Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Healthcare as a driver, reservoir and amplifier of antimicrobial resistance: opportunities for interventions

Abstract

Antimicrobial resistance (AMR) is a global health challenge that threatens humans, animals and the environment. Evidence is emerging for a role of healthcare infrastructure, environments and patient pathways in promoting and maintaining AMR via direct and indirect mechanisms. Advances in vaccination and monoclonal antibody therapies together with integrated surveillance, rapid diagnostics, targeted antimicrobial therapy and infection control measures offer opportunities to address healthcare-associated AMR risks more effectively. Additionally, innovations in artificial intelligence, data linkage and intelligent systems can be used to better predict and reduce AMR and improve healthcare resilience. In this Review, we examine the mechanisms by which healthcare functions as a driver, reservoir and amplifier of AMR, contextualized within a One Health framework. We also explore the opportunities and innovative solutions that can be used to combat AMR throughout the patient journey. We provide a perspective on the current evidence for the effectiveness of interventions designed to mitigate healthcare-associated AMR and promote healthcare resilience within high-income and resource-limited settings, as well as the challenges associated with their implementation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Healthcare as a driver of antimicrobial resistance.
Fig. 2: The use of vaccines and immunotherapy to reduce antimicrobial-resistance and protect healthcare.
Fig. 3: The power of artificial intelligence and data-linkage technology to reduce antimicrobial resistance and improve healthcare resilience.

Similar content being viewed by others

References

  1. World Health Organization. Global Action Plan on Antimicrobial Resistance (WHO, 2015).

  2. Holmes, A. H. et al. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet 387, 176–187 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Gorrie, C. L. et al. Antimicrobial-resistant Klebsiella pneumoniae carriage and infection in specialized geriatric care wards linked to acquisition in the referring hospital. Clin. Infect. Dis. 67, 161–170 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tinelli, M. et al. Dynamics of carbapenemase-producing Enterobacterales intestinal colonisation in the elderly population after hospital discharge, Italy, 2018-2020. Int. J. Antimicrob. Agents 59, 106594 (2022).

    Article  CAS  PubMed  Google Scholar 

  5. Zhang, S., Huang, J., Zhao, Z., Cao, Y. & Li, B. Hospital wastewater as a reservoir for antibiotic resistance genes: a meta-analysis. Front. Public Health 8, 574968 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  6. World Health Organization. Global Research Agenda for Antimicrobial Resistance in Human Health: Policy Brief (WHO, 2023).

  7. Barber, R. M. et al. Healthcare Access and Quality Index based on mortality from causes amenable to personal health care in 195 countries and territories, 1990–2015: a novel analysis from the Global Burden of Disease Study 2015. Lancet 390, 231–266 (2017).

    Article  Google Scholar 

  8. Duval, A. et al. Close proximity interactions support transmission of ESBL-K. pneumoniae but not ESBL-E. coli in healthcare settings. PLoS Comput. Biol. 15, e1006496 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Temime, L. et al. Peripatetic health-care workers as potential superspreaders. Proc. Natl Acad. Sci. USA 106, 18420–18425 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Eyre, D. W. et al. A Candida auris outbreak and its control in an intensive care setting. N. Engl. J. Med. 379, 1322–1331 (2018).

    Article  PubMed  Google Scholar 

  11. Holmes, A. et al. Infection Prevention and Control: Lessons from Acute Care in England (The Health Foundation, 2015).

  12. Nanayakkara, A. K. et al. Antibiotic resistance in the patient with cancer: escalating challenges and paths forward. CA Cancer J. Clin. 71, 488–504 (2021).

    Article  PubMed  Google Scholar 

  13. Trecarichi, E. M. & Tumbarello, M. Antimicrobial-resistant Gram-negative bacteria in febrile neutropenic patients with cancer: current epidemiology and clinical impact. Curr. Opin. Infect. Dis. 27, 200–210 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Stecher, B., Maier, L. & Hardt, W.-D. ‘Blooming’ in the gut: how dysbiosis might contribute to pathogen evolution. Nat. Rev. Microbiol. 11, 277–284 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Lerner, A. et al. Spread of KPC-producing carbapenem-resistant Enterobacteriaceae: the importance of super-spreaders and rectal KPC concentration. Clin. Microbiol. Infect. 21, 470.e1–7 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Lewis, J. M. et al. Colonization dynamics of extended-spectrum beta-lactamase-producing Enterobacterales in the gut of Malawian adults. Nat. Microbiol. 7, 1593–1604 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Faith, J. J. et al. The long-term stability of the human gut microbiota. Science 341, 1237439 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Donskey, C. J. The role of the intestinal tract as a reservoir and source for transmission of nosocomial pathogens. Clin. Infect. Dis. 39, 219–226 (2004).

    Article  PubMed  Google Scholar 

  19. Yassour, M. et al. Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability. Sci. Transl. Med. 8, 343ra81 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Donskey, C. J. et al. Effect of antibiotic therapy on the density of vancomycin-resistant enterococci in the stool of colonized patients. N. Engl. J. Med. 343, 1925–1932 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shen, Z. et al. Emerging carriage of NDM-5 and MCR-1 in Escherichia coli from healthy people in multiple regions in China: a cross sectional observational study. EClinicalMedicine 6, 11–20 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sands, K. et al. Characterization of antimicrobial-resistant Gram-negative bacteria that cause neonatal sepsis in seven low- and middle-income countries. Nat. Microbiol. 6, 512–523 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gorrie, C. L. et al. Gastrointestinal carriage is a major reservoir of Klebsiella pneumoniae infection in intensive care patients. Clin. Infect. Dis. 65, 208–215 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vincent, J.-L. Nosocomial infections in adult intensive-care units. Lancet 361, 2068–2077 (2003).

    Article  PubMed  Google Scholar 

  25. Pulcini, C. et al. Developing core elements and checklist items for global hospital antimicrobial stewardship programmes: a consensus approach. Clin. Microbiol. Infect. 25, 20–25 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Kajova, M., Khawaja, T. & Kantele, A. European hospitals as source of multidrug-resistant bacteria: analysis of travellers screened in Finland after hospitalization abroad. J. Travel Med. 29, taac022 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bezabih, Y. M. et al. Comparison of the global prevalence and trend of human intestinal carriage of ESBL-producing Escherichia coli between healthcare and community settings: a systematic review and meta-analysis. JAC Antimicrob. Resist. 4, dlac048 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ita, T. et al. Prevalence of colonization with multidrug-resistant bacteria in communities and hospitals in Kenya. Sci. Rep. 12, 22290 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. O’Hara, L. M. et al. Optimizing contact precautions to curb the spread of antibiotic-resistant bacteria in hospitals: a multicenter cohort study to identify patient characteristics and healthcare personnel interactions associated with transmission of methicillin-resistant Staphylococcus aureus. Clin. Infect. Dis. 69, S171–S177 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Pittet, D. et al. Evidence-based model for hand transmission during patient care and the role of improved practices. Lancet Infect. Dis. 6, 641–652 (2006).

    Article  PubMed  Google Scholar 

  31. Birgand, G. et al. Innovation for infection prevention and control-revisiting Pasteur’s vision. Lancet 400, 2250–2260 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mitchell, B. G., Dancer, S. J., Anderson, M. & Dehn, E. Risk of organism acquisition from prior room occupants: a systematic review and meta-analysis. J. Hosp. Infect. 91, 211–217 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Chng, K. R. et al. Cartography of opportunistic pathogens and antibiotic resistance genes in a tertiary hospital environment. Nat. Med. 26, 941–951 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lowe, C. et al. Outbreak of extended-spectrum β-lactamase-producing Klebsiella oxytoca infections associated with contaminated handwashing sinks. Emerg. Infect. Dis. 18, 1242–1247 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Anantharajah, A. et al. Long-term intensive care unit outbreak of carbapenemase-producing organisms associated with contaminated sink drains. J. Hosp. Infect. 143, 38–47 (2024).

    Article  CAS  PubMed  Google Scholar 

  36. Chia, P. Y. et al. The role of hospital environment in transmissions of multidrug-resistant gram-negative organisms. Antimicrob. Resist. Infect. Control 9, 29 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Chiarello, L. A. & Tapper, M. L. Healthcare settings as amplifiers of infectious disease. Emerg. Infect. Dis. 10, 2048–2049 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Tomczyk, S. et al. The first WHO global survey on infection prevention and control in health-care facilities. Lancet Infect. Dis. 22, 845–856 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  39. World Health Organization. Global Report on Infection Prevention and Control: Executive Summary (WHO, 2022).

  40. Plachouras, D. et al. Antimicrobial use in European acute care hospitals: results from the second point prevalence survey (PPS) of healthcare-associated infections and antimicrobial use, 2016 to 2017. Eurosurveillance 23, 1800393 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Nathwani, D., Raman, G., Sulham, K., Gavaghan, M. & Menon, V. Clinical and economic consequences of hospital-acquired resistant and multidrug-resistant Pseudomonas aeruginosa infections: a systematic review and meta-analysis. Antimicrob. Resist. Infect. Control 3, 32 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Cosgrove, S. E. The relationship between antimicrobial resistance and patient outcomes: mortality, length of hospital stay, and health care costs. Clin. Infect. Dis. 42, S82–89 (2006).

    Article  PubMed  Google Scholar 

  43. Rawson, T. M. et al. Bacterial and fungal coinfection in individuals with coronavirus: a rapid review to support COVID-19 antimicrobial prescribing. Clin. Infect. Dis. 71, 2459–2468 (2020).

    CAS  PubMed  Google Scholar 

  44. Almagor, J. et al. The impact of antibiotic use on transmission of resistant bacteria in hospitals: insights from an agent-based model. PLoS ONE 13, e0197111 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Scott, P. et al. An outbreak of multidrug-resistant Acinetobacter baumannii-calcoaceticus complex infection in the US military health care system associated with military operations in Iraq. Clin. Infect. Dis. 44, 1577–1584 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Merrick, R. et al. Transferring inpatients between wards drives large nosocomial COVID-19 outbreaks, Wales, United Kingdom, 2020-22: a matched case-control study using routine and enhanced surveillance data. J. Hosp. Infect. 145, 1–10 (2023).

    Article  PubMed  Google Scholar 

  47. Thornley, T., Ashiru-Oredope, D., Normington, A., Beech, E. & Howard, P. Antibiotic prescribing for residents in long-term-care facilities across the UK. J. Antimicrob. Chemother. 74, 1447–1451 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. McKinnell, J. A. et al. The SHIELD orange county project: multidrug-resistant organism prevalence in 21 nursing homes and long-term acute care facilities in Southern California. Clin. Infect. Dis. 69, 1566–1573 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Adams, E. et al. Candida auris in healthcare facilities, New York, USA, 2013-2017. Emerg. Infect. Dis. 24, 1816–1824 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Desai, A. N., Mohareb, A. M., Hauser, N. & Abbara, A. Antimicrobial resistance and human mobility. Infect. Drug Resist. 15, 127–133 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fayad, A. A. et al. Antimicrobial resistance and the Iraq wars: armed conflict as an underinvestigated pathway with growing significance. BMJ Glob. Health 7, e010863 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  52. World Health Organization. Building climate-resilient health systems. WHO https://www.who.int/teams/environment-climate-change-and-health/climate-change-and-health/country-support/building-climate-resilient-health-systems (2024).

  53. Gilbert, J. A. & Stephens, B. Microbiology of the built environment. Nat. Rev. Microbiol. 16, 661–670 (2018).

    Article  CAS  PubMed  Google Scholar 

  54. Boiocchi, F., Davies, M. P. & Hilton, A. C. An examination of flying insects in seven hospitals in the United Kingdom and carriage of bacteria by true flies (Diptera: Calliphoridae, Dolichopodidae, Fanniidae, Muscidae, Phoridae, Psychodidae, Sphaeroceridae). J. Med. Entomol. 56, 1684–1697 (2019).

    Article  PubMed  Google Scholar 

  55. Berendonk, T. U. et al. Tackling antibiotic resistance: the environmental framework. Nat. Rev. Microbiol. 13, 310–317 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Stanton, I. C., Bethel, A., Leonard, A. F. C., Gaze, W. H. & Garside, R. Existing evidence on antibiotic resistance exposure and transmission to humans from the environment: a systematic map. Environ. Evid. 11, 8 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Kennedy, D. A. & Read, A. F. Why does drug resistance readily evolve but vaccine resistance does not? Proc. R. Soc. B Biol. Sci. 284, 20162562 (2017).

    Article  Google Scholar 

  58. Micoli, F., Bagnoli, F., Rappuoli, R. & Serruto, D. The role of vaccines in combatting antimicrobial resistance. Nat. Rev. Microbiol. 19, 287–302 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Atkins, K. E. & Lipsitch, M. Can antibiotic resistance be reduced by vaccinating against respiratory disease? Lancet Respir. Med. 6, 820–821 (2018).

    Article  PubMed  Google Scholar 

  60. Langford, B. J. et al. Antibiotic prescribing in patients with COVID-19: rapid review and meta-analysis. Clin. Microbiol. Infect. 27, 520–531 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Taylor, S. et al. Modelling estimates of the burden of respiratory syncytial virus infection in children in the UK. BMJ Open 6, e009337 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Knight, G. M., Clarkson, M. & de Silva, T. I. Potential impact of influenza vaccine roll-out on antibiotic use in Africa. J. Antimicrob. Chemother. 73, 2197–2200 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hopkins, H. et al. Impact of introduction of rapid diagnostic tests for malaria on antibiotic prescribing: analysis of observational and randomised studies in public and private healthcare settings. BMJ 356, j1054 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Andrews, J. R. et al. Typhoid conjugate vaccines: a new tool in the fight against antimicrobial resistance. Lancet Infect. Dis. 19, e26–e30 (2019).

    Article  CAS  PubMed  Google Scholar 

  65. Singleton, D. et al. Cross-sectional health centre and community-based evaluation of the impact of pneumococcal and malaria vaccination on antibiotic prescription and usage, febrile illness and antimicrobial resistance in young children in Malawi: the IVAR study protocol. BMJ Open 13, e069560 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kurauchi, A., Struchiner, C. J., Wilder-Smith, A. & Massad, E. Modelling the effect of a dengue vaccine on reducing the evolution of resistance against antibiotic due to misuse in dengue cases. Theor. Biol. Med. Model. 17, 7 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Troeger, C. et al. Estimates of global, regional, and national morbidity, mortality, and aetiologies of diarrhoeal diseases: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Infect. Dis. 17, 909–948 (2017).

    Article  Google Scholar 

  68. Feikin, D. R. et al. Efficacy of pentavalent rotavirus vaccine in a high HIV prevalence population in Kenya. Vaccine 30, A52–60 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Lewnard, J. A., Lo, N. C., Arinaminpathy, N., Frost, I. & Laxminarayan, R. Childhood vaccines and antibiotic use in low- and middle-income countries. Nature 581, 94–99 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ngabo, F. et al. Effect of pentavalent rotavirus vaccine introduction on hospital admissions for diarrhoea and rotavirus in children in Rwanda: a time-series analysis. Lancet Glob. Health 4, e129–e136 (2016).

    Article  CAS  PubMed  Google Scholar 

  71. Vasileiou, E. et al. Interim findings from first-dose mass COVID-19 vaccination roll-out and COVID-19 hospital admissions in Scotland: a national prospective cohort study. Lancet 397, 1646–1657 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Eythorsson, E. et al. Impact of the 10-valent pneumococcal conjugate vaccine on antimicrobial prescriptions in young children: a whole population study. BMC Infect. Dis. 18, 505 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Cohen, R., Cohen, J. F., Chalumeau, M. & Levy, C. Impact of pneumococcal conjugate vaccines for children in high- and non-high-income countries. Expert Rev. Vaccines 16, 625–640 (2017).

    Article  CAS  PubMed  Google Scholar 

  74. Swarthout, T. D. et al. High residual carriage of vaccine-serotype Streptococcus pneumoniae after introduction of pneumococcal conjugate vaccine in Malawi. Nat. Commun. 11, 2222 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Costanzo, V. & Roviello, G. N. The potential role of vaccines in preventing antimicrobial resistance (AMR): an update and future perspectives. Vaccines 11, 333 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Frost, I. et al. The role of bacterial vaccines in the fight against antimicrobial resistance: an analysis of the preclinical and clinical development pipeline. Lancet Microbe 4, e113–e125 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kitchin, N. et al. A phase 2 study evaluating the safety, tolerability, and immunogenicity of two 3-dose regimens of a Clostridium difficile vaccine in healthy US adults aged 65 to 85 years. Clin. Infect. Dis. 70, 1–10 (2020).

    Article  CAS  PubMed  Google Scholar 

  78. Knisely, J. M., Liu, B., Ranallo, R. T. & Zou, L. Vaccines for healthcare-associated infections: promise and challenge. Clin. Infect. Dis. 63, 657–662 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Martinot, M., Mohseni-Zadeh, M., Marion, L. & Roncalez, D. COVID-19 vaccine: missed opportunities and hospital vaccine implementation. Clin. Microbiol. Infect. 28, 1174–1175 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gurtman, A. et al. The development of a Staphylococcus aureus four antigen vaccine for use prior to elective orthopedic surgery. Hum. Vaccines Immunother. 15, 358–370 (2018).

    Article  Google Scholar 

  81. COVIDSurg Collaborative & GlobalSurg Collaborative.SARS-CoV-2 vaccination modelling for safe surgery to save lives: data from an international prospective cohort study. Br. J. Surg. 108, 1056–1063 (2021).

    Article  Google Scholar 

  82. Liu, W.-C. et al. Effect of influenza vaccination against postoperative pneumonia and mortality for geriatric patients receiving major surgery: a nationwide matched study. J. Infect. Dis. 217, 816–826 (2018).

    Article  PubMed  Google Scholar 

  83. Glasbey, J. C. et al. Elective surgery system strengthening: development, measurement, and validation of the surgical preparedness index across 1632 hospitals in 119 countries. Lancet 400, 1607–1617 (2022).

    Article  Google Scholar 

  84. Knight, G. M. et al. Antimicrobial resistance and COVID-19: intersections and implications. eLife 10, e64139 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. van der Plaat, D. A. et al. Risks of COVID-19 by occupation in NHS workers in England. Occup. Environ. Med. 79, 176–183 (2022).

    Article  PubMed  Google Scholar 

  86. Shah, A. S. V. et al. Effect of vaccination on transmission of SARS-CoV-2. N. Engl. J. Med. 385, 1718–1720 (2021).

    Article  CAS  PubMed  Google Scholar 

  87. Verelst, F., Beutels, P., Hens, N. & Willem, L. Workplace influenza vaccination to reduce employee absenteeism: an economic analysis from the employers’ perspective. Vaccine 39, 2005–2015 (2021).

    Article  PubMed  Google Scholar 

  88. Theuretzbacher, U., Outterson, K., Engel, A. & Karlén, A. The global preclinical antibacterial pipeline. Nat. Rev. Microbiol. 18, 275–285 (2020).

    Article  PubMed  Google Scholar 

  89. Troisi, M. et al. A new dawn for monoclonal antibodies against antimicrobial resistant bacteria. Front. Microbiol. 13, 1080059 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Theuretzbacher, U. & Piddock, L. J. V. Non-traditional antibacterial therapeutic options and challenges. Cell Host Microbe 26, 61–72 (2019).

    Article  CAS  PubMed  Google Scholar 

  91. Wilcox, M. H. et al. Bezlotoxumab for prevention of recurrent Clostridium difficile infection. N. Engl. J. Med. 376, 305–317 (2017).

    Article  CAS  PubMed  Google Scholar 

  92. Sun, M. et al. Monoclonal antibody for the prevention of respiratory syncytial virus in infants and children: a systematic review and network meta-analysis. JAMA Netw. Open 6, e230023 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Zurawski, D. V. & McLendon, M. K. Monoclonal antibodies as an antibacterial approach against bacterial pathogens. Antibiotics 9, 155 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Baker, S., Kellam, P., Krishna, A. & Reece, S. Protecting intubated patients from the threat of antimicrobial resistant infections with monoclonal antibodies. Lancet Microbe 1, e191–e192 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kreitmann, L. et al. Next-generation molecular diagnostics: leveraging digital technologies to enhance multiplexing in real-time PCR. TrAC Trends Anal. Chem. 160, 116963 (2023).

    Article  CAS  Google Scholar 

  96. Roy, S. et al. Recent developments towards portable point-of-care diagnostic devices for pathogen detection. Sens. Diagn. 1, 87–105 (2022).

    Article  CAS  Google Scholar 

  97. Vasala, A., Hytönen, V. P. & Laitinen, O. H. Modern tools for rapid diagnostics of antimicrobial resistance. Front. Cell. Infect. Microbiol. 10, 308 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. European Centre for Disease Prevention & Control. A Scoping Review of Point-of-Care Testing Devices for Infectious Disease Surveillance, Prevention and Control (ECDC, 2022).

  99. Tolley, A., Bansal, A., Murerwa, R. & Howard Dicks, J. Cost-effectiveness of point-of-care diagnostics for AMR: a systematic review. J. Antimicrob. Chemother. 79, 1248–1269 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Barlam, T. F. et al. Implementing an antibiotic stewardship program: guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. Clin. Infect. Dis. 62, e51–e77 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  101. National Institute for Health and Care Excellence (NICE). Pneumonia in adults: diagnosis and management (NICE, 2023).

  102. Au Yeung, V. et al. Differences in antibiotic and antiviral use in people with confirmed influenza: a retrospective comparison of rapid influenza PCR and multiplex respiratory virus PCR tests. BMC Infect. Dis. 21, 321 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Yamin, D. et al. Current and future technologies for the detection of antibiotic-resistant bacteria. Diagnostics 13, 3246 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kose, E. et al. The effect of rapid antigen detection test on antibiotic prescription decision of clinicians and reducing antibiotic costs in children with acute pharyngitis. J. Trop. Pediatr. 62, 308–315 (2016).

    Article  PubMed  Google Scholar 

  105. Camprubí-Ferrer, D. et al. Rapid diagnostic tests for dengue would reduce hospitalizations, healthcare costs and antibiotic prescriptions in Spain: a cost-effectiveness analysis. Enferm. Infecc. Microbiol. Clin. Engl. Ed https://doi.org/10.1016/j.eimce.2022.12.016 (2023).

  106. Zhan, Y., Wang, Y., Zhang, W., Ying, B. & Wang, C. Diagnostic accuracy of the artificial intelligence methods in medical imaging for pulmonary tuberculosis: a systematic review and meta-analysis. J. Clin. Med. 12, 303 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Miesler, T., Wimschneider, C., Brem, A. & Meinel, L. Frugal innovation for point-of-care diagnostics controlling outbreaks and epidemics. ACS Biomater. Sci. Eng. 6, 2709–2725 (2020).

    Article  CAS  PubMed  Google Scholar 

  108. Vos, L. M. et al. Rapid molecular tests for influenza, respiratory syncytial virus, and other respiratory viruses: a systematic review of diagnostic accuracy and clinical impact studies. Clin. Infect. Dis. 69, 1243–1253 (2019).

    Article  CAS  PubMed  Google Scholar 

  109. Peri, A. M. et al. Rapid diagnostic tests and antimicrobial stewardship programs for the management of bloodstream infection: what is their relative contribution to improving clinical outcomes? A systematic review and network meta-analysis. Clin. Infect. Dis. https://doi.org/10.1093/cid/ciae234 (2024).

  110. Liu, Z., Banaei, N. & Ren, K. Microfluidics for combating antimicrobial resistance. Trends Biotechnol. 35, 1129–1139 (2017).

    Article  CAS  PubMed  Google Scholar 

  111. Kaprou, G. D., Bergšpica, I., Alexa, E. A., Alvarez-Ordóñez, A. & Prieto, M. Rapid methods for antimicrobial resistance diagnostics. Antibiotics 10, 209 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Helou, R. I. et al. Use of stewardship smartphone applications by physicians and prescribing of antimicrobials in hospitals: a systematic review. PLoS One 15, e0239751 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Watkins, R. R. Antibiotic stewardship in the era of precision medicine. JAC Antimicrob. Resist. 4, dlac066 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Vasikasin, V., Rawson, T. M., Holmes, A. H. & Otter, J. Can precision antibiotic prescribing help prevent the spread of carbapenem-resistant organisms in the hospital setting? JAC Antimicrob. Resist. 5, dlad036 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Roberts, J. A. et al. Individualised antibiotic dosing for patients who are critically ill: challenges and potential solutions. Lancet Infect. Dis. 14, 498–509 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Roberts, J. A. et al. Challenges and potential solutions — individualised antibiotic dosing at the bedside for critically Ill patients: a structured review. Lancet Infect. Dis. 14, 498–509 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Rawson, T. M. et al. Delivering precision antimicrobial therapy through closed-loop control systems. J. Antimicrob. Chemother. 73, 835–843 (2018).

    Article  CAS  PubMed  Google Scholar 

  118. Ioannou, P. et al. Indications for medical antibiotic prophylaxis and potential targets for antimicrobial stewardship intervention: a narrative review. Clin. Microbiol. Infect. 28, 362–370 (2022).

    Article  PubMed  Google Scholar 

  119. Laxminarayan, R. et al. Antibiotic resistance — the need for global solutions. Lancet Infect. Dis. 13, 1057–1098 (2013).

    Article  PubMed  Google Scholar 

  120. Drain, P. K. et al. Diagnostic point-of-care tests in resource-limited settings. Lancet Infect. Dis. 14, 239–249 (2014).

    Article  PubMed  Google Scholar 

  121. Miller, M. B. et al. Clinical utility of advanced microbiology testing tools. J. Clin. Microbiol. 57, e00495-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Ming, D. et al. Connectivity of rapid-testing diagnostics and surveillance of infectious diseases. Bull. World Health Organ. 97, 242–244 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Keenan, K. et al. Unravelling patient pathways in the context of antibacterial resistance in East Africa. BMC Infect. Dis. 23, 414 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  124. McLeod, M. et al. A whole-health–economy approach to antimicrobial stewardship: analysis of current models and future direction. PLoS Med. 16, e1002774 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Pilmis, B., Le Monnier, A. & Zahar, J.-R. Gut microbiota, antibiotic therapy and antimicrobial resistance: a narrative review. Microorganisms 8, 269 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Yeh, Y.-C., Huang, T.-H., Yang, S.-C., Chen, C.-C. & Fang, J.-Y. Nano-based drug delivery or targeting to eradicate bacteria for infection mitigation: a review of recent advances. Front. Chem. 8, 286 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Brochado, A. R. et al. Species-specific activity of antibacterial drug combinations. Nature 559, 259–263 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Grall, N. et al. Oral DAV131, a charcoal-based adsorbent, inhibits intestinal colonization by β-lactam-resistant Klebsiella pneumoniae in cefotaxime-treated mice. Antimicrob. Agents Chemother. 57, 5423–5425 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Kokai-Kun, J. F. et al. Ribaxamase, an orally administered β-lactamase, diminishes changes to acquired antimicrobial resistance of the gut resistome in patients treated with ceftriaxone. Infect. Drug Resist. 13, 2521–2535 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Suez, J. et al. Post-antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT. Cell 174, 1406–1423.e16 (2018).

    Article  CAS  PubMed  Google Scholar 

  131. Huttner, B. D. et al. A 5-day course of oral antibiotics followed by faecal transplantation to eradicate carriage of multidrug-resistant Enterobacteriaceae: a randomized clinical trial. Clin. Microbiol. Infect. 25, 830–838 (2019).

    Article  CAS  PubMed  Google Scholar 

  132. Piewngam, P. et al. Probiotic for pathogen-specific Staphylococcus aureus decolonisation in Thailand: a phase 2, double-blind, randomised, placebo-controlled trial. Lancet Microbe 4, e75–e83 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  133. de Smet, A. M. G. A. et al. Selective digestive tract decontamination and selective oropharyngeal decontamination and antibiotic resistance in patients in intensive-care units: an open-label, clustered group-randomised, crossover study. Lancet Infect. Dis. 11, 372–380 (2011).

    Article  PubMed  Google Scholar 

  134. Tacconelli, E. et al. ESCMID-EUCIC clinical guidelines on decolonization of multidrug-resistant Gram-negative bacteria carriers. Clin. Microbiol. Infect. 25, 807–817 (2019).

    Article  CAS  PubMed  Google Scholar 

  135. Poirel, L. et al. A phage-based decolonisation strategy against pan-resistant enterobacterial strains. Lancet Infect. Dis. 20, 525–526 (2020).

    Article  PubMed  Google Scholar 

  136. Fassarella, M. et al. Gut microbiome stability and resilience: elucidating the response to perturbations in order to modulate gut health. Gut 70, 595–605 (2021).

    Article  CAS  PubMed  Google Scholar 

  137. Lax, S. et al. Bacterial colonization and succession in a newly opened hospital. Sci. Transl. Med. 9, eaah6500 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Klassert, T. E. et al. Bacterial colonization dynamics and antibiotic resistance gene dissemination in the hospital environment after first patient occupancy: a longitudinal metagenetic study. Microbiome 9, 169 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Sukhum, K. V. et al. Antibiotic-resistant organisms establish reservoirs in new hospital built environments and are related to patient blood infection isolates. Commun. Med. 2, 62 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Marimuthu, K. et al. Whole genome sequencing reveals hidden transmission of carbapenemase-producing Enterobacterales. Nat. Commun. 13, 3052 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Buckner, M. M. C., Ciusa, M. L. & Piddock, L. J. V. Strategies to combat antimicrobial resistance: anti-plasmid and plasmid curing. FEMS Microbiol. Rev. 42, 781–804 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Lepainteur, M. et al. Evaluation of excreta management in a large French multi-hospital institution. J. Hosp. Infect. 91, 346–350 (2015).

    Article  CAS  PubMed  Google Scholar 

  143. Mitchell, B. G., Dancer, S. J., Shaban, R. Z. & Graves, N. Moving forward with hospital cleaning. Am. J. Infect. Control 41, 1138–1139 (2013).

    Article  PubMed  Google Scholar 

  144. Muller, M. P. et al. Antimicrobial surfaces to prevent healthcare-associated infections: a systematic review. J. Hosp. Infect. 92, 7–13 (2016).

    Article  CAS  PubMed  Google Scholar 

  145. Goto, M. et al. Effectiveness of ultraviolet-C disinfection on hospital-onset gram-negative rod bloodstream infection: a nationwide stepped-wedge time-series analysis. Clin. Infect. Dis. 76, 291–298 (2023).

    Article  PubMed  Google Scholar 

  146. Marra, A. R., Schweizer, M. L. & Edmond, M. B. No-touch disinfection methods to decrease multidrug-resistant organism infections: a systematic review and meta-analysis. Infect. Control Hosp. Epidemiol. 39, 20–31 (2018).

    Article  PubMed  Google Scholar 

  147. Dancer, S. J. Controlling hospital-acquired infection: focus on the role of the environment and new technologies for decontamination. Clin. Microbiol. Rev. 27, 665–690 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Jarlier, V. et al. Curbing methicillin-resistant Staphylococcus aureus in 38 French hospitals through a 15-year institutional control program. Arch. Intern. Med. 170, 552–559 (2010).

    Article  PubMed  Google Scholar 

  149. French, K. Ten articles on hand hygiene innovation that have been reported in the Journal of Hospital Infection. J. Hosp. Infect. 100, 242–243 (2018).

    Article  PubMed  Google Scholar 

  150. Miller Loren, G. et al. Decolonization in nursing homes to prevent infection and hospitalization. N. Engl. J. Med. 389, 1766–1777 (2023).

    Article  CAS  PubMed  Google Scholar 

  151. Buxser, S. Has resistance to chlorhexidine increased among clinically-relevant bacteria? A systematic review of time course and subpopulation data. PLoS ONE 16, e0256336 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Eyre, D. W. Infection prevention and control insights from a decade of pathogen whole-genome sequencing. J. Hosp. Infect. 122, 180–186 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Forde, B. M. et al. Clinical implementation of routine whole-genome sequencing for hospital infection control of multi-drug resistant pathogens. Clin. Infect. Dis. 76, e1277–e1284 (2022).

    Article  Google Scholar 

  154. Pehrsson, E. C. et al. Interconnected microbiomes and resistomes in low-income human habitats. Nature 533, 212–216 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Ruppé, E. et al. High rate of acquisition but short duration of carriage of multidrug-resistant Enterobacteriaceae after travel to the tropics. Clin. Infect. Dis. 61, 593–600 (2015).

    Article  PubMed  Google Scholar 

  156. Martischang, R. et al. Household carriage and acquisition of extended-spectrum β-lactamase-producing Enterobacteriaceae: a systematic review. Infect. Control Hosp. Epidemiol. 41, 286–294 (2020).

    Article  PubMed  Google Scholar 

  157. Jamal, A. J. et al. Household transmission of carbapenemase-producing Enterobacterales in Ontario, Canada. Clin. Infect. Dis. 73, e4607–e4615 (2021).

    Article  PubMed  Google Scholar 

  158. Platteel, T. N. et al. Predicting carriage with extended-spectrum beta-lactamase-producing bacteria at hospital admission: a cross-sectional study. Clin. Microbiol. Infect. 21, 141–146 (2015).

    Article  CAS  PubMed  Google Scholar 

  159. Chau, K. K. et al. Systematic review of wastewater surveillance of antimicrobial resistance in human populations. Environ. Int. 162, 107171 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Flach, C.-F., Hutinel, M., Razavi, M., Åhrén, C. & Larsson, D. G. J. Monitoring of hospital sewage shows both promise and limitations as an early-warning system for carbapenemase-producing Enterobacterales in a low-prevalence setting. Water Res. 200, 117261 (2021).

    Article  CAS  PubMed  Google Scholar 

  161. Newton, R. J. et al. Sewage reflects the microbiomes of human populations. mBio 6, e02574-14 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Nekkab, N., Astagneau, P., Temime, L. & Crépey, P. Spread of hospital-acquired infections: a comparison of healthcare networks. PLoS Comput. Biol. 13, e1005666 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Slayton, R. B. et al. Vital signs: estimated effects of a coordinated approach for action to reduce antibiotic-resistant infections in health care facilities — United States. MMWR Morb. Mortal. Wkly Rep. 64, 826–831 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Pita, R., Mendonça, E., Reis, S., Barreto, M. & Denaxas, S. in Big Data Analytics and Knowledge Discovery (eds Bellatreche, L. & Chakravarthy, S.) 214–227 (Springer, 2017).

  165. Batenburg, D., Verheij, T., Van’t Veen, A. & van der Velden, A. Practice-level association between antibiotic prescribing and resistance: an observational study in primary care. Antibiotics 9, 470 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Argimón, S. et al. Integrating whole-genome sequencing within the National Antimicrobial Resistance Surveillance Program in the Philippines. Nat. Commun. 11, 2719 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Cocker, D. et al. Investigating One Health risks for human colonisation with extended spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae in Malawian households: a longitudinal cohort study. Lancet Microbe 4, e534–e543 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Hashim, R. et al. Tricycle Project — One Health approach: whole genome sequencing (WGS) of extended-spectrum beta-lactamase (ESBL) producing Eschericia (E.) coli derived from human, food chain and environment. Int. J. Infect. Dis. 116, S105–S106 (2022).

    Article  Google Scholar 

  169. Burton, J. K. et al. Developing a minimum data set for older adult care homes in the UK: exploring the concept and defining early core principles. Lancet Healthy Longev. 3, e186–e193 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Ahmad, R., Gordon, A. C., Aylin, P., Redhead, J. & Holmes, A. Effective knowledge mobilisation: creating environments for quick generation, dissemination, and use of evidence. BMJ 379, e070195 (2022).

    Article  PubMed  Google Scholar 

  171. Tamuhla, T., Lulamba, E. T., Mutemaringa, T. & Tiffin, N. Multiple modes of data sharing can facilitate secondary use of sensitive health data for research. BMJ Glob. Health 8, e013092 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Asnicar, F., Thomas, A. M., Passerini, A., Waldron, L. & Segata, N. Machine learning for microbiologists. Nat. Rev. Microbiol. 22, 191–205 (2023).

    Article  PubMed  Google Scholar 

  173. Peiffer-Smadja, N. et al. Machine learning for clinical decision support in infectious diseases: a narrative review of current applications. Clin. Microbiol. Infect. 26, 584–595 (2020).

    Article  CAS  PubMed  Google Scholar 

  174. Pryor, R., Godbout, E. J. & Bearman, G. Precision infection prevention: the next frontier in patient safety. J. Hosp. Infect. 105, 232–233 (2020).

    Article  CAS  PubMed  Google Scholar 

  175. Roth, J. A., Battegay, M., Juchler, F., Vogt, J. E. & Widmer, A. F. Introduction to machine learning in digital healthcare epidemiology. Infect. Control Hosp. Epidemiol. 39, 1457–1462 (2018).

    Article  PubMed  Google Scholar 

  176. Fitzpatrick, F., Doherty, A. & Lacey, G. Using artificial intelligence in infection prevention. Curr. Treat. Options Infect. Dis. 12, 135–144 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Myall, A. et al. Prediction of hospital-onset COVID-19 infections using dynamic networks of patient contact: an international retrospective cohort study. Lancet Digit. Health 4, e573–e583 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Panchavati, S. et al. A comparative analysis of machine learning approaches to predict C. difficile infection in hospitalized patients. Am. J. Infect. Control 50, 250–257 (2022).

    Article  PubMed  Google Scholar 

  179. Flores-Balado, Á. et al. Using artificial intelligence to reduce orthopedic surgical site infection surveillance workload: algorithm design, validation, and implementation in 4 Spanish hospitals. Am. J. Infect. Control 51, 1225–1229 (2023).

    Article  PubMed  Google Scholar 

  180. Wheeler, N. E. et al. Innovations in genomic antimicrobial resistance surveillance. Lancet Microbe 4, e1063–e1070 (2023).

    Article  PubMed  Google Scholar 

  181. Brownstein, J. S., Rader, B., Astley, C. M. & Tian, H. Advances in artificial intelligence for infectious-disease surveillance. N. Engl. J. Med. 388, 1597–1607 (2023).

    Article  CAS  PubMed  Google Scholar 

  182. Arango-Argoty, G. et al. DeepARG: a deep learning approach for predicting antibiotic resistance genes from metagenomic data. Microbiome 6, 23 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Sundermann, A. J. et al. Automated data mining of the electronic health record for investigation of healthcare-associated outbreaks. Infect. Control Hosp. Epidemiol. 40, 314–319 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Sundermann, A. J. et al. Whole-genome sequencing surveillance and machine learning of the electronic health record for enhanced healthcare outbreak detection. Clin. Infect. Dis. 75, 476–482 (2022).

    Article  PubMed  Google Scholar 

  185. Sundermann, A. J. et al. Outbreak of Pseudomonas aeruginosa infections from a contaminated gastroscope detected by whole genome sequencing surveillance. Clin. Infect. Dis. 73, e638–e642 (2020).

    Article  PubMed Central  Google Scholar 

  186. Kim, J. I. et al. Machine learning for antimicrobial resistance prediction: current practice, limitations, and clinical perspective. Clin. Microbiol. Rev. 35, e0017921 (2022).

    Article  PubMed  Google Scholar 

  187. Weis, C. et al. Direct antimicrobial resistance prediction from clinical MALDI-TOF mass spectra using machine learning. Nat. Med. 28, 164–174 (2022).

    Article  CAS  PubMed  Google Scholar 

  188. Pascucci, M. et al. AI-based mobile application to fight antibiotic resistance. Nat. Commun. 12, 1173 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Tsoukalas, A., Albertson, T. & Tagkopoulos, I. From data to optimal decision making: a data-driven, probabilistic machine learning approach to decision support for patients with sepsis. JMIR Med. Inform. 3, e11 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Shen, Y. et al. An ontology-driven clinical decision support system (IDDAP) for infectious disease diagnosis and antibiotic prescription. Artif. Intell. Med. 86, 20–32 (2018).

    Article  PubMed  Google Scholar 

  191. Beaudoin, M., Kabanza, F., Nault, V. & Valiquette, L. Evaluation of a machine learning capability for a clinical decision support system to enhance antimicrobial stewardship programs. Artif. Intell. Med. 68, 29–36 (2016).

    Article  PubMed  Google Scholar 

  192. Pryor, R. J., Vokes, R., Anderson, D. & Bearman, G. Virtual infection prevention — the next frontier. Infect. Control Hosp. Epidemiol. 42, 1374–1375 (2021).

    Article  PubMed  Google Scholar 

  193. Rawson, T. M., Ahmad, R., Toumazou, C., Georgiou, P. & Holmes, A. H. Artificial intelligence can improve decision-making in infection management. Nat. Hum. Behav. 3, 543–545 (2019).

    Article  PubMed  Google Scholar 

  194. Wu, S., Tannous, E., Haldane, V., Ellen, M. E. & Wei, X. Barriers and facilitators of implementing interventions to improve appropriate antibiotic use in low- and middle-income countries: a systematic review based on the Consolidated Framework for Implementation Research. Implement. Sci. 17, 30 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Charani, E. et al. Optimising antimicrobial use in humans — review of current evidence and an interdisciplinary consensus on key priorities for research. Lancet Reg. Health Eur. 7, 100161 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Okeke, I. N. et al. Leapfrogging laboratories: the promise and pitfalls of high-tech solutions for antimicrobial resistance surveillance in low-income settings. BMJ Glob. Health 5, e003622 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Verberk, J. D. M. et al. Automated surveillance systems for healthcare-associated infections: results from a European survey and experiences from real-life utilization. J. Hosp. Infect. 122, 35–43 (2022).

    Article  CAS  PubMed  Google Scholar 

  198. Ahmad, R. et al. Strengthening strategic management approaches to address antimicrobial resistance in global human health: a scoping review. BMJ Glob. Health 4, e001730 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  199. AMR Policy Accelerator. Global Strategy Lab https://amrpolicy.org/ (2024).

  200. Birgand, G. et al. Comparison of governance approaches for the control of antimicrobial resistance: analysis of three European countries. Antimicrob. Resist. Infect. Control. 7, 28 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the David Price Evans Endowment fund and thank the members of the Centre for Antimicrobial Optimisation Network (CAMO-Net) for the helpful discussions. CAMO-Net is a global research partnership funded by the Wellcome Trust (grant ref. 226691/Z/22/Z). Research in the laboratories of the authors was also partially funded by the National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Healthcare Associated Infections and Antimicrobial Resistance at Imperial College London in partnership with the UK Health Security Agency (previously PHE) in collaboration with Imperial Healthcare Partners, University of Cambridge and University of Warwick. The views expressed in this publication are those of the authors and not necessarily those of the NHS, the National Institute for Health Research, the Department of Health and Social Care or the UK Health Security Agency. G.B. contributed to this work as part of the COMBINE research programme, which benefited from a government grant managed by the Agence Nationale de la Recherche under the Programme France 2030 with the reference ANR 22 PAMR 0003.

Author information

Authors and Affiliations

Authors

Contributions

D.C., G.B., J.R.-M., N.Z., R.A. and A.H. contributed to the discussion, research, writing, and reviewing and editing of this manuscript. K.J. and A.S.L. contributed to discussion, writing, and reviewing and editing of the manuscript before submission.

Corresponding author

Correspondence to Alison Holmes.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Microbiology thanks Alessandro Cassini, Nicholas Turner and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cocker, D., Birgand, G., Zhu, N. et al. Healthcare as a driver, reservoir and amplifier of antimicrobial resistance: opportunities for interventions. Nat Rev Microbiol 22, 636–649 (2024). https://doi.org/10.1038/s41579-024-01076-4

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41579-024-01076-4

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology