matrix protein with the cytoplasmic tail of hemagglutinin modulates measles virus growth by affecting virus assembly and cell–cell fusion. J. Virol. 81, 6827–6836 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Ke, Z. et al. Promotion of virus assembly and organization by the measles virus matrix protein. Nat. Commun. 9, 1736 (2018).

    PubMed  PubMed Central  Google Scholar 

  108. Cathomen, T., Naim, H. Y. & Cattaneo, R. Measles viruses with altered envelope protein cytoplasmic tails gain cell fusion competence. J. Virol. 72, 1224–1234 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Schmid, A. et al. Subacute sclerosing panencephalitis is typically characterized by alterations in the fusion protein cytoplasmic domain of the persisting measles virus. Virology 188, 910–915 (1992).

    CAS  PubMed  Google Scholar 

  110. Gerdes, H.-H. & Carvalho, R. N. Intercellular transfer mediated by tunneling nanotubes. Curr. Opin. Cell Biol. 20, 470–475 (2008).

    CAS  PubMed  Google Scholar 

  111. Önfelt, B., Nedvetzki, S., Yanagi, K. & Davis, D. M. Cutting Edge: membrane nanotubes connect immune cells. J. Immunol. 173, 1511 (2004).

    PubMed  Google Scholar 

  112. Önfelt, B. et al. Structurally distinct membrane nanotubes between human macrophages support long-distance vesicular traffic or surfing of bacteria. J. Immunol. 177, 8476 (2006).

    PubMed  Google Scholar 

  113. Sowinski, S. et al. Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission. Nat. Cell Biol. 10, 211–219 (2008).

    CAS  PubMed  Google Scholar 

  114. Lehmann, M. J., Sherer, N. M., Marks, C. B., Pypaert, M. & Mothes, W. Actin- and myosin-driven movement of viruses along filopodia precedes their entry into cells. J. Cell Biol. 170, 317–325 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Furnon, W. et al. Remodeling of the Actin network associated with the non-structural protein 1 (NS1) of West Nile virus and formation of NS1-containing tunneling nanotubes. Viruses 11, 901 (2019).

    CAS  PubMed Central  Google Scholar 

  116. Sherer, N. M. et al. Retroviruses can establish filopodial bridges for efficient cell-to-cell transmission. Nat. Cell Biol. 9, 310–315 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Eugenin, E. A., Gaskill, P. J. & Berman, J. W. Tunneling nanotubes (TNT) are induced by HIV-infection of macrophages: a potential mechanism for intercellular HIV trafficking. Cell. Immunol. 254, 142–148 (2009).

    CAS  PubMed  Google Scholar 

  118. Hashimoto, M. et al. Potential role of the formation of tunneling nanotubes in HIV-1 spread in macrophages. J. Immunol. 196, 1832 (2016).

    CAS  PubMed  Google Scholar 

  119. Generous, A. R. et al. Trans-endocytosis elicited by nectins transfers cytoplasmic cargo, including infectious material, between cells. J. Cell Sci. 132, jcs235507 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Kumar, A. et al. Influenza virus exploits tunneling nanotubes for cell-to-cell spread. Sci. Rep. 7, 40360 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Panasiuk, M., Rychłowski, M., Derewońko, N. & Bieńkowska-Szewczyk, K. Tunneling Nanotubes as a novel route of cell-to-cell spread of herpesviruses. J. Virol. 92, e00090-18 (2018).

    PubMed  PubMed Central  Google Scholar 

  122. Cudmore, S., Cossart, P., Griffiths, G. & Way, M. Actin-based motility of vaccinia virus. Nature 378, 636–638 (1995).

    CAS  PubMed  Google Scholar 

  123. Cudmore, S., Reckmann, I., Griffiths, G. & Way, M. Vaccinia virus: a model system for actin–membrane interactions. J. Cell Sci. 109, 1739 (1996).

    CAS  PubMed  Google Scholar 

  124. Chen, Y.-H. et al. Phosphatidylserine vesicles enable efficient en bloc transmission of enteroviruses. Cell 160, 619–630 (2015). This paper shows that enterovirus genomes are packaged in clusters into membrane-bound vesicles and released non-lytically from infected cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Cuevas, J. M., Duran-Moreno, M. & Sanjuan, R. Multi-virion infectious units arise from free viral particles in an enveloped virus. Nat. Microbiol. 2, 17078 (2017). This paper shows that multi-virion clusters form spontaneously via protein–lipid interactions, promoting co-transmission of different genetic variants to a target cell.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Feng, Z. et al. A pathogenic picornavirus acquires an envelope by hijacking cellular membranes. Nature 496, 367–371 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. McKnight, K. L. et al. Protein composition of the hepatitis A virus quasi-envelope. Proc. Natl Acad. Sci. USA 114, 6587 (2017).

    CAS  PubMed  Google Scholar 

  128. Bird, S. W., Maynard, N. D., Covert, M. W. & Kirkegaard, K. Nonlytic viral spread enhanced by autophagy components. Proc. Natl Acad. Sci. USA 111, 13081 (2014).

    CAS  PubMed  Google Scholar 

  129. Robinson, S. M. et al. Coxsackievirus B exits the host cell in shed microvesicles displaying autophagosomal markers. PLoS Pathog. 10, e1004045 (2014).

    PubMed  PubMed Central  Google Scholar 

  130. Santiana, M. et al. Vesicle-cloaked virus clusters are optimal units for inter-organismal viral transmission. Cell Host Microbe 24, 208–220.e8 (2018). This paper shows that vesicle-cloaked enteric viruses are shed non-lytically from infected cells in clusters that enhance the multiplicity of infection and disease severity in the subsequent host.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Hutchinson, E. C. et al. Conserved and host-specific features of influenza virion architecture. Nat. Commun. 5, 4816 (2014). This paper shows that the influenza virion architecture includes a substantial number of components of host exosomes.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Bou, J.-V., Geller, R. & Sanjuán, R. Membrane-associated enteroviruses undergo intercellular transmission as pools of sibling viral genomes. Cell Rep. 29, 714–723.e4 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Marshall, N., Priyamvada, L., Ende, Z., Steel, J. & Lowen, A. C. Influenza virus reassortment occurs with high frequency in the absence of segment mismatch. PLoS Pathog. 9, e1003421 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Souriant, S. et al. Tuberculosis exacerbates HIV-1 infection through IL-10/STAT3-dependent tunneling nanotube formation in macrophages. Cell Rep. 26, 3586–3599.e7 (2019). This paper shows that M. tuberculosis and HIV-1 co-infection promotes TNT formation in infected macrophages and enhances cell-to-cell spread of HIV-1.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Hoffmann, M. et al. Chloroquine does not inhibit infection of human lung cells with SARS-CoV-2. Nature 585, 588–590 (2020). This paper shows that heterogeneity in host entry co-factor usage by SARS-CoV-2 leads to differential efficacy of the entry inhibitor chloroquine.

    CAS  PubMed  Google Scholar 

  136. Knierim, D., Menzel, W. & Winter, S. Immunocapture of virions with virus-specific antibodies prior to high-throughput sequencing effectively enriches for virus-specific sequences. PLoS ONE 14, e0216713 (2019).

    PubMed  PubMed Central  Google Scholar 

  137. Martinez-Hernandez, F. et al. Single-virus genomics reveals hidden cosmopolitan and abundant viruses. Nat. Commun. 8, 15892 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank members of the Lakdawala laboratory for critical reading of this review. S.S.L. is funded by National Institutes of Health (NIH) grant (1R01AI139063-01A1), the American Lung Association Biomedical Research grant and a New Initiative Award from the Charles E. Kaufman Foundation, a supporting organization of The Pittsburgh Foundation. J.E.J. is a recipient of a Catalyst Award from the University of Pittsburgh Center for Evolutionary Biology and Medicine and a T32 (T32 AI049820) from the University of Pittsburgh.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article and contributed to discussion of the content. J.E.J., V.L. and S.S.L wrote the article. All authors reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Seema S. Lakdawala.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Microbiology thanks N. Altan-Bonnet and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Pleomorphic viruses

A population of viruses exhibiting irregularity of size, shape or protein copy number.

Receptor avidity

The strength or affinity of the interaction between a viral receptor-binding protein and its target ligand on a host cell.

Multiplicity of infection

The ratio of the number of infectious units of a virus to the number of cells.

Epistatic mutations

Mutations whose effects are dependent upon the presence or absence of one or more mutations in other genes.

Plaque-forming unit

(PFU). The concentration of viruses capable of lysing host cells and forming a visible plaque, per unit volume.

Syncytia

A multinucleate cell arising from fusion of several cells.

Minimal infectious unit

The minimal concentration of virus particles required to initiate infection.

Exosomes

Extracellular vesicles produced in the host cell carrying proteins and RNA that are released into the extracellular space and can fuse with neighbouring cells.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jones, J.E., Le Sage, V. & Lakdawala, S.S. Viral and host heterogeneity and their effects on the viral life cycle. Nat Rev Microbiol 19, 272–282 (2021). https://doi.org/10.1038/s41579-020-00449-9

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41579-020-00449-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing