Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Epstein–Barr virus pathogenesis and emerging control strategies

Abstract

Sixty years after its discovery as the first human tumour virus, Epstein–Barr virus (EBV)-specific therapies and vaccines have entered clinical trials. These might not only be applicable for EBV-associated malignancies, where the virus was originally discovered, but also to immunopathologies, including the autoimmune disease multiple sclerosis, which might be triggered in susceptible individuals by primary EBV infection. This Review discusses the surprisingly large spectrum of diseases that EBV seems to cause, as well as which of these might be treated by the therapeutic approaches that are currently being developed or are already clinically applied. New pharmacological inhibitors, antibody therapies, adoptive T cell therapies and active vaccinations are beginning to offer possibilities to target the various EBV infection programmes that are associated with different diseases. These novel developments might allow us to specifically target EBV rather than its host cells in virus-associated pathologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: EBV infection of B cells and epithelial cells during asymptomatic viral persistence.
Fig. 2: Requirements for EBV-specific immune control.
Fig. 3: EBV-associated tumours.
Fig. 4: EBV association with the autoimmune disease multiple sclerosis.
Fig. 5: Passive and active immunization targets of EBV.

Similar content being viewed by others

References

  1. Epstein, M. A., Henle, G., Achong, B. G. & Barr, Y. M. Morphological and biological studies on a virus in cultured lymphoblasts from Burkitt’s lymphoma. J. Exp. Med. 121, 761–770 (1964).

    Article  Google Scholar 

  2. Epstein, M. A., Achong, B. G. & Barr, Y. M. Virus particles in cultured lymphoblasts from Burkitt’s lymphoma. Lancet 1, 702–703 (1964).

    Article  PubMed  CAS  Google Scholar 

  3. Farrell, P. J. Epstein–Barr virus and cancer. Annu. Rev. Pathol. 14, 29–53 (2019).

    Article  PubMed  CAS  Google Scholar 

  4. Damania, B., Kenney, S. C. & Raab-Traub, N. Epstein–Barr virus: biology and clinical disease. Cell 185, 3652–3670 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Thorley-Lawson, D. A. & Gross, A. Persistence of the Epstein–Barr virus and the origins of associated lymphomas. N. Engl. J. Med. 350, 1328–1337 (2004).

    Article  PubMed  CAS  Google Scholar 

  6. Münz, C. Latency and lytic replication in the oncogenesis of the Epstein–Barr virus. Nat. Rev. Microbiol. 17, 691–700 (2019).

    Article  PubMed  Google Scholar 

  7. Ressing, M. E. et al. Immune evasion by Epstein–Barr virus. Curr. Top. Microbiol. Immunol. 391, 355–381 (2015).

    PubMed  CAS  Google Scholar 

  8. Albanese, M., Tagawa, T. & Hammerschmidt, W. Strategies of Epstein–Barr virus to evade innate antiviral immunity of its human host. Front. Microbiol. 13, 955603 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  9. de Martel, C., Georges, D., Bray, F., Ferlay, J. & Clifford, G. M. Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. Lancet Glob. Health 8, e180–e190 (2020).

    Article  PubMed  Google Scholar 

  10. Wong, Y., Meehan, M. T., Burrows, S. R., Doolan, D. L. & Miles, J. J. Estimating the global burden of Epstein–Barr virus-related cancers. J. Cancer Res. Clin. Oncol. 148, 31–46 (2022).

    Article  PubMed  Google Scholar 

  11. Shannon-Lowe, C. & Rickinson, A. The global landscape of EBV-associated tumors. Front. Oncol. 9, 713 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bjornevik, K. et al. Longitudinal analysis reveals high prevalence of Epstein–Barr virus associated with multiple sclerosis. Science 375, 296–301 (2022).

    Article  PubMed  CAS  Google Scholar 

  13. Bjornevik, K., Münz, C., Cohen, J. I. & Ascherio, A. Epstein–Barr virus as a leading cause of multiple sclerosis: mechanisms and implications. Nat. Rev. Neurol. 19, 160–171 (2023).

    PubMed  CAS  Google Scholar 

  14. Cohen, J. I. Therapeutic vaccines for herpesviruses. J. Clin. Invest. 134, e179483 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Muller, F. et al. CD19 CAR T-cell therapy in autoimmune disease — a case series with follow-up. N. Engl. J. Med. 390, 687–700 (2024).

    Article  PubMed  Google Scholar 

  16. Bonifacius, A. et al. Patient-tailored adoptive immunotherapy with EBV-specific T cells from related and unrelated donors. J. Clin. Invest. 133, e163548 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Tugizov, S. M., Herrera, R. & Palefsky, J. M. Epstein–Barr virus transcytosis through polarized oral epithelial cells. J. Virol. 87, 8179–8194 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Tugizov, S. M., Berline, J. W. & Palefsky, J. M. Epstein–Barr virus infection of polarized tongue and nasopharyngeal epithelial cells. Nat. Med. 9, 307–314 (2003).

    Article  PubMed  CAS  Google Scholar 

  19. Pich, D. et al. First days in the life of naive human B lymphocytes infected with Epstein–Barr virus. mBio 10, e01723-19 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Mrozek-Gorska, P. et al. Epstein–Barr virus reprograms human B lymphocytes immediately in the prelatent phase of infection. Proc. Natl Acad. Sci. USA 116, 16046–16055 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Altmann, M. & Hammerschmidt, W. Epstein–Barr virus provides a new paradigm: a requirement for the immediate inhibition of apoptosis. PLoS Biol. 3, e404 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Alfieri, C., Birkenbach, M. & Kieff, E. Early events in Epstein–Barr virus infection of human B lymphocytes. Virology 181, 595–608 (1991).

    Article  PubMed  CAS  Google Scholar 

  23. Kempkes, B. & Ling, P. D. EBNA2 and its coactivator EBNA-LP. Curr. Top. Microbiol. Immunol. 391, 35–59 (2015).

    PubMed  CAS  Google Scholar 

  24. Allday, M. J., Bazot, Q. & White, R. E. The EBNA3 family: two oncoproteins and a tumour suppressor that are central to the biology of EBV in B cells. Curr. Top. Microbiol. Immunol. 391, 61–117 (2015).

    PubMed  CAS  Google Scholar 

  25. Babcock, J. G., Hochberg, D. & Thorley-Lawson, A. D. The expression pattern of Epstein–Barr virus latent genes in vivo is dependent upon the differentiation stage of the infected B cell. Immunity 13, 497–506 (2000).

    Article  PubMed  CAS  Google Scholar 

  26. SoRelle, E. D. et al. Single-cell RNA-seq reveals transcriptomic heterogeneity mediated by host–pathogen dynamics in lymphoblastoid cell lines. eLife 10, e62586 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Thorley-Lawson, D. A. Epstein–Barr virus: exploiting the immune system. Nat. Rev. Immunol. 1, 75–82 (2001).

    Article  PubMed  CAS  Google Scholar 

  28. Hochberg, D. et al. Demonstration of the Burkitt’s lymphoma Epstein–Barr virus phenotype in dividing latently infected memory cells in vivo. Proc. Natl Acad. Sci. USA 101, 239–244 (2004).

    Article  PubMed  CAS  Google Scholar 

  29. Babcock, G. J., Decker, L. L., Volk, M. & Thorley-Lawson, D. A. EBV persistence in memory B cells in vivo. Immunity 9, 395–404 (1998).

    Article  PubMed  CAS  Google Scholar 

  30. Laichalk, L. L. & Thorley-Lawson, D. A. Terminal differentiation into plasma cells initiates the replicative cycle of Epstein–Barr virus in vivo. J. Virol. 79, 1296–1307 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Reusch, J. A., Nawandar, D. M., Wright, K. L., Kenney, S. C. & Mertz, J. E. Cellular differentiation regulator BLIMP1 induces Epstein–Barr virus lytic reactivation in epithelial and B cells by activating transcription from both the R and Z promoters. J. Virol. 89, 1731–1743 (2015).

    Article  PubMed  Google Scholar 

  32. Woellmer, A., Arteaga-Salas, J. M. & Hammerschmidt, W. BZLF1 governs CpG-methylated chromatin of Epstein–Barr virus reversing epigenetic repression. PLoS Pathog. 8, e1002902 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Dunmire, S. K., Grimm, J. M., Schmeling, D. O., Balfour, H. H. Jr. & Hogquist, K. A. The incubation period of primary Epstein–Barr virus infection: viral dynamics and immunologic events. PLoS Pathog. 11, e1005286 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ali, A. et al. Rta is the principal activator of Epstein–Barr virus epithelial lytic transcription. PLoS Pathog. 18, e1010886 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Van Sciver, N. et al. Hippo signaling effectors YAP and TAZ induce Epstein–Barr virus (EBV) lytic reactivation through TEADs in epithelial cells. PLoS Pathog. 17, e1009783 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Taylor, G. S., Long, H. M., Brooks, J. M., Rickinson, A. B. & Hislop, A. D. The immunology of Epstein–Barr virus-induced disease. Annu. Rev. Immunol. 33, 787–821 (2015).

    Article  PubMed  CAS  Google Scholar 

  37. Damania, B. & Münz, C. Immunodeficiencies that predispose to pathologies by human oncogenic gamma-herpesviruses. FEMS Microbiol. Rev. 43, 181–192 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Caduff, N. et al. Immunosuppressive FK506 treatment leads to more frequent EBV-associated lymphoproliferative disease in humanized mice. PLoS Pathog. 16, e1008477 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. McHugh, D. et al. EBV renders B cells susceptible to HIV-1 in humanized mice. Life Sci. Alliance 3, e202000640 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Tangye, S. G. & Latour, S. Primary immunodeficiencies reveal the molecular requirements for effective host defense against EBV infection. Blood 135, 644–655 (2020).

    Article  PubMed  Google Scholar 

  41. Martin, E. et al. Role of IL-27 in Epstein–Barr virus infection revealed by IL-27RA deficiency. Nature 628, 620–629 (2024).

    Article  PubMed  CAS  Google Scholar 

  42. Appay, V. et al. Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nat. Med. 8, 379–385 (2002).

    Article  PubMed  CAS  Google Scholar 

  43. Schmidt, F. et al. In-depth analysis of human virus-specific CD8+ T cells delineates unique phenotypic signatures for T cell specificity prediction. Cell Rep. 42, 113250 (2023).

    Article  PubMed  CAS  Google Scholar 

  44. Deng, Y. et al. CD27 is required for protective lytic EBV antigen specific CD8+ T cell expansion. Blood 137, 3225–3236 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Kirchmeier, D. et al. Epstein Barr virus infection induces tissue-resident memory T cells in mucosal lymphoid tissues. JCI Insight 9, e173489 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Azzi, T. et al. Role for early-differentiated natural killer cells in infectious mononucleosis. Blood 124, 2533–2543 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Chijioke, O. et al. Human natural killer cells prevent infectious mononucleosis features by targeting lytic Epstein–Barr virus infection. Cell Rep. 5, 1489–1498 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Caduff, N. et al. KSHV infection drives poorly cytotoxic CD56 negative natural killer cell differentiation in vivo upon KSHV/EBV dual infection. Cell Rep. 35, 109056 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Zhang, J. et al. LMP1 and EBNA2 constitute a minimal set of EBV genes for transformation of human B cells. Front. Immunol. 14, 1331730 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Lopez, C. et al. Burkitt lymphoma. Nat. Rev. Dis. Primers 8, 78 (2022).

    Article  PubMed  Google Scholar 

  51. Robbiani, D. F. et al. Plasmodium infection promotes genomic instability and AID-dependent B cell lymphoma. Cell 162, 727–737 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Whittle, H. C. et al. T-cell control of Epstein–Barr virus-infected B cells is lost during P. falciparum malaria. Nature 312, 449–450 (1984).

    Article  PubMed  CAS  Google Scholar 

  53. Moormann, A. M. et al. Children with endemic Burkitt lymphoma are deficient in EBNA1-specific IFN-γ T cell responses. Int. J. Cancer 124, 1721–1726 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Moormann, A. M. et al. Exposure to holoendemic malaria results in elevated Epstein–Barr virus loads in children. J. Infect. Dis. 191, 1233–1238 (2005).

    Article  PubMed  Google Scholar 

  55. Connors, J. M. et al. Hodgkin lymphoma. Nat. Rev. Dis. Primers 6, 61 (2020).

    Article  PubMed  Google Scholar 

  56. Hjalgrim, H. et al. Characteristics of Hodgkin’s lymphoma after infectious mononucleosis. N. Engl. J. Med. 349, 1324–1332 (2003).

    Article  PubMed  CAS  Google Scholar 

  57. Callan, M. F. et al. Direct visualization of antigen-specific CD8+ T cells during the primary immune response to Epstein–Barr virus In vivo. J. Exp. Med. 187, 1395–1402 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Callan, M. F. et al. Large clonal expansions of CD8+ T cells in acute infectious mononucleosis. Nat. Med. 2, 906–911 (1996).

    Article  PubMed  CAS  Google Scholar 

  59. Cesarman, E., Chadburn, A. & Rubinstein, P. G. KSHV/HHV8-mediated hematologic diseases. Blood 139, 1013–1025 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Wong, K. C. W. et al. Nasopharyngeal carcinoma: an evolving paradigm. Nat. Rev. Clin. Oncol. 18, 679–695 (2021).

    Article  PubMed  CAS  Google Scholar 

  61. Xu, M. et al. Genome sequencing analysis identifies Epstein–Barr virus subtypes associated with high risk of nasopharyngeal carcinoma. Nat. Genet. 51, 1131–1136 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Li, Z. et al. Epstein–Barr virus ncRNA from a nasopharyngeal carcinoma induces an inflammatory response that promotes virus production. Nat. Microbiol. 4, 2475–2486 (2019).

    Article  PubMed  Google Scholar 

  63. Kimura, H., de Leval, L., Cai, Q. & Kim, W. S. EBV-associated NK and T-cell lymphoid neoplasms. Curr. Opin. Oncol. 34, 422–431 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Vij, M. et al. CARMIL2 immunodeficiency with Epstein Barr virus associated smooth muscle tumor (EBV-SMT). Report of a case with comprehensive review of literature. Fetal Pediatr. Pathol. 41, 1023–1034 (2022).

    Article  PubMed  CAS  Google Scholar 

  65. Shaw, R. K. et al. Bilateral adrenal EBV-associated smooth muscle tumors in a child with a natural killer cell deficiency. Blood 119, 4009–4012 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Fournier, B. et al. Inherited TNFSF9 deficiency causes broad Epstein–Barr virus infection with EBV+ smooth muscle tumors. J. Exp. Med. 219, e20211682 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Collins, P. J. et al. Characterizing EBV-associated lymphoproliferative diseases and the role of myeloid-derived suppressor cells. Blood 137, 203–215 (2021).

    Article  PubMed  CAS  Google Scholar 

  68. Fournier, B. et al. Rapid identification and characterization of infected cells in blood during chronic active Epstein–Barr virus infection. J. Exp. Med. 217, e20192262 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Coleman, C. B. et al. Epstein–Barr virus type 2 infects T cells and induces B cell lymphomagenesis in humanized mice. J. Virol. 92, e00813-18 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Wongwiwat, W. et al. Epstein–Barr virus genome deletions in Epstein–Barr virus-positive T/NK cell lymphoproliferative diseases. J. Virol. 96, e0039422 (2022).

    Article  PubMed  Google Scholar 

  71. Dunmire, S. K., Verghese, P. S. & Balfour, H. H. Jr. Primary Epstein–Barr virus infection. J. Clin. Virol. 102, 84–92 (2018).

    Article  PubMed  Google Scholar 

  72. Panikkar, A. et al. Cytokine-mediated loss of blood dendritic cells during Epstein–Barr virus-associated acute infectious mononucleosis: implication for immune dysregulation. J. Infect. Dis. 212, 1957–1961 (2015).

    Article  PubMed  Google Scholar 

  73. Jayasooriya, S. et al. Early virological and immunological events in asymptomatic Epstein–Barr virus infection in African children. PLoS Pathog. 11, e1004746 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Gujer, C. et al. Plasmacytoid dendritic cells respond to Epstein–Barr virus infection with a distinct type I interferon subtype profile. Blood Adv. 3, 1129–1144 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Severa, M. et al. EBV stimulates TLR- and autophagy-dependent pathways and impairs maturation in plasmacytoid dendritic cells: implications for viral immune escape. Eur. J. Immunol. 43, 147–158 (2013).

    Article  PubMed  CAS  Google Scholar 

  76. Fiola, S., Gosselin, D., Takada, K. & Gosselin, J. TLR9 contributes to the recognition of EBV by primary monocytes and plasmacytoid dendritic cells. J. Immunol. 185, 3620–3631 (2010).

    Article  PubMed  CAS  Google Scholar 

  77. Williams, H. et al. The immune response to primary EBV infection: a role for natural killer cells. Br. J. Haematol. 129, 266–274 (2005).

    Article  PubMed  Google Scholar 

  78. Balfour, H. H. Jr. et al. Behavioral, virologic, and immunologic factors associated with acquisition and severity of primary Epstein–Barr virus infection in university students. J. Infect. Dis. 207, 80–88 (2013).

    Article  PubMed  CAS  Google Scholar 

  79. Pappworth, I. Y., Wang, E. C. & Rowe, M. The switch from latent to productive infection in Epstein–Barr virus-infected B cells is associated with sensitization to NK cell killing. J. Virol. 81, 474–482 (2007).

    Article  PubMed  CAS  Google Scholar 

  80. Hochberg, D. et al. Acute infection with Epstein–Barr virus targets and overwhelms the peripheral memory B-cell compartment with resting, latently infected cells. J. Virol. 78, 5194–5204 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Thacker, E. L., Mirzaei, F. & Ascherio, A. Infectious mononucleosis and risk for multiple sclerosis: a meta-analysis. Ann. Neurol. 59, 499–503 (2006).

    Article  PubMed  Google Scholar 

  82. Olsson, T., Barcellos, L. F. & Alfredsson, L. Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis. Nat. Rev. Neurol. 13, 25–36 (2017).

    Article  PubMed  CAS  Google Scholar 

  83. Lünemann, J. D. et al. Elevated Epstein–Barr virus-encoded nuclear antigen-1 immune responses predict conversion to multiple sclerosis. Ann. Neurol. 67, 159–169 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Kvistad, S. et al. Antibodies to Epstein–Barr virus and MRI disease activity in multiple sclerosis. Mult. Scler. 20, 1833–1840 (2014).

    Article  PubMed  CAS  Google Scholar 

  85. Cepok, S. et al. Identification of Epstein–Barr virus proteins as putative targets of the immune response in multiple sclerosis. J. Clin. Invest. 115, 1352–1360 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Lanz, T. V. et al. Clonally expanded B cells in multiple sclerosis bind EBV EBNA1 and GlialCAM. Nature 603, 321–327 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Tengvall, K. et al. Molecular mimicry between Anoctamin 2 and Epstein–Barr virus nuclear antigen 1 associates with multiple sclerosis risk. Proc. Natl Acad. Sci. USA 116, 16955–16960 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Thomas, O. G. et al. Cross-reactive EBNA1 immunity targets alpha-crystallin B and is associated with multiple sclerosis. Sci. Adv. 9, eadg3032 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Vietzen, H. et al. Ineffective control of Epstein-Barr-virus-induced autoimmunity increases the risk for multiple sclerosis. Cell 186, 5705–5718.e13 (2023).

    Article  PubMed  CAS  Google Scholar 

  90. Wilkinson, N. M., Chen, H. C., Lechner, M. G. & Su, M. A. Sex differences in immunity. Annu. Rev. Immunol. 40, 75–94 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Lünemann, J. D. et al. Increased frequency and broadened specificity of latent EBV nuclear antigen-1-specific T cells in multiple sclerosis. Brain 129, 1493–1506 (2006).

    Article  PubMed  Google Scholar 

  92. Lünemann, J. D. et al. EBNA1-specific T cells from patients with multiple sclerosis cross react with myelin antigens and co-produce IFN-γ and IL-2. J. Exp. Med. 205, 1763–1773 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Thomas, O. G. et al. Heightened Epstein–Barr virus immunity and potential cross-reactivities in multiple sclerosis. PLoS Pathog. 20, e1012177 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Jilek, S. et al. Strong EBV-specific CD8+ T-cell response in patients with early multiple sclerosis. Brain 131, 1712–1721 (2008).

    Article  PubMed  Google Scholar 

  95. Serafini, B., Rosicarelli, B., Veroni, C., Mazzola, G. A. & Aloisi, F. Epstein–Barr virus-specific CD8 T cells selectively infiltrate the brain in multiple sclerosis and interact locally with virus-infected cells: clue for a virus-driven immunopathological mechanism. J. Virol. 93, e00980-19 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Schneider-Hohendorf, T. et al. Broader Epstein–Barr virus-specific T cell receptor repertoire in patients with multiple sclerosis. J. Exp. Med. 219, e20220650 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Gottlieb, A., Pham, H. P. T., Saltarrelli, J. G. & Lindsey, J. W. Expanded T lymphocytes in the cerebrospinal fluid of multiple sclerosis patients are specific for Epstein–Barr-virus-infected B cells. Proc. Natl Acad. Sci. USA 121, e2315857121 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Serafini, B. et al. Dysregulated Epstein–Barr virus infection in the multiple sclerosis brain. J. Exp. Med. 204, 2899–2912 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Zdimerova, H. et al. Attenuated immune control of Epstein–Barr virus in humanized mice is associated with the multiple sclerosis risk factor HLA-DR15. Eur. J. Immunol. 51, 64–75 (2021).

    Article  PubMed  CAS  Google Scholar 

  100. Serafini, B., Rosicarelli, B., Veroni, C. & Aloisi, F. Tissue-resident memory T cells in the multiple sclerosis brain and their relationship to Epstein–Barr virus infected B cells. J. Neuroimmunol. 376, 578036 (2023).

    Article  PubMed  CAS  Google Scholar 

  101. Tosato, G. et al. Abnormally elevated frequency of Epstein–Barr virus-infected B cells in the blood of patients with rheumatoid arthritis. J. Clin. Invest. 73, 1789–1795 (1984).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Tsokos, G. C., Magrath, I. T. & Balow, J. E. Epstein–Barr virus induces normal B cell responses but defective suppressor T cell responses in patients with systemic lupus erythematosus. J. Immunol. 131, 1797–1801 (1983).

    Article  PubMed  CAS  Google Scholar 

  103. AlDabbagh, M. A. et al. The role of antiviral prophylaxis for the prevention of Epstein–Barr virus-associated posttransplant lymphoproliferative disease in solid organ transplant recipients: a systematic review. Am. J. Transpl. 17, 770–781 (2017).

    Article  CAS  Google Scholar 

  104. Dugan, J. P. et al. Complete and durable responses in primary central nervous system post-transplant lymphoproliferative disorder with zidovudine, ganciclovir, rituximab and dexamethasone. Clin. Cancer Res. 24, 3273–3281 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Haverkos, B. et al. Targeted therapy with nanatinostat and valganciclovir in recurrent EBV-positive lymphoid malignancies: a phase 1b/2 study. Blood Adv. 7, 6339–6350 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Drosu, N. C., Edelman, E. R. & Housman, D. E. Tenofovir prodrugs potently inhibit Epstein–Barr virus lytic DNA replication by targeting the viral DNA polymerase. Proc. Natl Acad. Sci. USA 117, 12368–12374 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Torkildsen, O., Myhr, K. M., Brugger-Synnes, P. & Bjornevik, K. Antiviral therapy with tenofovir in MS. Mult. Scler. Relat. Disord. 83, 105436 (2024).

    Article  PubMed  CAS  Google Scholar 

  108. Frappier, L. Ebna1. Curr. Top. Microbiol. Immunol. 391, 3–34 (2015).

    PubMed  CAS  Google Scholar 

  109. Humme, S. et al. The EBV nuclear antigen 1 (EBNA1) enhances B cell immortalization several thousandfold. Proc. Natl Acad. Sci. USA 100, 10989–10994 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Thompson, S., Messick, T., Schultz, D. C., Reichman, M. & Lieberman, P. M. Development of a high-throughput screen for inhibitors of Epstein–Barr virus EBNA1. J. Biomol. Screen. 15, 1107–1115 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Li, N. et al. Discovery of selective inhibitors against EBNA1 via high throughput in silico virtual screening. PLoS ONE 5, e10126 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Bochkarev, A. et al. Crystal structure of the DNA-binding domain of the Epstein–Barr virus origin-binding protein, EBNA1, bound to DNA. Cell 84, 791–800 (1996).

    Article  PubMed  CAS  Google Scholar 

  113. Messick, T. E. et al. Structure-based design of small-molecule inhibitors of EBNA1 DNA binding blocks Epstein–Barr virus latent infection and tumor growth. Sci. Transl Med. 11, eaau5612 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Soldan, S. S. et al. EBNA1 inhibitors have potent and selective antitumor activity in xenograft models of Epstein–Barr virus-associated gastric cancer. Gastric Cancer 24, 1076–1088 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Monaco, M. C. G. et al. EBNA1 inhibitors block proliferation of spontaneous lymphoblastoid cell lines from patients with multiple sclerosis and healthy controls. Neurol. Neuroimmunol. Neuroinflamm. 10, e200149 (2023).

    Article  Google Scholar 

  116. Colevas, A. D. et al. First-in-human clinical trial of a small molecule EBNA1 inhibitor, VK-2019, in patients with Epstein–Barr positive nasopharyngeal cancer, with pharmacokinetic and pharmacodynamic studies. Clin. Cancer Res. 31, 815–823 (2025).

    Article  PubMed  CAS  Google Scholar 

  117. Kang, M. S. et al. Roscovitine inhibits EBNA1 serine 393 phosphorylation, nuclear localization, transcription, and episome maintenance. J. Virol. 85, 2859–2868 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Kieser, A. & Sterz, K. R. The latent membrane protein 1 (LMP1). Curr. Top. Microbiol. Immunol. 391, 119–149 (2015).

    PubMed  CAS  Google Scholar 

  119. Kang, M. S. & Kieff, E. Epstein–Barr virus latent genes. Exp. Mol. Med. 47, e131 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Giehler, F. et al. Epstein–Barr virus-driven B cell lymphoma mediated by a direct LMP1-TRAF6 complex. Nat. Commun. 15, 414 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Muller-Durovic, B. et al. A metabolic dependency of EBV can be targeted to hinder B cell transformation. Science 385, eadk4898 (2024).

    Article  PubMed  CAS  Google Scholar 

  122. Mellman, I., Chen, D. S., Powles, T. & Turley, S. J. The cancer–immunity cycle: indication, genotype, and immunotype. Immunity 56, 2188–2205 (2023).

    Article  PubMed  CAS  Google Scholar 

  123. Dharnidharka, V. R. et al. Post-transplant lymphoproliferative disorders. Nat. Rev. Dis. Primers 2, 15088 (2016).

    Article  PubMed  Google Scholar 

  124. Curtis, R. E. et al. Risk of lymphoproliferative disorders after bone marrow transplantation: a multi-institutional study. Blood 94, 2208–2216 (1999).

    PubMed  CAS  Google Scholar 

  125. Styczynski, J. et al. Response to rituximab-based therapy and risk factor analysis in Epstein Barr virus-related lymphoproliferative disorder after hematopoietic stem cell transplant in children and adults: a study from the Infectious Diseases Working Party of the European Group for Blood and Marrow Transplantation. Clin. Infect. Dis. 57, 794–802 (2013).

    Article  PubMed  CAS  Google Scholar 

  126. Salles, G. et al. Rituximab in B-cell hematologic malignancies: a review of 20 years of clinical experience. Adv. Ther. 34, 2232–2273 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Naismith, R. T. et al. Rituximab add-on therapy for breakthrough relapsing multiple sclerosis: a 52-week phase II trial. Neurology 74, 1860–1867 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Hawker, K. et al. Rituximab in patients with primary progressive multiple sclerosis: results of a randomized double-blind placebo-controlled multicenter trial. Ann. Neurol. 66, 460–471 (2009).

    Article  PubMed  CAS  Google Scholar 

  129. Hauser, S. L. et al. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N. Engl. J. Med. 358, 676–688 (2008).

    Article  PubMed  CAS  Google Scholar 

  130. Montalban, X. et al. Ocrelizumab versus placebo in primary progressive multiple sclerosis. N. Engl. J. Med. 376, 209–220 (2017).

    Article  PubMed  CAS  Google Scholar 

  131. Hauser, S. L. et al. Ocrelizumab versus interferon beta-1a in relapsing multiple sclerosis. N. Engl. J. Med. 376, 221–234 (2017).

    Article  PubMed  CAS  Google Scholar 

  132. Mackensen, A. et al. Anti-CD19 CAR T cell therapy for refractory systemic lupus erythematosus. Nat. Med. 28, 2124–2132 (2022).

    Article  PubMed  CAS  Google Scholar 

  133. Cencioni, M. T., Mattoscio, M., Magliozzi, R., Bar-Or, A. & Muraro, P. A. B cells in multiple sclerosis — from targeted depletion to immune reconstitution therapies. Nat. Rev. Neurol. 17, 399–414 (2021).

    Article  PubMed  Google Scholar 

  134. Studer, V., Rossi, S., Motta, C., Buttari, F. & Centonze, D. Peripheral B cell depletion and central proinflammatory cytokine reduction following repeated intrathecal administration of rituximab in progressive multiple sclerosis. J. Neuroimmunol. 276, 229–231 (2014).

    Article  PubMed  CAS  Google Scholar 

  135. Piccio, L. et al. Changes in B- and T-lymphocyte and chemokine levels with rituximab treatment in multiple sclerosis. Arch. Neurol. 67, 707–714 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Langer-Gould, A., Li, B. H., Smith, J. B. & Xu, S. Multiple sclerosis, rituximab, hypogammaglobulinemia, and risk of infections. Neurol. Neuroimmunol. Neuroinflamm 11, e200211 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Deutsch, Y. E., Tadmor, T., Podack, E. R. & Rosenblatt, J. D. CD30: an important new target in hematologic malignancies. Leuk. Lymphoma 52, 1641–1654 (2011).

    Article  PubMed  CAS  Google Scholar 

  138. Younes, A. et al. Results of a pivotal phase II study of brentuximab vedotin for patients with relapsed or refractory Hodgkin’s lymphoma. J. Clin. Oncol. 30, 2183–2189 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Moskowitz, C. H. et al. Brentuximab vedotin as consolidation therapy after autologous stem-cell transplantation in patients with Hodgkin’s lymphoma at risk of relapse or progression (AETHERA): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 385, 1853–1862 (2015).

    Article  PubMed  CAS  Google Scholar 

  140. Jacobsen, E. D. et al. Brentuximab vedotin demonstrates objective responses in a phase 2 study of relapsed/refractory DLBCL with variable CD30 expression. Blood 125, 1394–1402 (2015).

    Article  PubMed  CAS  Google Scholar 

  141. Bartlett, N. L. et al. Retreatment with brentuximab vedotin in patients with CD30-positive hematologic malignancies. J. Hematol. Oncol. 7, 24 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Pro, B. et al. Brentuximab vedotin (SGN-35) in patients with relapsed or refractory systemic anaplastic large-cell lymphoma: results of a phase II study. J. Clin. Oncol. 30, 2190–2196 (2012).

    Article  PubMed  CAS  Google Scholar 

  143. Prince, H. M. et al. Brentuximab vedotin or physician’s choice in CD30-positive cutaneous T-cell lymphoma (ALCANZA): an international, open-label, randomised, phase 3, multicentre trial. Lancet 390, 555–566 (2017).

    Article  PubMed  CAS  Google Scholar 

  144. Kim, H. K. et al. Complete remission in CD30-positive refractory extranodal NK/T-cell lymphoma with brentuximab vedotin. Blood Res. 50, 254–256 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Poon, L. M. & Kwong, Y. L. Complete remission of refractory disseminated NK/T cell lymphoma with brentuximab vedotin and bendamustine. Ann. Hematol. 95, 847–849 (2016).

    Article  PubMed  Google Scholar 

  146. Ansell, S. M. et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N. Engl. J. Med. 372, 311–319 (2015).

    Article  PubMed  Google Scholar 

  147. Fang, W. et al. Camrelizumab (SHR-1210) alone or in combination with gemcitabine plus cisplatin for nasopharyngeal carcinoma: results from two single-arm, phase 1 trials. Lancet Oncol. 19, 1338–1350 (2018).

    Article  PubMed  CAS  Google Scholar 

  148. Jiang, W. et al. Enhancing efficacy and reducing toxicity: therapeutic optimization in locoregionally advanced nasopharyngeal carcinoma. Cell Rep. Med. 5, 101594 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Chatterjee, B. et al. CD8+ T cells retain protective functions despite sustained inhibitory receptor expression during Epstein–Barr virus infection in vivo. PLoS Pathog. 15, e1007748 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Volk, V. et al. PD-1 blockade aggravates Epstein–Barr virus+ post-transplant lymphoproliferative disorder in humanized mice resulting in central nervous system involvement and CD4+ T cell dysregulations. Front. Oncol. 10, 614876 (2020).

    Article  PubMed  Google Scholar 

  151. Johnson, D. B. et al. A case report of clonal EBV-like memory CD4+ T cell activation in fatal checkpoint inhibitor-induced encephalitis. Nat. Med. 25, 1243–1250 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Matsumura, T. et al. Lymphoproliferative disorder in an esophageal cancer patient treated with pembrolizumab. Intern. Med. https://doi.org/10.2169/internalmedicine.3743-24 (2024).

  153. Heslop, H. E., Brenner, M. K. & Rooney, C. M. Donor T cells to treat EBV-associated lymphoma. N. Engl. J. Med. 331, 679–680 (1994).

    Article  PubMed  CAS  Google Scholar 

  154. Papadopoulos, E. B. et al. Infusions of donor leukocytes to treat Epstein–Barr virus-associated lymphoproliferative disorders after allogeneic bone marrow transplantation. N. Engl. J. Med. 330, 1185–1191 (1994).

    Article  PubMed  CAS  Google Scholar 

  155. Leen, A. M., Rooney, C. M. & Foster, A. E. Improving T cell therapy for cancer. Annu. Rev. Immunol. 25, 243–265 (2007).

    Article  PubMed  CAS  Google Scholar 

  156. Hanley, P. J. et al. Functionally active virus-specific T cells that target CMV, adenovirus, and EBV can be expanded from naive T-cell populations in cord blood and will target a range of viral epitopes. Blood 114, 1958–1967 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Papadopoulou, A. et al. Activity of broad-spectrum T cells as treatment for AdV, EBV, CMV, BKV, and HHV6 infections after HSCT. Sci. Transl Med. 6, 242ra283 (2014).

    Article  Google Scholar 

  158. Bollard, C. M. et al. The generation and characterization of LMP2-specific CTLs for use as adoptive transfer from patients with relapsed EBV-positive Hodgkin disease. J. Immunother. 27, 317–327 (2004).

    Article  PubMed  Google Scholar 

  159. Bollard, C. M. et al. Sustained complete responses in patients with lymphoma receiving autologous cytotoxic T lymphocytes targeting Epstein–Barr virus latent membrane proteins. J. Clin. Oncol. 32, 798–808 (2014).

    Article  PubMed  CAS  Google Scholar 

  160. Icheva, V. et al. Adoptive transfer of Epstein–Barr virus (EBV) nuclear antigen 1-specific T cells as treatment for EBV reactivation and lymphoproliferative disorders after allogeneic stem-cell transplantation. J. Clin. Oncol. 31, 39–48 (2013).

    Article  PubMed  CAS  Google Scholar 

  161. Moss, D. J., Khanna, R. & Gandhi, M. The use of T-cell directed cellular therapies in Australia. Cytotherapy 9, 222–224 (2007).

    Article  PubMed  CAS  Google Scholar 

  162. Pender, M. P. et al. Epstein–Barr virus-specific adoptive immunotherapy for progressive multiple sclerosis. Mult. Scler. 20, 1541–1544 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Pender, M. P. et al. Epstein–Barr virus-specific T cell therapy for progressive multiple sclerosis. JCI Insight 3, e124717 (2018).

    Article  Google Scholar 

  164. Leen, A. M. et al. Multicenter study of banked third-party virus-specific T cells to treat severe viral infections after hematopoietic stem cell transplantation. Blood 121, 5113–5123 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Doubrovina, E. et al. Adoptive immunotherapy with unselected or EBV-specific T cells for biopsy-proven EBV+ lymphomas after allogeneic hematopoietic cell transplantation. Blood 119, 2644–2656 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. O’Reilly, R. J., Prockop, S., Hasan, A. & Doubrovina, E. Therapeutic advantages provided by banked virus-specific T-cells of defined HLA-restriction. Bone Marrow Transpl. 54, 759–764 (2019).

    Article  Google Scholar 

  167. Haque, T. et al. Allogeneic cytotoxic T-cell therapy for EBV-positive posttransplantation lymphoproliferative disease: results of a phase 2 multicenter clinical trial. Blood 110, 1123–1131 (2007).

    Article  PubMed  CAS  Google Scholar 

  168. Haque, T. et al. Treatment of Epstein–Barr-virus-positive post-transplantation lymphoproliferative disease with partly HLA-matched allogeneic cytotoxic T cells. Lancet 360, 436–442 (2002).

    Article  PubMed  Google Scholar 

  169. Sinha, D. et al. ‘Off-the-shelf’ allogeneic antigen-specific adoptive T-cell therapy for the treatment of multiple EBV-associated malignancies. J. Immunother. Cancer 9, e001608 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Bollard, C. M. et al. Tumor-specific T-cells engineered to overcome tumor immune evasion induce clinical responses in patients with relapsed hodgkin lymphoma. J. Clin. Oncol. 36, 1128–1139 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Smith, C. et al. Complete response to PD-1 blockade following EBV-specific T-cell therapy in metastatic nasopharyngeal carcinoma. npj Precis. Oncol. 5, 24 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Gandhi, M. K. et al. Expression of LAG-3 by tumor-infiltrating lymphocytes is coincident with the suppression of latent membrane antigen-specific CD8+ T-cell function in Hodgkin lymphoma patients. Blood 108, 2280–2289 (2006).

    Article  PubMed  CAS  Google Scholar 

  173. Paliannina, D. et al. Stem cell memory EBV-specific T cells control EBV tumor growth and persist in vivo. Sci. Adv. 10, eado2048 (2024).

    Article  Google Scholar 

  174. Hui, E. P. et al. Phase I trial of recombinant modified vaccinia ankara encoding Epstein–Barr viral tumor antigens in nasopharyngeal carcinoma patients. Cancer Res. 73, 1676–1688 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Taylor, G. S. et al. A recombinant modified vaccinia ankara vaccine encoding Epstein–Barr virus (EBV) target antigens: a phase I trial in UK patients with EBV-positive cancer. Clin. Cancer Res. 20, 5009–5022 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Rühl, J. et al. Heterologous prime-boost vaccination protects from EBV antigen expressing lymphomas. J. Clin. Invest. 129, 2071–2087 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Paludan, C. et al. EBNA1 specific CD4+ Th1 cells kill Burkitt’s lymphoma cells. J. Immunol. 169, 1593–1603 (2002).

    Article  PubMed  CAS  Google Scholar 

  178. Gurer, C. et al. Targeting the nuclear antigen 1 of Epstein–Barr virus to the human endocytic receptor DEC-205 stimulates protective T-cell responses. Blood 112, 1231–1239 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Meixlsperger, S. et al. CD141+ dendritic cells produce prominent amounts of IFN-α after dsRNA recognition and can be targeted via DEC-205 in humanized mice. Blood 121, 5034–5044 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Läderach, F. et al. MHC class II-deficient mice allow functional human CD4+ T-cell development. Eur. J. Immunol. 53, e2250313 (2023).

    Article  PubMed  Google Scholar 

  181. van Zyl, D. G. et al. Immunogenic particles with a broad antigenic spectrum stimulate cytolytic T cells and offer increased protection against EBV infection ex vivo and in mice. PLoS Pathog. 14, e1007464 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Dasari, V. et al. Lymph node targeted multi-epitope subunit vaccine promotes effective immunity to EBV in HLA-expressing mice. Nat. Commun. 14, 4371 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Moutschen, M. et al. Phase I/II studies to evaluate safety and immunogenicity of a recombinant gp350 Epstein–Barr virus vaccine in healthy adults. Vaccine 25, 4697–4705 (2007).

    Article  PubMed  CAS  Google Scholar 

  184. Sokal, E. M. et al. Recombinant gp350 vaccine for infectious mononucleosis: a phase 2, randomized, double-blind, placebo-controlled trial to evaluate the safety, immunogenicity, and efficacy of an Epstein–Barr virus vaccine in healthy young adults. J. Infect. Dis. 196, 1749–1753 (2007).

    Article  PubMed  Google Scholar 

  185. Cui, X. et al. A novel tetrameric gp350 1-470 as a potential Epstein–Barr virus vaccine. Vaccine 31, 3039–3045 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Kanekiyo, M. et al. Rational design of an Epstein–Barr virus vaccine targeting the receptor-binding site. Cell 162, 1090–1100 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Ogembo, J. G. et al. A chimeric EBV gp350/220-based VLP replicates the virion B-cell attachment mechanism and elicits long-lasting neutralizing antibodies in mice. J. Transl. Med. 13, 50 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Bu, W. et al. Immunization with components of the viral fusion apparatus elicits antibodies that neutralize Epstein–Barr virus in B cells and epithelial cells. Immunity 50, 1305–1316.e1306 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Cui, X. et al. Rabbits immunized with Epstein–Barr virus gH/gL or gB recombinant proteins elicit higher serum virus neutralizing activity than gp350. Vaccine 34, 4050–4055 (2016).

    Article  PubMed  CAS  Google Scholar 

  190. Wei, C. J. et al. A bivalent Epstein–Barr virus vaccine induces neutralizing antibodies that block infection and confer immunity in humanized mice. Sci. Transl Med. 14, eabf3685 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. Cui, X. et al. Immunization with Epstein–Barr virus core fusion machinery envelope proteins elicit high titers of neutralizing activities and protect humanized mice from lethal dose EBV challenge. Vaccines 9, 285 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Sun, C. et al. A gB nanoparticle vaccine elicits a protective neutralizing antibody response against EBV. Cell Host Microbe 31, 1882–1897.e10 (2023).

    Article  PubMed  CAS  Google Scholar 

  193. Zhong, L. et al. A cocktail nanovaccine targeting key entry glycoproteins elicits high neutralizing antibody levels against EBV infection. Nat. Commun. 15, 5310 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. Escalante, G. M. et al. Multivalent MVA-vectored vaccine elicits EBV neutralizing antibodies in rhesus macaques that reduce EBV infection in humanized mice. Front. Immunol. 15, 1445209 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Shannon-Lowe, C. D., Neuhierl, B., Baldwin, G., Rickinson, A. B. & Delecluse, H. J. Resting B cells as a transfer vehicle for Epstein–Barr virus infection of epithelial cells. Proc. Natl Acad. Sci. USA 103, 7065–7070 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Shannon-Lowe, C. & Rowe, M. Epstein–Barr virus infection of polarized epithelial cells via the basolateral surface by memory B cell-mediated transfer infection. PLoS Pathog. 7, e1001338 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Connolly, S. A., Jardetzky, T. S. & Longnecker, R. The structural basis of herpesvirus entry. Nat. Rev. Microbiol. 19, 110–121 (2021).

    Article  PubMed  CAS  Google Scholar 

  198. Borza, C. M. & Hutt-Fletcher, L. M. Alternate replication in B cells and epithelial cells switches tropism of Epstein–Barr virus. Nat. Med. 8, 594–599 (2002).

    Article  PubMed  CAS  Google Scholar 

  199. Chen, J. et al. Ephrin receptor A2 is a functional entry receptor for Epstein–Barr virus. Nat. Microbiol. 3, 172–180 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  200. Zhang, H. et al. Ephrin receptor A2 is an epithelial cell receptor for Epstein–Barr virus entry. Nat. Microbiol. 3, 1–8 (2018).

    Article  PubMed  Google Scholar 

  201. Sommermann, T. et al. Functional interplay of Epstein–Barr virus oncoproteins in a mouse model of B cell lymphomagenesis. Proc. Natl Acad. Sci. USA 117, 14421–14432 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  202. Bristol, J. A. et al. A cancer-associated Epstein–Barr virus BZLF1 promoter variant enhances lytic infection. PLoS Pathog. 14, e1007179 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Okuno, Y. et al. Defective Epstein–Barr virus in chronic active infection and haematological malignancy. Nat. Microbiol. 4, 404–413 (2019).

    Article  PubMed  CAS  Google Scholar 

  204. Ma, S. D. et al. A new model of Epstein–Barr virus infection reveals an important role for early lytic viral protein expression in the development of lymphomas. J. Virol. 85, 165–177 (2011).

    Article  PubMed  CAS  Google Scholar 

  205. Antsiferova, O. et al. Adoptive transfer of EBV specific CD8+ T cell clones can transiently control EBV infection in humanized mice. PLoS Pathog. 10, e1004333 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Ma, S. D. et al. An Epstein–Barr virus (EBV) mutant with enhanced BZLF1 expression causes lymphomas with abortive lytic EBV infection in a humanized mouse model. J. Virol. 86, 7976–7987 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  207. McHugh, D. et al. Persistent KSHV infection increases EBV-associated tumor formation in vivo via enhanced EBV lytic gene expression. Cell Host Microbe 22, 61–73 (2017).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Research in the author’s laboratory is in part financially supported by the Swiss National Science Foundation (310030_204470/1 and CRSII_222718_10000065), Cancer Research Switzerland (KFS-5896-08-2023-R), the Swiss MS Society (2023-17), the Swiss State Secretariat for Education, Research and Innovation (SERI) for EU Horizon BEHIND-MS, the Sobek Foundation, the Swiss Vaccine Research Institute, the Vontobel Foundation, Roche and Pfizer.

Author information

Authors and Affiliations

Authors

Contributions

C.M. wrote and edited this manuscript.

Corresponding author

Correspondence to Christian Münz.

Ethics declarations

Competing interests

The author declares no competing interests.

Peer review

Peer review information

Nature Reviews Microbiology thanks Paul Farrell, Benjamin Gewurz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Münz, C. Epstein–Barr virus pathogenesis and emerging control strategies. Nat Rev Microbiol 23, 667–679 (2025). https://doi.org/10.1038/s41579-025-01181-y

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41579-025-01181-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing