Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Gut microbiota-derived short-chain fatty acids and their role in human health and disease

Abstract

Short-chain fatty acids (SCFAs) are a group of organic compounds produced by the fermentation of dietary fibre by the human gut microbiota. They play diverse roles in different physiological processes of the host with implications for human health and disease. This Review provides an overview of the complex microbial metabolism underlying SCFA formation, considering microbial interactions and modulating factors of the gut environment. We explore the multifaceted mechanistic interactions between SCFAs and the host, with a particular focus on the local actions of SCFAs in the gut and their complex interactions with the immune system. We also discuss how these actions influence intestinal and extraintestinal diseases and emerging therapeutic strategies using SCFAs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 2: Molecular interactions of SCFAs with the host.
Fig. 3: Immune regulation by SCFAs.
Fig. 4: SCFA modulation strategies.

Similar content being viewed by others

References

  1. Gill, S. K., Rossi, M., Bajka, B. & Whelan, K. Dietary fibre in gastrointestinal health and disease. Nat. Rev. Gastroenterol. Hepatol. 18, 101–116 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Louis, P., Solvang, M., Duncan, S. H., Walker, A. W. & Mukhopadhya, I. Dietary fibre complexity and its influence on functional groups of the human gut microbiota. Proc. Nutr. Soc. 80, 386–397 (2021).

    Article  CAS  Google Scholar 

  3. Glover, J. S., Ticer, T. D. & Engevik, M. A. Characterizing the mucin-degrading capacity of the human gut microbiota. Sci. Rep. 12, 8456 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang, D. et al. Short-chain fatty acids in diseases. Cell Commun. Signal. 21, 212 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hodgkinson, K. et al. Butyrate’s role in human health and the current progress towards its clinical application to treat gastrointestinal disease. Clin. Nutr. 42, 61–75 (2023).

    Article  CAS  PubMed  Google Scholar 

  6. Drula, E. et al. The carbohydrate-active enzyme database: functions and literature. Nucleic Acids Res. 50, D571–D577 (2022).

    Article  CAS  PubMed  Google Scholar 

  7. Ndeh, D. & Gilbert, H. J. Biochemistry of complex glycan depolymerisation by the human gut microbiota. FEMS Microbiol. Rev. 42, 146–164 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Louis, P. & Flint, H. J. Formation of propionate and butyrate by the human colonic microbiota. Environ. Microbiol. 19, 29–41 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Frolova, M. S., Suvorova, I. A., Iablokov, S. N., Petrov, S. N. & Rodionov, D. A. Genomic reconstruction of short-chain fatty acid production by the human gut microbiota. Front. Mol. Biosci. 9, 949563 (2022). This study utilizes human faecal metagenomic data sets to perform an in-depth in silico analysis of SCFA fermentation pathways in different populations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Reichardt, N. et al. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME J. 8, 1323–1335 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bui, T. P. N. et al. Production of butyrate from lysine and the Amadori product fructoselysine by a human gut commensal. Nat. Commun. 6, 10062 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Louis, P., Duncan, S. H., Sheridan, P. O., Walker, A. W. & Flint, H. J. Microbial lactate utilisation and the stability of the gut microbiome. Gut Microbiome 3, e3 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wang, S. P. et al. Pivotal roles for pH, lactate, and lactate-utilizing bacteria in the stability of a human colonic microbial ecosystem. mSystems 5, 1–18 (2020).

    Article  CAS  Google Scholar 

  14. Hackmann, T. J. New biochemical pathways for forming short-chain fatty acids during fermentation in rumen bacteria. JDS Commun. 5, 230–235 (2024).

    Article  PubMed  Google Scholar 

  15. Walker, A. W., Duncan, S. H., McWilliam Leitch, E. C., Child, M. W. & Flint, H. J. pH and peptide supply can radically alter bacterial populations and short-chain fatty acid ratios within microbial communities from the human colon. Appl. Environ. Microbiol. 71, 3692–3700 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Duncan, S. H., Louis, P., Thomson, J. M. & Flint, H. J. The role of pH in determining the species composition of the human colonic microbiota. Environ. Microbiol. 11, 2112–2122 (2009).

    Article  PubMed  Google Scholar 

  17. LaBouyer, M. et al. Higher total faecal short-chain fatty acid concentrations correlate with increasing proportions of butyrate and decreasing proportions of branched-chain fatty acids across multiple human studies. Gut Microbiome 3, e2 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Flint, H. J., Louis, P. & Duncan, S. H. Why does increased microbial fermentation in the human colon shift toward butyrate? AIMS Microbiol. 10, 311–319 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Campbell, A., Gdanetz, K., Schmidt, A. W. & Schmidt, T. M. H2 generated by fermentation in the human gut microbiome influences metabolism and competitive fitness of gut butyrate producers. Microbiome 11, 133 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Joos, R. et al. Examining the healthy human microbiome concept. Nat. Rev. Microbiol. 23, 192–205 (2024).

    Article  PubMed  Google Scholar 

  21. Park, S.-Y. et al. Strain-level fitness in the gut microbiome is an emergent property of glycans and a single metabolite. Cell 185, 513–529.e21 (2022). Using in vitro and in vivo approaches, this study demonstrates the unique fitness landscape of different Bacteroides strains based on their response to butyrate in the presence of different glycan substrates.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chung, W. S. F. et al. Impact of carbohydrate substrate complexity on the diversity of the human colonic microbiota. FEMS Microbiol. Ecol. 95, fiy201 (2019).

    CAS  PubMed  Google Scholar 

  23. Puhlmann, M.-L. & de Vos, W. M. Intrinsic dietary fibers and the gut microbiome: rediscovering the benefits of the plant cell matrix for human health. Front. Immunol. 13, 954845 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. So, D. et al. Detection of changes in regional colonic fermentation in response to supplementing a low FODMAP diet with dietary fibres by hydrogen concentrations, but not by luminal pH. Aliment. Pharmacol. Ther. 58, 417–428 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. De Paepe, K. et al. Modification of wheat bran particle size and tissue composition affects colonisation and metabolism by human faecal microbiota. Food Funct. 10, 379–396 (2019).

    Article  PubMed  Google Scholar 

  26. Solvang, M. et al. Beyond purified dietary fibre supplements: compositional variation between cell wall fibre from different plants influences human faecal microbiota activity and growth in vitro. Environ. Microbiol. 25, 1484–1504 (2023).

    Article  CAS  PubMed  Google Scholar 

  27. Puhlmann, M.-L. et al. Analysis of the fermentation kinetics and gut microbiota modulatory effect of dried chicory root reveals the impact of the plant–cell matrix rationalizing its conversion in the distal colon. Microbiome Res. Rep. 3, 28 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. La Rosa, S. L. et al. The human gut Firmicute Roseburia intestinalis is a primary degrader of dietary β-mannans. Nat. Commun. 10, 905 (2019). This study provides a deep biochemical characterization of Roseburia intestinalis β-mannan utilization and reveals its competitive behaviour with other gut bacteria both in vitro and in vivo.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Feng, J. et al. Polysaccharide utilization loci in Bacteroides determine population fitness and community-level interactions. Cell Host Microbe 30, 200–215.e12 (2022). This study reveals the contribution of different polysaccharide utilization loci (PULs) to nutrient-dependent fitness of Bacteroides uniformis PUL mutants and demonstrates their altered cross-feeding interactions with butyrate-producing bacteria.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kettle, H., Louis, P. & Flint, H. J. Process-based modelling of microbial community dynamics in the human colon. J. R. Soc. Interface 19, 20220489 (2022).

    Article  CAS  PubMed Central  Google Scholar 

  31. Quinn-Bohmann, N. et al. Microbial community-scale metabolic modelling predicts personalized short-chain fatty acid production profiles in the human gut. Nat. Microbiol. 9, 1700–1712 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gibbons, S. M. et al. Perspective: leveraging the gut microbiota to predict personalized responses to dietary, prebiotic, and probiotic interventions. Adv. Nutr. 13, 1450–1461 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Cummings, J. H., Pomare, E. W., Branch, W. J., Naylor, C. P. & Macfarlane, G. T. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28, 1221–1227 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fagundes, R. R. et al. Beyond butyrate: microbial fiber metabolism supporting colonic epithelial homeostasis. Trends Microbiol. 32, 178–189 (2024).

    Article  CAS  PubMed  Google Scholar 

  35. Stumpff, F. A look at the smelly side of physiology: transport of short chain fatty acids. Pflugers Arch. 470, 571–598 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Wang, Q. & Mackay, C. R. High metabolite concentrations in portal venous blood as a possible mechanism for microbiota effects on the immune system and Western diseases. J. Allergy Clin. Immunol. 153, 980–982 (2024).

    Article  CAS  PubMed  Google Scholar 

  37. O’Riordan, K. J. et al. Short chain fatty acids: microbial metabolites for gut–brain axis signalling. Mol. Cell. Endocrinol. 546, 111572 (2022).

    Article  PubMed  Google Scholar 

  38. Sukkar, A. H., Lett, A. M., Frost, G. & Chambers, E. S. Regulation of energy expenditure and substrate oxidation by short-chain fatty acids. J. Endocrinol. 242, R1–R8 (2019).

    Article  CAS  PubMed  Google Scholar 

  39. Priyadarshini, M., Kotlo, K. U., Dudeja, P. K. & Layden, B. T. Role of short chain fatty acid receptors in intestinal physiology and pathophysiology. Compr. Physiol. 8, 1091–1115 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kimura, I., Ichimura, A., Ohue-Kitano, R. & Igarashi, M. Free fatty acid receptors in health and disease. Physiol. Rev. 100, 171–210 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Barki, N. et al. Phosphorylation bar-coding of free fatty acid receptor 2 is generated in a tissue-specific manner. eLife 12, RP91861 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bolognini, D., Tobin, A. B., Milligan, G. & Moss, C. E. The pharmacology and function of receptors for short-chain fatty acids. Mol. Pharmacol. 89, 388–398 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Stein, R. A. & Riber, L. Epigenetic effects of short-chain fatty acids from the large intestine on host cells. Microlife 4, uqad032 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Sarkar, S. et al. Histone deacetylase inhibitors reverse CpG methylation by regulating DNMT1 through ERK signaling. Anticancer Res. 31, 2723–2732 (2011).

    CAS  PubMed  Google Scholar 

  45. Steliou, K., Boosalis, M. S., Perrine, S. P., Sangerman, J. & Faller, D. V. Butyrate histone deacetylase inhibitors. Biores. Open Access 1, 192–198 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. He, J. et al. Short-chain fatty acids and their association with signalling pathways in inflammation, glucose and lipid metabolism. Int. J. Mol. Sci. 21, 6356 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rekha, K. et al. Short-chain fatty acid: an updated review on signaling, metabolism, and therapeutic effects. Crit. Rev. Food Sci. Nutr. 64, 2461–2489 (2024).

    Article  CAS  PubMed  Google Scholar 

  48. Donohoe, D. R. et al. The Warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation. Mol. Cell 48, 612–626 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Moffett, J. R., Puthillathu, N., Vengilote, R., Jaworski, D. M. & Namboodiri, A. M. Acetate revisited: a key biomolecule at the nexus of metabolism, epigenetics and oncogenesis — part 1: acetyl-CoA, acetogenesis and acyl-CoA short-chain synthetases. Front. Physiol. 11, 580167 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Chen, Y. et al. Lysine propionylation and butyrylation are novel post-translational modifications in histones. Mol. Cell. Proteom. 6, 812–819 (2007).

    Article  CAS  Google Scholar 

  51. Fellows, R. et al. Microbiota derived short chain fatty acids promote histone crotonylation in the colon through histone deacetylases. Nat. Commun. 9, 105 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Martin-Gallausiaux, C., Marinelli, L., Blottière, H. M., Larraufie, P. & Lapaque, N. SCFA: mechanisms and functional importance in the gut. Proc. Nutr. Soc. 80, 37–49 (2021).

    Article  CAS  PubMed  Google Scholar 

  53. Modoux, M. et al. Butyrate acts through HDAC inhibition to enhance aryl hydrocarbon receptor activation by gut microbiota-derived ligands. Gut Microbes 14, 2105637 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Peng, Y. & Croce, C. M. The role of microRNAs in human cancer. Signal Transduct. Target. Ther. 1, 1–9 (2016).

    Article  Google Scholar 

  55. Hu, S. et al. The microbe-derived short chain fatty acid butyrate targets miRNA-dependent p21 gene expression in human colon cancer. PLoS ONE 6, e16221 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bishop, K. S., Xu, H. & Marlow, G. Epigenetic regulation of gene expression induced by butyrate in colorectal cancer: involvement of microRNA. Genet. Epigenet. 9, 1179237X17729900 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Shealy, N. G., Yoo, W. & Byndloss, M. X. Colonization resistance: metabolic warfare as a strategy against pathogenic Enterobacteriaceae. Curr. Opin. Microbiol. 64, 82–90 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Shelton, C. D. et al. Salmonella enterica serovar Typhimurium uses anaerobic respiration to overcome propionate-mediated colonization resistance. Cell Rep. 38, 110180 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Whisner, C. M. & Castillo, L. F. Prebiotics, bone and mineral metabolism. Calcif. Tissue Int. 102, 443–479 (2018).

    Article  CAS  PubMed  Google Scholar 

  60. Hyland, N. P. & Cryan, J. F. Microbe–host interactions: influence of the gut microbiota on the enteric nervous system. Dev. Biol. 417, 182–187 (2016).

    Article  CAS  PubMed  Google Scholar 

  61. Anitha, M., Vijay-Kumar, M., Sitaraman, S. V., Gewirtz, A. T. & Srinivasan, S. Gut microbial products regulate murine gastrointestinal motility via toll-like receptor 4 signaling. Gastroenterology 143, 1006–1016.e4 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. Zheng, Z., Tang, J., Hu, Y. & Zhang, W. Role of gut microbiota-derived signals in the regulation of gastrointestinal motility. Front. Med. 9, 961703 (2022).

    Article  Google Scholar 

  63. Sun, Q., Jia, Q., Song, L. & Duan, L. Alterations in fecal short-chain fatty acids in patients with irritable bowel syndrome: a systematic review and meta-analysis. Medicine 98, e14513 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Burger-van Paassen, N. et al. The regulation of intestinal mucin MUC2 expression by short-chain fatty acids: implications for epithelial protection. Biochem. J. 420, 211–219 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. Willemsen, L. E., Koetsier, M. A., van Deventer, S. J. & van Tol, E. A. Short chain fatty acids stimulate epithelial mucin 2 expression through differential effects on prostaglandin E(1) and E(2) production by intestinal myofibroblasts. Gut 52, 1442–1447 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gaudier, E., Rival, M., Buisine, M. P., Robineau, I. & Hoebler, C. Butyrate enemas upregulate Muc genes expression but decrease adherent mucus thickness in mice colon. Physiol. Res. 58, 111–119 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Hamer, H. M. et al. Effect of butyrate enemas on inflammation and antioxidant status in the colonic mucosa of patients with ulcerative colitis in remission. Clin. Nutr. 29, 738–744 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. Peng, L., He, Z., Chen, W., Holzman, I. R. & Lin, J. Effects of butyrate on intestinal barrier function in a Caco-2 cell monolayer model of intestinal barrier. Pediatr. Res. 61, 37–41 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Cresci, G. A. et al. Prophylactic tributyrin treatment mitigates chronic-binge ethanol-induced intestinal barrier and liver injury. J. Gastroenterol. Hepatol. 32, 1587–1597 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tabat, M. W. et al. Acute effects of butyrate on induced hyperpermeability and tight junction protein expression in human colonic tissues. Biomolecules 10, 766 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Vancamelbeke, M. et al. Butyrate does not protect against inflammation-induced loss of epithelial barrier function and cytokine production in primary cell monolayers from patients with ulcerative colitis. J. Crohns Colitis 13, 1351–1361 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Liu, T. et al. Short-chain fatty acids suppress lipopolysaccharide-induced production of nitric oxide and proinflammatory cytokines through inhibition of NF-κB pathway in RAW264.7 cells. Inflammation 35, 1676–1684 (2012).

    Article  CAS  PubMed  Google Scholar 

  73. Schulthess, J. et al. The short chain fatty acid butyrate imprints an antimicrobial program in macrophages. Immunity 50, 432–445.e7 (2019). This study provides the mechanistic pathway by which butyrate induces the differentiation of macrophages to exert their antimicrobial function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ji, J. et al. Microbial metabolite butyrate facilitates M2 macrophage polarization and function. Sci. Rep. 6, 24838 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang, Z. et al. Inulin alleviates inflammation of alcoholic liver disease via SCFAs-inducing suppression of M1 and facilitation of M2 macrophages in mice. Int. Immunopharmacol. 78, 106062 (2020).

    Article  CAS  PubMed  Google Scholar 

  76. Aguilar, E. C. et al. Butyrate impairs atherogenesis by reducing plaque inflammation and vulnerability and decreasing NFκB activation. Nutr. Metab. Cardiovasc. Dis. 24, 606–613 (2014).

    Article  CAS  PubMed  Google Scholar 

  77. Zapolska-Downar, D., Siennicka, A., Kaczmarczyk, M., Kolodziej, B. & Naruszewicz, M. Butyrate inhibits cytokine-induced VCAM-1 and ICAM-1 expression in cultured endothelial cells: the role of NF-kappaB and PPARalpha. J. Nutr. Biochem. 15, 220–228 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Mills, S. W., Montgomery, S. H. & Morck, D. W. Evaluation of the effects of short-chain fatty acids and extracellular pH on bovine neutrophil function in vitro. Am. J. Vet. Res. 67, 1901–1907 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Li, G. et al. Microbiota metabolite butyrate constrains neutrophil functions and ameliorates mucosal inflammation in inflammatory bowel disease. Gut Microbes 13, 1968257 (2021). This study shows that butyrate inhibited the ability of neutrophils isolated from patients with IBD to produce pro-inflammatory cytokines and suppressed neutrophil migration and formation of neutrophil extracellular traps.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Aoyama, M., Kotani, J. & Usami, M. Butyrate and propionate induced activated or non-activated neutrophil apoptosis via HDAC inhibitor activity but without activating GPR-41/GPR-43 pathways. Nutrition 26, 653–661 (2010).

    Article  CAS  PubMed  Google Scholar 

  81. Liu, B. et al. Butyrate protects rat liver against total hepatic ischemia reperfusion injury with bowel congestion. PLoS ONE 9, e106184 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Simeoli, R. et al. An orally administered butyrate-releasing derivative reduces neutrophil recruitment and inflammation in dextran sulphate sodium-induced murine colitis. Br. J. Pharmacol. 174, 1484–1496 (2017).

    Article  CAS  PubMed  Google Scholar 

  83. Liu, L. et al. Butyrate interferes with the differentiation and function of human monocyte-derived dendritic cells. Cell. Immunol. 277, 66–73 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Kaisar, M. M. M., Pelgrom, L. R., van der Ham, A. J., Yazdanbakhsh, M. & Everts, B. Butyrate conditions human dendritic cells to prime type 1 regulatory T cells via both histone deacetylase inhibition and G protein-coupled receptor 109A signaling. Front. Immunol. 8, 1429 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Nastasi, C. et al. The effect of short-chain fatty acids on human monocyte-derived dendritic cells. Sci. Rep. 5, 16148 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Tao, R. et al. Deacetylase inhibition promotes the generation and function of regulatory T cells. Nat. Med. 13, 1299–1307 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Arpaia, N. et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504, 451–455 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Park, J. et al. Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR–S6K pathway. Mucosal Immunol. 8, 80–93 (2015).

    Article  CAS  PubMed  Google Scholar 

  89. Kespohl, M. et al. The microbial metabolite butyrate induces expression of Th1-associated factors in CD4(+) T cells. Front. Immunol. 8, 1036 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Luu, M. et al. Regulation of the effector function of CD8(+) T cells by gut microbiota-derived metabolite butyrate. Sci. Rep. 8, 14430 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Kim, M., Qie, Y., Park, J. & Kim, C. H. Gut microbial metabolites fuel host antibody responses. Cell Host Microbe 20, 202–214 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wu, W. et al. Microbiota metabolite short-chain fatty acid acetate promotes intestinal IgA response to microbiota which is mediated by GPR43. Mucosal Immunol. 10, 946–956 (2017).

    Article  CAS  PubMed  Google Scholar 

  93. Sanchez, H. N. et al. B cell-intrinsic epigenetic modulation of antibody responses by dietary fiber-derived short-chain fatty acids. Nat. Commun. 11, 60 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Luu, M., Monning, H. & Visekruna, A. Exploring the molecular mechanisms underlying the protective effects of microbial SCFAs on intestinal tolerance and food allergy. Front. Immunol. 11, 1225 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Daien, C. I. et al. Gut-derived acetate promotes B10 cells with antiinflammatory effects. JCI Insight 6, e144156 (2021). This study shows that acetate induces proliferation of IL-10 producing regulatory B cells (B10 cells) in both in vivo and in vitro models, outlining its anti-inflammatory role.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Cong, J., Zhou, P. & Zhang, R. Intestinal microbiota-derived short chain fatty acids in host health and disease. Nutrients 14, 1977 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Mukhopadhya, I., Hansen, R., El-Omar, E. M. & Hold, G. L. IBD — what role do Proteobacteria play? Nat. Rev. Gastroenterol. Hepatol. 9, 219–230 (2012).

    Article  CAS  PubMed  Google Scholar 

  98. Machiels, K. et al. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut 63, 1275–1283 (2014).

    Article  CAS  PubMed  Google Scholar 

  99. Kowalska-Duplaga, K. et al. Differences in the intestinal microbiome of healthy children and patients with newly diagnosed Crohn’s disease. Sci. Rep. 9, 18880 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Laserna-Mendieta, E. J. et al. Determinants of reduced genetic capacity for butyrate synthesis by the gut microbiome in Crohn’s disease and ulcerative colitis. J. Crohns Colitis 12, 204–216 (2018).

    Article  PubMed  Google Scholar 

  101. Xu, H. M. et al. Characterization of short-chain fatty acids in patients with ulcerative colitis: a meta-analysis. BMC Gastroenterol. 22, 117 (2022). This meta-analysis of 11 studies shows that patients with ulcerative colitis had significantly decreased concentration of acetate and propionate as opposed to healthy controls.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. De Preter, V. et al. Kinetics of butyrate metabolism in the normal colon and in ulcerative colitis: the effects of substrate concentration and carnitine on the β‐oxidation pathway. Aliment. Pharmacol. Ther. 34, 526–532 (2011).

    Article  PubMed  Google Scholar 

  103. Ferrer-Picón, E. et al. Intestinal inflammation modulates the epithelial response to butyrate in patients with inflammatory bowel disease. Inflamm. Bowel Dis. 26, 43–55 (2020).

    Article  PubMed  Google Scholar 

  104. Starr, A. E. et al. Associations between cellular energy and pediatric inflammatory bowel disease patient response to treatment. J. Proteome Res. 20, 4393–4404 (2021).

    Article  CAS  PubMed  Google Scholar 

  105. Kaczmarczyk, O. et al. Altered fecal short-chain fatty acid profile as a potential marker of disease activity in patients with ulcerative colitis and Crohn’s disease: a pilot study. Pol. Arch. Intern. Med. 132, 16254 (2022).

    PubMed  Google Scholar 

  106. Zhuang, X. et al. Systematic review and meta-analysis: short-chain fatty acid characterization in patients with inflammatory bowel disease. Inflamm. Bowel Dis. 25, 1751–1763 (2019).

    Article  PubMed  Google Scholar 

  107. Vernia, P. et al. Short‐chain fatty acid topical treatment in distal ulcerative colitis. Aliment. Pharmacol. Ther. 9, 309–313 (1995).

    Article  CAS  PubMed  Google Scholar 

  108. Scheppach, W. et al. Effect of butyrate enemas on the colonic mucosa in distal ulcerative colitis. Gastroenterology 103, 51–56 (1992).

    Article  CAS  PubMed  Google Scholar 

  109. Lührs, H. et al. Butyrate inhibits NF-κB activation in lamina propria macrophages of patients with ulcerative colitis. Scand. J. Gastroenterol. 37, 458–466 (2002).

    Article  PubMed  Google Scholar 

  110. Jamka, M. et al. The effect of sodium butyrate enemas compared with placebo on disease activity, endoscopic scores, and histological and inflammatory parameters in inflammatory bowel diseases: a systematic review of randomised controlled trials. Complement. Med. Res. 28, 344–356 (2021).

    Article  PubMed  Google Scholar 

  111. Sabatino, A. et al. Oral butyrate for mildly to moderately active Crohn’s disease. Aliment. Pharmacol. Ther. 22, 789–794 (2005).

    Article  PubMed  Google Scholar 

  112. Vernia, P. et al. Combined oral sodium butyrate and mesalazine treatment compared to oral mesalazine alone in ulcerative colitis. Dig. Dis. Sci. 45, 976–981 (2000).

    Article  CAS  PubMed  Google Scholar 

  113. Bray, F. et al. Global Cancer Statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424 (2018).

    PubMed  Google Scholar 

  114. Reynolds, A. et al. Carbohydrate quality and human health: a series of systematic reviews and meta-analyses. Lancet 393, 434–445 (2019).

    Article  CAS  PubMed  Google Scholar 

  115. Bingham, S. A. et al. Dietary fibre in food and protection against colorectal cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC): an observational study. Lancet 361, 1496–1501 (2003).

    Article  PubMed  Google Scholar 

  116. Yusuf, F., Adewiah, S., Syam, A. F. & Fatchiyah, F. Altered profile of gut microbiota and the level short chain fatty acids in colorectal cancer patients. J. Phys. Conf. Ser. 1146, 012037 (2019).

    Article  Google Scholar 

  117. Shuwen, H. et al. Protective effect of the ‘food–microorganism–SCFAs’ axis on colorectal cancer: from basic research to practical application. J. Cancer Res. Clin. Oncol. 145, 2169–2197 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Vinelli, V. et al. Effects of dietary fibers on short-chain fatty acids and gut microbiota composition in healthy adults: a systematic review. Nutrients 14, 2559 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Gold, A., Choueiry, F., Jin, N., Mo, X. & Zhu, J. The application of metabolomics in recent colorectal cancer studies: a state-of-the-art review. Cancers 14, 725 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Louis, P., Hold, G. L. & Flint, H. J. The gut microbiota, bacterial metabolites and colorectal cancer. Nat. Rev. Microbiol. 12, 661–672 (2014).

    Article  CAS  PubMed  Google Scholar 

  121. Scharlau, D. et al. Mechanisms of primary cancer prevention by butyrate and other products formed during gut flora-mediated fermentation of dietary fibre. Mutat. Res. 682, 39–53 (2009).

    Article  CAS  PubMed  Google Scholar 

  122. Kim, Y.-H., Park, J.-W., Lee, J.-Y. & Kwon, T. K. Sodium butyrate sensitizes TRAIL-mediated apoptosis by induction of transcription from the DR5 gene promoter through Sp1 sites in colon cancer cells. Carcinogenesis 25, 1813–1820 (2004).

    Article  PubMed  Google Scholar 

  123. Waby, J. S. et al. Sp1 acetylation is associated with loss of DNA binding at promoters associated with cell cycle arrest and cell death in a colon cell line. Mol. Cancer 9, 1–16 (2010).

    Article  Google Scholar 

  124. Eslami, M. et al. Importance of the microbiota inhibitory mechanism on the Warburg effect in colorectal cancer cells. J. Gastrointest. Cancer 51, 738–747 (2020).

    Article  CAS  PubMed  Google Scholar 

  125. Luo, Q., Zhou, P., Chang, S., Huang, Z. & Zeng, X. Characterization of butyrate-metabolism in colorectal cancer to guide clinical treatment. Sci. Rep. 13, 5106 (2023). This study utilizes expression of butyrate metabolism-related genes in CRC samples to develop a risk prognostic model that could forecast the response of these patients to immunotherapy and chemotherapy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Ho, M. H.-K., Wong, W. H.-S. & Chang, C. Clinical spectrum of food allergies: a comprehensive review. Clin. Rev. Allergy Immunol. 46, 225–240 (2014).

    Article  CAS  PubMed  Google Scholar 

  127. Sicherer, S. H. & Sampson, H. A. Food allergy: epidemiology, pathogenesis, diagnosis, and treatment. J. Allergy Clin. Immunol. 133, 291–307.e5 (2014).

    Article  CAS  PubMed  Google Scholar 

  128. Stefka, A. T. et al. Commensal bacteria protect against food allergen sensitization. Proc. Natl Acad. Sci. USA 111, 13145–13150 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Liu, S., Yang, B., Yang, P. & Liu, Z. Herbal formula-3 ameliorates OVA-induced food allergy in mice may via modulating the gut microbiota. Am. J. Transl. Res. 11, 5812–5823 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Takahashi, H. et al. Combined oral intake of short and long fructans alters the gut microbiota in food allergy model mice and contributes to food allergy prevention. BMC Microbiol. 23, 266 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. De Paepe, E., Van Gijseghem, L., De Spiegeleer, M., Cox, E. & Vanhaecke, L. A systematic review of metabolic alterations underlying IgE‐mediated food allergy in children. Mol. Nutr. Food Res. 65, e2100536 (2021).

    Article  PubMed  Google Scholar 

  132. Sasaki, M. et al. Systematic review of the association between short‐chain fatty acids and allergic diseases. Allergy 79, 1789–1811 (2024).

    Article  CAS  PubMed  Google Scholar 

  133. Son, M.-Y. & Cho, H.-S. Anticancer effects of gut microbiota-derived short-chain fatty acids in cancers. J. Microbiol. Biotechnol. 33, 849–856 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Yang, Q. et al. A review of gut microbiota‐derived metabolites in tumor progression and cancer therapy. Adv. Sci. 10, e2207366 (2023).

    Article  Google Scholar 

  135. Sun, J. et al. Butyrate as a promising therapeutic target in cancer: from pathogenesis to clinic (review). Int. J. Oncol. 64, 44 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Mayorga-Ramos, A., Barba-Ostria, C., Simancas-Racines, D. & Guamán, L. P. Protective role of butyrate in obesity and diabetes: new insights. Front. Nutr. 9, 1067647 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Evans, C. E. L. et al. Effects of dietary fibre type on blood pressure. J. Hypertens. 33, 897–911 (2015).

    Article  CAS  PubMed  Google Scholar 

  138. Marques, F. Z. et al. High-fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice. Circulation 135, 964–977 (2017).

    Article  CAS  PubMed  Google Scholar 

  139. Karbach, S. H. et al. Gut microbiota promote angiotensin II-induced arterial hypertension and vascular dysfunction. J. Am. Heart Assoc. 5, e003698 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Roshanravan, N. et al. Effect of butyrate and inulin supplementation on glycemic status, lipid profile and glucagon-like peptide 1 level in patients with type 2 diabetes: a randomized double-blind, placebo-controlled trial. Horm. Metab. Res. 49, 886–891 (2017).

    Article  CAS  PubMed  Google Scholar 

  141. Verhaar, B. et al. Oral sodium butyrate increases daytime systolic blood pressure in hypertensive patients: a double-blind, randomized, placebo-controlled trial. J. Hypertens. 41, e77 (2023).

    Article  Google Scholar 

  142. Verhaar, B. J. H. et al. Effects of oral butyrate on blood pressure in patients with hypertension: a randomized, placebo-controlled trial. Hypertension 81, 2124–2136 (2024).

    Article  CAS  PubMed  Google Scholar 

  143. Jie, Z. et al. The gut microbiome in atherosclerotic cardiovascular disease. Nat. Commun. 8, 845 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Zhou, M. et al. The short-chain fatty acid propionate improved ventricular electrical remodeling in a rat model with myocardial infarction. Food Funct. 12, 12580–12593 (2021).

    Article  CAS  PubMed  Google Scholar 

  145. Jiang, X., Huang, X., Tong, Y. & Gao, H. Butyrate improves cardiac function and sympathetic neural remodeling following myocardial infarction in rats. Can. J. Physiol. Pharmacol. 98, 391–399 (2020).

    Article  CAS  PubMed  Google Scholar 

  146. Chambers, E. S. et al. Acute oral sodium propionate supplementation raises resting energy expenditure and lipid oxidation in fasted humans. Diabetes Obes. Metab. 20, 1034–1039 (2018).

    Article  CAS  PubMed  Google Scholar 

  147. Canfora, E. E. et al. Colonic infusions of short-chain fatty acid mixtures promote energy metabolism in overweight/obese men: a randomized crossover trial. Sci. Rep. 7, 2360 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Eslick, S., Thompson, C., Berthon, B. & Wood, L. Short-chain fatty acids as anti-inflammatory agents in overweight and obesity: a systematic review and meta-analysis. Nutr. Rev. 80, 838–856 (2022).

    Article  PubMed  Google Scholar 

  149. Bouter, K. E. C. et al. Differential metabolic effects of oral butyrate treatment in lean versus metabolic syndrome subjects. Clin. Transl. Gastroenterol. 9, e155 (2018).

    Article  Google Scholar 

  150. Khosravi, Z. et al. The effects of butyrate supplementation on glycemic control, lipid profile, blood pressure, nitric oxide level and glutathione peroxidase activity in type 2 diabetic patients: a randomized triple-blind, placebo-controlled trial. Clin. Nutr. ESPEN 49, 79–85 (2022).

    Article  PubMed  Google Scholar 

  151. de Groot, P. F. et al. Oral butyrate does not affect innate immunity and islet autoimmunity in individuals with longstanding type 1 diabetes: a randomised controlled trial. Diabetologia 63, 597–610 (2020).

    Article  PubMed  Google Scholar 

  152. Coppola, S. et al. Therapeutic effects of butyrate on pediatric obesity: a randomized clinical trial. JAMA Netw. Open 5, e2244912 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Byrne, C. S., Chambers, E. S., Morrison, D. J. & Frost, G. The role of short chain fatty acids in appetite regulation and energy homeostasis. Int. J. Obes. 39, 1331–1338 (2015).

    Article  CAS  Google Scholar 

  154. Haspeslagh, E., Heyndrickx, I., Hammad, H. & Lambrecht, B. N. The hygiene hypothesis: immunological mechanisms of airway tolerance. Curr. Opin. Immunol. 54, 102–108 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Roduit, C. et al. High levels of butyrate and propionate in early life are associated with protection against atopy. Allergy 74, 799–809 (2019).

    Article  CAS  PubMed  Google Scholar 

  156. Russell, S. L. et al. Early life antibiotic‐driven changes in microbiota enhance susceptibility to allergic asthma. EMBO Rep. 13, 440–447 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Cait, A. et al. Microbiome-driven allergic lung inflammation is ameliorated by short-chain fatty acids. Mucosal Immunol. 11, 785–795 (2018).

    Article  CAS  PubMed  Google Scholar 

  158. Depner, M. et al. Maturation of the gut microbiome during the first year of life contributes to the protective farm effect on childhood asthma. Nat. Med. 26, 1766–1775 (2020).

    Article  CAS  PubMed  Google Scholar 

  159. Verma, A. et al. Short-chain fatty acid (SCFA) as a connecting link between microbiota and gut–lung axis — a potential therapeutic intervention to improve lung health. ACS Omega 9, 14648–14671 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Mirzaei, R. et al. Role of microbiota-derived short-chain fatty acids in nervous system disorders. Biomed. Pharmacother. 139, 111661 (2021).

    Article  CAS  PubMed  Google Scholar 

  161. Li, H. et al. Gut microbiota changes in patients with Alzheimer’s disease spectrum based on 16S rRNA sequencing: a systematic review and meta-analysis. Front. Aging Neurosci. 16, 1422350 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Matt, S. M. et al. Butyrate and dietary soluble fiber improve neuroinflammation associated with aging in mice. Front. Immunol. 9, 1832 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Fernando, W. M. A. D. B. et al. Sodium butyrate reduces brain amyloid-β levels and improves cognitive memory performance in an Alzheimer’s disease transgenic mouse model at an early disease stage. J. Alzheimers Dis. 74, 91–99 (2020).

    Article  CAS  PubMed  Google Scholar 

  164. Nishiwaki, H. et al. Meta‐analysis of gut dysbiosis in Parkinson’s disease. Mov. Disord. 35, 1626–1635 (2020).

    Article  CAS  PubMed  Google Scholar 

  165. Nishiwaki, H. et al. Meta-analysis of shotgun sequencing of gut microbiota in Parkinson’s disease. NPJ Parkinsons Dis. 10, 106 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Liu, J. et al. Sodium butyrate exerts protective effect against Parkinson’s disease in mice via stimulation of glucagon like peptide-1. J. Neurol. Sci. 381, 176–181 (2017).

    Article  CAS  PubMed  Google Scholar 

  167. Guo, T.-T. et al. Neuroprotective effects of sodium butyrate by restoring gut microbiota and inhibiting TLR4 signaling in mice with MPTP-induced Parkinson’s disease. Nutrients 15, 930 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Zeng, Q. et al. Gut dysbiosis and lack of short chain fatty acids in a Chinese cohort of patients with multiple sclerosis. Neurochem. Int. 129, 104468 (2019).

    Article  CAS  PubMed  Google Scholar 

  169. Duscha, A. et al. Propionic acid shapes the multiple sclerosis disease course by an immunomodulatory mechanism. Cell 180, 1067–1080.e16 (2020).

    Article  CAS  PubMed  Google Scholar 

  170. Chen, T., Noto, D., Hoshino, Y., Mizuno, M. & Miyake, S. Butyrate suppresses demyelination and enhances remyelination. J. Neuroinflammation 16, 1–13 (2019).

    Article  Google Scholar 

  171. Chevalier, A. C. & Rosenberger, T. A. Increasing acetyl‐CoA metabolism attenuates injury and alters spinal cord lipid content in mice subjected to experimental autoimmune encephalomyelitis. J. Neurochem. 141, 721–737 (2017).

    Article  CAS  PubMed  Google Scholar 

  172. Mizuno, M., Noto, D., Kaga, N., Chiba, A. & Miyake, S. The dual role of short fatty acid chains in the pathogenesis of autoimmune disease models. PLoS ONE 12, e0173032 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Macfarlane, G. T., Gibson, G. R. & Cummings, J. H. Comparison of fermentation reactions in different regions of the human colon. J. Appl. Bacteriol. 72, 57–64 (1992).

    CAS  PubMed  Google Scholar 

  174. van der Beek, C. M. et al. Hepatic uptake of rectally administered butyrate prevents an increase in systemic butyrate concentrations in humans. J. Nutr. 145, 2019–2024 (2015).

    Article  PubMed  Google Scholar 

  175. van der Beek, C. M. et al. Distal, not proximal, colonic acetate infusions promote fat oxidation and improve metabolic markers in overweight/obese men. Clin. Sci. 130, 2073–2082 (2016).

    Article  Google Scholar 

  176. Edelman, M. J. et al. Clinical and pharmacologic study of tributyrin: an oral butyrate prodrug. Cancer Chemother. Pharmacol. 51, 439–444 (2003).

    Article  CAS  PubMed  Google Scholar 

  177. Donovan, J. D., Bauer, L., Fahey, G. C. & Lee, Y. In vitro digestion and fermentation of microencapsulated tributyrin for the delivery of butyrate. J. Food Sci. 82, 1491–1499 (2017).

    Article  CAS  PubMed  Google Scholar 

  178. Di Sabatino, A. et al. Efficacy of butyrate in the treatment of mild to moderate Crohn’s disease. Dig. Liver Dis. Suppl. 1, 31–35 (2007).

    Google Scholar 

  179. Annison, G., Illman, R. J. & Topping, D. L. Acetylated, propionylated or butyrylated starches raise large bowel short-chain fatty acids preferentially when fed to rats. J. Nutr. 133, 3523–3528 (2003).

    Article  CAS  PubMed  Google Scholar 

  180. Mariño, E. et al. Gut microbial metabolites limit the frequency of autoimmune T cells and protect against type 1 diabetes. Nat. Immunol. 18, 552–562 (2017).

    Article  PubMed  Google Scholar 

  181. Clarke, J. M. et al. Butyrate esterified to starch is released in the human gastrointestinal tract. Am. J. Clin. Nutr. 94, 1276–1283 (2011).

    Article  CAS  PubMed  Google Scholar 

  182. Le Leu, R. K. et al. Butyrylated starch intake can prevent red meat-induced O6-methyl-2-deoxyguanosine adducts in human rectal tissue: a randomised clinical trial. Br. J. Nutr. 114, 220–230 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Hutkins, R. et al. Classifying compounds as prebiotics — scientific perspectives and recommendations. Nat. Rev. Gastroenterol. Hepatol. 22, 54–70 (2025).

    Article  PubMed  Google Scholar 

  184. Wolever, T. M., ter Wal, P., Spadafora, P. & Robb, P. Guar, but not psyllium, increases breath methane and serum acetate concentrations in human subjects. Am. J. Clin. Nutr. 55, 719–722 (1992).

    Article  CAS  PubMed  Google Scholar 

  185. Rahat-Rozenbloom, S., Fernandes, J., Cheng, J., Gloor, G. B. & Wolever, T. M. S. The acute effects of inulin and resistant starch on postprandial serum short-chain fatty acids and second-meal glycemic response in lean and overweight humans. Eur. J. Clin. Nutr. 71, 227–233 (2017).

    Article  CAS  PubMed  Google Scholar 

  186. Markowiak-Kopeć, P. & Śliżewska, K. The effect of probiotics on the production of short-chain fatty acids by human intestinal microbiome. Nutrients 12, 1107 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  187. El-Salhy, M., Valeur, J., Hausken, T. & Gunnar Hatlebakk, J. Changes in fecal short-chain fatty acids following fecal microbiota transplantation in patients with irritable bowel syndrome. Neurogastroenterol. Motil. 33, e13983 (2021).

    Article  CAS  PubMed  Google Scholar 

  188. Smits, L. P., Bouter, K. E. C., de Vos, W. M., Borody, T. J. & Nieuwdorp, M. Therapeutic potential of fecal microbiota transplantation. Gastroenterology 145, 946–953 (2013).

    Article  PubMed  Google Scholar 

  189. Arnold, J., Glazier, J. & Mimee, M. Genetic engineering of resident bacteria in the gut microbiome. J. Bacteriol. 205, e0012723 (2023). This mini-review highlights recent progress in genetic engineering to create designer bacteria that produce metabolites capable of impacting host health and creating novel biotherapeutics.

    Article  PubMed  Google Scholar 

  190. Vázquez-Castellanos, J. F., Biclot, A., Vrancken, G., Huys, G. R. & Raes, J. Design of synthetic microbial consortia for gut microbiota modulation. Curr. Opin. Pharmacol. 49, 52–59 (2019).

    Article  PubMed  Google Scholar 

  191. Pereira, F. C. & Berry, D. Microbial nutrient niches in the gut. Environ. Microbiol. 19, 1366–1378 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Letourneau, J. et al. Interplay between particle size and microbial ecology in the gut microbiome. ISME J. 18, wrae168 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Shetty, S. A. et al. Dynamic metabolic interactions and trophic roles of human gut microbes identified using a minimal microbiome exhibiting ecological properties. ISME J. 16, 2144–2159 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. O’Keefe, S. J. D. et al. Fat, fibre and cancer risk in African Americans and rural Africans. Nat. Commun. 6, 6342 (2015).

    Article  PubMed  Google Scholar 

  195. Tannock, G. W. Understanding the gut microbiota by considering human evolution: a story of fire, cereals, cooking, molecular ingenuity, and functional cooperation. Microbiol. Mol. Biol. Rev. 88, e0012722 (2024).

    Article  PubMed  Google Scholar 

  196. Sonnenburg, E. D. & Sonnenburg, J. L. The ancestral and industrialized gut microbiota and implications for human health. Nat. Rev. Microbiol. 17, 383–390 (2019).

    Article  CAS  PubMed  Google Scholar 

  197. O’Keefe, S. J. The association between dietary fibre deficiency and high-income lifestyle-associated diseases: Burkitt’s hypothesis revisited. Lancet Gastroenterol. Hepatol. 4, 984–996 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Ramsteijn, A. S. & Louis, P. Dietary fibre optimisation in support of global health. Microb. Biotechnol. 17, e14542 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Taras, D., Simmering, R., Collins, M. D., Lawson, P. A. & Blaut, M. Reclassification of Eubacterium formicigenerans Holdeman and Moore 1974 as Dorea formicigenerans gen. nov., comb. nov., and description of Dorea longicatena sp. nov., isolated from human faeces. Int. J. Syst. Evol. Microbiol. 52, 423–428 (2002).

    Article  PubMed  Google Scholar 

  200. Holdeman, L. V. & Moore, W. E. C. New genus, Coprococcus, twelve new species, and emended descriptions of four previously described species of bacteria from human feces. Int. J. Syst. Bacteriol. 24, 260–277 (1974).

    Article  Google Scholar 

  201. Togo, A. H. et al. Description of Mediterraneibacter massiliensis, gen. nov., sp. nov., a new genus isolated from the gut microbiota of an obese patient and reclassification of Ruminococcus faecis, Ruminococcus lactaris, Ruminococcus torques, Ruminococcus gnavus and Clostridium glycyrrhizinilyticum as Mediterraneibacter faecis comb. nov., Mediterraneibacter lactaris comb. nov., Mediterraneibacter torques comb. nov., Mediterraneibacter gnavus comb. nov. and Mediterraneibacter glycyrrhizinilyticus comb. nov. Antonie van Leeuwenhoek 111, 2107–2128 (2018).

    Article  CAS  PubMed  Google Scholar 

  202. Flaiz, M. et al. Refining and illuminating acetogenic Eubacterium strains for reclassification and metabolic engineering. Microb. Cell Fact. 23, 24 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Trischler, R., Roth, J., Sorbara, M. T., Schlegel, X. & Müller, V. A functional Wood–Ljungdahl pathway devoid of a formate dehydrogenase in the gut acetogens Blautia wexlerae, Blautia luti and beyond. Environ. Microbiol. 24, 3111–3123 (2022).

    Article  CAS  PubMed  Google Scholar 

  204. Zhang, B., Lingga, C., De Groot, H. & Hackmann, T. J. The oxidoreductase activity of Rnf balances redox cofactors during fermentation of glucose to propionate in Prevotella. Sci. Rep. 13, 16429 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Robert, C. & Bernalier-Donadille, A. The cellulolytic microflora of the human colon: evidence of microcrystalline cellulose-degrading bacteria in methane-excreting subjects. FEMS Microbiol. Ecol. 46, 81–89 (2003).

    Article  CAS  PubMed  Google Scholar 

  206. Kettle, H., Louis, P., Holtrop, G., Duncan, S. H. & Flint, H. J. Modelling the emergent dynamics and major metabolites of the human colonic microbiota. Environ. Microbiol. 17, 1615–1630 (2015).

    Article  CAS  PubMed  Google Scholar 

  207. Gupta, R. S., Nanda, A. & Khadka, B. Novel molecular, structural and evolutionary characteristics of the phosphoketolases from bifidobacteria and Coriobacteriales. PLoS ONE 12, e0172176 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Guillemot, F. et al. Treatment of diversion colitis by short-chain fatty acids: prospective and double-blind study. Dis. Colon Rectum 34, 861–864 (1991).

    Article  CAS  PubMed  Google Scholar 

  209. Patz, J., Jacobsohn, W. Z., Gottschalk-Sabag, S., Zeides, S. & Braverman, D. Z. Treatment of refractory distal ulcerative colitis with short chain fatty acid enemas. Am. J. Gastroenterol. 91, 731–734 (1996).

    CAS  PubMed  Google Scholar 

  210. Steinhart, A. H., Hiruki, T., Brzezinski, A. & Baker, J. P. Treatment of left‐sided ulcerative colitis with butyrate enemas: a controlled trial. Aliment. Pharmacol. Ther. 10, 729–736 (1996).

    Article  CAS  PubMed  Google Scholar 

  211. Scheppach, W. et al. Histological changes in the colonic mucosa following irrigation with short-chain fatty acids. Eur. J. Gastroenterol. Hepatol. 9, 163–168 (1997).

    Article  CAS  PubMed  Google Scholar 

  212. Scheppach, W. & Group, G.-A. S. S. Treatment of distal ulcerative colitis with short-chain fatty acid enemas a placebo-controlled trial. Dig. Dis. Sci. 41, 2254–2259 (1996).

    Article  CAS  PubMed  Google Scholar 

  213. Breuer, R. I. et al. Short chain fatty acid rectal irrigation for left-sided ulcerative colitis: a randomised, placebo controlled trial. Gut 40, 485–491 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Schauber, J. et al. Local short-chain fatty acids supplementation without beneficial effect on inflammation in excluded rectum. Scand. J. Gastroenterol. 35, 184–189 (2000).

    Article  CAS  PubMed  Google Scholar 

  215. Vernia, P. et al. Topical butyrate for acute radiation proctitis: randomised, crossover trial. Lancet 356, 1232–1235 (2000).

    Article  CAS  PubMed  Google Scholar 

  216. Scarpellini, E. et al. Efficacy of butyrate in the treatment of diarrhoea-predominant irritable bowel syndrome. Dig. Liver Dis. Suppl. 1, 19–22 (2007).

    Google Scholar 

  217. Vernero, M. et al. The usefulness of microencapsulated sodium butyrate add-on therapy in maintaining remission in patients with ulcerative colitis: a prospective observational study. J. Clin. Med. 9, 3941 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Pietrzak, A. et al. Sodium butyrate effectiveness in children and adolescents with newly diagnosed inflammatory bowel diseases — randomized placebo-controlled multicenter trial. Nutrients 14, 3283 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Buckel, W. & Thauer, R. K. Flavin-based electron bifurcation, a new mechanism of biological energy coupling. Chem. Rev. 118, 3862–3886 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

P.L. received funding from the Scottish Government Rural and Environment Service and Analytical Services Division.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Petra Louis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Microbiology thanks Ellen Blaak, Hauke Smidt and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukhopadhya, I., Louis, P. Gut microbiota-derived short-chain fatty acids and their role in human health and disease. Nat Rev Microbiol 23, 635–651 (2025). https://doi.org/10.1038/s41579-025-01183-w

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41579-025-01183-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing