Abstract
Novel solutions to combat the rapid evolution of antimicrobial resistance in human and animal pathogens are urgently required. Antimicrobial peptides (AMPs) represent promising therapeutic molecules, as they exhibit structural nuances and distinct molecular targets against pathogenic microorganisms. In this Review, we explore the multifaceted structural nature of AMPs and advanced structural conformations, discuss the distinct mechanisms of action and explore novel targets. Additionally, we discuss resistance mechanisms, cross-resistance and innovative strategies for AMP design and optimization. We argue that gaining insight into novel AMP structural arrangements, targets and design optimization is crucial for the development of innovative therapies that can be translated into clinical as well as broader applications.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Blake, K. L. & O’Neill, A. J. Transposon library screening for identification of genetic loci participating in intrinsic susceptibility and acquired resistance to antistaphylococcal agents. J. Antimicrob. Chemother. 68, 12–16 (2013).
Hancock, R. E. W. Peptide antibiotics. Lancet 349, 418–422 (1997).
Mookherjee, N. & Hancock, R. E. W. Cationic host defence peptides: innate immune regulatory peptides as a novel approach for treating infections. Cell. Mol. Life Sci. 64, 922–933 (2007).
Schwessinger, B. & Zipfel, C. News from the frontline: recent insights into PAMP-triggered immunity in plants. Curr. Opin. Plant Biol. 11, 389–395 (2008).
Chaudhary, S., Ali, Z. & Mahfouz, M. Molecular farming for sustainable production of clinical-grade antimicrobial peptides. Plant Biotechnol. J. 22, 2282–2300 (2024).
De Breij, A. et al. The antimicrobial peptide SAAP-148 combats drug-resistant bacteria and biofilms. Sci. Transl Med. 10, eaan4044 (2018). This study identifies SAAP-148 as a promising AMP capable of eradicating multidrug-resistant bacteria, biofilms and persister cells, with minimal resistance potential, paving the way for innovative treatments against antibiotic-resistant infections.
Bacalum, M. & Radu, M. Cationic antimicrobial peptides cytotoxicity on mammalian cells: an analysis using therapeutic index integrative concept. Int. J. Pept. Res. Ther. 21, 47–55 (2015).
Brown, P. & Dawson, M. J. Development of new polymyxin derivatives for multi-drug resistant Gram-negative infections. J. Antibiot. 70, 386–394 (2017).
Hancock, R. E. W. & Lehrer, R. Cationic peptides: a new source of antibiotics. Trends Biotechnol. 16, 82–88 (1998).
Zasloff, M. Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc. Natl Acad. Sci. USA 84, 5449–5453 (1987).
Mandard, N., Bulet, P., Caille, A., Daffre, S. & Vovelle, F. The solution structure of gomesin, an antimicrobial cysteine-rich peptide from the spider. Eur. J. Biochem. 269, 1190–1198 (2002).
Selsted, M. E. et al. Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils. J. Biol. Chem. 267, 4292–4295 (1992).
Tang, Y. Q. et al. A cyclic antimicrobial peptide produced in primate leukocytes by the ligation of two truncated α-defensins. Science 286, 498–502 (1999).
Craik, D. J., Daly, N. L., Bond, T. & Waine, C. Plant cyclotides: a unique family of cyclic and knotted proteins that defines the cyclic cystine knot structural motif. J. Mol. Biol. 294, 1327–1336 (1999).
Sneideris, T. et al. Targeting nucleic acid phase transitions as a mechanism of action for antimicrobial peptides. Nat. Commun. 14, 7170 (2023). This article reveals that AMPs can induce phase transitions in bacterial nucleic acids, providing a novel mechanism for their antibacterial activity.
Seefeldt, A. C. et al. Structure of the mammalian antimicrobial peptide Bac7(1–16) bound within the exit tunnel of a bacterial ribosome. Nucleic Acids Res. 44, 2429–2438 (2016).
Ghosh, A. et al. Indolicidin targets duplex DNA: structural and mechanistic insight through a combination of spectroscopy and microscopy. Chem. Med. Chem. 9, 2052–2058 (2014).
Koehbach, J. & Craik, D. J. The vast structural diversity of antimicrobial peptides. Trends Pharmacol. Sci. 40, 517–528 (2019).
Hsu, C. H. et al. Structural and DNA-binding studies on the bovine antimicrobial peptide, indolicidin: evidence for multiple conformations involved in binding to membranes and DNA. Nucleic Acids Res. 33, 4053–4064 (2005).
Tsai, C. Y. et al. Helical structure motifs made searchable for functional peptide design. Nat. Commun. 13, 102 (2022).
Wallace, B. A. Recent advances in the high-resolution structures of bacterial channels: gramicidin A. J. Struct. Biol. 121, 123–141 (1998).
Urry, D. W., Goodall, M. C., Glickson, J. D. & Mayers, D. F. The gramicidin A transmembrane channel: characteristics of head-to-head dimerized π(L,D) helices. Proc. Natl Acad. Sci. USA 68, 1907–1911 (1971).
Andersson, H. S. et al. The α-defensin salt-bridge induces backbone stability to facilitate folding and confer proteolytic resistance. Amino Acids 43, 1471–1483 (2012).
Mani, R. et al. Membrane-bound dimer structure of a β-hairpin antimicrobial peptide from rotational-echo double-resonance solid-state NMR. Biochemistry 45, 8341–8349 (2006).
Mandard, N. et al. Solution structure of thanatin, a potent bactericidal and fungicidal insect peptide, determined from proton two-dimensional nuclear magnetic resonance data. Eur. J. Biochem. 256, 404–410 (1998).
Datta, S., Sham Ala, N., Gurunath, R. & Balaram, P. Observation of a mixed antiparallel and parallel β-sheet motif in the crystal structure of Boc-Ala-Ile-Aib-OMe. Int. J. Pept. Protein Res. 48, 209–214 (1996).
Zasloff, M. Antimicrobial peptides of multicellular organisms. Nature 415, 389–395 (2002).
DeLorbe, J. E. et al. Thermodynamic and structural effects of conformational constraints in protein-ligand interactions. Entropic paradoxy associated with ligand preorganization. J. Am. Chem. Soc. 131, 16758–16770 (2009).
He, J., Ghosh, P. & Nitsche, C. Biocompatible strategies for peptide macrocyclisation. Chem. Sci. 15, 2300–2322 (2024).
Zhao, J., Ge, G., Huang, Y., Hou, Y. & Hu, S. Q. Butelase 1-mediated enzymatic cyclization of antimicrobial peptides: improvements on stability and bioactivity. J. Agric. Food Chem. 70, 15869–15878 (2022).
Cardoso, M. H., de la Fuente-Nunez, C., Santos, N. C., Zasloff, M. A. & Franco, O. L. Influence of antimicrobial peptides on the bacterial membrane curvature and vice versa. Trends Microbiol. 7, 624–627 (2024). This article highlights how understanding the physico-chemical properties of bacterial membranes and their curvature can inform the design of more effective AMPs to combat antimicrobial resistance.
Wu, M., Maier, E., Benz, R. & Hancock, R. E. W. Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli†. Biochemistry 38, 7235–7242 (1999).
Powers, J. P. S., Tan, A., Ramamoorthy, A. & Hancock, R. E. W. Solution structure and interaction of the antimicrobial polyphemusins with lipid membranes. Biochemistry 44, 15504–155013 (2005).
He, K., Ludtke, S. J., Heller, W. T. & Huang, H. W. Mechanism of alamethicin insertion into lipid bilayers. Biophys. J. 71, 2669–2679 (1996).
Song, C. et al. Crystal structure and functional mechanism of a human antimicrobial membrane channel. Proc. Natl Acad. Sci. USA 110, 4586–4591 (2013).
Santos, D. E. S., Pol-Fachin, L., Lins, R. D. & Soares, T. A. Polymyxin binding to the bacterial outer membrane reveals cation displacement and increasing membrane curvature in susceptible but not in resistant lipopolysaccharide chemotypes. J. Chem. Inf. Model. 57, 2181–2193 (2017).
Pokorny, A. & Almeida, P. F. F. Kinetics of dye efflux and lipid flip-flop induced by δ-lysin in phosphatidylcholine vesicles and the mechanism of graded release by amphipathic, α-helical peptides. Biochemistry 43, 8846–8857 (2004).
Bechinger, B. Structure and functions of channel-forming peptides: magainins, cecropins, melittin and alamethicin. J. Memb. Biol. 156, 197–211 (1997).
Rai, D. K. & Qian, S. Interaction of the antimicrobial peptide aurein 1.2 and charged lipid bilayer. Sci. Rep. 7, 3719 (2017).
Gong, H. et al. How do antimicrobial peptides disrupt the lipopolysaccharide membrane leaflet of Gram-negative bacteria? J. Colloid Interface Sci. 637, 182–192 (2023).
Zampaloni, C. et al. A novel antibiotic class targeting the lipopolysaccharide transporter. Nature 625, 566–571 (2024). This article details the discovery of a novel antibiotic class targeting the bacterial LPS transporter, demonstrating potent activity against carbapenem-resistant A. baumannii.
Kaur, H. et al. The antibiotic darobactin mimics a β-strand to inhibit outer membrane insertase. Nature 593, 125–129 (2021).
Makowski, M. et al. Activity modulation of the Escherichia coli F1FO ATP synthase by a designed antimicrobial peptide via cardiolipin sequestering. iScience 26, 107004 (2023).
Mangano, K. et al. Inhibition of translation termination by the antimicrobial peptide drosocin. Nat. Chem. Biol. 19, 1082–1090 (2023).
Kragol, G. et al. The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding. Biochemistry 40, 3016–3026 (2001).
Liebscher, M. & Roujeinikova, A. Allosteric coupling between the lid and interdomain linker in DnaK revealed by inhibitor binding studies. J. Bacteriol. 191, 1456–1462 (2009).
Couto, M. A., Harwig, S. S. L. & Lehrer, R. I. Selective inhibition of microbial serine proteases by eNAP-2, an antimicrobial peptide from equine neutrophils. Infect. Immun. 61, 2991–2994 (1993).
Ho, Y. H., Shah, P., Chen, Y. W. & Chen, C. S. Systematic analysis of intracellular-targeting antimicrobial peptides, bactenecin 7, hybrid of pleurocidin and dermaseptin, proline-arginine-rich peptide, and lactoferricin b, by using Escherichia coli proteome microarrays. Mol. Cell. Proteom. 15, 1837–1847 (2016).
Chileveru, H. R. et al. Visualizing attack of Escherichia coli by the antimicrobial peptide human defensin 5. Biochemistry 54, 1767–1777 (2015).
Bisson-Filho, A. W. et al. FtsZ filament capping by MciZ, a developmental regulator of bacterial division. Proc. Natl Acad. Sci. USA 112, 2130–2138 (2015).
Mora-Ochomogo, M. & Lohans, C. T. β-Lactam antibiotic targets and resistance mechanisms: from covalent inhibitors to substrates. RSC Med. Chem. 12, 1623–1639 (2021).
Motta, S. S., Cluzel, P. & Aldana, M. Adaptive resistance in bacteria requires epigenetic inheritance, genetic noise, and cost of efflux pumps. PLoS ONE 10, e0118464 (2015).
Ogawa, W., Onishi, M., Ni, R., Tsuchiya, T. & Kuroda, T. Functional study of the novel multidrug efflux pump KexD from Klebsiella pneumoniae. Gene 498, 177–182 (2012).
Billal, D. S., Feng, J., Leprohon, P., Légaré, D. & Ouellette, M. Whole genome analysis of linezolid resistance in Streptococcus pneumoniae reveals resistance and compensatory mutations. BMC Genomics 12, 512 (2011).
Cottell, J. L., Webber, M. A. & Piddock, L. J. V. Persistence of transferable extended-spectrum-β-lactamase resistance in the absence of antibiotic pressure. Antimicrob. Agents Chemother. 56, 4703–4706 (2012).
Spohn, R. et al. Integrated evolutionary analysis reveals antimicrobial peptides with limited resistance. Nat. Commun. 10, 4538 (2019).
Bauer, M. E. & Shafer, W. M. On the in vivo significance of bacterial resistance to antimicrobial peptides. Biochim. Biophys. Acta 1848, 3101–3111 (2015).
Gunn, J. S., Ryan, S. S., Van Velkinburgh, J. C., Ernst, R. K. & Miller, S. I. Genetic and functional analysis of a PmrA–PmrB-regulated locus necessary for lipopolysaccharide modification, antimicrobial peptide resistance, and oral virulence of Salmonella enterica serovar typhimurium. Infect. Immun. 68, 6139–6146 (2000).
Nuri, R., Shprung, T. & Shai, Y. Defensive remodeling: how bacterial surface properties and biofilm formation promote resistance to antimicrobial peptides. Biochim. Biophys. Acta 1848, 3089–3100 (2015).
Macfarlane, E. L. A., Kwasnicka, A., Ochs, M. M. & Hancock, R. E. W. PhoP–PhoQ homologues in Pseudomonas aeruginosa regulate expression of the outer-membrane protein OprH and polymyxin B resistance. Mol. Microbiol. 34, 305–316 (1999).
Campos, M. A. et al. Capsule polysaccharide mediates bacterial resistance to antimicrobial peptides. Infect. Immun. 72, 7107–7114 (2004).
Khondker, A. & Rheinstädter, M. C. How do bacterial membranes resist polymyxin antibiotics? Commun. Biol. 3, 77 (2020).
Wiedemann, I. et al. Specific binding of nisin to the peptidoglycan precursor lipid II combines pore formation and inhibition of cell wall biosynthesis for potent antibiotic activity. J. Biol. Chem. 276, 1772–1779 (2001).
Kovács, M. et al. A functional dlt operon, encoding proteins required for incorporation of d-alanine in teichoic acids in Gram-positive bacteria, confers resistance to cationic antimicrobial peptides in Streptococcus pneumoniae. J. Bacteriol. 188, 5797–5805 (2006).
Verheul, A., Russell, N. J., Van’T Hof, R., Rombouts, F. M. & Abee, T. Modifications of membrane phospholipid composition in nisin-resistant Listeria monocytogenes Scott A. Appl. Environ. Microbiol. 63, 3451–3457 (1997).
Jarvis, B. & Farr, J. Partial purification, specificity and mechanism of action of the nisin-inactivating enzyme from Bacillus cereus. Biochim. Biophys. Acta 227, 232–240 (1971).
Collins, B., Curtis, N., Cotter, P. D., Hill, C. & Ross, R. P. The ABC transporter AnrAB contributes to the innate resistance of Listeria monocytogenes to nisin, bacitracin, and various β-lactam antibiotics. Antimicrob. Agents Chemother. 54, 4416–4423 (2010).
Kim, S. W. et al. Outer membrane vesicles from β-lactam-resistant Escherichia coli enable the survival of β-lactam-susceptible E. coli in the presence of β-lactam antibiotics. Sci. Rep. 8, 5402 (2018).
Trombley, M. P. et al. Phosphoethanolamine transferase LptA in Haemophilus ducreyi modifies lipid A and contributes to human defensin resistance in vitro. PLoS ONE 10, e0124373 (2015).
Blair, J. M. A., Zeth, K., Bavro, V. N. & Sancho-Vaello, E. The role of bacterial transport systems in the removal of host antimicrobial peptides in Gram-negative bacteria. FEMS Microbiol. Rev. 46, fuac032 (2022).
Sieprawska-Lupa, M. et al. Degradation of human antimicrobial peptide LL-37 by Staphylococcus aureus-derived proteinases. Antimicrob. Agents Chemother. 48, 4673–4679 (2004).
Stumpe, S., Schmid, R., Stephens, D. L., Georgiou, G. & Bakker, E. P. Identification of OmpT as the protease that hydrolyzes the antimicrobial peptide protamine before it enters growing cells of Escherichia coli. J. Bacteriol. 180, 4002–4006 (1998).
Sakenova, N. et al. Systematic mapping of antibiotic cross-resistance and collateral sensitivity with chemical genetics. Nat. Microbiol. 10, 202–216 (2025). This study uses chemical genetics to identify antibiotic cross-resistance and collateral sensitivity interactions in E. coli, significantly expanding the number of known interactions. The findings demonstrate that combining specific drug pairs can reduce resistance development.
Cherny, S. S., Chowers, M. & Obolski, U. Bayesian network modeling of patterns of antibiotic cross-resistance by bacterial sample source. Commun. Med. 3, 61 (2023).
Maron, B., Rolff, J., Friedman, J. & Hayouka, Z. Antimicrobial peptide combination can hinder resistance evolution. Microbiol. Spectr. 10, e0097322 (2022).
Wang, Z. et al. A naturally inspired antibiotic to target multidrug-resistant pathogens. Nature 601, 606–611 (2022).
De Magalhães, C. S., Almeida, D. M., Barbosa, H. J. C. & Dardenne, L. E. A dynamic niching genetic algorithm strategy for docking highly flexible ligands. Inf. Sci. 289, 206–224 (2014).
Fjell, C. D., Hiss, J. A., Hancock, R. E. W. & Schneider, G. Designing antimicrobial peptides: form follows function. Nat. Rev. Drug Discov. 11, 37–51 (2011).
Yoshida, M. et al. Using evolutionary algorithms and machine learning to explore sequence space for the discovery of antimicrobial peptides. Chem 4, 533–543 (2018).
Loose, C., Jensen, K., Rigoutsos, I. & Stephanopoulos, G. A linguistic model for the rational design of antimicrobial peptides. Nature 443, 867–869 (2006).
Wang, X. et al. ProT‐Diff: a modularized and efficient strategy for de novo generation of antimicrobial peptide sequences by integrating protein language and diffusion models. Adv. Sci. 11, e2406305 (2024).
Tucker, A. T. et al. Discovery of next-generation antimicrobials through bacterial self-screening of surface-displayed peptide libraries. Cell 172, 618–628 (2018).
Randall, J. R. et al. Adapting antibacterial display to identify serum-active macrocyclic peptide antibiotics. PNAS Nexus 2, pgad270 (2023).
Yamagami, S., Okada, Y., Kitano, Y. & Chiba, K. Peptide head-to-tail cyclization: a “molecular claw” approach. Eur. J. Org. Chem. 2021, 3133–3138 (2021).
Chapman, R. N., Dimartino, G. & Arora, P. S. A highly stable short α-helix constrained by a main-chain hydrogen-bond surrogate. J. Am. Chem. Soc. 126, 12252–12253 (2004).
Lu, J. et al. d- and unnatural amino acid substituted antimicrobial peptides with improved proteolytic resistance and their proteolytic degradation characteristics. Front. Microbiol. 11, 563030 (2020).
Hicks, R. P., Bhonsle, J. B., Venugopal, D., Koser, B. W. & Magill, A. J. De novo design of selective antibiotic peptides by incorporation of unnatural amino acids. J. Med. Chem. 50, 3026–3036 (2007).
Meunier, B. Hybrid molecules with a dual mode of action: dream or reality? Acc. Chem. Res. 41, 69–77 (2008).
Wang, Z. et al. A cleavable chimeric peptide with targeting and killing domains enhances LPS neutralization and antibacterial properties against multi-drug resistant E. coli. Commun. Biol. 6, 1170 (2023).
Liu, L. et al. Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent. Nat. Nanotech. 4, 457–463 (2009).
Lai, Z. et al. Self-assembling peptide dendron nanoparticles with high stability and a multimodal antimicrobial mechanism of action. ACS Nano 15, 15824–15840 (2021).
Chou, S. et al. Synthetic peptides that form nanostructured micelles have potent antibiotic and antibiofilm activity against polymicrobial infections. Proc. Natl Acad. Sci. USA 120, e2219679120 (2023).
Fa, K. et al. In-membrane nanostructuring of cationic amphiphiles affects their antimicrobial efficacy and cytotoxicity: a comparison study between a de novo antimicrobial lipopeptide and traditional biocides. Langmuir 38, 6623–6637 (2022).
Greber, K. E. & Dawgul, M. Antimicrobial peptides under clinical trials. Curr. Top. Med. Chem. 17, 620–628 (2017).
Sheard, D. E., O’Brien-Simpson, N. M., Wade, J. D. & Separovic, F. Combating bacterial resistance by combination of antibiotics with antimicrobial peptides. Pur. Appl. Chem. 91, 199–209 (2019).
Alaoui Mdarhri, H. et al. Alternatives therapeutic approaches to conventional antibiotics: advantages, limitations and potential application in medicine. Antibiotics 11, 1826 (2022).
Pfalzgraff, A., Brandenburg, K. & Weindl, G. Antimicrobial peptides and their therapeutic potential for bacterial skin infections and wounds. Front. Pharmacol. 9, 281 (2018).
Zhao, C., Yan, S., Luo, Y., Song, Y. & Xia, X. Analyzing resistome in soil and human gut: a study on the characterization and risk evaluation of antimicrobial peptide resistance. Front. Microbiol. 15, 1352531 (2024).
Jangir, P. K. et al. The evolution of colistin resistance increases bacterial resistance to host antimicrobial peptides and virulence. eLife 12, e84395 (2023).
Koh, A. J. J. et al. Bifunctional antibiotic hybrids: a review of clinical candidates. Front. Pharmacol. 14, 1158152 (2023).
Lei, J. et al. The antimicrobial peptides and their potential clinical applications. Am. J. Transl Res. 11, 3919–3931 (2019).
Shi, J., Chen, C., Wang, D., Wang, Z. & Liu, Y. The antimicrobial peptide LI14 combats multidrug-resistant bacterial infections. Commun. Biol. 5, 926 (2022).
Levin, M. et al. Recombinant bactericidal/permeability-increasing protein (rBPI21) as adjunctive treatment for children with severe meningococcal sepsis: a randomised trial. Lancet 356, 961–967 (2000).
Ivarsson, M. E., Leroux, J. C. & Castagner, B. Investigational new treatments for Clostridium difficile infection. Drug Discov. Today 20, 602–608 (2015).
Lee, C. H. et al. Surotomycin versus vancomycin for Clostridium difficile infection: phase 2, randomized, controlled, double-blind, non-inferiority, multicentre trial. J. Antimicrob. Chemother. 71, 2964–2971 (2016).
Lee, S., Schefter, B. R., Taheri-Araghi, S. & Ha, B. Y. Modeling selectivity of antimicrobial peptides: how it depends on the presence of host cells and cell density. RSC Adv. 13, 34167–34182 (2023).
Michael Conlon, J., Galadari, S., Raza, H. & Condamine, E. Design of potent, non-toxic antimicrobial agents based upon the naturally occurring frog skin peptides, ascaphin-8 and peptide XT-7. Chem. Biol. Drug Des. 72, 58–64 (2008).
Morris, C. J. et al. Pegylation of antimicrobial peptides maintains the active peptide conformation, model membrane interactions, and antimicrobial activity while improving lung tissue biocompatibility following airway delivery. Antimicrob. Agents Chemother. 56, 3298–3308 (2012).
Cesaro, A., Lin, S., Pardi, N. & de la Fuente-Nunez, C. Advanced delivery systems for peptide antibiotics. Adv. Drug Deliv. Rev. 196, 114733 (2023).
De Yang, B. et al. LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J. Exp. Med. 192, 1069–1074 (2000).
Rosenfeld, Y., Papo, N. & Shai, Y. Endotoxin (lipopolysaccharide) neutralization by innate immunity host-defense peptides: peptide properties and plausible modes of action. J. Biol. Chem. 281, 1636–1643 (2006).
Tang, D., Wang, G. & Zhou, J. M. Receptor kinases in plant–pathogen interactions: more than pattern recognition. Plant Cell 29, 618–637 (2017).
Romero, A., Alamillo, J. M. & García-Olmedo, F. Processing of thionin precursors in barley leaves by a vacuolar proteinase. Eur. J. Biochem. 243, 202–208 (1997).
Van De Velde, W. et al. Plant peptides govern terminal differentiation of bacteria in symbiosis. Science 327, 1122–1126 (2010).
Salzman, N. H., Ghosh, D., Huttner, K. M., Paterson, Y. & Bevins, C. L. Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin. Nature 422, 522–526 (2003).
Franzenburg, S. et al. Distinct antimicrobial peptide expression determines host species-specific bacterial associations. Proc. Natl Acad. Sci. USA 110, 3730–3738 (2013).
Braffman, N. R. et al. Structural mechanism of transcription inhibition by lasso peptides microcin J25 and capistruin. Proc. Natl Acad. Sci. USA 116, 1273–1278 (2019).
Mourtada, R. et al. Design of stapled antimicrobial peptides that are stable, nontoxic and kill antibiotic-resistant bacteria in mice. Nat. Biotech. 37, 1186–1197 (2019). This article highlights the ability of peptide PEP-1 to form various nanostructures and secondary structures through controlled changes in pH, concentration and temperature, showcasing its potential for biomedical applications.
Liu, T. et al. Effect of N-methylated and fatty acid conjugation on analogs of antimicrobial peptide Anoplin. Eur. J. Pharm. Sci. 152, 105453 (2020).
Ghosh, G. et al. Control over multiple nano- and secondary structures in peptide self-assembly. Angew. Chem. Int. Ed. 61, e202113403 (2022).
Salinas, N. et al. The amphibian antimicrobial peptide uperin 3.5 is a cross-α/cross-β chameleon functional amyloid. Proc. Natl Acad. Sci. USA 118, e2014442118 (2021).
Tai, H. M. et al. Dietary supplementation of recombinant antimicrobial peptide Epinephelus lanceolatus piscidin improves growth performance and immune response in Gallus gallus domesticus. PLoS ONE 15, e0230021 (2020).
Daneshmand, A., Kermanshahi, H., Sekhavati, M. H., Javadmanesh, A. & Ahmadian, M. Antimicrobial peptide, cLF36, affects performance and intestinal morphology, microflora, junctional proteins, and immune cells in broilers challenged with E. coli. Sci. Rep. 9, 14176 (2019).
Liu, H. Y. et al. Alternatives to antibiotics in pig production: looking through the lens of immunophysiology. Stress. Biol. 4, 1 (2024).
Popitool, K. et al. Potential of Pm11 antimicrobial peptide against bovine mastitis pathogens. Am. J. Vet. Res. 84, ajvr.22.06.0096 (2023).
Orozco, R. M. Q. et al. Employment of mastoparan-like peptides to prevent Staphylococcus aureus associated with bovine mastitis. J. Bacteriol. 206, e0007124 (2024).
Yoon, J. H. et al. Effects of dietary supplementation of antimicrobial peptide-A3 on growth performance, nutrient digestibility, intestinal and fecal microflora and intestinal morphology in weanling pigs. Anim. Feed Sci. Technol. 177, 98–107 (2012).
Craig, M. et al. AI and drug discovery. Cell. Rep. Phys. Sci. 3, 101142 (2022).
Fernandes, F. C. et al. Geometric deep learning as a potential tool for antimicrobial peptide prediction. Front. Bioinform. 3, 1216362 (2023).
Cardoso, M. H. et al. Computer-aided design of antimicrobial peptides: are we generating effective drug candidates? Front. Microbiol. 10, 3097 (2020).
Cesaro, A. & de la Fuente-Nunez, C. Antibiotic identified by AI. Nat. Chem. Biol. 19, 1296–1298 (2023).
Maasch, J. R. M. A., Torres, M. D. T., Melo, M. C. R. & de la Fuente-Nunez, C. Molecular de-extinction of ancient antimicrobial peptides enabled by machine learning. Cell Host Microbe 31, 1260–1274 (2023).
Santos-Júnior, C. D. et al. Discovery of antimicrobial peptides in the global microbiome with machine learning. Cell 187, 3761–3778 (2024).
Aguilera-Puga, M. D. C. & Plisson, F. Structure-aware machine learning strategies for antimicrobial peptide discovery. Sci. Rep. 14, 11995 (2024).
Acknowledgements
N.G.O.J., C.M.S. and D.F.B. are supported by FUNDECT. M.H.C. is supported by CNPq and FUNDECT. O.L.F. is supported by CNPq, CAPES and FUNDECT.
Author information
Authors and Affiliations
Contributions
N.G.O.J., C.M.S., D.F.B. and M.H.C contributed to writing, editing and researching data for the article and contributing to the discussion of this manuscript. M.H.C. and O.L.F. contributed to discussing, reviewing and editing the manuscript before submission.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Microbiology thanks Marc Devocelle; Man-Wah Tan, who co-reviewed with Craig MacNair; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Oliveira Júnior, N.G., Souza, C.M., Buccini, D.F. et al. Antimicrobial peptides: structure, functions and translational applications. Nat Rev Microbiol 23, 687–700 (2025). https://doi.org/10.1038/s41579-025-01200-y
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s41579-025-01200-y