Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Examining the healthy human microbiome concept

An Author Correction to this article was published on 16 December 2024

This article has been updated

Abstract

Human microbiomes are essential to health throughout the lifespan and are increasingly recognized and studied for their roles in metabolic, immunological and neurological processes. Although the full complexity of these microbial communities is not fully understood, their clinical and industrial exploitation is well advanced and expanding, needing greater oversight guided by a consensus from the research community. One of the most controversial issues in microbiome research is the definition of a ‘healthy’ human microbiome. This concept is complicated by the microbial variability over different spatial and temporal scales along with the challenge of applying a unified definition to the spectrum of healthy microbiome configurations. In this Perspective, we examine the progress made and the key gaps that remain to be addressed to fully harness the benefits of the human microbiome. We propose a road map to expand our knowledge of the microbiome–health relationship, incorporating epidemiological approaches informed by the unique ecological characteristics of these communities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Using the microbiome as a reporter and predictor of health.
Fig. 2: Satellite model for microbiome research.

Similar content being viewed by others

Change history

References

  1. Berg, G. et al. Microbiome definition re-visited: old concepts and new challenges. Microbiome 8, 103 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lynch, S. V. & Pedersen, O. The human intestinal microbiome in health and disease. N. Engl. J. Med. 375, 2369–2379 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Turnbaugh, P. J. et al. The Human Microbiome Project. Nature 449, 804–810 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Larsen, N. et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS ONE 5, e9085 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Qin, N. et al. Alterations of the human gut microbiome in liver cirrhosis. Nature 513, 59–64 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Wang, T. et al. Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J. 6, 320–329 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Gevers, D. et al. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe 15, 382–392 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jeffery, I. B. et al. Differences in fecal microbiomes and metabolomes of people with vs without irritable bowel syndrome and bile acid malabsorption. Gastroenterology 158, 1016–1028.e8 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. McGuinness, A. J. et al. A systematic review of gut microbiota composition in observational studies of major depressive disorder, bipolar disorder and schizophrenia. Mol. Psychiatry 27, 1920–1935 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nikolova, V. L. et al. Perturbations in gut microbiota composition in psychiatric disorders: a review and meta-analysis. JAMA Psychiatry 78, 1343–1354 (2021).

    Article  PubMed  Google Scholar 

  11. Zhang, X., Chen, B., Zhao, L. & Li, H. The gut microbiota: emerging evidence in autoimmune diseases. Trends Mol. Med. 26, 862–873 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Jansen, D. et al. Community types of the human gut virome are associated with endoscopic outcome in ulcerative colitis. J. Crohns Colitis 17, 1504–1513 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Salosensaari, A. et al. Taxonomic signatures of cause-specific mortality risk in human gut microbiome. Nat. Commun. 12, 2671 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. US Food and Drug Administration. Approval letter—REBYOTA. FDA https://www.fda.gov/vaccines-blood-biologics/vaccines/rebyota (2022).

  15. Walter, J. & Shanahan, F. Fecal microbiota-based treatment for recurrent Clostridioides difficile infection. Cell 186, 1087 (2023).

    Article  CAS  PubMed  Google Scholar 

  16. Bibbò, S. et al. Fecal microbiota transplantation: screening and selection to choose the optimal donor. J. Clin. Med. 9, 1–14 (2020).

    Article  Google Scholar 

  17. van Duijkeren, E. et al. Long-term carriage of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae in the general population in the Netherlands. Clin. Infect. Dis. 66, 1368–1376 (2018).

    Article  PubMed  Google Scholar 

  18. Piewngam, P. et al. Composition of the intestinal microbiota in extended-spectrum β-lactamase-producing Enterobacteriaceae carriers and non-carriers in Thailand. Int. J. Antimicrob. Agents 53, 435–441 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Vandeputte, D. et al. Temporal variability in quantitative human gut microbiome profiles and implications for clinical research. Nat. Commun. 12, 6740 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Abdill, R. J., Adamowicz, E. M. & Blekhman, R. Public human microbiome data are dominated by highly developed countries. PLoS Biol. 20, e3001536 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Keohane, D. M. et al. Microbiome and health implications for ethnic minorities after enforced lifestyle changes. Nat. Med. 26, 1089–1095 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Makhalanyane, T. P. et al. African microbiomes matter. Nat. Rev. Microbiol. 21, 479–481 (2023).

    Article  CAS  PubMed  Google Scholar 

  23. Reynoso-García, J. et al. A complete guide to human microbiomes: body niches, transmission, development, dysbiosis, and restoration. Front. Syst. Biol. 2, 951403 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Huttenhower, C. et al. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).

    Article  CAS  Google Scholar 

  25. Vemuri, R., Shankar, E. M., Chieppa, M., Eri, R. & Kavanagh, K. Beyond just bacteria: functional biomes in the gut ecosystem including virome, mycobiome, archaeome and helminths. Microorganisms 8, 483 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Stockdale, S. R. & Hill, C. Progress and prospects of the healthy human gut virome. Curr. Opin. Virol. 51, 164–171 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Laforest-Lapointe, I. & Arrieta, M.-C. Microbial eukaryotes: a missing link in gut microbiome studies. mSystems 3, e00201–e00217 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lloyd-Price, J., Abu-Ali, G. & Huttenhower, C. The healthy human microbiome. Genome Med. 8, 51 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Shanahan, F., Ghosh, T. S. & O’Toole, P. W. The healthy microbiome—what is the definition of a healthy gut microbiome? Gastroenterology 160, 483–494 (2021).

    Article  PubMed  Google Scholar 

  30. Najmanová, L., Vídeňská, P. & Cahová, M. Healthy microbiome—a mere idea or a sound concept? Physiol. Res. 71, 719–738 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Vandeputte, D., Tito, R. Y., Vanleeuwen, R., Falony, G. & Raes, J. Practical considerations for large-scale gut microbiome studies. FEMS Microbiol. Rev. 41, S154–S167 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  32. McBurney, M. I. et al. Establishing what constitutes a healthy human gut microbiome: state of the science, regulatory considerations, and future directions. J. Nutr. 149, 1882–1895 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Constitution of the World Health Organization. A. J. Public Health Nations Health 36, 1315–1323 (1946).

  34. Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Herd, P., Palloni, A., Rey, F. & Dowd, J. B. Social and population health science approaches to understand the human microbiome. Nat. Hum. Behav. 2, 808–815 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Barton, W. et al. The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level. Gut 67, 625–633 (2018).

    CAS  PubMed  Google Scholar 

  37. Raygoza Garay, J. A. et al. Gut microbiome composition is associated with future onset of Crohn’s disease in healthy first-degree relatives. Gastroenterology 165, 670–681 (2023).

    Article  CAS  PubMed  Google Scholar 

  38. Ferreiro, A. L. et al. Gut microbiome composition may be an indicator of preclinical Alzheimer’s disease. Sci. Transl. Med. 15, eabo2984 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ashton, J. J., Seaby, E. G., Beattie, R. M. & Ennis, S. NOD2 in Crohn’s disease—unfinished business. J. Crohns Colitis 17, 450–458 (2023).

    Article  PubMed  Google Scholar 

  40. Chowdhury, S. R., Chandra Das, D., Sunna, T. C., Beyene, J. & Hossain, A. Global and regional prevalence of multimorbidity in the adult population in community settings: a systematic review and meta-analysis. EClinicalMedicine 57, 101860 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Khezrian, M., McNeil, C. J., Murray, A. D. & Myint, P. K. An overview of prevalence, determinants and health outcomes of polypharmacy. Ther. Adv. Drug. Saf. 11, 2042098620933741 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Sonnenburg, E. D. & Sonnenburg, J. L. The ancestral and industrialized gut microbiota and implications for human health. Nat. Rev. Microbiol. 17, 383–390 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Le Bastard, Q., Vangay, P., Batard, E., Knights, D. & Montassier, E. US immigration is associated with rapid and persistent acquisition of antibiotic resistance genes in the gut. Clin. Infect. Dis. 71, 419–421 (2020).

    Article  PubMed  Google Scholar 

  44. Pang, S. et al. Longevity of centenarians is reflected by the gut microbiome with youth-associated signatures. Nat. Aging 3, 436–449 (2023).

    Article  PubMed  Google Scholar 

  45. Foxman, B. & Riley, L. Molecular epidemiology of infection foxman and riley molecular epidemiology: focus on infection. Am. J. Epidemiol. 153, 1135–1141 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Midha, S., Chawla, S. & Garg, P. K. Modifiable and non-modifiable risk factors for pancreatic cancer: a review. Cancer Lett. 381, 269–277 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. Pradhan, A. D. et al. Inflammatory biomarkers, hormone replacement therapy, and incident coronary heart disease prospective analysis from the women’s health initiative observational study. JAMA 288, 980–987 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Zhernakova, A. et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352, 565–569 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gacesa, R. et al. Environmental factors shaping the gut microbiome in a Dutch population. Nature 604, 732–739 (2022).

    Article  CAS  PubMed  Google Scholar 

  50. Winter, S. E. & Bäumler, A. J. Gut dysbiosis: ecological causes and causative effects on human disease. Proc. Natl Acad. Sci. USA 120, e2316579120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Le Chatelier, E. et al. Richness of human gut microbiome correlates with metabolic markers. Nature 500, 541–546 (2013).

    Article  PubMed  Google Scholar 

  52. Vandeputte, D. et al. Quantitative microbiome profiling links gut community variation to microbial load. Nature 551, 507–511 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Vieira-Silva, S. et al. Statin therapy is associated with lower prevalence of gut microbiota dysbiosis. Nature 581, 310–315 (2020).

    Article  CAS  PubMed  Google Scholar 

  54. France, M. T. et al. VALENCIA: a nearest centroid classification method for vaginal microbial communities based on composition. Microbiome 8, 166 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wang, N. & Fang, J. Y. Fusobacterium nucleatum, a key pathogenic factor and microbial biomarker for colorectal cancer. Trends Microbiol. 31, 159–172 (2023).

    Article  CAS  PubMed  Google Scholar 

  56. Pleguezuelos-Manzano, C. et al. Mutational signature in colorectal cancer caused by genotoxic pks+ E. coli. Nature 580, 269–273 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang, Z. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–65 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Fu, J. et al. The gut microbiome contributes to a substantial proportion of the variation in blood lipids. Circ. Res. 117, 817–824 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Manor, O. et al. Health and disease markers correlate with gut microbiome composition across thousands of people. Nat. Commun. 11, 5206 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Frioux, C. et al. Enterosignatures define common bacterial guilds in the human gut microbiome. Cell Host Microbe 31, 1111–1125.e6 (2023).

    Article  CAS  PubMed  Google Scholar 

  61. Anthamatten, L. et al. Stratification of human gut microbiomes by succinotype is associated with inflammatory bowel disease status. Preprint at bioRxiv https://doi.org/10.1101/2023.11.21.568118v1 (2023).

  62. Falony, G. et al. Population-level analysis of gut microbiome variation. Science 352, 560–564 (2016).

    Article  CAS  PubMed  Google Scholar 

  63. Cotillard, A. et al. A posteriori dietary patterns better explain variations of the gut microbiome than individual markers in the American Gut Project. Am. J. Clin. Nutr. 115, 432–443 (2022).

    Article  PubMed  Google Scholar 

  64. Walker, R. L. et al. Population study of the gut microbiome: associations with diet, lifestyle, and cardiometabolic disease. Genome Med. 13, 188 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Lu, J. et al. Chinese gut microbiota and its associations with staple food type, ethnicity, and urbanization. NPJ Biofilms Microbiomes 7, 71 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Armet, A. M. et al. Rethinking healthy eating in light of the gut microbiome. Cell Host Microbe 30, 764–785 (2022).

    Article  CAS  PubMed  Google Scholar 

  67. Kates, A. E. et al. Household pet ownership and the microbial diversity of the human gut microbiota. Front. Cell Infect. Microbiol. 10, 73 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tun, H. M. et al. Exposure to household furry pets influences the gut microbiota of infants at 3–4 months following various birth scenarios. Microbiome 5, 40 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Aasmets, O., Krigul, K. L., Lüll, K., Metspalu, A. & Org, E. Gut metagenome associations with extensive digital health data in a volunteer-based Estonian microbiome cohort. Nat. Commun. 13, 869 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Procházková, N. et al. Advancing human gut microbiota research by considering gut transit time. Gut 72, 180–191 (2023).

    Article  PubMed  Google Scholar 

  71. Roager, H. M. et al. Colonic transit time is related to bacterial metabolism and mucosal turnover in the gut. Nat. Microbiol. 1, 16093 (2016).

    Article  CAS  PubMed  Google Scholar 

  72. Vandeputte, D. et al. Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates. Gut 65, 57–62 (2016).

    Article  CAS  PubMed  Google Scholar 

  73. He, Y. et al. Regional variation limits applications of healthy gut microbiome reference ranges and disease models. Nat. Med. 24, 1532–1535 (2018).

    Article  CAS  PubMed  Google Scholar 

  74. Schnorr, S. L. et al. Gut microbiome of the Hadza hunter-gatherers. Nat. Commun. 5, 3654 (2014).

    Article  CAS  PubMed  Google Scholar 

  75. Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. De Filippo, C. et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl Acad. Sci. USA 107, 14691–14696 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Tamburini, F. B. et al. Short- and long-read metagenomics of urban and rural South African gut microbiomes reveal a transitional composition and undescribed taxa. Nat. Commun. 13, 926 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Shad, N. S., Shaikh, N. I. & Cunningham, S. A. Migration spurs changes in the human microbiome: a review. J. Racial Ethn. Health Disparities https://doi.org/10.1007/s40615-023-01813-0 (2023).

  79. Copeland, J. K. et al. The impact of migration on the gut metagenome of South Asian Canadians. Gut Microbes 13, 1–29 (2021).

    Article  PubMed  Google Scholar 

  80. Kaplan, R. C. et al. Gut microbiome composition in the Hispanic Community Health Study/Study of Latinos is shaped by geographic relocation, environmental factors, and obesity. Genome Biol. 20, 219 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Vangay, P. et al. US immigration westernizes the human gut microbiome. Cell 175, 962–972.e10 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Blaser, M. J. The theory of disappearing microbiota and the epidemics of chronic diseases. Nat. Rev. Immunol. 17, 461–463 (2017).

    Article  CAS  PubMed  Google Scholar 

  83. Browne, H. P. et al. Boosting microbiome science worldwide could save millions of children’s lives. Nature 625, 237–240 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wang, H. et al. Global, regional, and national under-5 mortality, adult mortality, age-specific mortality, and life expectancy, 1970–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 390, 1084–1150 (2017).

    Article  Google Scholar 

  85. Brewster, R. et al. Surveying gut microbiome research in Africans: toward improved diversity and representation. Trends Microbiol. 27, 824–835 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Smith, M. I. et al. Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. Science 339, 548–554 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Deehan, E. C. et al. Precision microbiome modulation with discrete dietary fiber structures directs short-chain fatty acid production. Cell Host Microbe 27, 389–404.e6 (2020).

    Article  CAS  PubMed  Google Scholar 

  88. Tebani, A. et al. Integration of molecular profiles in a longitudinal wellness profiling cohort. Nat. Commun. 11, 4487 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Dekkers, K. F. et al. An online atlas of human plasma metabolite signatures of gut microbiome composition. Nat. Commun. 13, 5370 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Gou, W. et al. Westlake Gut Project: a consortium of microbiome epidemiology for the gut microbiome and health research in China. Med. Microecol. 14, 100064 (2022).

    Article  Google Scholar 

  91. Cernava, T. et al. Metadata harmonization—standards are the key for a better usage of omics data for integrative microbiome analysis. Environ. Microbiomes 17, 33 (2022).

    Article  Google Scholar 

  92. Nagata, N. et al. Population-level metagenomics uncovers distinct effects of multiple medications on the human gut microbiome. Gastroenterology 163, 1038–1052 (2022).

    Article  CAS  PubMed  Google Scholar 

  93. Pasolli, E. et al. Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell 176, 649–662.e20 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Allali, I. et al. Human microbiota research in Africa: a systematic review reveals gaps and priorities for future research. Microbiome 9, 241 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Stewart, C. J. et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature 562, 583–588 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Claesson, M. J. et al. Gut microbiota composition correlates with diet and health in the elderly. Nature 488, 178–184 (2012).

    Article  CAS  PubMed  Google Scholar 

  97. Amato, K. R. et al. The human gut microbiome and health inequities. Proc. Natl Acad. Sci. USA 118, e2017947118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Dixon, M., Dunlop, A. L., Corwin, E. J. & Kramer, M. R. Joint effects of individual socioeconomic status and residential neighborhood context on vaginal microbiome composition. Front. Public. Health 11, 1029741 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Bowyer, R. C. E. et al. Socioeconomic status and the gut microbiome: a TwinsUK cohort study. Microorganisms 7, 17 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Kaisanlahti, A. et al. Maternal microbiota communicates with the fetus through microbiota-derived extracellular vesicles. Microbiome 11, 249 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Mueller, N. T., Differding, M. K., Østbye, T., Hoyo, C. & Benjamin-Neelon, S. E. Association of birth mode of delivery with infant faecal microbiota, potential pathobionts, and short chain fatty acids: a longitudinal study over the first year of life. BJOG 128, 1293–1303 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Coker, M. O. et al. Specific class of intrapartum antibiotics relates to maturation of the infant gut microbiota: a prospective cohort study. BJOG 127, 217–227 (2020).

    Article  CAS  PubMed  Google Scholar 

  103. Yang, B. et al. Bifidobacterium and Lactobacillus composition at species level and gut microbiota diversity in infants before 6 weeks. Int. J. Mol. Sci. 20, 3306 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Beller, L. et al. Successional stages in infant gut microbiota maturation. mBio 12, e0185721 (2021).

    Article  PubMed  Google Scholar 

  105. Laursen, M. F. et al. Maternal milk microbiota and oligosaccharides contribute to the infant gut microbiota assembly. ISME Commun. 1, 21 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Duranti, S. et al. Maternal inheritance of bifidobacterial communities and bifidophages in infants through vertical transmission. Microbiome 5, 66 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Feehily, C. et al. Detailed mapping of Bifidobacterium strain transmission from mother to infant via a dual culture-based and metagenomic approach. Nat. Commun. 14, 3015 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. McKeen, S. et al. Adaptation of the infant gut microbiome during the complementary feeding transition. PLoS ONE 17, e0270213 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lim, E. S. et al. Early life dynamics of the human gut virome and bacterial microbiome in infants. Nat. Med. 21, 1228–1234 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Laursen, M. F., Bahl, M. I. & Licht, T. R. Settlers of our inner surface-factors shaping the gut microbiota from birth to toddlerhood. FEMS Microbiol. Rev. 45, fuab001 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Warmink-Perdijk, W. D. B. et al. Lifelines NEXT: as prospective birth cohort adding the next generation to the three-generation Lifelines cohort study. Eur. J. Epidemiol. 35, 157–168 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Korpela, K. et al. Cohort profile: Finnish Health and Early Life Microbiota (HELMi) longitudinal birth cohort. BMJ Open. 9, e028500 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Jeffery, I. B., Lynch, D. B. & O’Toole, P. W. Composition and temporal stability of the gut microbiota in older persons. ISME J. 10, 170–182 (2016).

    Article  CAS  PubMed  Google Scholar 

  114. Wilmanski, T., Gibbons, S. M. & Price, N. D. Healthy aging and the human gut microbiome: why we cannot just turn back the clock. Nat. Aging 2, 869–871 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Si, J. et al. Long-term life history predicts current gut microbiome in a population-based cohort study. Nat. Aging 2, 885–895 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Korpela, K. et al. Gut microbiota develop towards an adult profile in a sex-specific manner during puberty. Sci. Rep. 11, 23297 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. McVey Neufeld, K. A., Luczynski, P., Dinan, T. G. & Cryan, J. F. Reframing the teenage wasteland: adolescent microbiota–gut–brain axis. Can. J. Psychiatry 61, 214–221 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Park, M. G., Cho, S. & Oh, M. M. Menopausal changes in the microbiome—a review focused on the genitourinary microbiome. Diagnostics 13, 1193 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Peters, B. A. et al. Menopause is associated with an altered gut microbiome and estrobolome, with implications for adverse cardiometabolic risk in the hispanic community health study/study of Latinos. mSystems 7, e0027322 (2022).

    Article  PubMed  Google Scholar 

  120. McDonald, D. et al. American Gut: an open platform for citizen science microbiome research. mBio 3, e00031-18 (2018).

    Google Scholar 

  121. McCallum, G. & Tropini, C. The gut microbiota and its biogeography. Nat. Rev. Microbiol. 22, 105–118 (2023).

    Article  PubMed  Google Scholar 

  122. Kennedy, K. M. et al. Questioning the fetal microbiome illustrates pitfalls of low-biomass microbial studies. Nature 613, 639–649 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Hayes, R. B. et al. Association of oral microbiome with risk for incident head and neck squamous cell cancer. JAMA Oncol. 4, 358–365 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Fan, X. et al. Human oral microbiome and prospective risk for pancreatic cancer: a population-based nested case–control study. Gut 67, 120–127 (2018).

    Article  CAS  PubMed  Google Scholar 

  125. McClelland, R. S. et al. Evaluation of the association between the concentrations of key vaginal bacteria and the increased risk of HIV acquisition in African women from five cohorts: a nested case–control study. Lancet Infect. Dis. 18, 554–564 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Jie, Z. et al. A transomic cohort as a reference point for promoting a healthy human gut microbiome. Med. Microecol. 8, 100039 (2021).

    Article  Google Scholar 

  127. Liu, X. et al. Metagenome–genome-wide association studies reveal human genetic impact on the oral microbiome. Cell Discov. 7, 117 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Jie, Z. et al. Life history recorded in the vagino-cervical microbiome along with multi-omes. Genomics Proteom. Bioinforma. 20, 304–321 (2022).

    Article  CAS  Google Scholar 

  129. Kurushima, Y. et al. Host genotype links to salivary and gut microbiota by periodontal status. J. Dent. Res. 102, 146–156 (2023).

    Article  CAS  PubMed  Google Scholar 

  130. Nearing, J. T., DeClercq, V., Van Limbergen, J. & Langille, M. G. I. Assessing the variation within the oral microbiome of healthy adults. mSphere 5, e00451-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Willis, J. R. et al. Citizen-science reveals changes in the oral microbiome in Spain through age and lifestyle factors. NPJ Biofilms Microbiomes 8, 38 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Lebeer, S. et al. A citizen-science-enabled catalogue of the vaginal microbiome and associated factors. Nat. Microbiol. 8, 2183–2195 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Correia, G. D., Marchesi, J. R. & MacIntyre, D. A. Moving beyond DNA: towards functional analysis of the vaginal microbiome by non-sequencing-based methods. Curr. Opin. Microbiol. 73, 102292 (2023).

    Article  CAS  PubMed  Google Scholar 

  134. Byrd, A. L., Belkaid, Y. & Segre, J. A. The human skin microbiome. Nat. Rev. Microbiol. 16, 143–155 (2018).

    Article  CAS  PubMed  Google Scholar 

  135. Jo, S. et al. Oral and gut dysbiosis leads to functional alterations in Parkinson’s disease. NPJ Parkinsons Dis. 8, 87 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. De Filippis, F. et al. Distinct genetic and functional traits of human intestinal Prevotella copri strains are associated with different habitual diets. Cell Host Microbe 25, 444–453.e3 (2019).

    Article  PubMed  Google Scholar 

  137. Valles-Colomer, M. et al. The person-to-person transmission landscape of the gut and oral microbiomes. Nature 614, 125–135 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Zhernakova, D. V. et al. Host genetic regulation of human gut microbial structural variation. Nature 625, 813–821 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Zahavi, L. et al. Bacterial SNPs in the human gut microbiome associate with host BMI. Nat. Med. 29, 2785–2792 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Tedersoo, L., Albertsen, M., Anslan, S. & Callahan, B. Perspectives and benefits of high-throughput long-read sequencing in microbial ecology. Appl. Environ. Microbiol. 87, 1–19 (2021).

    Article  Google Scholar 

  141. Chen, L. et al. The long-term genetic stability and individual specificity of the human gut microbiome. Cell 184, 2302–2315.e12 (2021).

    Article  CAS  PubMed  Google Scholar 

  142. Jovel, J. et al. Characterization of the gut microbiome using 16S or shotgun metagenomics. Front. Microbiol. 7, 459 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Hu, D., Fuller, N. R., Caterson, I. D., Holmes, A. J. & Reeves, P. R. Single-gene long-read sequencing illuminates Escherichia coli strain dynamics in the human intestinal microbiome. Cell Rep. 38, 1102339 (2022).

    Article  Google Scholar 

  144. Lloyd-Price, J. et al. Strains, functions and dynamics in the expanded Human Microbiome Project. Nature 550, 61–66 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Carrow, H. C., Batachari, L. E. & Chu, H. Strain diversity in the microbiome: lessons from Bacteroides fragilis. PLoS Pathog. 16, e1009056 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Magnúsdóttir, S. et al. Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota. Nat. Biotechnol. 35, 81–89 (2017).

    Article  PubMed  Google Scholar 

  147. Gehrig, J. L. et al. Finding the right fit: evaluation of short-read and long-read sequencing approaches to maximize the utility of clinical microbiome data. Microb. Genom. 8, 000794 (2022).

    PubMed  PubMed Central  Google Scholar 

  148. Pascal Andreu, V. et al. gutSMASH predicts specialized primary metabolic pathways from the human gut microbiota. Nat. Biotechnol. 41, 1416–1423 (2023).

    Article  CAS  PubMed  Google Scholar 

  149. Lind, A. L. & Pollard, K. S. Accurate and sensitive detection of microbial eukaryotes from whole metagenome shotgun sequencing. Microbiome 9, 58 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Shkoporov, A. N. et al. The human gut virome is highly diverse, stable, and individual specific. Cell Host Microbe 26, 527–541.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  151. Begum, N. et al. Host–mycobiome metabolic interactions in health and disease. Gut Microbes 14, 2121576 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Usyk, M. et al. Comprehensive evaluation of shotgun metagenomics, amplicon sequencing, and harmonization of these platforms for epidemiological studies. Cell Rep. Methods 3, 100391 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Pollak, S. Plant DNA in feces as a nutritional crystal ball. Proc. Natl Acad. Sci. USA 120, e2309172120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Quinn, R. A. et al. Global chemical effects of the microbiome include new bile-acid conjugations. Nature 579, 123–129 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Guo, C. J. et al. Discovery of reactive microbiota-derived metabolites that inhibit host proteases. Cell 168, 517–526.e18 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Hajjar, G. et al. Scaling-up metabolomics: current state and perspectives. Trends Anal. Chem. 167, 117225 (2023).

    Article  CAS  Google Scholar 

  157. Wang, K. et al. The gut microbiome modifies the associations of short- and long-term physical activity with body weight changes. Microbiome 11, 121 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Mehta, R. S. et al. Stability of the human faecal microbiome in a cohort of adult men. Nat. Microbiol. 3, 347–355 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Yap, M. et al. Evaluation of methods for the reduction of contaminating host reads when performing shotgun metagenomic sequencing of the milk microbiome. Sci. Rep. 10, 21665 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Spreckels, J. E. et al. Analysis of microbial composition and sharing in low-biomass human milk samples: a comparison of DNA isolation and sequencing techniques. ISME Commun. 3, 116 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Rao, C. et al. Multi-kingdom ecological drivers of microbiota assembly in preterm infants. Nature 591, 633–638 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Galazzo, G. et al. How to count our microbes? The effect of different quantitative microbiome profiling approaches. Front. Cell. Infect. Microbiol. 10, 403 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Tito, R. Y. et al. Microbiome confounders and quantitative profiling challenge predicted microbial targets in colorectal cancer development. Nat. Med. 30, 1339–1348 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Chadwick, R. & Zwart, H. From ELSA to responsible research and promisomics. Life Sci. Soc. Policy 9, 3 (2013).

    Article  PubMed Central  Google Scholar 

  165. Nishijima, S. et al. Extensive gut virome variation and its associations with host and environmental factors in a population-level cohort. Nat. Commun. 13, 5252 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Brandwein, M., Katz, I., Katz, A. & Kohen, R. Beyond the gut: skin microbiome compositional changes are associated with BMI. Hum. Microb. J. 13, 100063 (2019).

    Article  Google Scholar 

  167. Hughes, D. A. et al. Genome-wide associations of human gut microbiome variation and implications for causal inference analyses. Nat. Microbiol. 5, 1079–1087 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Koponen, K. K. et al. Associations of healthy food choices with gut microbiota profiles. Am. J. Clin. Nutr. 114, 605–616 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Palmu, J. et al. Association between the gut microbiota and blood pressure in a population cohort of 6953 individuals. J. Am. Heart Assoc. 9, e016641 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Palmu, J. et al. Gut microbiome and atrial fibrillation—results from a large population-based study. EBioMedicine 91, 104583 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Peters, B. A. et al. Association of the gut microbiome with kidney function and damage in the Hispanic Community Health Study/Study of Latinos (HCHS/SOL). Gut Microbes 15, 2186685 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Nash, A. K. et al. The gut mycobiome of the Human Microbiome Project healthy cohort. Microbiome 5, 153 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Nogal, A. et al. Genetic and gut microbiome determinants of SCFA circulating and fecal levels, postprandial responses and links to chronic and acute inflammation. Gut Microbes 15, 2240050 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Armstrong, A. J. S., Parmar, V. & Blaser, M. J. Assessing saliva microbiome collection and processing methods. NPJ Biofilms Microbiomes 7, 81 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Robinson, C. K., Brotman, R. M. & Ravel, J. Intricacies of assessing the human microbiome in epidemiologic studies. Ann. Epidemiol. 26, 311–321 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Hill, C. J. et al. Effect of room temperature transport vials on DNA quality and phylogenetic composition of faecal microbiota of elderly adults and infants. Microbiome 4, 19 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Tang, Q. et al. Current sampling methods for gut microbiota: a call for more precise devices. Front. Cell Infect. Microbiol. 10, 151 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Lourenço, M. et al. The spatial heterogeneity of the gut limits predation and fosters coexistence of bacteria and bacteriophages. Cell Host Microbe 28, 390–401.e5 (2020).

    Article  PubMed  Google Scholar 

  179. Badawy, R. et al. Metadata concepts for advancing the use of digital health technologies in clinical research. Digit. Biomark. 3, 116–132 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Berry, S. E. et al. Human postprandial responses to food and potential for precision nutrition. Nat. Med. 26, 964–973 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Koonin, E. V., Dolja, V. V. & Krupovic, M. The healthy human virome: from virus–host symbiosis to disease. Curr. Opin. Virol. 47, 86–94 (2021).

    Article  CAS  PubMed  Google Scholar 

  182. Kumata, R., Ito, J., Takahashi, K., Suzuki, T. & Sato, K. A tissue level atlas of the healthy human virome. BMC Biol. 18, 55 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Dutilh, B. E. et al. A highly abundant bacteriophage discovered in the unknown sequences of human faecal metagenomes. Nat. Commun. 5, 4498 (2014).

    Article  CAS  PubMed  Google Scholar 

  184. Yutin, N. et al. Analysis of metagenome-assembled viral genomes from the human gut reveals diverse putative CrAss-like phages with unique genomic features. Nat. Commun. 12, 1044 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Edwards, R. A. et al. Global phylogeography and ancient evolution of the widespread human gut virus crAssphage. Nat. Microbiol. 4, 1727–1736 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Clooney, A. G. et al. Whole-virome analysis sheds light on viral dark matter in inflammatory bowel disease. Cell Host Microbe 26, 764–778.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  187. Ma, Y., You, X., Mai, G., Tokuyasu, T. & Liu, C. A human gut phage catalog correlates the gut phageome with type 2 diabetes. Microbiome 6, 24 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Roux, S., Hallam, S. J., Woyke, T. & Sullivan, M. B. Viral dark matter and virus–host interactions resolved from publicly available microbial genomes. eLife 4, e08490 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Beller, L. & Matthijnssens, J. What is (not) known about the dynamics of the human gut virome in health and disease. Curr. Opin. Virol. 37, 52–57 (2019).

    Article  PubMed  Google Scholar 

  190. Chibani, C. M. et al. A catalogue of 1,167 genomes from the human gut archaeome. Nat. Microbiol. 7, 48–61 (2022).

    Article  CAS  PubMed  Google Scholar 

  191. Koskinen, K. et al. First insights into the diverse human archaeome: specific detection of archaea in the gastrointestinal tract, lung, and nose and on skin. mBio 8, e00824–17 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Beghini, F. et al. Large-scale comparative metagenomics of Blastocystis, a common member of the human gut microbiome. ISME J. 11, 2848–2863 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Scanlan, P. D. et al. The microbial eukaryote Blastocystis is a prevalent and diverse member of the healthy human gut microbiota. FEMS Microbiol. Ecol. 90, 326–330 (2014).

    Article  CAS  PubMed  Google Scholar 

  194. Marzano, V. et al. “Omic” investigations of protozoa and worms for a deeper understanding of the human gut “parasitome”. PLoS Negl. Trop. Dis. 11, e0005916 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank all those who helped facilitate the Human Microbiome Action (HMA) workshop on 6 October 2022, including workshop attendees, postdoctoral scribes, audiovisual experts and staff of the River Lee Hotel in Cork. This publication has been supported by the project entitled International Human Microbiome Coordination and Support Action (IHMCSA), which receives funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 964590.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

R.J., K.B., A.L. and R.P.R. wrote the article. All authors contributed substantially to discussion of the content, and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to R. Paul Ross.

Ethics declarations

Competing interests

M.J.C. and P.D.C. are co-founders of SeqBiome Ltd. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Microbiology thanks Eugene B. Chang, who co-reviewed with Orlando DeLeon, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joos, R., Boucher, K., Lavelle, A. et al. Examining the healthy human microbiome concept. Nat Rev Microbiol 23, 192–205 (2025). https://doi.org/10.1038/s41579-024-01107-0

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41579-024-01107-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing