Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Microbiota in disease-transmitting vectors

Abstract

Haematophagous arthropods, including mosquitoes, ticks, flies, triatomine bugs and lice (here referred to as vectors), are involved in the transmission of various pathogens to mammals on whom they blood feed. The diseases caused by these pathogens, collectively known as vector-borne diseases (VBDs), threaten the health of humans and animals. Although the vector arthropods differ in life histories, feeding behaviour as well as reproductive strategies, they all harbour symbiotic microorganisms, known as microbiota, on which they depend for completing essential aspects of their biology, such as development and reproduction. In this Review, we summarize the shared and unique key features of the symbiotic associations that have been characterized in the major vector taxa. We discuss the crosstalks between microbiota and their arthropod hosts that influence vector metabolism and immune responses relevant for pathogen transmission success, known as vector competence. Finally, we highlight how current knowledge on symbiotic associations is being explored to develop non-chemical-based alternative control methods that aim to reduce vector populations, or reduce vector competence. We conclude by highlighting the remaining knowledge gaps that stand to advance basic and translational aspects of vector–microbiota interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Tissue distribution of microbiota in vectors.
Fig. 2: The influence of vector–microbiota metabolic interactions on vector competence.
Fig. 3: The influence of vector–microbiota immune interactions on pathogen infections.
Fig. 4: The application of microbiota for vector control.

Similar content being viewed by others

References

  1. World Health Organization. Global vector control response (2017–2030). World Health Organization https://www.who.int/publications-detail-redirect/9789241512978/ (2017).

  2. Bogiitsh, B. J., Carter, C. E. & Oeltmann, T. N. Human Pararsitology 4th edn (Academic, 2013).

  3. World Health Organization. Vector-borne diseases. World Health Organization https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases (2020).

  4. Socha, W., Kwasnik, M., Larska, M., Rola, J. & Rozek, W. Vector-borne viral diseases as a current threat for human and animal health—One Health perspective. J. Clin. Med. 11, 3026 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kurokawa, C. et al. Interactions between Borrelia burgdorferi and ticks. Nat. Rev. Microbiol. 18, 587–600 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wondim, M. A. et al. Epidemiological trends of trans-boundary tick-borne encephalitis in Europe, 2000–2019. Pathogens 11, 704 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Piotrowski, M. & Rymaszewska, A. Expansion of tick-borne rickettsioses in the World. Microorganisms 8, 1906 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Madison-Antenucci, S., Kramer, L. D., Gebhardt, L. L. & Kauffman, E. Emerging tick-borne diseases. Clin. Microbiol. Rev. 33, e00083-18 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Michelitsch, A., Wernike, K., Klaus, C., Dobler, G. & Beer, M. Exploring the reservoir hosts of tick-borne encephalitis virus. Viruses 11, 669 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wilson, A. L. et al. The importance of vector control for the control and elimination of vector-borne diseases. PLoS Negl. Trop. Dis. 14, e0007831 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Beaty, B. J. & Marquardt, W. C. The Biology of Disease Vectors (Univ. Press of Colorado, 1996).

  12. Jimenez-Cortes, J. G. et al. Bacterial symbionts in human blood-feeding arthropods: Patterns, general mechanisms and effects of global ecological changes. Acta Trop. 186, 69–101 (2018).

    Article  PubMed  Google Scholar 

  13. Song, X., Zhong, Z., Gao, L., Weiss, B. L. & Wang, J. Metabolic interactions between disease-transmitting vectors and their microbiota. Trends Parasitol. 38, 697–708 (2022).

    Article  CAS  PubMed  Google Scholar 

  14. Shaw, W. R. & Catteruccia, F. Vector biology meets disease control: using basic research to fight vector-borne diseases. Nat. Microbiol. 4, 20–34 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Moran, N. A. Symbiosis. Curr. Biol. 16, R866–R871 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Khachane, A. N., Timmis, K. N. & Martins dos Santos, V. A. Dynamics of reductive genome evolution in mitochondria and obligate intracellular microbes. Mol. Biol. Evol. 24, 449–456 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Malassigne, S., Valiente Moro, C. & Luis, P. Mosquito mycobiota: an overview of non-entomopathogenic fungal interactions. Pathogens 9, 564 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Altinli, M., Schnettler, E. & Sicard, M. Symbiotic interactions between mosquitoes and mosquito viruses. Front. Cell Infect. Micrbiol. 11, 694020 (2021).

    Article  CAS  Google Scholar 

  19. Brito, T. F. et al. Transovarial transmission of a core virome in the Chagas disease vector Rhodnius prolixus. PLoS Pathog. 17, e1009780 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kariithi, H. M. et al. Coevolution of hytrosaviruses and host immune responses. BMC Microbiol. 18, 183 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gao, H., Cui, C., Wang, L., Jacobs-Lorena, M. & Wang, S. Mosquito microbiota and implications for disease control. Trends Parasitol. 36, 98–111 (2020).

    Article  PubMed  Google Scholar 

  22. Campolina, T. B., Villegas, L. E. M., Monteiro, C. C., Pimenta, P. F. P. & Secundino, N. F. C. Tripartite interactions: Leishmania, microbiota and Lutzomyia longipalpis. PLoS Negl. Trop. Dis. 14, e0008666 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wang, S. et al. Driving mosquito refractoriness to Plasmodium falciparum with engineered symbiotic bacteria. Science 357, 1399–1402 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Maffo, C. G. T. et al. Molecular detection and maternal transmission of a bacterial symbiont Asaia species in field-caught Anopheles mosquitoes from Cameroon. Parasit. Vectors 14, 539 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Caragata, E. P., Dutra, H. L. C., Sucupira, P. H. F., Ferreira, A. G. A. & Moreira, L. A. Wolbachia as translational science: controlling mosquito-borne pathogens. Trends Parasitol. 37, 1050–1067 (2021).

    Article  PubMed  Google Scholar 

  26. Vasilakis, N. et al. Negevirus: a proposed new taxon of insect-specific viruses with wide geographic distribution. J. Virol. 87, 2475–2488 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cappelli, A., Favia, G. & Ricci, I. Wickerhamomyces anomalus in mosquitoes: a promising yeast-based tool for the “symbiotic control” of mosquito-borne diseases. Front. Microbiol. 11, 621605 (2020).

    Article  PubMed  Google Scholar 

  28. Patterson, E. I., Villinger, J., Muthoni, J. N., Dobel-Ober, L. & Hughes, G. L. Exploiting insect-specific viruses as a novel strategy to control vector-borne disease. Curr. Opin. Insect Sci. 39, 50–56 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Duron, O. & Gottlieb, Y. Convergence of nutritional symbioses in obligate blood feeders. Trends Parasitol. 36, 816–825 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Attardo, G. M., Scolari, F. & Malacrida, A. Bacterial symbionts of tsetse flies: relationships and functional interactions between tsetse flies and their symbionts. Results Probl. Cell Differ. 69, 497–536 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Pais, R., Lohs, C., Wu, Y., Wang, J. & Aksoy, S. The obligate mutualist Wigglesworthia glossinidia influences reproduction, digestion, and immunity processes of its host, the tsetse fly. Appl. Environ. Microbiol. 74, 5965–5974 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sasaki-Fukatsu, K. et al. Symbiotic bacteria associated with stomach discs of human lice. Appl. Environ. Microbiol. 72, 7349–7352 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hosokawa, T., Koga, R., Kikuchi, Y., Meng, X. Y. & Fukatsu, T. Wolbachia as a bacteriocyte-associated nutritional mutualist. Proc. Natl Acad. Sci. USA 107, 769–774 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Stavru, F., Riemer, J., Jex, A. & Sassera, D. When bacteria meet mitochondria: the strange case of the tick symbiont Midichloria mitochondrii. Cell Microbiol. 22, e13189 (2020).

    Article  CAS  PubMed  Google Scholar 

  35. Salcedo-Porras, N., Umana-Diaz, C., Bitencourt, R. O. B. & Lowenberger, C. The role of bacterial symbionts in triatomines: an evolutionary perspective. Microorganisms 8, 1438 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kariithi, H. M., Meki, I. K., Boucias, D. G. & Abd-Alla, A. M. Hytrosaviruses: current status and perspective. Curr. Opin. Insect Sci. 22, 71–78 (2017).

    Article  PubMed  Google Scholar 

  37. Neville, C. A. The Biology of Mosquitoes: Development, Nutrition and Reproduction (Chapman & Hall, 1992).

  38. Coon, K. L., Vogel, K. J., Brown, M. R. & Strand, M. R. Mosquitoes rely on their gut microbiota for development. Mol. Ecol. 23, 2727–2739 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chouaia, B. et al. Delayed larval development in Anopheles mosquitoes deprived of Asaia bacterial symbionts. BMC Microbiol. 12, S2 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang, X. et al. Bacterial microbiota assemblage in Aedes albopictus mosquitoes and its impacts on larval development. Mol. Ecol. 27, 2972–2985 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Vogel, K. J., Valzania, L., Coon, K. L., Brown, M. R. & Strand, M. R. Transcriptome sequencing reveals large-scale changes in axenic Aedes aegypti larvae. PLoS Negl. Trop. Dis. 11, e0005273 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Coon, K. L. et al. Bacteria-mediated hypoxia functions as a signal for mosquito development. Proc. Natl Acad. Sci. USA 114, E5362–E5369 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Romoli, O., Schonbeck, J. C., Hapfelmeier, S. & Gendrin, M. Production of germ-free mosquitoes via transient colonisation allows stage-specific investigation of host–microbiota interactions. Nat. Commun. 12, 942 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang, Y. et al. Riboflavin instability is a key factor underlying the requirement of a gut microbiota for mosquito development. Proc. Natl Acad. Sci. USA 118, e2101080118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Peterkova-Koci, K., Robles-Murguia, M., Ramalho-Ortigao, M. & Zurek, L. Significance of bacteria in oviposition and larval development of the sand fly Lutzomyia longipalpis. Parasit. Vectors 5, 145 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Steyn, A., Roets, F. & Botha, A. Yeasts associated with Culex pipiens and Culex theileri mosquito larvae and the effect of selected yeast strains on the ontogeny of Culex pipiens. Microb. Ecol. 71, 747–760 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. Harington, J. S. Studies on Rhodnius prolixus: growth and development of normal and sterile bugs, and the symbiotic relationship. Parasitology 50, 279–286 (1960).

    Article  CAS  PubMed  Google Scholar 

  48. Guizzo, M. G. et al. A Coxiella mutualist symbiont is essential to the development of Rhipicephalus microplus. Sci. Rep. 7, 17554 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ben-Yosef, M. et al. Coxiella-like endosymbiont of Rhipicephalus sanguineus is required for physiological processes during ontogeny. Front. Microbiol. 11, 493 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Guizzo, M. G. et al. Coxiella endosymbiont of Rhipicephalus microplus modulates tick physiology with a major impact in blood feeding capacity. Front. Microbiol. 13, 868575 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Zhong, Z. et al. Symbiont-regulated serotonin biosynthesis modulates tick feeding activity. Cell Host Microbe 29, 1545–1557 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. Li, L. H., Zhang, Y. & Zhu, D. Effects of antibiotic treatment on the fecundity of Rhipicephalus haemaphysaloides ticks. Parasit. Vectors 11, 242 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Zhang, C. M. et al. Endosymbiont CLS-HI plays a role in reproduction and development of Haemaphysalis longicornis. Exp. Appl. Acarol. 73, 429–438 (2017).

    Article  PubMed  Google Scholar 

  54. Zhong, J., Jasinskas, A. & Barbour, A. G. Antibiotic treatment of the tick vector Amblyomma americanum reduced reproductive fitness. PLoS ONE 2, e405 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kurlovs, A. H., Li, J., Cheng, D. & Zhong, J. Ixodes pacificus ticks maintain embryogenesis and egg hatching after antibiotic treatment of Rickettsia endosymbiont. PLoS ONE 9, e104815 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Scolari, F. et al. Symbiotic microbes affect the expression of male reproductive genes in Glossina m. morsitans. BMC Microbiol. 18, 169 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Engl, T. et al. Effect of antibiotic treatment and gamma-irradiation on cuticular hydrocarbon profiles and mate choice in tsetse flies (Glossina m. morsitans). BMC Microbiol. 18, 145 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Liu, N. Insecticide resistance in mosquitoes: impact, mechanisms, and research directions. Annu. Rev. Entomol. 60, 537–559 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Mougabure-Cueto, G. & Picollo, M. I. Insecticide resistance in vector Chagas disease: evolution, mechanisms and management. Acta Trop. 149, 70–85 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. Coles, T. B. & Dryden, M. W. Insecticide/acaricide resistance in fleas and ticks infesting dogs and cats. Parasit. Vectors 7, 8 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Soltani, A., Vatandoost, H., Oshaghi, M. A., Enayati, A. A. & Chavshin, A. R. The role of midgut symbiotic bacteria in resistance of Anopheles stephensi (Diptera: Culicidae) to organophosphate insecticides. Pathog. Glob. Health 111, 289–296 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Soh, L. S. & Veera Singham, G. Bacterial symbionts influence host susceptibility to fenitrothion and imidacloprid in the obligate hematophagous bed bug, Cimex hemipterus. Sci. Rep. 12, 4919 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Muturi, E. J., Dunlap, C., Smartt, C. T. & Shin, D. Resistance to permethrin alters the gut microbiota of Aedes aegypti. Sci. Rep. 11, 14406 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pelloquin, B. et al. Overabundance of Asaia and Serratia bacteria is associated with deltamethrin insecticide susceptibility in Anopheles coluzzii from Agboville, Cote d’Ivoire. Microbiol. Spectr. 9, e00157-21 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Omoke, D. et al. Western Kenyan Anopheles gambiae showing intense permethrin resistance harbour distinct microbiota. Malar. J. 20, 77 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Comandatore, F. et al. Phylogenomics reveals that Asaia symbionts from insects underwent convergent genome reduction, preserving an insecticide-degrading gene. mBio 12, e00106–e00121 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sterkel, M., Oliveira, J. H. M., Bottino-Rojas, V., Paiva-Silva, G. O. & Oliveira, P. L. The dose makes the poison: nutritional overload determines the life traits of blood-feeding arthropods. Trends Parasitol. 33, 633–644 (2017).

    Article  PubMed  Google Scholar 

  68. Akman, L. et al. Genome sequence of the endocellular obligate symbiont of tsetse flies, Wigglesworthia glossinidia. Nat. Genet. 32, 402–407 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Smith, T. A., Driscoll, T., Gillespie, J. J. & Raghavan, R. A Coxiella-like endosymbiont is a potential vitamin source for the lone star tick. Genome Biol. Evol. 7, 831–838 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hunter, D. J. et al. The Rickettsia endosymbiont of Ixodes pacificus contains all the genes of de novo folate biosynthesis. PLoS ONE 10, e0144552 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Duron, O. et al. Tick–bacteria mutualism depends on B vitamin synthesis pathways. Curr. Biol. 28, 1896–1902 (2018).

    Article  CAS  PubMed  Google Scholar 

  72. Sassera, D. et al. Phylogenomic evidence for the presence of a flagellum and cbb3 oxidase in the free-living mitochondrial ancestor. Mol. Biol. Evol. 28, 3285–3296 (2011).

    Article  CAS  PubMed  Google Scholar 

  73. Nikoh, N. et al. Evolutionary origin of insect–Wolbachia nutritional mutualism. Proc. Natl Acad. Sci. USA 111, 10257–10262 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Boyd, B. M. et al. Primates, lice and bacteria: speciation and genome evolution in the symbionts of hominid lice. Mol. Biol. Evol. 34, 1743–1757 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Belda, E., Moya, A., Bentley, S. & Silva, F. J. Mobile genetic element proliferation and gene inactivation impact over the genome structure and metabolic capabilities of Sodalis glossinidius, the secondary endosymbiont of tsetse flies. BMC Genomics 11, 449 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Buysse, M. et al. A dual endosymbiosis supports nutritional adaptation to hematophagy in the invasive tick Hyalomma marginatum. eLife 10, e72747 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Binetruy, F. et al. Microbial community structure reveals instability of nutritional symbiosis during the evolutionary radiation of Amblyomma ticks. Mol. Ecol. 29, 1016–1029 (2020).

    Article  PubMed  Google Scholar 

  78. Sonenshine, D. E. & Stewart, P. E. Microbiomes of blood-feeding arthropods: genes coding for essential nutrients and relation to vector fitness and pathogenic infections. A review. Microorganisms 9, 2433 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Chabanol, E., Behrends, V., Prevot, G., Christophides, G. K. & Gendrin, M. Antibiotic treatment in Anopheles coluzzii affects carbon and nitrogen metabolism. Pathogens 9, 679 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Guegan, M. et al. Mosquito sex and mycobiota contribute to fructose metabolism in the Asian tiger mosquito Aedes albopictus. Microbiome 10, 138 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Guegan, M. et al. Who is eating fructose within the Aedes albopictus gut microbiota? Environ. Microbiol. 22, 1193–1206 (2020).

    Article  CAS  PubMed  Google Scholar 

  82. Minard, G. et al. Prevalence, genomic and metabolic profiles of Acinetobacter and Asaia associated with field-caught Aedes albopictus from Madagascar. FEMS Microbiol. Ecol. 83, 63–73 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. Caragata, E. P., Rances, E., O’Neill, S. L. & McGraw, E. A. Competition for amino acids between Wolbachia and the mosquito host, Aedes aegypti. Microb. Ecol. 67, 205–218 (2014).

    Article  CAS  PubMed  Google Scholar 

  84. Nascimento da Silva, J. et al. Wolbachia pipientis modulates metabolism and immunity during Aedes fluviatilis oogenesis. Insect Biochem. Mol. Biol. 146, 103776 (2022).

    Article  CAS  PubMed  Google Scholar 

  85. Didion, E. M. et al. Microbiome reduction prevents lipid accumulation during early diapause in the northern house mosquito, Culex pipiens pipiens. J. Insect Physiol. 134, 104295 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Giraud, E. et al. Mosquito–bacteria interactions during larval development trigger metabolic changes with carry-over effects on adult fitness. Mol. Ecol. 31, 1444–1460 (2022).

    Article  CAS  PubMed  Google Scholar 

  87. Chen, S., Johnson, B. K., Yu, T., Nelson, B. N. & Walker, E. D. Elizabethkingia anophelis: physiologic and transcriptomic responses to iron stress. Front. Microbiol. 11, 804 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Martin, E. et al. The mycobiota of the sand fly Phlebotomus perniciosus: involvement of yeast symbionts in uric acid metabolism. Environ. Microbiol. 20, 1064–1077 (2018).

    Article  CAS  PubMed  Google Scholar 

  89. Ganley, J. G. et al. A systematic analysis of mosquito–microbiome biosynthetic gene clusters reveals antimalarial siderophores that reduce mosquito reproduction capacity. Cell Chem. Biol. 27, 817–826 (2020).

    Article  CAS  PubMed  Google Scholar 

  90. Feng, Y. et al. Anopheline mosquitoes are protected against parasite infection by tryptophan catabolism in gut microbiota. Nat. Microbiol. 7, 707–715 (2022).

    Article  CAS  PubMed  Google Scholar 

  91. Molloy, J. C., Sommer, U., Viant, M. R. & Sinkins, S. P. Wolbachia modulates lipid metabolism in Aedes albopictus mosquito cells. Appl. Environ. Microbiol. 82, 3109–3120 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Manokaran, G. et al. Modulation of acyl-carnitines, the broad mechanism behind Wolbachia-mediated inhibition of medically important flaviviruses in Aedes aegypti. Proc. Natl Acad. Sci. USA 117, 24475–24483 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Haqshenas, G. et al. A role for the insulin receptor in the suppression of Dengue virus and Zika virus in Wolbachia-infected mosquito cells. Cell Rep. 26, 529–535 (2019).

    Article  CAS  PubMed  Google Scholar 

  94. Rio, R. V. et al. Insight into the transmission biology and species-specific functional capabilities of tsetse (Diptera: glossinidae) obligate symbiont Wigglesworthia. mBio 3, e00240-11 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Rio, R. V. M. et al. Mutualist-provisioned resources impact vector competency. mBio 10, e00018–e00019 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wang, M. et al. Glucose-mediated proliferation of a gut commensal bacterium promotes Plasmodium infection by increasing mosquito midgut pH. Cell Rep. 35, 108992 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kelly, P. H. et al. The gut microbiome of the vector Lutzomyia longipalpis is essential for survival of Leishmania infantum. mBio 8, e01121-16 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Louradour, I. et al. The midgut microbiota plays an essential role in sand fly vector competence for Leishmania major. Cell Microbiol. 19, 10.1111 (2017).

    Article  Google Scholar 

  99. Dickson, L. B. et al. Carryover effects of larval exposure to different environmental bacteria drive adult trait variation in a mosquito vector. Sci. Adv. 3, e1700585 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Matetovici, I., De Vooght, L. & Van Den Abbeele, J. Innate immunity in the tsetse fly (Glossina), vector of African trypanosomes. Dev. Comp. Immunol. 98, 181–188 (2019).

    Article  CAS  PubMed  Google Scholar 

  101. Salcedo-Porras, N. & Lowenberger, C. The innate immune system of kissing bugs, vectors of chagas disease. Dev. Comp. Immunol. 98, 119–128 (2019).

    Article  CAS  PubMed  Google Scholar 

  102. Serafim, T. D. et al. Leishmaniasis: the act of transmission. Trends Parasitol. 37, 976–987 (2021).

    Article  CAS  PubMed  Google Scholar 

  103. Fogaca, A. C. et al. Tick immune system: what is known, the interconnections, the gaps, and the challenges. Front. Immunol. 12, 628054 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Bartholomay, L. C. & Michel, K. Mosquito immunobiology: the intersection of vector health and vector competence. Annu. Rev. Entomol. 63, 145–167 (2018).

    Article  CAS  PubMed  Google Scholar 

  105. Weiss, B. L., Wang, J. & Aksoy, S. Tsetse immune system maturation requires the presence of obligate symbionts in larvae. PLoS Biol. 9, e1000619 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Weiss, B. L., Wang, J., Maltz, M. A., Wu, Y. & Aksoy, S. Trypanosome infection establishment in the tsetse fly gut is influenced by microbiome-regulated host immune barriers. PLoS Pathog. 9, e1003318 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Weiss, B. L., Maltz, M. & Aksoy, S. Obligate symbionts activate immune system development in the tsetse fly. J. Immunol. 188, 3395–3403 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. Trappeniers, K., Matetovici, I. & Van Den Abbeele, J. & De Vooght, L. The tsetse fly displays an attenuated immune response to its secondary symbiont, Sodalis glossinidius. Front. Microbiol. 10, 1650 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Benoit, J. B. et al. Symbiont-induced odorant binding proteins mediate insect host hematopoiesis. eLife 6, e19535 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Meister, S. et al. Anopheles gambiae PGRPLC-mediated defense against bacteria modulates infections with malaria parasites. PLoS Pathog. 5, e1000542 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Wang, J., Wu, Y., Yang, G. & Aksoy, S. Interactions between mutualist Wigglesworthia and tsetse peptidoglycan recognition protein (PGRP-LB) influence trypanosome transmission. Proc. Natl Acad. Sci. USA 106, 12133–12138 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Salcedo-Porras, N., Noor, S., Cai, C., Oliveira, P. L. & Lowenberger, C. Rhodnius prolixus uses the peptidoglycan recognition receptor rpPGRP-LC/LA to detect Gram-negative bacteria and activate the IMD pathway. Curr. Res. Insect Sci. 1, 100006 (2021).

    Article  CAS  PubMed  Google Scholar 

  113. Rodgers, F. H. et al. Functional analysis of the three major PGRPLC isoforms in the midgut of the malaria mosquito Anopheles coluzzii. Insect Biochem. Mol. Biol. 118, 103288 (2020).

    Article  CAS  PubMed  Google Scholar 

  114. Gao, L., Song, X. & Wang, J. Gut microbiota is essential in PGRP-LA regulated immune protection against Plasmodium berghei infection. Parasit. Vectors 13, 3 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Gendrin, M. et al. The peptidoglycan recognition proteins PGRPLA and PGRPLB regulate Anopheles immunity to bacteria and affect infection by Plasmodium. J. Innate Immun. 9, 333–342 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Xiao, X. et al. A Mesh–Duox pathway regulates homeostasis in the insect gut. Nat. Microbiol. 2, 17020 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Oliveira, J. H. et al. Blood meal-derived heme decreases ROS levels in the midgut of Aedes aegypti and allows proliferation of intestinal microbiota. PLoS Pathog. 7, e1001320 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Diaz-Albiter, H., Sant’Anna, M. R., Genta, F. A. & Dillon, R. J. Reactive oxygen species-mediated immunity against Leishmania mexicana and Serratia marcescens in the sand phlebotomine fly Lutzomyia longipalpis. J. Biol. Chem. 287, 23995–24003 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wang, J. & Aksoy, S. PGRP-LB is a maternally transmitted immune milk protein that influences symbiosis and parasitism in tsetse’s offspring. Proc. Natl Acad. Sci. USA 109, 10552–10557 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Song, X., Wang, M., Dong, L., Zhu, H. & Wang, J. PGRP-LD mediates A. stephensi vector competency by regulating homeostasis of microbiota-induced peritrophic matrix synthesis. PLoS Pathog. 14, e1006899 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Pang, X. et al. Mosquito C-type lectins maintain gut microbiome homeostasis. Nat. Microbiol. 1, 16023 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Pan, X. et al. The bacterium Wolbachia exploits host innate immunity to establish a symbiotic relationship with the dengue vector mosquito Aedes aegypti. ISME J. 12, 277–288 (2018).

    Article  CAS  PubMed  Google Scholar 

  123. Rodrigues, J., Brayner, F. A., Alves, L. C., Dixit, R. & Barillas-Mury, C. Hemocyte differentiation mediates innate immune memory in Anopheles gambiae mosquitoes. Science 329, 1353–1355 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Dey, R. et al. Gut microbes egested during bites of infected sand flies augment severity of leishmaniasis via inflammasome-derived IL-1β. Cell Host Microbe 23, 134–143 (2018).

    Article  CAS  PubMed  Google Scholar 

  125. Wei, N., Cao, J., Zhang, H., Zhou, Y. & Zhou, J. The tick microbiota dysbiosis promote tick-borne pathogen transstadial transmission in a Babesia microti-infected mouse model. Front. Cell Infect. Microbiol. 11, 713466 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Narasimhan, S. et al. Gut microbiota of the tick vector Ixodes scapularis modulate colonization of the Lyme disease spirochete. Cell Host Microbe 15, 58–71 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Abraham, N. M. et al. Pathogen-mediated manipulation of arthropod microbiota to promote infection. Proc. Natl Acad. Sci. USA 114, E781–E790 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Wu, P. et al. A gut commensal bacterium promotes mosquito permissiveness to arboviruses. Cell Host Microbe 25, 101–112 (2019).

    Article  CAS  PubMed  Google Scholar 

  129. Kumar, S., Molina-Cruz, A., Gupta, L., Rodrigues, J. & Barillas-Mury, C. A peroxidase/dual oxidase system modulates midgut epithelial immunity in Anopheles gambiae. Science 327, 1644–1648 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Rodgers, F. H., Gendrin, M., Wyer, C. A. S. & Christophides, G. K. Microbiota-induced peritrophic matrix regulates midgut homeostasis and prevents systemic infection of malaria vector mosquitoes. PLoS Pathog. 13, e1006391 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Narasimhan, S. et al. Modulation of the tick gut milieu by a secreted tick protein favors Borrelia burgdorferi colonization. Nat. Commun. 8, 184 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Raddi, G. et al. Mosquito cellular immunity at single-cell resolution. Science 369, 1128–1132 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Ferreira Barletta, A. B. et al. Hemocyte differentiation to the megacyte lineage enhances mosquito immunity against Plasmodium. eLife 11, e81116 (2022).

    Article  PubMed  Google Scholar 

  134. Yan, Y. et al. The immune deficiency and c-Jun N-terminal kinase pathways drive the functional integration of the immune and circulatory systems of mosquitoes. Open Biol. 12, 220111 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Ramirez, J. L. et al. The role of hemocytes in Anopheles gambiae antiplasmodial immunity. J. Innate Immun. 6, 119–128 (2014).

    Article  CAS  PubMed  Google Scholar 

  136. Olmo, R. P. et al. Mosquito vector competence for dengue is modulated by insect-specific viruses. Nat. Microbiol. 8, 135–149 (2023).

    Article  CAS  PubMed  Google Scholar 

  137. Gao, H. et al. A natural symbiotic bacterium drives mosquito refractoriness to Plasmodium infection via secretion of an antimalarial lipase. Nat. Microbiol. 6, 806–817 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Valzano, M. et al. A yeast strain associated to Anopheles mosquitoes produces a toxin able to kill malaria parasites. Malar. J. 15, 21 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Yu, X. et al. Lipases secreted by a gut bacterium inhibit arbovirus transmission in mosquitoes. PLoS Pathog. 18, e1010552 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Saraiva, R. G. et al. Chromobacterium spp. mediate their anti-Plasmodium activity through secretion of the histone deacetylase inhibitor romidepsin. Sci. Rep. 8, 6176 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  141. da Mota, F. F. et al. In vitro trypanocidal activity, genomic analysis of isolates, and in vivo transcription of type VI secretion system of Serratia marcescens belonging to the microbiota of Rhodnius prolixus digestive tract. Front. Microbiol. 9, 3205 (2018).

    Article  PubMed  Google Scholar 

  142. Zimmer, K. R. et al. Cattle tick-associated bacteria exert anti-biofilm and anti-Tritrichomonas foetus activities. Vet. Microbiol. 164, 171–176 (2013).

    Article  CAS  PubMed  Google Scholar 

  143. Apte-Deshpande, A., Paingankar, M., Gokhale, M. D. & Deobagkar, D. N. Serratia odorifera a midgut inhabitant of Aedes aegypti mosquito enhances its susceptibility to dengue-2 virus. PLoS ONE 7, e40401 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Kaur, R. et al. Living in the endosymbiotic world of Wolbachia: a centennial review. Cell Host Microbe 29, 879–893 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Alam, U. et al. Wolbachia symbiont infections induce strong cytoplasmic incompatibility in the tsetse fly Glossina morsitans. PLoS Pathog. 7, e1002415 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Bian, G. et al. Wolbachia invades Anopheles stephensi populations and induces refractoriness to Plasmodium infection. Science 340, 748–751 (2013).

    Article  CAS  PubMed  Google Scholar 

  147. Durvasula, R. V. et al. Prevention of insect-borne disease: an approach using transgenic symbiotic bacteria. Proc. Natl Acad. Sci. USA 94, 3274–3278 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Wang, S. et al. Fighting malaria with engineered symbiotic bacteria from vector mosquitoes. Proc. Natl Acad. Sci. USA 109, 12734–12739 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Shane, J. L., Grogan, C. L., Cwalina, C. & Lampe, D. J. Blood meal-induced inhibition of vector-borne disease by transgenic microbiota. Nat. Commun. 9, 4127 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  150. De Vooght, L., Caljon, G., De Ridder, K. & Van Den Abbeele, J. Delivery of a functional anti-trypanosome nanobody in different tsetse fly tissues via a bacterial symbiont, Sodalis glossinidius. Microb. Cell Fact. 13, 156 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Yang, L. et al. Paratransgenic manipulation of a tsetse microRNA alters the physiological homeostasis of the fly’s midgut environment. PLoS Pathog. 17, e1009475 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Taracena, M. L. et al. Genetically modifying the insect gut microbiota to control Chagas disease vectors through systemic RNAi. PLoS Negl. Trop. Dis. 9, e0003358 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Ratcliffe, N. A. et al. Overview of paratransgenesis as a strategy to control pathogen transmission by insect vectors. Parasit. Vectors 15, 112 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Maitre, A. et al. Vector microbiota manipulation by host antibodies: the forgotten strategy to develop transmission-blocking vaccines. Parasit. Vectors 15, 4 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Ben-Yakir, D. Growth retardation of Rhodnius prolixus symbionts by immunizing host against Nocardia (Rhodococcus) rhodnii. J. Insect Physiol. 33, 379–383 (1987).

    Article  Google Scholar 

  156. Mateos-Hernandez, L. et al. Anti-microbiota vaccines modulate the tick microbiome in a taxon-specific manner. Front. Immunol. 12, 704621 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Mateos-Hernandez, L. et al. Anti-tick microbiota vaccine impacts Ixodes ricinus performance during feeding. Vaccines 8, 702 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Azelyte, J. et al. Anti-microbiota vaccine reduces avian malaria infection within mosquito vectors. Front. Immunol. 13, 841835 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Noden, B. H., Vaughan, J. A., Pumpuni, C. B. & Beier, J. C. Mosquito ingestion of antibodies against mosquito midgut microbiota improves conversion of ookinetes to oocysts for Plasmodium falciparum, but not P. yoelii. Parasitol. Int. 60, 440–446 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Frankel-Bricker, J., Buerki, S., Feris, K. P. & White, M. M. Influences of a prolific gut fungus (Zancudomyces culisetae) on larval and adult mosquito (Aedes aegypti)-associated microbiota. Appl. Environ. Microbiol. 86, e02334-19 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Bai, L., Wang, L., Vega-Rodriguez, J., Wang, G. & Wang, S. A gut symbiotic bacterium Serratia marcescens renders mosquito resistance to Plasmodium infection through activation of mosquito immune responses. Front. Microbiol. 10, 1580 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Cappelli, A. et al. Asaia activates immune genes in mosquito eliciting an anti-Plasmodium response: implications in malaria control. Front. Genet. 10, 836 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Saraiva, R. G. et al. Aminopeptidase secreted by Chromobacterium sp. Panama inhibits dengue virus infection by degrading the E protein. PLoS Negl. Trop. Dis. 12, e0006443 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Ramirez, J. L. et al. Chromobacterium Csp_P reduces malaria and dengue infection in vector mosquitoes and has entomopathogenic and in vitro anti-pathogen activities. PLoS Pathog. 10, e1004398 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Moreira, L. A. et al. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell 139, 1268–1278 (2009).

    Article  PubMed  Google Scholar 

  166. Blandin, S. A., Marois, E. & Levashina, E. A. Antimalarial responses in Anopheles gambiae: from a complement-like protein to a complement-like pathway. Cell Host Microbe 3, 364–374 (2008).

    Article  CAS  PubMed  Google Scholar 

  167. Tikhe, C. V. & Dimopoulos, G. Mosquito antiviral immune pathways. Dev. Comp. Immunol. 116, 103964 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (U1902211) and Science and Technology Leading Team from Inner Mongolia, China (2022SLJRC0023) to J.W.

Author information

Authors and Affiliations

Authors

Contributions

J.W. and L.G. researched data for the article. J.W. and S.A. contributed substantially to discussion of the content. All authors wrote the article. J.W. and S.A. reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Jingwen Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Microbiology thanks George Christophides and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Gao, L. & Aksoy, S. Microbiota in disease-transmitting vectors. Nat Rev Microbiol 21, 604–618 (2023). https://doi.org/10.1038/s41579-023-00901-6

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41579-023-00901-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing