Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The consequences of SARS-CoV-2 within-host persistence

Abstract

SARS-CoV-2 causes an acute respiratory tract infection that resolves in most people in less than a month. Yet some people with severely weakened immune systems fail to clear the virus, leading to persistent infections with high viral titres in the respiratory tract. In a subset of cases, persistent SARS-CoV-2 replication results in an accelerated accumulation of adaptive mutations that confer escape from neutralizing antibodies and enhance cellular infection. This may lead to the evolution of extensively mutated SARS-CoV-2 variants and introduce an element of chance into the timing of variant evolution, as variant formation may depend on evolution in a single person. Whether long COVID is also caused by persistence of replicating SARS-CoV-2 is controversial. One line of evidence is detection of SARS-CoV-2 RNA and proteins in different body compartments long after SARS-CoV-2 infection has cleared from the upper respiratory tract. However, thus far, no replication competent virus has been cultured from individuals with long COVID who are immunocompetent. In this Review, we consider mechanisms of viral persistence, intra-host evolution in persistent infections, the connection of persistent infections with SARS-CoV-2 variants and the possible role of SARS-CoV-2 persistence in long COVID. Understanding persistent infections may therefore resolve much of what is still unclear in COVID-19 pathophysiology, with possible implications for other emerging viruses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms of SARS-CoV-2 persistence.
Fig. 2: Evolution in persistent infection avoids the transmission bottleneck.
Fig. 3: Convergence of selective pressure between viruses evolved in persistent infections and SARS-CoV-2 variants.
Fig. 4: Regions where extensively mutated variants were detected.

Similar content being viewed by others

References

  1. World Health Organization. WHO COVID19 dashboard. WHO https://data.who.int/dashboards/covid19/ (2024).

  2. Ao, D., He, X., Liu, J. & Xu, L. Strategies for the development and approval of COVID-19 vaccines and therapeutics in the post-pandemic period. Signal. Transduct. Target. Ther. 8, 466 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Graham, B. S. Rapid COVID-19 vaccine development. Science 368, 945–946 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Hadfield J. et al. Genomic epidemiology of SARS-CoV-2 with subsampling focused globally since pandemic start. Nextstrain https://nextstrain.org/ncov/gisaid/global/all-time (2024).

  5. Sigal, A., Milo, R. & Jassat, W. Estimating disease severity of Omicron and Delta SARS-CoV-2 infections. Nat. Rev. Immunol. 22, 267–269 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sigal, A. Milder disease with Omicron: is it the virus or the pre-existing immunity? Nat. Rev. Immunol. 22, 69–71 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Telenti, A. et al. After the pandemic: perspectives on the future trajectory of COVID-19. Nature 596, 495–504 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. UKHSA. UKHSA dashboard. GOV.UK https://ukhsa-dashboard.data.gov.uk/ (2024).

  9. World Health Organization. COVID-19 epidemiological update – 17 June 2024. WHO https://www.who.int/publications/m/item/covid-19-epidemiological-update-edition-168 (2024).

  10. Ke, R. et al. Daily longitudinal sampling of SARS-CoV-2 infection reveals substantial heterogeneity in infectiousness. Nat. Microbiol. 7, 640–652 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wölfel, R. et al. Virological assessment of hospitalized patients with COVID-2019. Nature 581, 465–469 (2020).

    Article  PubMed  Google Scholar 

  12. Puhach, O., Meyer, B. & Eckerle, I. SARS-CoV-2 viral load and shedding kinetics. Nat. Rev. Microbiol. 21, 147–161 (2023).

    CAS  PubMed  Google Scholar 

  13. Karim, F. et al. Clearance of persistent SARS-CoV-2 associates with increased neutralizing antibodies in advanced HIV disease post-ART initiation. Nat. Commun. 15, 2360 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Machkovech, H. M. et al. Persistent SARS-CoV-2 infection: significance and implications. Lancet Infect. Dis. 24, e453–e462 (2024).

    Article  CAS  PubMed  Google Scholar 

  15. Al-Aly, Z. et al. Long COVID science, research and policy. Nat. Med. 30, 2148–2164 (2024).

    Article  CAS  PubMed  Google Scholar 

  16. Cai, M., Xie, Y., Topol, E. J. & Al-Aly, Z. Three-year outcomes of post-acute sequelae of COVID-19. Nat. Med. 30, 1564–1573 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cele, S. et al. SARS-CoV-2 prolonged infection during advanced HIV disease evolves extensive immune escape. Cell Host Microbe 30, 154–162.e5 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Van Cleemput, J. et al. Organ-specific genome diversity of replication-competent SARS-CoV-2. Nat. Commun. 12, 6612 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Nkosi, T. et al. Unsuppressed HIV infection impairs T cell responses to SARS-CoV-2 infection and abrogates T cell cross-recognition. eLife 11, e78374 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Raglow, Z. et al. SARS-CoV-2 shedding and evolution in patients who were immunocompromised during the Omicron period: a multicentre, prospective analysis. Lancet Microbe 5, e235–e246 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lee, D. S. W., Rojas, O. L. & Gommerman, J. L. B cell depletion therapies in autoimmune disease: advances and mechanistic insights. Nat. Rev. Drug. Discov. 20, 179–199 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Natarajan, A. et al. Gastrointestinal symptoms and fecal shedding of SARS-CoV-2 RNA suggest prolonged gastrointestinal infection. Med 3, 371–387.e9 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. Gaebler, C. et al. Evolution of antibody immunity to SARS-CoV-2. Nature 591, 639–644 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Proal, A. D. et al. SARS-CoV-2 reservoir in post-acute sequelae of COVID-19 (PASC). Nat. Immunol. 24, 1616–1627 (2023).

    Article  CAS  PubMed  Google Scholar 

  25. van Kampen, J. J. A. et al. Duration and key determinants of infectious virus shedding in hospitalized patients with coronavirus disease-2019 (COVID-19). Nat. Commun. 12, 267 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zollner, A. et al. Postacute COVID-19 is characterized by gut viral antigen persistence in inflammatory bowel diseases. Gastroenterology 163, 495–506.e8 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Avanzato, V. A. et al. Case study: prolonged infectious SARS-CoV-2 shedding from an asymptomatic immunocompromised individual with cancer. Cell 183, 1901–1912.e9 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Baang, J. H. et al. Prolonged severe acute respiratory syndrome coronavirus 2 replication in an immunocompromised patient. J. Infect. Dis. 223, 23–27 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. Bazykin, G. A. et al. Emergence of Y453F and Δ69–70HV mutations in a lymphoma patient with long-term COVID-19. Virological https://virological.org/t/emergence-of-y453f-and-69-70hv-mutations-in-a-lymphoma-patient-with-long-term-covid-19/580 (2021).

  30. Borges, V. et al. Long-term evolution of SARS-CoV-2 in an immunocompromised patient with non-hodgkin Lymphoma. mSphere 6, e0024421 (2021).

    Article  PubMed  Google Scholar 

  31. Chaguza, C. et al. Accelerated SARS-CoV-2 intrahost evolution leading to distinct genotypes during chronic infection. Cell Rep. Med. 4, 100943 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen, L. et al. Emergence of multiple SARS-CoV-2 antibody escape variants in an immunocompromised host undergoing convalescent plasma treatment. mSphere 6, e0048021 (2021).

    Article  PubMed  Google Scholar 

  33. Choi, B. et al. Persistence and evolution of SARS-CoV-2 in an immunocompromised host. N. Engl. J. Med. 383, 2291–2293 (2020).

    Article  PubMed  Google Scholar 

  34. D’Abramo, A. et al. B-cell-depleted patients with persistent SARS-CoV-2 infection: combination therapy or monotherapy? A real-world experience. Front. Med. 11, 1344267 (2024).

    Article  Google Scholar 

  35. Gonzalez-Reiche, A. S. et al. Sequential intrahost evolution and onward transmission of SARS-CoV-2 variants. Nat. Commun. 14, 3235 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kemp, S. A. et al. SARS-CoV-2 evolution during treatment of chronic infection. Nature 592, 277–282 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lustig, G. et al. SARS-CoV-2 infection in immunosuppression evolves sub-lineages which independently accumulate neutralization escape mutations. Virus Evol. 10, vead075 (2024).

    Article  PubMed  Google Scholar 

  38. Maponga, T. G. et al. Persistent severe acute respiratory syndrome coronavirus 2 infection with accumulation of mutations in a patient with poorly controlled human immunodeficiency virus infection. Clin. Infect. Dis. 76, e522–e525 (2023).

    Article  CAS  PubMed  Google Scholar 

  39. Maruki, T. et al. Successful management of persistent COVID-19 using combination antiviral therapy (nirmatrelvir/ritonavir and remdesivir) and intravenous immunoglobulin transfusion in an immunocompromised host who had received CD20 depleting therapy for follicular lymphoma. J. Infect. Chemother. 30, 793–795 (2024).

    Article  CAS  PubMed  Google Scholar 

  40. Meiring, S. et al. Prolonged shedding of SARS-CoV-2 at high viral loads amongst hospitalised immunocompromised persons living with HIV, South Africa. Clin. Infect. Dis. 75, e144–e156 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ogimi, C. et al. Prolonged shedding of human coronavirus in hematopoietic cell transplant recipients: risk factors and viral genome evolution. J. Infect. Dis. 216, 203–209 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tarhini, H. et al. Long-term severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infectiousness among three immunocompromised patients: from prolonged viral shedding to SARS-CoV-2 superinfection. J. Infect. Dis. 223, 1522–1527 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. Khatamzas, E. et al. Accumulation of mutations in antibody and CD8 T cell epitopes in a B cell depleted lymphoma patient with chronic SARS-CoV-2 infection. Nat. Commun. 13, 5586 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Stanevich, O. V. et al. SARS-CoV-2 escape from cytotoxic T cells during long-term COVID-19. Nat. Commun. 14, 149 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Antinori, A. & Bausch-Jurken, M. The burden of COVID-19 in the immunocompromised patient: implications for vaccination and needs for the future. J. Infect. Dis. 228, S4–S12 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Antinori, A. et al. Humoral and cellular immune response elicited by mRNA vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in people living with human immunodeficiency virus receiving antiretroviral therapy based on current CD4 T-lymphocyte count. Clin. Infect. Dis. 75, e552–e563 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tuano, K. S., Seth, N. & Chinen, J. Secondary immunodeficiencies: an overview. Ann. Allergy Asthma Immunol. 127, 617–626 (2021).

    Article  CAS  PubMed  Google Scholar 

  48. Rajasingham, R. et al. The global burden of HIV-associated cryptococcal infection in adults in 2020: a modelling analysis. Lancet Infect. Dis. 22, 1748–1755 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Martinson, M. L. & Lapham, J. Prevalence of immunosuppression among US adults. JAMA 331, 880–882 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Evans, R. A. et al. Impact of COVID-19 on immunocompromised populations during the Omicron era: insights from the observational population-based INFORM study. Lancet Reg. Health Eur. 35, 100747 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Li, Y. et al. SARS-CoV-2 viral clearance and evolution varies by type and severity of immunodeficiency. Sci. Transl. Med. 16, eadk1599 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tepasse, P. R. et al. Persisting SARS-CoV-2 viraemia after rituximab therapy: two cases with fatal outcome and a review of the literature. Br. J. Haematol. 190, 185–188 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. D’Abramo, A. et al. Prolonged and severe SARS-CoV-2 infection in patients under B-cell-depleting drug successfully treated: a tailored approach. Int. J. Infect. Dis. 107, 247–250 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Faxén, L. & Edvinsson, M. Persistent SARS-CoV-2 infection in patients with B-cell deficiency: a case series of successful antiviral treatment of four patients. Ups J. Med. Sci. 128, https://doi.org/10.48101/ujms.v128.9807 (2023).

  55. Hueso, T. et al. Convalescent plasma therapy for B-cell-depleted patients with protracted COVID-19. Blood 136, 2290–2295 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rabascall, C. X., Lou, B. X., Navetta-Modrov, B. & Hahn, S. S. Effective use of monoclonal antibodies for treatment of persistent COVID-19 infection in a patient on rituximab. BMJ Case Rep. 14, e243469 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Totschnig, D., Doberer, D., Haberl, R., Wenisch, C. & Valipour, A. Treatment of persistent COVID-19 in two B-cell-depleted patients with the monoclonal antibody sotrovimab. IDCases 29, e01528 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. HIV and AIDS Estimates South Africa 2021. UNAIDS https://www.unaids.org/en/regionscountries/countries/southafrica (2022).

  59. World Health Organization. People living with HIV globally in 2023. WHO https://www.who.int/data/gho/data/themes/hiv-aids (2023).

  60. Chihana, M. L. et al. Distribution of advanced HIV disease from three high HIV prevalence settings in sub-Saharan Africa: a secondary analysis data from three population-based cross-sectional surveys in Eshowe (South Africa), Ndhiwa (Kenya) and Chiradzulu (Malawi). Glob. Health Action. 12, 1679472 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Carmona, S. et al. Persistent high burden of advanced HIV disease among patients seeking care in South Africa’s National HIV program: data from a nationwide laboratory cohort. Clin. Infect. Dis. 66, S111–S117 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Stelzle, D. et al. High prevalence of advanced HIV disease in sub-Saharan Africa: an analysis of 11 household surveys. Top. Antivir. Med. 32, 196 (2024).

    Google Scholar 

  63. Maloney, D. G. Anti-CD20 antibody therapy for B-cell lymphomas. N. Engl. J. Med. 366, 2008–2016 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. de Sèze, J. et al. Anti-CD20 therapies in multiple sclerosis: from pathology to the clinic. Front. Immunol. 14, 1004795 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ly, S., Nedosekin, D. & Wong, H. K. Review of an anti-CD20 monoclonal antibody for the treatment of autoimmune diseases of the skin. Am. J. Clin. Dermatol. 24, 247–273 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Boye, J., Elter, T. & Engert, A. An overview of the current clinical use of the anti-CD20 monoclonal antibody rituximab. Ann. Oncol. 14, 520–535 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Boross, P. & Leusen, J. H. Mechanisms of action of CD20 antibodies. Am. J. Cancer Res. 2, 676–690 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Tomasicchio, M. et al. SARS-CoV-2 viral replication persists in the human lung for several weeks after symptom onset. Am. J. Respir. Crit. Care Med. 209, 840–851 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Stein, S. R. et al. SARS-CoV-2 infection and persistence in the human body and brain at autopsy. Nature 612, 758–763 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rutkai, I. et al. Neuropathology and virus in brain of SARS-CoV-2 infected non-human primates. Nat. Commun. 13, 1745 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Heinrich, F., Mertz, K. D., Glatzel, M., Beer, M. & Krasemann, S. Using autopsies to dissect COVID-19 pathogenesis. Nat. Microbiol. 8, 1986–1994 (2023).

    Article  CAS  PubMed  Google Scholar 

  72. Schimmel, L. et al. Endothelial cells are not productively infected by SARS-CoV-2. Clin. Transl. Immunol. 10, e1350 (2021).

    Article  CAS  Google Scholar 

  73. Zuo, W. et al. The persistence of SARS-CoV-2 in tissues and its association with long COVID symptoms: a cross-sectional cohort study in China. Lancet Infect. Dis. 24, 845–855 (2024).

    Article  CAS  PubMed  Google Scholar 

  74. Peluso, M. J. et al. Tissue-based T cell activation and viral RNA persist for up to 2 years after SARS-CoV-2 infection. Sci. Transl. Med. 16, eadk3295 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Harrison, A. G., Lin, T. & Wang, P. Mechanisms of SARS-CoV-2 transmission and pathogenesis. Trends Immunol. 41, 1100–1115 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Gregory, D. A. et al. Genetic diversity and evolutionary convergence of cryptic SARS-CoV-2 lineages detected via wastewater sequencing. PLoS Pathog. 18, e1010636 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Shafer, M. M. et al. Tracing the origin of SARS-CoV-2 Omicron-like spike sequences detected in an urban sewershed: a targeted, longitudinal surveillance study of a cryptic wastewater lineage. Lancet Microbe 5, e335–e344 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Smyth, D. S. et al. Tracking cryptic SARS-CoV-2 lineages detected in NYC wastewater. Nat. Commun. 13, 635 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Xu, Q. et al. Adaptive immune responses to SARS-CoV-2 persist in the pharyngeal lymphoid tissue of children. Nat. Immunol. 24, 186–199 (2023).

    Article  CAS  PubMed  Google Scholar 

  80. Choutka, J., Jansari, V., Hornig, M. & Iwasaki, A. Unexplained post-acute infection syndromes. Nat. Med. 28, 911–923 (2022).

    Article  CAS  PubMed  Google Scholar 

  81. Quinn, K. L. et al. Comparison of medical and mental health sequelae following hospitalization for COVID-19, influenza, and sepsis. JAMA Intern. Med. 183, 806–817 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Hensley, M. K. et al. Intractable COVID-19 and prolonged SARS-CoV-2 replication in a CAR-T-cell therapy recipient: a case study. Clin. Infect. Dis. 73, e815–e821 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Truong, T. T. et al. Increased viral variants in children and young adults with impaired humoral immunity and persistent SARS-CoV-2 infection: a consecutive case series. eBioMedicine 67, 103355 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sepulcri, C. et al. The longest persistence of viable SARS-CoV-2 with recurrence of viremia and relapsing symptomatic COVID-19 in an immunocompromised patient — a case study. Open. Forum Infect. Dis. 8, ofab217 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Gandhi, R. T., Castle, A. C., de Oliveira, T. & Lessells, R. J. Case 40-2023: a 70-year-old woman with cough and shortness of breath. N. Engl. J. Med. 389, 2468–2476 (2023).

    Article  PubMed  Google Scholar 

  86. Khosravi, D. et al. Severe acute respiratory syndrome coronavirus 2 evolution and escape from combination monoclonal antibody treatment in a person with HIV. Open. Forum Infect. Dis. 10, ofad054 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Peters, J. L. et al. Prolonged severe acute respiratory syndrome coronavirus 2 Delta variant shedding in a patient with AIDS: case report and review of the literature. Open. Forum Infect. Dis. 9, ofac479 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Riddell, A. C. et al. Generation of novel severe acute respiratory syndrome coronavirus 2 variants on the B.1.1.7 lineage in 3 patients with advanced human immunodeficiency virus-1 disease. Clin. Infect. Dis. 75, 2016–2018 (2022).

    Article  CAS  PubMed  Google Scholar 

  89. Choudhary, M. C., Crain, C. R., Qiu, X., Hanage, W. & Li, J. Z. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequence characteristics of coronavirus disease 2019 (COVID-19) persistence and reinfection. Clin. Infect. Dis. 74, 237–245 (2021).

    Article  PubMed Central  Google Scholar 

  90. Turbett, S. E. et al. Distinguishing SARS-CoV-2 persistence and reinfection: a retrospective cohort study. Clin. Infect. Dis. 76, 850–860 (2022).

    Article  PubMed Central  Google Scholar 

  91. Karim, F. et al. HIV status alters disease severity and immune cell responses in Beta variant SARS-CoV-2 infection wave. eLife 10, e67397 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Weigang, S. et al. Within-host evolution of SARS-CoV-2 in an immunosuppressed COVID-19 patient as a source of immune escape variants. Nat. Commun. 12, 6405 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ko, S. H. et al. Rapid intra-host diversification and evolution of SARS-CoV-2 in advanced HIV infection. Nat. Commun. 15, 7240 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lee, C. Y. et al. Prolonged SARS-CoV-2 infection in patients with lymphoid malignancies. Cancer Discov. 12, 62–73 (2022).

    Article  CAS  PubMed  Google Scholar 

  95. Ghafari, M. et al. Prevalence of persistent SARS-CoV-2 in a large community surveillance study. Nature 626, 1094–1101 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Harari, S., Miller, D., Fleishon, S., Burstein, D. & Stern, A. Using big sequencing data to identify chronic SARS-coronavirus-2 infections. Nat. Commun. 15, 648 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Conway, M. J. et al. Chronic shedding of a SARS-CoV-2 Alpha variant in wastewater. BMC Genomics 25, 59 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lythgoe, K. A. et al. SARS-CoV-2 within-host diversity and transmission. Science 372, eabg0821 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Bendall, E. E. et al. Rapid transmission and tight bottlenecks constrain the evolution of highly transmissible SARS-CoV-2 variants. Nat. Commun. 14, 272 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sinclair, P., Zhao, L., Beggs, C. B. & Illingworth, C. J. R. The airborne transmission of viruses causes tight transmission bottlenecks. Nat. Commun. 15, 3540 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Braun, K. M. et al. Acute SARS-CoV-2 infections harbor limited within-host diversity and transmit via tight transmission bottlenecks. PLoS Pathog. 17, e1009849 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Moyano, A., Lustig, G., Rodel, H. E., Antal, T. & Sigal, A. Interference with HIV infection of the first cell is essential for viral clearance at sub-optimal levels of drug inhibition. PLoS Comput. Biol. 16, e1007482 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Neher, R. A. Contributions of adaptation and purifying selection to SARS-CoV-2 evolution. Virus Evol. 8, veac113 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Översti, S., Gaul, E., Jensen, B.-E. O. & Kühnert, D. Phylogenetic meta-analysis of chronic SARS-CoV-2 infections in immunocompromised patients shows no evidence of elevated evolutionary rates. Preprint at bioRxiv https://doi.org/10.1101/2023.11.01.565087 (2023).

  105. Morris, D. H. et al. Asynchrony between virus diversity and antibody selection limits influenza virus evolution. eLife 9, e62105 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Carabelli, A. M. et al. SARS-CoV-2 variant biology: immune escape, transmission and fitness. Nat. Rev. Microbiol. 21, 162–177 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Zhou, J. et al. Mutations that adapt SARS-CoV-2 to mink or ferret do not increase fitness in the human airway. Cell Rep. 38, 110344 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Theys, K. et al. The impact of HIV-1 within-host evolution on transmission dynamics. Curr. Opin. Virol. 28, 92–101 (2018).

    Article  PubMed  Google Scholar 

  109. Lythgoe, K. A., Gardner, A., Pybus, O. G. & Grove, J. Short-sighted virus evolution and a germline hypothesis for chronic viral infections. Trends Microbiol. 25, 336–348 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Reuschl, A. K. et al. Evolution of enhanced innate immune suppression by SARS-CoV-2 Omicron subvariants. Nat. Microbiol. 9, 451–463 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Thorne, L. G. et al. Evolution of enhanced innate immune evasion by SARS-CoV-2. Nature 602, 487–495 (2022).

    Article  CAS  PubMed  Google Scholar 

  112. Buchrieser, J. et al. Syncytia formation by SARS-CoV-2-infected cells. EMBO J. 39, e106267 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Rajah, M. M. et al. SARS-CoV-2 Alpha, Beta, and Delta variants display enhanced spike-mediated syncytia formation. EMBO J. 40, e108944 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Jaumdally, S. et al. Frequency, kinetics and determinants of viable SARS-CoV-2 in bioaerosols from ambulatory COVID-19 patients infected with the Beta, Delta or Omicron variants. Nat. Commun. 15, 2003 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Earnest, R. et al. Comparative transmissibility of SARS-CoV-2 variants Delta and Alpha in New England, USA. Cell Rep. Med. 3, 100583 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Hart, W. S. et al. Generation time of the Alpha and Delta SARS-CoV-2 variants: an epidemiological analysis. Lancet Infect. Dis. 22, 603–610 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lyngse, F. P. et al. Increased transmissibility of SARS-CoV-2 lineage B.1.1.7 by age and viral load. Nat. Commun. 12, 7251 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Mlcochova, P. et al. SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion. Nature 599, 114–119 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Cele, S. et al. Omicron extensively but incompletely escapes Pfizer BNT162b2 neutralization. Nature 602, 654–656 (2022).

    Article  CAS  PubMed  Google Scholar 

  120. Zhou, D. et al. Evidence of escape of SARS-CoV-2 variant B.1.351 from natural and vaccine-induced sera. Cell 184, 2348–2361.e6 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Dejnirattisai, W. et al. SARS-CoV-2 Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responses. Cell 185, 467–484.e15 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Hachmann, N. P. et al. Neutralization escape by SARS-CoV-2 Omicron subvariants BA.2.12.1, BA.4, and BA.5. N. Engl. J. Med. 387, 86–88 (2022).

    Article  PubMed  Google Scholar 

  123. Khan, K. et al. Omicron infection enhances Delta antibody immunity in vaccinated persons. Nature 607, 356–359 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Khan, K. et al. Omicron BA.4/BA.5 escape neutralizing immunity elicited by BA.1 infection. Nat. Commun. 13, 4686 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Madhi, S. A. et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 in people living with and without HIV in South Africa: an interim analysis of a randomised, double-blind, placebo-controlled, phase 1B/2A trial. Lancet HIV 8, e568–e580 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Cao, Y. et al. Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature 602, 657–663 (2022).

    Article  CAS  PubMed  Google Scholar 

  127. Wang, P. et al. Increased resistance of SARS-CoV-2 variant P. 1 to antibody neutralization. Cell Host Microbe 29, 747–751.e4 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Hoffmann, M. et al. SARS-CoV-2 variants B. 1.351 and P. 1 escape from neutralizing antibodies. Cell 184, 2384–2393.e12 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Goga, A. et al. Breakthrough SARS-CoV-2 infections during periods of Delta and Omicron predominance, South Africa. Lancet 400, 269–271 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Greaney, A. J. et al. A SARS-CoV-2 variant elicits an antibody response with a shifted immunodominance hierarchy. PLoS Pathog. 18, e1010248 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Planas, D. et al. Sensitivity of infectious SARS-CoV-2 B.1.1.7 and B.1.351 variants to neutralizing antibodies. Nat. Med. 27, 917–924 (2021).

    Article  CAS  PubMed  Google Scholar 

  132. Tan, C. W. et al. SARS-CoV-2 Omicron variant emerged under immune selection. Nat. Microbiol. 7, 1756–1761 (2022).

    Article  CAS  PubMed  Google Scholar 

  133. Hill, V. et al. The origins and molecular evolution of SARS-CoV-2 lineage B.1.1.7 in the UK. Virus Evol. 8, veac080 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Rambaut, A. et al. Preliminary genomic characterisation of an emergent SARS-CoV-2 lineage in the UK defined by a novel set of spike mutations. Virological https://virological.org/t/preliminary-genomic-characterisation-of-an-emergent-sars-cov-2-lineage-in-the-uk-defined-by-a-novel-set-of-spike-mutations/563 (2020).

  135. Liu, Y. et al. The N501Y spike substitution enhances SARS-CoV-2 infection and transmission. Nature 602, 294–299 (2022).

    Article  CAS  PubMed  Google Scholar 

  136. Wong, L.-Y. R. et al. Eicosanoid signalling blockade protects middle-aged mice from severe COVID-19. Nature 605, 146–151 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Meng, B. et al. Recurrent emergence of SARS-CoV-2 spike deletion H69/V70 and its role in the Alpha variant B.1.1.7. Cell Rep. 35, 109292 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Bills, C. J. et al. Mutations in SARS-CoV-2 variant nsp6 enhance type-I interferon antagonism. Emerg. Microbes Infect. 12, 2209208 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Tegally, H. et al. Detection of a SARS-CoV-2 variant of concern in South Africa. Nature 592, 438–443 (2021).

    Article  CAS  PubMed  Google Scholar 

  140. Cele, S. et al. Escape of SARS-CoV-2 501Y.V2 from neutralization by convalescent plasma. Nature 593, 142–146 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Escalera, A. et al. Mutations in SARS-CoV-2 variants of concern link to increased spike cleavage and virus transmission. Cell Host Microbe 30, 373–387.e7 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Wibmer, C. K. et al. SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma. Nat. Med. 27, 622–625 (2021).

    Article  CAS  PubMed  Google Scholar 

  143. Jangra, S. et al. SARS-CoV-2 spike E484K mutation reduces antibody neutralisation. Lancet Microbe 2, e283–e284 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Wang, Z. et al. mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants. Nature 592, 616–622 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Harvey, W. T. et al. SARS-CoV-2 variants, spike mutations and immune escape. Nat. Rev. Microbiol. 19, 409–424 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kleynhans, J. et al. SARS-CoV-2 seroprevalence after third wave of infections, South Africa. Emerg. Infect. Dis. 28, 1055–1058 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Sun, K. et al. Rapidly shifting immunologic landscape and severity of SARS-CoV-2 in the Omicron era in South Africa. Nat. Commun. 14, 246 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Lyngse, F. P. et al. Household transmission of the SARS-CoV-2 Omicron variant in Denmark. Nat. Commun. 13, 5573 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Viana, R. et al. Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in Southern Africa. Nature 603, 679–686 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Dejnirattisai, W. et al. Reduced neutralisation of SARS-CoV-2 Omicron B.1.1.529 variant by post-immunisation serum. Lancet 399, 234–236 (2022).

    Article  CAS  PubMed  Google Scholar 

  151. Garcia-Beltran, W. F. et al. mRNA-based COVID-19 vaccine boosters induce neutralizing immunity against SARS-CoV-2 Omicron variant. Cell 185, 457–466.e4 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Servellita, V. et al. Neutralizing immunity in vaccine breakthrough infections from the SARS-CoV-2 Omicron and Delta variants. Cell 185, 1539–1548.e5 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. VanBlargan, L. A. et al. An infectious SARS-CoV-2 B.1.1.529 Omicron virus escapes neutralization by therapeutic monoclonal antibodies. Nat. Med. 28, 490–495 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Riou, C. et al. Safety and immunogenicity of booster vaccination and fractional dosing with Ad26.COV2.S or BNT162b2 in Ad26.COV2.S-vaccinated participants. PLoS Glob. Public. Health 4, e0002703 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Kuhlmann, C. et al. Breakthrough infections with SARS-CoV-2 Omicron despite mRNA vaccine booster dose. Lancet 399, 625–626 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Pulliam, J. R. C. et al. Increased risk of SARS-CoV-2 reinfection associated with emergence of Omicron in South Africa. Science 376, eabn4947 (2022).

    Article  CAS  PubMed  Google Scholar 

  157. Wilkinson, S. A. J. et al. Recurrent SARS-CoV-2 mutations in immunodeficient patients. Virus Evol. 8, veac050 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Monrad, I. et al. Persistent severe acute respiratory syndrome coronavirus 2 infection in immunocompromised host displaying treatment induced viral evolution. Open. Forum Infect. Dis. 8, ofab295 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Sonnleitner, S. T. et al. Cumulative SARS-CoV-2 mutations and corresponding changes in immunity in an immunocompromised patient indicate viral evolution within the host. Nat. Commun. 13, 2560 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Liu, Y. et al. Delta spike P681R mutation enhances SARS-CoV-2 fitness over Alpha variant. Cell Rep. 39, 110829 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Saito, A. et al. Enhanced fusogenicity and pathogenicity of SARS-CoV-2 Delta P681R mutation. Nature 602, 300–306 (2022).

    Article  CAS  PubMed  Google Scholar 

  162. Khan, K. et al. Evolution and neutralization escape of the SARS-CoV-2 BA.2.86 subvariant. Nat. Commun. 14, 8078 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Harari, S. et al. Drivers of adaptive evolution during chronic SARS-CoV-2 infections. Nat. Med. 28, 1501–1508 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Minkoff, J. M. & tenOever, B. Innate immune evasion strategies of SARS-CoV-2. Nat. Rev. Microbiol. 21, 178–194 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Hall, R. et al. SARS-CoV-2 ORF6 disrupts innate immune signalling by inhibiting cellular mRNA export. PLoS Pathog. 18, e1010349 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Shin, D. et al. Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Nature 587, 657–662 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Harris, E. CDC tracking BA.2.87.1, new Omicron subvariant with potential to evade immunity. JAMA 331, 907 (2024).

    PubMed  Google Scholar 

  168. Lasrado, N. et al. Neutralization escape by SARS-CoV-2 Omicron subvariant BA.2.86. Vaccine 41, 6904–6909 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Nesamari, R. et al. Post-pandemic memory T cell response to SARS-CoV-2 is durable, broadly targeted, and cross-reactive to the hypermutated BA.2.86 variant. Cell Host Microbe 32, 162–169.e3 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Sheward, D. J. et al. Sensitivity of the SARS-CoV-2 BA.2.86 variant to prevailing neutralising antibody responses. Lancet Infect. Dis. 23, e462–e463 (2023).

    Article  CAS  PubMed  Google Scholar 

  171. Uriu, K. et al. Transmissibility, infectivity, and immune evasion of the SARS-CoV-2 BA.2.86 variant. Lancet Infect. Dis. 23, e460–e461 (2023).

    Article  CAS  PubMed  Google Scholar 

  172. Wang, Q. et al. Antigenicity and receptor affinity of SARS-CoV-2 BA.2.86 spike. Nature 624, 639–644 (2023).

    Article  CAS  PubMed  Google Scholar 

  173. Yang, S. et al. Antigenicity and infectivity characterisation of SARS-CoV-2 BA.2.86. Lancet Infect. Dis. 23, e457–e459 (2023).

    Article  CAS  PubMed  Google Scholar 

  174. Planas, D. et al. Distinct evolution of SARS-CoV-2 Omicron XBB and BA.2.86/JN.1 lineages combining increased fitness and antibody evasion. Nat. Commun. 15, 2254 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Yang, S. et al. Fast evolution of SARS-CoV-2 BA. 2.86 to JN. 1 under heavy immune pressure. Lancet Infect. Dis. 24, e70–e72 (2024).

    Article  CAS  PubMed  Google Scholar 

  176. Tegally, H. et al. The evolving SARS-CoV-2 epidemic in Africa: insights from rapidly expanding genomic surveillance. Science 378, eabq5358 (2022).

    Article  CAS  PubMed  Google Scholar 

  177. Lamers, M. M. & Haagmans, B. L. SARS-CoV-2 pathogenesis. Nat. Rev. Microbiol. 20, 270–284 (2022).

    Article  CAS  PubMed  Google Scholar 

  178. Meyerowitz, E. A. & Li, Y. Review: the landscape of antiviral therapy for COVID-19 in the era of widespread population immunity and Omicron-lineage viruses. Clin. Infect. Dis. 78, 908–917 (2024).

    Article  CAS  PubMed  Google Scholar 

  179. Meyerowitz, E. A., Scott, J., Richterman, A., Male, V. & Cevik, M. Clinical course and management of COVID-19 in the era of widespread population immunity. Nat. Rev. Microbiol. 22, 75–88 (2024).

    Article  CAS  PubMed  Google Scholar 

  180. Moran, E. et al. Persistent SARS-CoV-2 infection: the urgent need for access to treatment and trials. Lancet Infect. Dis. 21, 1345–1347 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Breeden, M. et al. Successful treatment of prolonged severe acute respiratory syndrome coronavirus 2 infection in patients with immunodeficiency with extended nirmatrelvir/ritonavir: case series. Open Forum Infect. Dis. 10, ofad189 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Snell, L. B. et al. A multinational case series describing successful treatment of persistent severe acute respiratory syndrome coronavirus 2 infection caused by Omicron sublineages with prolonged courses of nirmatrelvir/ritonavir. Open. Forum Infect. Dis. 11, ofad612 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Zuckerman, N. S., Bucris, E., Keidar-Friedman, D., Amsalem, M. & Brosh-Nissimov, T. Nirmatrelvir resistance — de novo E166V/L50V mutations in an immunocompromised patient treated with prolonged nirmatrelvir/ritonavir monotherapy leading to clinical and virological treatment failure — a case report. Clin. Infect. Dis. 78, 352–355 (2023).

    Article  Google Scholar 

  184. Blennow, O., Vesterbacka, J., Tovatt, T. & Nowak, P. Successful combination treatment for persistent severe acute respiratory syndrome coronavirus 2 infection. Clin. Infect. Dis. 76, 1864–1865 (2023).

    Article  PubMed  Google Scholar 

  185. Huygens, S. et al. Clinical and virological outcome of monoclonal antibody therapies across severe acute respiratory syndrome coronavirus 2 variants in 245 immunocompromised patients: a multicenter prospective cohort study. Clin. Infect. Dis. 78, 1514–1521 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Huygens, S. et al. High-titer convalescent plasma plus nirmatrelvir/ritonavir treatment for non-resolving COVID-19 in six immunocompromised patients. J. Antimicrob. Chemother. 78, 1644–1648 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Mikulska, M. et al. Triple combination therapy with 2 antivirals and monoclonal antibodies for persistent or relapsed severe acute respiratory syndrome coronavirus 2 infection in immunocompromised patients. Clin. Infect. Dis. 77, 280–286 (2023).

    Article  CAS  PubMed  Google Scholar 

  188. Trottier, C. A. et al. Dual antiviral therapy for persistent coronavirus disease 2019 and associated organizing pneumonia in an immunocompromised host. Clin. Infect. Dis. 76, 923–925 (2022).

    Article  Google Scholar 

  189. Gupta, S., Parker, J., Smits, S., Underwood, J. & Dolwani, S. Persistent viral shedding of SARS-CoV-2 in faeces — a rapid review. Colorectal Dis. 22, 611–620 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Davis, H. E., McCorkell, L., Vogel, J. M. & Topol, E. J. Long COVID: major findings, mechanisms and recommendations. Nat. Rev. Microbiol. 21, 133–146 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Buonsenso, D. et al. Viral persistence in children infected with SARS-CoV-2: current evidence and future research strategies. Lancet Microbe 4, e745–e756 (2023).

    Article  PubMed  Google Scholar 

  192. Subissi, L. et al. An updated framework for SARS-CoV-2 variants reflects the unpredictability of viral evolution. Nat. Med. 30, 2400–2403 (2024).

    Article  CAS  PubMed  Google Scholar 

  193. Whitaker, M. et al. Variant-specific symptoms of COVID-19 in a study of 1,542,510 adults in England. Nat. Commun. 13, 6856 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Jassat, W. et al. Clinical severity of COVID-19 in patients admitted to hospital during the Omicron wave in South Africa: a retrospective observational study. Lancet Glob. Health 10, e961–e969 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Meng, B. et al. Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity. Nature 603, 706–714 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Lee, J. M. et al. Mapping person-to-person variation in viral mutations that escape polyclonal serum targeting influenza hemagglutinin. eLife 8, e49324 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Welsh, F. C. et al. Age-dependent heterogeneity in the antigenic effects of mutations to influenza hemagglutinin. Cell Host Microbe 32, 1397–1411.e11 (2024).

    Article  CAS  PubMed  Google Scholar 

  198. Liang, C.-Y. et al. Imprinting of serum neutralizing antibodies by Wuhan-1 mRNA vaccines. Nature 630, 950–960 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Aksamentov, I., Roemer, C., Hodcroft, E. B. & Neher, R. A. Nextclade: clade assignment, mutation calling and quality control for viral genomes. J. Open. Source Softw. 6, 3773 (2021).

    Article  Google Scholar 

  200. Yu, H. & Robertson, E. S. Epstein–Barr virus history and pathogenesis. Viruses 15, 714 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Sigal, A. & Baltimore, D. As good as it gets? The problem of HIV persistence despite antiretroviral drugs. Cell Host Microbe 12, 132–138 (2012).

    Article  CAS  PubMed  Google Scholar 

  202. Churchill, M. J., Deeks, S. G., Margolis, D. M., Siliciano, R. F. & Swanstrom, R. HIV reservoirs: what, where and how to target them. Nat. Rev. Microbiol. 14, 55–60 (2016).

    Article  CAS  PubMed  Google Scholar 

  203. Mansky, L. M. & Temin, H. M. Lower in vivo mutation rate of human immunodeficiency virus type 1 than that predicted from the fidelity of purified reverse transcriptase. J. Virol. 69, 5087–5094 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Haynes, B. F. et al. Strategies for HIV-1 vaccines that induce broadly neutralizing antibodies. Nat. Rev. Immunol. 23, 142–158 (2023).

    Article  CAS  PubMed  Google Scholar 

  205. Klein, J. S. & Bjorkman, P. J. Few and far between: how HIV may be evading antibody avidity. PLoS Pathog. 6, e1000908 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Abela, I. A. et al. Cell-cell transmission enables HIV-1 to evade inhibition by potent CD4bs directed antibodies. PLoS Pathog. 8, e1002634 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Sigal, A. et al. Cell-to-cell spread of HIV permits ongoing replication despite antiretroviral therapy. Nature 477, 95–98 (2011).

    Article  CAS  PubMed  Google Scholar 

  208. Jackson, L. et al. Incomplete inhibition of HIV infection results in more HIV infected lymph node cells by reducing cell death. eLife 7, e30134 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Boullé, M. et al. HIV cell-to-cell spread results in earlier onset of viral gene expression by multiple infections per cell. PLoS Pathog. 12, e1005964 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Martínez-Riaño, A. et al. Long-term retention of antigens in germinal centers is controlled by the spatial organization of the follicular dendritic cell network. Nat. Immunol. 24, 1281–1294 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Heesters, B. A. et al. Follicular dendritic cells retain infectious HIV in cycling endosomes. PLoS Pathog. 11, e1005285 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Lustig, G. et al. T cell derived HIV-1 is present in the CSF in the face of suppressive antiretroviral therapy. PLoS Pathog. 17, e1009871 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Kincer, L. P. et al. Rebound HIV-1 in cerebrospinal fluid after antiviral therapy interruption is mainly clonally amplified R5 T cell-tropic virus. Nat. Microbiol. 8, 260–271 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Jacob, S. T. et al. Ebola virus disease. Nat. Rev. Dis. Prim. 6, 13 (2020).

    Article  PubMed  Google Scholar 

  215. Liu, J. et al. Ebola virus persistence and disease recrudescence in the brains of antibody-treated nonhuman primate survivors. Sci. Transl. Med. 14, eabi5229 (2022).

    Article  CAS  PubMed  Google Scholar 

  216. Worwa, G. et al. Persistent intraocular Ebola virus RNA is associated with severe uveitis in a convalescent rhesus monkey. Commun. Biol. 5, 1204 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Lion, T. Adenovirus persistence, reactivation, and clinical management. FEBS Lett. 593, 3571–3582 (2019).

    Article  CAS  PubMed  Google Scholar 

  218. Xue, K. S., Moncla, L. H., Bedford, T. & Bloom, J. D. Within-host evolution of human influenza virus. Trends Microbiol. 26, 781–793 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. McMinn, P., Carrello, A., Cole, C., Baker, D. & Hampson, A. Antigenic drift of influenza A (H3N2) virus in a persistently infected immunocompromised host is similar to that occurring in the community. Clin. Infect. Dis. 29, 456–458 (1999).

    Article  CAS  PubMed  Google Scholar 

  220. Rogers, M. B. et al. Intrahost dynamics of antiviral resistance in influenza A virus reflect complex patterns of segment linkage, reassortment, and natural selection. mBio 6, e02464–e02514 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Weinstock, D. M., Gubareva, L. V. & Zuccotti, G. Prolonged shedding of multidrug-resistant influenza A virus in an immunocompromised patient. N. Engl. J. Med. 348, 867–868 (2003).

    Article  PubMed  Google Scholar 

  222. Xue, K. S. et al. Parallel evolution of influenza across multiple spatiotemporal scales. eLife 6, e26875 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Tabatabai, J. et al. Parainfluenza virus infections in patients with hematological malignancies or stem cell transplantation: analysis of clinical characteristics, nosocomial transmission and viral shedding. PLoS ONE 17, e0271756 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Engelmann, I. et al. In vivo persistence of human rhinoviruses in immunosuppressed patients. PLoS ONE 12, e0170774 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  225. Milano, F. et al. Human rhinovirus and coronavirus detection among allogeneic hematopoietic stem cell transplantation recipients. Blood 115, 2088–2094 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Hierholzer, J. C. Adenoviruses in the immunocompromised host. Clin. Microbiol. Rev. 5, 262–274 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Dominguez, S. R., Robinson, C. C. & Holmes, K. V. Detection of four human coronaviruses in respiratory infections in children: a one-year study in Colorado. J. Med. Virol. 81, 1597–1604 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Ng, K. H. et al. Persistent dengue infection in an immunosuppressed patient reveals the roles of humoral and cellular immune responses in virus clearance. Cell Host Microbe 26, 601–605.e3 (2019).

    Article  CAS  PubMed  Google Scholar 

  229. Machado, C. M. et al. Zika and chikungunya virus infections in hematopoietic stem cell transplant recipients and oncohematological patients. Blood Adv. 1, 624–627 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Haessler, S. & Granowitz, E. V. Norovirus gastroenteritis in immunocompromised patients. N. Engl. J. Med. 368, 971 (2013).

    Article  CAS  PubMed  Google Scholar 

  231. Steyer, A. et al. Intrahost norovirus evolution in chronic infection over 5 years of shedding in a kidney transplant recipient. Front. Microbiol. 9, 371 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  232. Malka, M. S. et al. A prolonged case of severe mpox as an opportunistic infection in advanced AIDS. Cureus 16, e59947 (2024).

    PubMed  PubMed Central  Google Scholar 

  233. O’Shea, J. et al. Prolonged mpox disease in people with advanced HIV: characterization of mpox skin lesions. J. Infect. Dis. 229, S243–S248 (2023).

    Article  PubMed Central  Google Scholar 

  234. Pinnetti, C. et al. mpox as AIDS-defining event with a severe and protracted course: clinical, immunological, and virological implications. Lancet Infect. Dis. 24, e127–e135 (2024).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by Bill and Melinda Gates INV-018944, Wellcome Trust 226137/Z/22/Z and South African Medical Research Council awards to A.S. The authors thank G. Lustig for advice and help with the figures.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Alex Sigal.

Ethics declarations

Competing interests

A.S. has received an honorarium from Pfizer for consultation and has active grants on COVID-19 from the Bill and Melinda Gates Foundation and The Wellcome Trust. R.A.N is a paid consultant for Moderna and BioNtech, and has active grants on COVID-19 from the Swiss National Science Foundation and the Swiss Federal Office for Public Health. R.J.L declares no competing interests.

Peer review

Peer review information

Nature Reviews Microbiology thanks Stanley Perlman; Malik Peiris, who co-reviewed with Ray T. Y. So; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sigal, A., Neher, R.A. & Lessells, R.J. The consequences of SARS-CoV-2 within-host persistence. Nat Rev Microbiol 23, 288–302 (2025). https://doi.org/10.1038/s41579-024-01125-y

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41579-024-01125-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing