Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Infections at the maternal–fetal interface: an overview of pathogenesis and defence

Abstract

Infections are a major threat to human reproductive health, and infections in pregnancy can cause prematurity or stillbirth, or can be vertically transmitted to the fetus leading to congenital infection and severe disease. The acronym ‘TORCH’ (Toxoplasma gondii, other, rubella virus, cytomegalovirus, herpes simplex virus) refers to pathogens directly associated with the development of congenital disease and includes diverse bacteria, viruses and parasites. The placenta restricts vertical transmission during pregnancy and has evolved robust mechanisms of microbial defence. However, microorganisms that cause congenital disease have likely evolved diverse mechanisms to bypass these defences. In this Review, we discuss how TORCH pathogens access the intra-amniotic space and overcome the placental defences that protect against microbial vertical transmission.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Routes of transmission across the placenta and consequences of infection.
Fig. 2: Structure and cellular composition of the maternal–fetal interface.
Fig. 3: Placental defences against pathogens.
Fig. 4: Possible mechanisms of vertical transmission.
Fig. 5: Placental malaria in endemic areas.

Similar content being viewed by others

References

  1. DeSilva, M. et al. Congenital anomalies: case definition and guidelines for data collection, analysis, and presentation of immunization safety data. Vaccine 34, 6015–6026 (2016).

    PubMed  PubMed Central  Google Scholar 

  2. Boyle, B. et al. Estimating global burden of disease due to congenital anomaly: an analysis of European data. Arch. Dis. Child. Fetal Neonatal Ed. 103, F22–F28 (2018).

    PubMed  Google Scholar 

  3. Christianson, A., Howson, C. & Modell, B. March of Dimes. Global Report on Birth Defect. The Hidden toll of Dying and Disabled Children (March of Dimes Birth Defects Foundation, 2006).

  4. Page, J. M. et al. Stillbirth associated with infection in a diverse U.S. Cohort. Obstet. Gynecol. 134, 1187–1196 (2019).

    PubMed  Google Scholar 

  5. Lawn, J. E. et al. Stillbirths: rates, risk factors, and acceleration towards 2030. Lancet 387, 587–603 (2016).

    PubMed  Google Scholar 

  6. McClure, E. M. & Goldenberg, R. L. Infection and stillbirth. Semin. Fetal Neonatal Med. 14, 182–189 (2009).

    PubMed  PubMed Central  Google Scholar 

  7. Fouks, Y., Many, A., Shulman, Y., Bak, S. & Shinar, S. The contribution of an infectious workup in understanding stillbirth. Am. J. Perinatol. 38, 377–382 (2021).

    PubMed  Google Scholar 

  8. Fiumara, N. J. A legacy of syphilis. Arch. Dermatol. 92, 676–678 (1965).

    CAS  PubMed  Google Scholar 

  9. Crane, J. et al. Parvovirus B19 infection in pregnancy. J. Obstet. Gynaecol. Can. 36, 1107–1116 (2014).

    PubMed  Google Scholar 

  10. Romero, R., Dey, S. K. & Fisher, S. J. Preterm labor: one syndrome, many causes. Science 345, 760–765 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Venkatesh, K. K. et al. Association of chorioamnionitis and its duration with neonatal morbidity and mortality. J. Perinatol. 39, 673–682 (2019).

    PubMed  Google Scholar 

  12. Stoll, B. J. et al. Changes in pathogens causing early-onset sepsis in very-low-birth-weight infants. N. Engl. J. Med. 347, 240–247 (2002).

    PubMed  Google Scholar 

  13. Oh, J. W., Park, C. W., Moon, K. C., Park, J. S. & Jun, J. K. The relationship among the progression of inflammation in umbilical cord, fetal inflammatory response, early-onset neonatal sepsis, and chorioamnionitis. PLoS ONE 14, e0225328 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Stoll, B. J. et al. Early-onset neonatal sepsis 2015 to 2017, the rise of Escherichia coli, and the need for novel prevention strategies. JAMA Pediatr. 174, e200593 (2020).

    PubMed  PubMed Central  Google Scholar 

  15. Nahmias, A. J., Walls, K. W., Stewart, J. A., Herrmann, K. L. & Flynt, W. J. The ToRCH complex-perinatal infections associated with toxoplasma and rubella, cytomegol- and herpes simplex viruses. Pediatr. Res. 5, 405–406 (1971).

    Google Scholar 

  16. Ander, S. E., Diamond, M. S. & Coyne, C. B. Immune responses at the maternal-fetal interface. Sci. Immunol. 4, eaat6114 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Maltepe, E., Bakardjiev, A. I. & Fisher, S. J. The placenta: transcriptional, epigenetic, and physiological integration during development. J. Clin. Invest. 120, 1016–1025 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Knöfler, M. et al. Human placenta and trophoblast development: key molecular mechanisms and model systems. Cell. Mol. Life Sci. 76, 405–406 (2019).

    Google Scholar 

  19. Thomas, J. R. et al. Phenotypic and functional characterization of first-trimester human placental macrophages, Hofbauer cells. J. Exp. Med. 218, e20200891 (2020).

    PubMed Central  Google Scholar 

  20. Ellery, P. M., Cindrova-Davies, T., Jauniaux, E., Ferguson-Smith, A. C. & Burton, G. J. Evidence for transcriptional activity in the syncytiotrophoblast of the human placenta. Placenta 30, 329–334 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Guttman, J. A. & Finlay, B. B. Tight junctions as targets of infectious agents. Biochim. Biophys. Acta 1788, 832–841 (2009).

    CAS  PubMed  Google Scholar 

  22. Zeldovich, V. B. et al. Placental syncytium forms a biophysical barrier against pathogen invasion. PLoS Pathog. 9, 1–10 (2013).

    Google Scholar 

  23. Ander, S. E. et al. Human placental syncytiotrophoblasts restrict Toxoplasma gondii attachment and replication and respond to infection by producing immunomodulatory chemokines. mBio 9, e01678-17 (2018).

    PubMed  PubMed Central  Google Scholar 

  24. Robbins, J. R., Skrzypczynska, K. M., Zeldovich, V. B., Kapidzic, M. & Bakardjiev, A. I. Placental syncytiotrophoblast constitutes a major barrier to vertical transmission of Listeria monocytogenes. PLoS Pathog. 6, e1000732 (2010).

    PubMed  PubMed Central  Google Scholar 

  25. Delorme-Axford, E. et al. Human placental trophoblasts confer viral resistance to recipient cells. Proc. Natl Acad. Sci. USA 110, 12048–12053 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Delorme-Axford, E., Sadovsky, Y. & Coyne, C. B. Lipid raft- and src family kinase-dependent entry of Coxsackievirus B into human placental trophoblasts. J. Virol. 87, 8569–8581 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Stein, K. R. et al. CD46 facilitates entry and dissemination of human cytomegalovirus. Nat. Commun. 10, 2699 (2019).

    PubMed  PubMed Central  Google Scholar 

  28. Hemmings, D. G., Kilani, R., Nykiforuk, C., Preiksaitis, J. & Guilbert, L. J. Permissive cytomegalovirus infection of primary villous term and first trimester trophoblasts. J. Virol. 72, 4970–4979 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Vento-Tormo, R. et al. Single-cell reconstruction of the early maternal–fetal interface in humans. Nature 563, 347–353 (2018).

    CAS  PubMed  Google Scholar 

  30. Pique-Regi, R. et al. Single cell transcriptional signatures of the human placenta in term and preterm parturition. eLife 8, e52004 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Rinaldi, S. F., Makieva, S., Saunders, P. T., Rossi, A. G. & Norman, J. E. Immune cell and transcriptomic analysis of the human decidua in term and preterm parturition. Mol. Hum. Reprod. 23, 708–724 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Hamilton, S. et al. Macrophages Infiltrate the human and rat decidua during term and preterm labor: evidence that decidual inflammation precedes labor1. Biol. Reprod. 86, 39 (2012).

    PubMed  Google Scholar 

  33. Kwan, M. et al. Dynamic changes in maternal decidual leukocyte populations from first to second trimester gestation. Placenta 35, 1027–1034 (2014).

    CAS  PubMed  Google Scholar 

  34. Smith, S. D., Dunk, C. E., Aplin, J. D., Harris, L. K. & Jones, R. L. Evidence for immune cell involvement in decidual spiral arteriole remodeling in early human pregnancy. Am. J. Pathol. 174, 1959–1971 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Harris, L. K., Benagiano, M., D’Elios, M. M., Brosens, I. & Benagiano, G. Placental bed research: II. Functional and immunological investigations of the placental bed. Am. J. Obstet. Gynecol. 221, 457–469 (2019).

    CAS  PubMed  Google Scholar 

  36. Pereira, L. & Maidji, E. Cytomegalovirus infection in the human placenta: maternal immunity and developmentally regulated receptors on trophoblasts converge. Curr. Top. Microbiol. Immunol. 325, 383–395 (2008).

    CAS  PubMed  Google Scholar 

  37. Weisblum, Y. et al. Zika virus infects early- and midgestation human maternal decidual tissues, inducing distinct innate tissue responses in the maternal-fetal interface. J. Virol. 91, e01905–e01916 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Rizzuto, G., Tagliani, E., Manandhar, P., Erlebacher, A. & Bakardjiev, A. I. Limited colonization undermined by inadequate early immune responses defines the dynamics of decidual listeriosis. Infect. Immun. 85, e00153–17 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ning, F., Liu, H. & Lash, G. E. The role of decidual macrophages during normal and pathological pregnancy. Am. J. Reprod. Immunol. 75, 298–309 (2016).

    PubMed  Google Scholar 

  40. Jiang, X., Du, M. R., Li, M. & Wang, H. Three macrophage subsets are identified in the uterus during early human pregnancy. Cell. Mol. Immunol. 15, 1027–1037 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Crespo, Â. C. et al. Decidual NK cells transfer granulysin to selectively kill bacteria in trophoblasts. Cell 182, 1125–1139.e18 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Rogers, L. M. et al. Decidual stromal cell-derived PGE2 regulates macrophage responses to microbial threat. Am. J. Reprod. Immunol. 80, e13032 (2018).

    PubMed  PubMed Central  Google Scholar 

  43. Croxatto, D. et al. Stromal cells from human decidua exert a strong inhibitory effect on NK cell function and dendritic cell differentiation. PLoS ONE 9, e89006 (2014).

    PubMed  PubMed Central  Google Scholar 

  44. Castro-Leyva, V. et al. Decidualization mediated by steroid hormones modulates the innate immunity in response to group B streptococcal infection in vitro. Gynecol. Obstet. Invest. 82, 592–600 (2017).

    CAS  PubMed  Google Scholar 

  45. Xu, X. et al. Monocyte chemoattractant protein-1 secreted by decidual stromal cells inhibits NK cells cytotoxicity by up-regulating expression of SOCS3. PLoS ONE 7, e41869 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Guzeloglu-Kayisli, O. et al. Zika virus–infected decidual cells elicit a gestational age–dependent innate immune response and exaggerate trophoblast zika permissiveness: implication for vertical transmission. J. Immunol. 205, 3083–3094 (2020).

    CAS  PubMed  Google Scholar 

  47. Tabata, T., Petitt, M., Fang-Hoover, J. & Pereira, L. Survey of cellular immune responses to human cytomegalovirus infection in the microenvironment of the uterine–placental interface. Med. Microbiol. Immunol. 208, 475–485 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Bortolotti, D. et al. Human herpes simplex 1 virus infection of endometrial decidual tissue-derived MSC alters HLA-G expression and immunosuppressive functions. Hum. Immunol. 79, 800–808 (2018).

    CAS  PubMed  Google Scholar 

  49. Deshmukh, H. & Way, S. S. Immunological basis for recurrent fetal loss and pregnancy complications. Annu. Rev. Pathol. Mech. Dis. 14, 185–210 (2019).

    CAS  Google Scholar 

  50. Reyes, L. & Golos, T. G. Hofbauer cells: their role in healthy and complicated pregnancy. Front. Immunol. 9, 2628 (2018).

    PubMed  PubMed Central  Google Scholar 

  51. Bayer, A. et al. Type III interferons produced by human placental trophoblasts confer protection against Zika virus infection. Cell Host Microbe 19, 705–712 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Corry, J., Arora, N., Good, C. A., Sadovsky, Y. & Coyne, C. B. Organotypic models of type III interferon-mediated protection from Zika virus infections at the maternal-fetal interface. Proc. Natl Acad. Sci. USA 114, 9433–9438 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Jagger, B. W. et al. Gestational stage and IFN-λ signaling regulate ZIKV infection in utero. Cell Host Microbe 22, 366–376.e3 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Chen, J. et al. Outcomes of congenital Zika disease depend on timing of infection and maternal-fetal interferon action. Cell Rep. 21, 1588–1599 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Bayer, A. et al. Chromosome 19 microRNAs exert antiviral activity independent from type III interferon signaling. Placenta 61, 33–38 (2018).

    CAS  PubMed  Google Scholar 

  56. Bayer, A. et al. Human trophoblasts confer resistance to viruses implicated in perinatal infection. Am. J. Obstet. Gynecol. 212, 71.e1–71.e8 (2015).

    CAS  Google Scholar 

  57. Dumont, T. M. F. et al. The expression level of C19MC miRNAs in early pregnancy and in response to viral infection. Placenta 53, 23–29 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Yockey, L. J. et al. Type I interferons instigate fetal demise after Zika virus infection. Sci. Immunol. 3, eaao1680 (2018).

    PubMed  PubMed Central  Google Scholar 

  59. Buchrieser, J. et al. IFITM proteins inhibit placental syncytiotrophoblast formation and promote fetal demise. Science 365, 176–180 (2019).

    CAS  PubMed  Google Scholar 

  60. Zani, A. et al. Interferon-induced transmembrane proteins inhibit cell fusion mediated by trophoblast syncytins. J. Biol. Chem. 294, 19844–19851 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Robbins, J. R., Zeldovich, V. B., Poukchanski, A., Boothroyd, J. C. & Bakardjiev, A. I. Tissue barriers of the human placenta to infection with Toxoplasma gondii. Infect. Immun. 80, 418–428 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Megli, C., Morosky, S., Rajasundaram, D. & Coyne, C. B. Inflammasome signaling in human placental trophoblasts regulates immune defense against Listeria monocytogenes infection. J. Exp. Med. 218, e20200649 (2021).

    CAS  PubMed  Google Scholar 

  63. Reis, A. S. et al. Inflammasome activation and IL-1 signaling during placental malaria induce poor pregnancy outcomes. Sci. Adv. 6, eaax6346 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Thomas, J. et al. Outbreak of listeriosis in South Africa associated with processed meat. N. Engl. J. Med. 382, 632–643 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Chan, B. T., Hohmann, E., Barshak, M. B. & Pukkila-Worley, R. Treatment of listeriosis in first trimester of pregnancy. Emerg. Infect. Dis. 19, 839–841 (2013).

    PubMed  PubMed Central  Google Scholar 

  66. Chan, L. M., Lin, H. H. & Hsiao, S. M. Successful treatment of maternal Listeria monocytogenes bacteremia in the first trimester of pregnancy: a case report and literature review. Taiwan. J. Obstet. Gynecol. 57, 462–463 (2018).

    PubMed  Google Scholar 

  67. Al-Tawfiq, J. A. Listeria monocytogenes bacteremia in a twin pregnancy with differential outcome: fetus papyraceus and a full-term delivery. J. Microbiol. Immunol. Infect. 41, 433–436 (2008).

    PubMed  Google Scholar 

  68. Mylonakis, E., Paliou, M., Hohmann, E. L., Calderwood, S. B. & Wing, E. J. Listeriosis during pregnancy: a case series and review of 222 cases. Medicine 81, 260–269 (2002).

    PubMed  Google Scholar 

  69. Phelps, C. C. et al. Relative roles of Listeriolysin O, InlA, and InlB in Listeria monocytogenes uptake by host cells. Infect. Immun. 86, e00555-18 (2018).

    PubMed  PubMed Central  Google Scholar 

  70. Lecuit, M. et al. Targeting and crossing of the human maternofetal barrier by Listeria monocytogenes: role of internalin interaction with trophoblast E-cadherin. Proc. Natl Acad. Sci. USA 101, 6152–6157 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Holch, A., Ingmer, H., Licht, T. R. & Gram, L. Listeria monocytogenes strains encoding premature stop codons in inlA invade mice and guinea pig fetuses in orally dosed dams. J. Med. Microbiol. 62, 1799–1806 (2013).

    PubMed  Google Scholar 

  72. Disson, O. et al. Conjugated action of two species-specific invasion proteins for fetoplacental listeriosis. Nature 455, 1114–1118 (2008).

    CAS  PubMed  Google Scholar 

  73. Morrison, H. A., Lowe, D., Robbins, J. R. & Bakardjiev, A. I. In vivo virulence characterization of pregnancy-associated Listeria monocytogenes infections. Infect. Immun. 86, e00397-18 (2018).

    PubMed  PubMed Central  Google Scholar 

  74. Bakardjiev, A. I., Theriot, J. A. & Portnoy, D. A. Listeria monocytogenes traffics from maternal organs to the placenta and back. PLoS Pathog. 2, 623–631 (2006).

    Google Scholar 

  75. Le Monnier, A. et al. ActA is required for crossing of the fetoplacental barrier by Listeria monocytogenes. Infect. Immun. 75, 950–957 (2007).

    PubMed  Google Scholar 

  76. Faralla, C. et al. Listeria monocytogenes InlP interacts with afadin and facilitates basement membrane crossing. PLoS Pathog. 14, e1007094 (2018).

    PubMed  PubMed Central  Google Scholar 

  77. Parkash, V. et al. Immunohistochemical detection of Listeria antigens in the placenta in perinatal listeriosis. Int. J. Gynecol. Pathol. 17, 343–350 (1998).

    CAS  PubMed  Google Scholar 

  78. Wolfe, B. et al. Sequelae of fetal infection in a non-human primate model of listeriosis. Front. Microbiol. 10, 2021 (2019).

    PubMed  PubMed Central  Google Scholar 

  79. Radolf, J. D. & Kumar, S. The Treponema pallidum outer membrane. Curr. Topics Microbiol. Immunol. 415, 1–38 (2018).

    CAS  Google Scholar 

  80. Gomez, G. B. et al. Untreated maternal syphilis and adverse outcomes of pregnancy: a systematic review and meta-analysis. Bull. World Health Organ. 91, 217–226 (2013).

    PubMed  PubMed Central  Google Scholar 

  81. Korenromp, E. L. et al. Global burden of maternal and congenital syphilis and associated adverse birth outcomes — estimates for 2016 and progress since 2012. PLoS ONE 14, e0211720 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Newman, L. et al. Global estimates of syphilis in pregnancy and associated adverse outcomes: analysis of multinational antenatal surveillance data. PLoS Med. 10, e1001396 (2013).

    PubMed  PubMed Central  Google Scholar 

  83. Peeling, R. W. & Hook, E. W. The pathogenesis of syphilis: the Great Mimicker, revisited. J. Pathol. 208, 224–232 (2006).

    CAS  PubMed  Google Scholar 

  84. Wicher, V. & Wicher, K. Pathogenesis of maternal-fetal syphilis revisited. Clin. Infect. Dis. 33, 354–363 (2001).

    CAS  PubMed  Google Scholar 

  85. Rac, M. W. F. et al. Progression of ultrasound findings of fetal syphilis after maternal treatment. Am. J. Obstet. Gynecol. 211, 426.e1–426.e6 (2014).

    Google Scholar 

  86. Kimball, A. et al. Missed opportunities for prevention of congenital syphilis — United States, 2018. MMWR 69, 661–665 (2020).

    PubMed  PubMed Central  Google Scholar 

  87. Balaji, G. & Kalaivani, S. Observance of Kassowitz law — late congenital syphilis: palatal perforation and saddle nose deformity as presenting features. Indian J. Sex. Transm. Dis. 34, 35–37 (2013).

    Google Scholar 

  88. Kassowitz, M. Die Vererbung der Syphilis (Kessinger Publishing, 1876).

  89. Dhanaselvi, H. & Kalaivani, S. Untreated late latent syphilis of both spouses with observation of Kassowitz law: adverse pregnancy outcomes in the postpenicillin era. Indian. J. Dermatol. 62, 221–222 (2017).

    PubMed  PubMed Central  Google Scholar 

  90. Wicher, V., Baughn, R. E. & Wicher, K. Congenital and neonatal syphilis in guinea-pigs show a different pattern of immune response. Immunology 82, 404–409 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Wicher, K., Abbruscato, F., Wicher, V., Baughn, R. & Noordhoek, G. T. Target organs of infection in guinea pigs with acquired or congenital syphilis. Infect. Immun. 64, 3174–3179 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Sheffield, J. S. et al. Placental histopathology of congenital syphilis. Obstet. Gynecol. 100, 126–133 (2002).

    PubMed  Google Scholar 

  93. Genest, D. R. et al. Diagnosis of congenital syphilis from placental examination: comparison of histopathology, steiner stain, and polymerase chain reaction for Treponema pallidum DNA. Hum. Pathol. 27, 366–372 (1996).

    CAS  PubMed  Google Scholar 

  94. Myles, T. D., Elam, G., Park-Hwang, E. & Nguyen, T. The Jarisch–Herxheimer reaction and fetal monitoring changes in pregnant women treated for syphilis. Obstet. Gynecol. 92, 859–864 (1998).

    CAS  PubMed  Google Scholar 

  95. Romero, R. et al. The role of inflammation and infection in preterm birth. Semin. Reprod. Med. 25, 21–39 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Nagy, I., Pap, K., Dicső, F. & Arany, I. Chorioamnionitis is still the main cause of preterm birth. Eur. J. Obstet. Gynecol. Reprod. Biol. 206, e84 (2016).

    Google Scholar 

  97. Mendz, G. L., Kaakoush, N. O. & Quinlivan, J. A. Bacterial aetiological agents of intra-amniotic infections and preterm birth in pregnant women. Front. Cell. Infect. Microbiol. 3, 58 (2013).

    PubMed  PubMed Central  Google Scholar 

  98. Romero, R. et al. Sterile and microbial-associated intra-amniotic inflammation in preterm prelabor rupture of membranes. J. Matern. Fetal. Neonatal Med. 28, 1394–1409 (2015).

    PubMed  Google Scholar 

  99. Schrag, S. J. et al. A population-based comparison of strategies to prevent early-onset group B streptococcal disease in neonates. N. Engl. J. Med. 347, 233–239 (2002).

    PubMed  Google Scholar 

  100. Ayala, O. D. et al. Raman microspectroscopy differentiates perinatal pathogens on ex vivo infected human fetal membrane tissues. J. Biophotonics 12, e201800449 (2019).

    PubMed  PubMed Central  Google Scholar 

  101. Verani, J. R., McGee, L., Schrag, S. J. & Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention (CDC). Prevention of perinatal group B streptococcal disease — revised guidelines from CDC, 2010. MMWR Recomm. Rep. 59, 1–36 (2010).

    PubMed  Google Scholar 

  102. Doster, R. S., Sutton, J. A., Rogers, L. M., Aronoff, D. M. & Gaddy, J. A. Streptococcus agalactiae induces placental macrophages to release extracellular traps loaded with tissue remodeling enzymes via an oxidative burst-dependent mechanism. mBio 9, e02084-18 (2018).

    PubMed  PubMed Central  Google Scholar 

  103. Kothary, V. et al. Group B Streptococcus induces neutrophil recruitment to gestational tissues and elaboration of extracellular traps and nutritional immunity. Front. Cell. Infect. Microbiol. 7, 19 (2017).

    PubMed  PubMed Central  Google Scholar 

  104. Armistead, B., Oler, E., Adams Waldorf, K. & Rajagopal, L. The double life of group B Streptococcus: asymptomatic colonizer and potent pathogen. J. Mol. Biol. 431, 2914–2931 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Vornhagen, J., Adams Waldorf, K. M. & Rajagopal, L. Perinatal group B streptococcal infections: virulence factors, immunity, and prevention strategies. Trends Microbiol. 25, 919–931 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Galask, R. P., Varner, M. W., Rosemarie Petzold, C. & Wilbur, S. L. Bacterial attachment to the chorioamniotic membranes. Am. J. Obstet. Gynecol. 148, 915–928 (1984).

    CAS  PubMed  Google Scholar 

  107. Wilkie, G. L. et al. Microbiology and antibiotic resistance in peripartum bacteremia. Obstet. Gynecol. 133, 269–275 (2019).

    CAS  PubMed  Google Scholar 

  108. Sáez-López, E. et al. Vaginal versus obstetric infection Escherichia coli isolates among pregnant women: antimicrobial resistance and genetic virulence profile. PLoS ONE 11, e0146531 (2016).

    PubMed  PubMed Central  Google Scholar 

  109. Pathirana, J. et al. Prevalence of congenital cytomegalovirus infection and associated risk of in-utero HIV acquisition in a high HIV prevalence setting, South Africa. Clin. Infect. Dis. 69, 1789–1796 (2019).

    PubMed  Google Scholar 

  110. Fowler, K. B. et al. The outcome of congenital cytomegalovirus infection in relation to maternal antibody status. N. Engl. J. Med. 326, 663–667 (1992).

    CAS  PubMed  Google Scholar 

  111. Boppana, S. B., Rivera, L. B., Fowler, K. B., Mach, M. & Britt, W. J. Intrauterine transmission of cytomegalovirus to infants of women with preconceptional immunity. N. Engl. J. Med. 344, 1366–1371 (2001).

    CAS  PubMed  Google Scholar 

  112. Enders, G., Daiminger, A., Bäder, U., Exler, S. & Enders, M. Intrauterine transmission and clinical outcome of 248 pregnancies with primary cytomegalovirus infection in relation to gestational age. J. Clin. Virol. 52, 244–246 (2011).

    PubMed  Google Scholar 

  113. Uenaka, M. et al. Histopathological analysis of placentas with congenital cytomegalovirus infection. Placenta 75, 62–67 (2019).

    CAS  PubMed  Google Scholar 

  114. Satosar, A., Ramirez, N. C., Bartholomew, D., Davis, J. & Nuovo, G. J. Histologic correlates of viral and bacterial infection of the placenta associated with severe morbidity and mortality in the newborn. Hum. Pathol. 35, 536–545 (2004).

    PubMed  Google Scholar 

  115. Njue, A. et al. The role of congenital cytomegalovirus infection in adverse birth outcomes: a review of the potential mechanisms. Viruses 13, 20 (2020).

    PubMed Central  Google Scholar 

  116. Schleiss, M. R. Congenital cytomegalovirus infection: molecular mechanisms mediating viral pathogenesis. Infect. Disord. Drug Targets 11, 449–465 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Britt, W. J. Human cytomegalovirus infection in women with preexisting immunity: sources of infection and mechanisms of infection in the presence of antiviral immunity. J. Infect. Dis. 221, S1–S8 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Schleiss, M. R. & McVoy, M. A. Guinea pig cytomegalovirus: a model for the prevention and treatment of maternal–fetal cytomegalovirus transmission. Future Virol. 5, 207–217 (2010).

    PubMed  PubMed Central  Google Scholar 

  119. Weisblum, Y. et al. Modeling of human cytomegalovirus maternal–fetal transmission in a novel decidual organ culture. J. Virol. 85, 13204–13213 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Aronoff, D. M., Correa, H., Rogers, L. M., Arav-Boger, R. & Alcendor, D. J. Placental pericytes and cytomegalovirus infectivity: implications for HCMV placental pathology and congenital disease. Am. J. Reprod. Immunol. https://doi.org/10.1111/aji.12728 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Burgos, J. S. et al. Hematogenous vertical transmission of herpes simplex virus type 1 in mice. J. Virol. 80, 2823–2831 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Koi, H. et al. Syncytiotrophoblast is a barrier to maternal–fetal transmission of herpes simplex virus. Biol. Reprod. 67, 1572–1579 (2002).

    CAS  PubMed  Google Scholar 

  123. Finger-Jardim, F. et al. Herpes simplex virus: prevalence in placental tissue and incidence in neonatal cord blood samples. J. Med. Virol. 86, 519–524 (2014).

    PubMed  Google Scholar 

  124. Finger-Jardim, F. et al. Prevalence of herpes simplex virus types 1 and 2 at maternal and fetal sides of the placenta in asymptomatic pregnant women. Am. J. Reprod. Immunol. 78, e12689 (2017).

    Google Scholar 

  125. Gay, N. J. et al. Age specific antibody prevalence to parvovirus B19: how many women are infected in pregnancy? Commun. Dis. Rep. CDR Rev. 4, R104–7 (1994).

    CAS  PubMed  Google Scholar 

  126. Li, J. J., Henwood, T., Van Hal, S. & Charlton, A. Parvovirus infection: an immunohistochemical study using fetal and placental tissue. Pediatr. Dev. Pathol. 18, 30–39 (2015).

    PubMed  Google Scholar 

  127. Jordan, J. A. & Deloia, J. A. Globoside expression within the human placenta. Placenta 20, 103–108 (1999).

    CAS  PubMed  Google Scholar 

  128. Wegner, C. C. & Jordan, J. A. Human parvovirus B19 VP2 empty capsids bind to human villous trophoblast cells in vitro via the globoside receptor. Infect. Dis. Obstet. Gynecol. 12, 69–78 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Moffatt, S., Yaegashi, N., Tada, K., Tanaka, N. & Sugamura, K. Human parvovirus B19 nonstructural (NS1) protein induces apoptosis in erythroid lineage cells. J. Virol. 72, 3018–3028 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Jordan, J. A. & Butchko, A. R. Apoptotic activity in villous trophoblast cells during B19 infection correlates with clinical outcome: assessment by the caspase-related M30 cytodeath antibody. Placenta 23, 547–553 (2002).

    CAS  PubMed  Google Scholar 

  131. Dickinson, J. E., Keil, A. D. & Charles, A. K. Discordant fetal infection for parvovirus B19 in a dichorionic twin pregnancy. Twin Res. Hum. Genet. 9, 456–459 (2006).

    PubMed  Google Scholar 

  132. Schiesser, M., Sergi, C., Enders, M., Maul, H. & Schnitzler, P. Discordant outcomes in a case of parvovirus B19 transmission into both dichorionic twins. Twin Res. Hum. Genet. 12, 175–179 (2009).

    PubMed  Google Scholar 

  133. Bernstein, H. B. & Wegman, A. D. HIV infection: antepartum treatment and management. Clin. Obstet. Gynecol. 61, 122–136 (2018).

    PubMed  Google Scholar 

  134. Maury, W., Potts, B. J. & Rabson, A. B. HIV-1 infection of first-trimester and term human placental tissue: a possible mode of maternal-fetal transmission. J. Infect. Dis. 160, 583–588 (1989).

    CAS  PubMed  Google Scholar 

  135. Amirhessami-Aghili, N. & Spector, S. A. Human immunodeficiency virus type 1 infection of human placenta: potential route for fetal infection. Dis. Markers 9, 348 (1991).

    Google Scholar 

  136. Mattern, C. F. T. et al. Localization of human immunodeficiency virus core antigen in term human placentas. Pediatrics 89, 207–209 (1992).

    CAS  PubMed  Google Scholar 

  137. Peuchmaur, M. et al. HIV proteins absent from placentas of 75 HIV-1-positive women studied by immunohistochemistry. AIDS 5, 741–745 (1991).

    CAS  PubMed  Google Scholar 

  138. Backe, E. et al. Demonstration of HIV-1 infected cells in human placenta by in situ hybridisation and immunostaining. J. Clin. Pathol. 45, 871–874 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Townsend, C. L. et al. Low rates of mother-to-child transmission of HIV following effective pregnancy interventions in the United Kingdom and Ireland, 2000–2006. AIDS 22, 973–981 (2008).

    PubMed  Google Scholar 

  140. Koay, W. L. A. et al. Prevention of perinatal HIV transmission in an area of high HIV prevalence in the United States. J. Pediatr. 228, 101–109 (2021).

    PubMed  Google Scholar 

  141. Johnson, E. L. & Chakraborty, R. HIV-1 at the placenta: immune correlates of protection and infection. Curr. Opin. Infect. Dis. 29, 248–255 (2016).

    CAS  PubMed  Google Scholar 

  142. Mlakar, J. et al. Zika virus associated with microcephaly. N. Engl. J. Med. 374, 951–958 (2016).

    CAS  PubMed  Google Scholar 

  143. Brady, O. J. et al. The association between Zika virus infection and microcephaly in Brazil 2015–2017: an observational analysis of over 4 million births. PLoS Med. 16, e1002755 (2019).

    PubMed  PubMed Central  Google Scholar 

  144. Hoen, B. et al. Pregnancy outcomes after ZIKV infection in French territories in the Americas. N. Engl. J. Med. 378, 985–994 (2018).

    PubMed  Google Scholar 

  145. van der Linden, V. et al. Description of 13 infants born during October 2015–January 2016 with congenital Zika virus infection without microcephaly at birth — Brazil. MMWR Morb. Mortal. Wkly Rep. 65, 1343–1348 (2016).

    PubMed  Google Scholar 

  146. Sobhani, N. C. et al. Discordant Zika virus findings in twin pregnancies complicated by antenatal Zika virus exposure: a prospective cohort. J. Infect. Dis. 221, 1838–1845 (2020).

    PubMed  Google Scholar 

  147. Amaral, M. S. et al. Differential gene expression elicited by ZIKV infection in trophoblasts from congenital Zika syndrome discordant twins. PLoS Negl. Trop. Dis. 14, e0008424 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Hastings, A. K. et al. TAM receptors are not required for Zika virus infection in mice. Cell Rep. 19, 558–568 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Hermanns, K. et al. Zika virus infection in human placental tissue explants is enhanced in the presence of dengue virus antibodies in-vitro. Emerg. Microbes Infect. 7, 198 (2018).

    PubMed  PubMed Central  Google Scholar 

  150. Zimmerman, M. G. et al. Cross-reactive dengue virus antibodies augment Zika virus infection of human placental macrophages. Cell Host Microbe 24, 731–742.e6 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Rodriguez-Barraquer, I. et al. Impact of preexisting dengue immunity on Zika virus emergence in a dengue endemic region. Science 363, 607–610 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Pedroso, C. et al. Cross-protection of dengue virus infection against congenital Zika syndrome, northeastern Brazil. Emerg. Infect. Dis. 25, 1485–1493 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Pantoja, P. et al. Zika virus pathogenesis in rhesus macaques is unaffected by pre-existing immunity to dengue virus. Nat. Commun. 8, 15674 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Breitbach, M. E. et al. Primary infection with dengue or Zika virus does not affect the severity of heterologous secondary infection in macaques. PLoS Pathog. 15, e1007766 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Katzelnick, L. C. et al. Zika virus infection enhances future risk of severe dengue disease. Science 369, 1123–1128 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Dudley, D. M. et al. Using macaques to address critical questions in Zika virus research. Annu. Rev. Virol. 6, 481–500 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Koenig, M. R. et al. Quantitative definition of neurobehavior, vision, hearing and brain volumes in macaques congenitally exposed to Zika virus. PLoS ONE 15, e0235877 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Bebell, L. M., Oduyebo, T. & Riley, L. E. Ebola virus disease and pregnancy: a review of the current knowledge of Ebola virus pathogenesis, maternal, and neonatal outcomes. Birth Defects Res. 109, 353–362 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Muehlenbachs, A. et al. Ebola virus disease in pregnancy: clinical, histopathologic and immunohistochemical findings. J. Infect. Dis. 215, 64–69 (2015).

    Google Scholar 

  160. Oduyebo, T. et al. A pregnant patient with ebola virus disease. Obstet. Gynecol. 126, 1273–1275 (2015).

    PubMed  Google Scholar 

  161. Baudin, M. et al. Association of Rift Valley fever virus infection with miscarriage in Sudanese women: a cross-sectional study. Lancet Glob. Heal. 4, e864–e871 (2016).

    Google Scholar 

  162. Arishi, H. M., Aqeel, A. Y. & Al Hazmi, M. M. Vertical transmission of fatal Rift Valley fever in a newborn. Ann. Trop. Paediatr. 26, 251–253 (2006).

    PubMed  Google Scholar 

  163. Oymans, J., Wichgers Schreur, P. J., van Keulen, L., Kant, J. & Kortekaas, J. Rift valley fever virus targets the maternal–foetal interface in ovine and human placentas. PLoS Negl. Trop. Dis. 14, 1–18 (2020).

    Google Scholar 

  164. McMillen, C. M. et al. Rift Valley fever virus induces fetal demise in Sprague–Dawley rats through direct placental infection. Sci. Adv. 4, eaau9812 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. O’Leary, D. R. et al. Birth outcomes following west nile virus infection of pregnant women in the United States: 2003–2004. Pediatrics 117, e537–e545 (2006).

    PubMed  Google Scholar 

  166. Platt, D. J. et al. Zika virus-related neurotropic flaviviruses infect human placental explants and cause fetal demise in mice. Sci. Transl. Med. 10, eaao7090 (2018).

    PubMed  PubMed Central  Google Scholar 

  167. Julander, J. G. et al. West Nile virus infection of the placenta. Virology 347, 175–182 (2006).

    CAS  PubMed  Google Scholar 

  168. Chen, H. et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet 395, 809–815 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Pique-Regi, R. et al. Does the human placenta express the canonical cell entry mediators for SARS-CoV-2? eLife 9, e58716 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Li, Y. et al. Lack of vertical transmission of severe acute respiratory syndrome coronavirus 2, China. Emerg. Infect. Dis. 26, 1335–1336 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Egloff, C., Vauloup-Fellous, C., Picone, O., Mandelbrot, L. & Roques, P. Evidence and possible mechanisms of rare maternal-fetal transmission of SARS-CoV-2. J. Clin. Virol. 128, 104447 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. WAPM working group on COVID-19. . Maternal and perinatal outcomes of pregnant women with SARS-COV-2 infection. Ultrasound Obstet. Gynecol. 57, 232–241 (2021).

    Google Scholar 

  173. Flaherman, V. J. et al. Infant outcomes following maternal infection with SARS-CoV-2: first report from the PRIORITY study. Clin. Infect. Dis. https://doi.org/10.1093/cid/ciaa1411 (2020).

    Article  PubMed Central  Google Scholar 

  174. Torgerson, P. R. & Mastroiacovo, P. La charge mondiale de la toxoplasmose: une étude systématique. Bull. World Health Organ. 91, 501–508 (2013).

    PubMed  PubMed Central  Google Scholar 

  175. Galanakis, E. et al. Outcome of toxoplasmosis acquired during pregnancy following treatment in both pregnancy and early infancy. Fetal Diagn. Ther. 22, 444–448 (2007).

    PubMed  Google Scholar 

  176. Berrébi, A. et al. Long-term outcome of children with congenital toxoplasmosis. Am. J. Obstet. Gynecol. 203, 552.e1–552.e6 (2010).

    Google Scholar 

  177. Dunn, D. et al. Mother-to-child transmission of toxoplasmosis: risk estimates for clinical counselling. Lancet 353, 1829–1833 (1999).

    CAS  PubMed  Google Scholar 

  178. Mendez, O. A. & Koshy, A. A. Toxoplasma gondii: entry, association, and physiological influence on the central nervous system. PLoS Pathog. 13, e1006351 (2017).

    PubMed  PubMed Central  Google Scholar 

  179. Bisio, H. & Soldati-Favre, D. Signaling cascades governing entry into and exit from host cells by Toxoplasma gondii. Annu. Rev. Microbiol. 73, 579–599 (2019).

    CAS  PubMed  Google Scholar 

  180. English, E. D., Adomako-Ankomah, Y. & Boyle, J. P. Secreted effectors in Toxoplasma gondii and related species: determinants of host range and pathogenesis? Parasite Immunol. 37, 127–140 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Hunter, C. A. & Sibley, L. D. Modulation of innate immunity by Toxoplasma gondii virulence effectors. Nat. Rev. Microbiol. 10, 766–778 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Rudzki, E. N. et al. Toxoplasma gondii GRA28 is required for specific induction of the regulatory chemokine CCL22 in human and mouse cells. Preprint at bioRxiv https://doi.org/10.1101/2020.10.14.335802 (2020).

    Article  Google Scholar 

  183. Luxemburger, C. et al. Effects of malaria during pregnancy on infant mortality in an area of low malaria transmission. Am. J. Epidemiol. 154, 459–465 (1993).

    Google Scholar 

  184. Luxemburger, C. et al. The epidemiology of severe malaria in an area of low transmission in Thailand. Trans. R. Soc. Trop. Med. Hyg. 91, 256–262 (1997).

    CAS  PubMed  Google Scholar 

  185. Guyatt, H. L. & Snow, R. W. Malaria in pregnancy as an indirect cause of infant mortality in sub-Saharan Africa. Trans. R. Soc. Trop. Med. Hyg. 95, 569–576 (2001).

    CAS  PubMed  Google Scholar 

  186. Desai, M. et al. Epidemiology and burden of malaria in pregnancy. Lancet Infect. Dis. 7, 93–104 (2007).

    PubMed  Google Scholar 

  187. Tobian, A. A. et al. Frequent umbilical cord-blood and maternal-blood infections with Plasmodium falciparum, P. malariae, and P. ovale in Kenya. J. Infect. Dis. 182, 558–563 (2000).

    CAS  PubMed  Google Scholar 

  188. Ouédraogo, A. et al. Transplacental transmission of plasmodium falciparum in a highly malaria endemic area of Burkina Faso. J. Trop. Med. 2012, 109705 (2012).

    PubMed  Google Scholar 

  189. Beeson, J. G., Amin, N., Kanjala, M. & Rogerson, S. J. Selective accumulation of mature asexual stages of Plasmodium falciparum-infected erythrocytes in the placenta. Infect. Immun. 70, 5412–5415 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Muehlenbachs, A. et al. A novel histological grading scheme for placental malaria applied in areas of high and low malaria transmission. J. Infect. Dis. 202, 1608–1616 (2010).

    PubMed  Google Scholar 

  191. Okoko, B. J. et al. The influence of placental malaria infection and maternal hypergammaglobulinemia on transplacental transfer of antibodies and IgG subclasses in a rural west African population. J. Infect. Dis. 184, 627–632 (2001).

    CAS  PubMed  Google Scholar 

  192. Owens, S. et al. Placental malaria and immunity to infant measles. Arch. Dis. Child. 91, 507–508 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Frech, C. & Chen, N. Variant surface antigens of malaria parasites: functional and evolutionary insights from comparative gene family classification and analysis. BMC Genomics 14, 427 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Beeson, J. G. & Duffy, P. E. The immunology and pathogenesis of malaria during pregnancy. Curr. Top. Microbiol. Immunol. 297, 187–227 (2005).

    CAS  PubMed  Google Scholar 

  195. Salanti, A. et al. Selective upregulation of a single distinctly structured var gene in chondroitin sulphate A-adhering Plasmodium falciparum involved in pregnancy-associated malaria. Mol. Microbiol. 49, 179–191 (2003).

    CAS  PubMed  Google Scholar 

  196. Tuikue Ndam, N. G. et al. High level of var2csa transcription by Plasmodium falciparum isolated from the placenta. J. Infect. Dis. 192, 331–335 (2005).

    PubMed  Google Scholar 

  197. Magistrado, P. et al. VAR2CSA expression on the surface of placenta-derived Plasmodium falciparum-infected erythrocytes. J. Infect. Dis. 198, 1071–1074 (2008).

    CAS  PubMed  Google Scholar 

  198. Chotivanich, K. et al. Plasmodium vivax adherence to placental glycosaminoglycans. PLoS ONE 7, e34509 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Fried, M. & Duffy, P. E. Adherence of Plasmodium falciparum to chondroitin sulfate A in the human placenta. Science 272, 1502–1504 (1996).

    CAS  PubMed  Google Scholar 

  200. Fried, M., Domingo, G. J., Gowda, C. D., Mutabingwa, T. K. & Duffy, P. E. Plasmodium falciparum: chondroitin sulfate A is the major receptor for adhesion of parasitized erythrocytes in the placenta. Exp. Parasitol. 113, 36–42 (2006).

    CAS  PubMed  Google Scholar 

  201. O’Neil-Dunne, I. et al. Gravidity-dependent production of antibodies that inhibit binding of Plasmodium falciparum-infected erythrocytes to placental chondroitin sulfate proteoglycan during pregnancy. Infect. Immun. 69, 7487–7492 (2001).

    PubMed  PubMed Central  Google Scholar 

  202. Ricke, C. H. et al. Plasma antibodies from malaria-exposed pregnant women recognize variant surface antigens on plasmodium falciparum-infected erythrocytes in a parity-dependent manner and block parasite adhesion to chondroitin sulfate A. J. Immunol. 165, 3309–3316 (2000).

    CAS  PubMed  Google Scholar 

  203. Oleinikov, A. V. et al. Effects of sex, parity, and sequence variation on seroreactivity to candidate pregnancy malaria vaccine antigens. J. Infect. Dis. 196, 155–164 (2007).

    CAS  PubMed  Google Scholar 

  204. Duffy, P. E. & Fried, M. Antibodies that inhibit plasmodium falciparum adhesion to chondroitin sulfate A are associated with increased birth weight and the gestational age of newborns. Infect. Immun. 71, 6620–6623 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Fried, M. & Duffy, P. E. Malaria during pregnancy. Cold Spring Harb. Perspect. Med. 7, a025551 (2017).

    PubMed  PubMed Central  Google Scholar 

  206. Staalsoe, T. et al. Variant surface antigen-specific IgG and protection against clinical consequences of pregnancy-associated Plasmodium falciparum malaria. Lancet 363, 283–289 (2004).

    CAS  PubMed  Google Scholar 

  207. Rogerson, S. J. et al. Placental monocyte infiltrates in response to Plasmodium falciparum malaria infection and their association with adverse pregnancy outcomes. Am. J. Trop. Med. Hyg. 68, 115–119 (2003).

    PubMed  Google Scholar 

  208. Moormann, A. M. et al. Malaria and pregnancy: placental cytokine expression and its relationship to intrauterine growth retardation. J. Infect. Dis. 180, 1987–1993 (1999).

    CAS  PubMed  Google Scholar 

  209. Lima, F. A. et al. Plasmodium falciparum infection dysregulates placental autophagy. PLoS ONE 14, e0226117 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Dimasuay, K. G. et al. Impaired placental autophagy in placental malaria. PLoS ONE 12, e0187291 (2017).

    PubMed  PubMed Central  Google Scholar 

  211. Rios, L., Campos, E. E., Menon, R., Zago, M. P. & Garg, N. J. Epidemiology and pathogenesis of maternal–fetal transmission of Trypanosoma cruzi and a case for vaccine development against congenital Chagas disease. Biochim. Biophys. Acta Mol. Basis Dis. 1866, 165591 (2020).

    CAS  PubMed  Google Scholar 

  212. Torrico, F. et al. Maternal trypanosoma cruzi infection, pregnancy outcome, morbidity, and mortality of congenitally infected and non-infected newborns in bolivia. Am. J. Trop. Med. Hyg. 70, 201–209 (2004).

    PubMed  Google Scholar 

  213. Torrico, F. et al. Are maternal re-infections with Trypanosoma cruzi associated with higher morbidity and mortality of congenital Chagas disease? Trop. Med. Int. Heal. 11, 628–635 (2006).

    Google Scholar 

  214. Siriano, L. D. R., Luquetti, A. O., Avelar, J. B., Marra, N. L. & De Castro, A. M. Chagas disease: increased parasitemia during pregnancy detected by hemoculture. Am. J. Trop. Med. Hyg. 84, 569–574 (2011).

    Google Scholar 

  215. Brutus, L. et al. Short report: Detectable Trypanosoma cruzi parasitemia during pregnancy and delivery as a risk factor for congenital chagas disease. Am. J. Trop. Med. Hyg. 83, 1044–1047 (2010).

    PubMed  PubMed Central  Google Scholar 

  216. Duaso, J. et al. Trypanosoma cruzi induces apoptosis in ex vivo infected human chorionic villi. Placenta 32, 356–361 (2011).

    CAS  PubMed  Google Scholar 

  217. Duaso, J. et al. Trypanosoma cruzi induces tissue disorganization and destruction of chorionic villi in an ex vivo infection model of human placenta. Placenta 31, 705–711 (2010).

    CAS  PubMed  Google Scholar 

  218. Castillo, C. et al. Trypanosoma cruzi exosomes increases susceptibility to parasite infection in human placental chorionic villi explants. Placenta 51, 123–124 (2017).

    Google Scholar 

  219. Roberts, R. M., Green, J. A. & Schulz, L. C. The evolution of the placenta. Reproduction 152, R179–R189 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Turco, M. Y. et al. Trophoblast organoids as a model for maternal–fetal interactions during human placentation. Nature 564, 263–281 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Turco, M. Y. et al. Long-term, hormone-responsive organoid cultures of human endometrium in a chemically defined medium. Nat. Cell Biol. 19, 568–577 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors’ work on the placenta is supported by NIH AI145828 (C.B.C.) and a Magee Women’s Research Institute Clinical Trainee Research Award 4032 (C.J.M.). Additionally, C.J.M. is supported by K12 HD000849 awarded to the Reproductive Scientist Development Program. The authors apologize to any authors whose work was not included owing to space limitations.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Christina J. Megli or Carolyn B. Coyne.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Microbiology thanks S. Gaw, who co-reviewed with L. Li; N. Gomez-Lopez; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Granulysins

Antimicrobial peptides that can cause pores in bacterial cell walls, leading to cell death.

Osteochondritis

Inflammation of the cartilage.

Hydrops

The presence of excess fluid in two or more fetal body compartments, associated with severe perinatal morbidity and death.

Pyelonephritis

Inflammation and infection of the kidney.

Chorioamnionitis

Inflammation of the fetal membranes, classically associated with bacterial infection.

Intrapartum prophylaxis

The process of giving antibiotics, typically penicillins, to individuals in labour for treatment of group B Streptococcus colonization.

Pericytes

Specialized connective cells of mesenchymal origin that classically surround endothelial cells in blood vessels.

Aplasia cutis

A condition in which parts of the skin are missing.

Ventriculomegaly

A condition in which the brain ventricles are abnormally large.

Microcephaly

An abnormally small circumference.

Chorioretinitis

Inflammation of the choroid surrounding the retina of the eye.

Atrophy

Degenerative and small.

Hydrocephalus

Central nervous system abnormality from pathological ventriculomegaly with excess fluid in the brain causing compression of brain parenchyma and requiring treatment.

Lissencephaly

A brain malformation associated with severe developmental delay in which gyration of the brain is absent.

Apgar score

A score assigned to neonates associated with neonatal health after birth. Infants are scored 0–2 points on muscle tone, skin colour, respiratory effort, pulse and reflex irritability at 1, 5 and 10 min after birth.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Megli, C.J., Coyne, C.B. Infections at the maternal–fetal interface: an overview of pathogenesis and defence. Nat Rev Microbiol 20, 67–82 (2022). https://doi.org/10.1038/s41579-021-00610-y

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41579-021-00610-y

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology