Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Clinical metagenomics for diagnosis and surveillance of viral pathogens

Abstract

Metagenomics is becoming more widely used for diagnosis of viral infections and surveillance of viruses. Its pathogen-agnostic approach makes metagenomics useful for unknown and novel infection diagnosis, outbreak investigation, and new and emerging pathogen surveillance. New metagenomics methods, such as the use of rapid sequencing technologies and approaches that can selectively enrich for a wide range of viruses, are expanding the range of clinical and public health scenarios in which metagenomics can be used. Following the COVID-19 pandemic, there is increasing interest in viral surveillance worldwide, using clinical samples, potential zoonotic reservoirs and environmental sources, such as wastewater. Validation and accreditation of metagenomics protocols to ensure quality, together with further innovation in methods, will be necessary to bring metagenomics into routine service in clinical and public health laboratories.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Clinical metagenomics workflow.
Fig. 2: Summary of bioinformatics analysis for metagenomics for viral detection.

Similar content being viewed by others

References

  1. Smyrlaki, I. et al. Massive and rapid COVID-19 testing is feasible by extraction-free SARS-CoV-2 RT-PCR. Nat. Commun. 11, 4812 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bayart, J.-L. et al. Clinical performance evaluation of the Fluorecare® SARS-CoV-2 & influenza A/B & RSV rapid antigen combo test in symptomatic individuals. J. Clin. Virol. 161, 105419 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ferrani, S. et al. Diagnostic accuracy of a rapid antigen triple test (SARS-CoV-2, respiratory syncytial virus, and influenza) using anterior nasal swabs versus multiplex RT-PCR in children in an emergency department. Infect. Dis. Now 53, 104769 (2023).

    Article  PubMed  Google Scholar 

  4. Eigner, U. et al. Clinical evaluation of multiplex RT-PCR assays for the detection of influenza A/B and respiratory syncytial virus using a high throughput system. J. Virol. Methods 269, 49–54 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Enne, V. I. et al. Multicentre evaluation of two multiplex PCR platforms for the rapid microbiological investigation of nosocomial pneumonia in UK ICUs: the INHALE WP1 study. Thorax 77, 1220–1228 (2022).

    Article  PubMed  Google Scholar 

  6. Shoar, S. & Musher, D. M. Etiology of community-acquired pneumonia in adults: a systematic review. Pneumonia 12, 11 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Venkatesan, A. et al. Case definitions, diagnostic algorithms, and priorities in encephalitis: consensus statement of the International Encephalitis Consortium. Clin. Infect. Dis. 57, 1114–1128 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhu, N. et al. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 382, 727–733 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jacob, S. T. et al. Ebola virus disease. Nat. Rev. Dis. Primers 6, 14 (2020).

    Article  Google Scholar 

  10. Pierson, T. C. & Diamond, M. S. The emergence of Zika virus and its new clinical syndromes. Nature 560, 573–581 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Castañeda-Mogollón, D. et al. A metagenomics workflow for SARS-CoV-2 identification, co-pathogen detection, and overall diversity. J. Clin. Virol. 145, 105025 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Isidro, J. et al. Phylogenomic characterization and signs of microevolution in the 2022 multi-country outbreak of monkeypox virus. Nat. Med. 28, 1569–1572 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Proctor, L. M. et al. The integrative human microbiome project. Nature 569, 641–648 (2019).

    Article  Google Scholar 

  14. Fourgeaud, J. et al. Performance of clinical metagenomics in France: a prospective observational study. Lancet Microbe 5, e52–e61 (2024). This work evaluates the performance of metagenomics as a diagnostic test in a French hospital.

    Article  PubMed  Google Scholar 

  15. Hogan, C. A. et al. Clinical impact of metagenomic next-generation sequencing of plasma cell-free DNA for the diagnosis of infectious diseases: a multicenter retrospective cohort study. Clin. Infect. Dis. 72, 239–245 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Wallen, Z. D. et al. Metagenomics of Parkinson’s disease implicates the gut microbiome in multiple disease mechanisms. Nat. Commun. 13, 6958 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Servellita, V. et al. Adeno-associated virus type 2 in US children with acute severe hepatitis. Nature 617, 574–580 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Morfopoulou, S. et al. Genomic investigations of unexplained acute hepatitis in children. Nature 617, 564–573 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ho, A. et al. Adeno-associated virus 2 infection in children with non-A–E hepatitis. Nature 617, 555–563 (2023). Together with Servellita et al. (2023) and Morfopoulou et al. (2023), this study describes the metagenomic identification of AAV2 in cases from the 2022 outbreak of acute hepatitis in children.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li, P. et al. Rapid identification and metagenomics analysis of the adenovirus type 55 outbreak in Hubei using real-time and high-throughput sequencing platforms. Infect. Genet. Evol. 93, 104939 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. Liu, D. et al. Fingerprinting of human noroviruses co-infections in a possible foodborne outbreak by metagenomics. Int. J. Food Microbiol. 333, 108787 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Orf, G. S. et al. Purifying selection decreases the potential for Bangui orthobunyavirus outbreaks in humans. Virus Evol. 9, vead018 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ergunay, K. et al. The expanding range of emerging tick-borne viruses in Eastern Europe and the Black Sea region. Sci. Rep. 13, 19824 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chiu, C. Y. et al. Two human cases of fatal meningoencephalitis associated with Potosi and Lone Star virus infections, United States, 2020–2023. Emerg. Infect. Dis. 31, 215–221 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Yang, R. et al. Human infection of avian influenza A H3N8 virus and the viral origins: a descriptive study. Lancet Microbe 3, e824–e834 (2022).

    Article  CAS  PubMed  Google Scholar 

  26. Chiu, C. Y. & Miller, S. A. Clinical metagenomics. Nat. Rev. Genet. 20, 341–355 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Penner, J. et al. Translating metagenomics into clinical practice for complex paediatric neurological presentations. J. Infect. 87, 451–458 (2023).

    Article  CAS  PubMed  Google Scholar 

  28. Arroyo Mühr, L. S., Dillner, J., Ure, A. E., Sundström, K. & Hultin, E. Comparison of DNA and RNA sequencing of total nucleic acids from human cervix for metagenomics. Sci. Rep. 11, 18852 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kalantar, K. L. et al. Integrated host-microbe plasma metagenomics for sepsis diagnosis in a prospective cohort of critically ill adults. Nat. Microbiol. 7, 1805–1816 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mick, E. et al. Integrated host/microbe metagenomics enables accurate lower respiratory tract infection diagnosis in critically ill children. J. Clin. Invest. 133, e165904 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Baud, D., Gubler, D. J., Schaub, B., Lanteri, M. C. & Musso, D. An update on Zika virus infection. Lancet 390, 2099–2109 (2017).

    Article  PubMed  Google Scholar 

  32. Wahl, A., Huptas, C. & Neuhaus, K. Comparison of rRNA depletion methods for efficient bacterial mRNA sequencing. Sci. Rep. 12, 5765 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Atkinson, L. et al. Untargeted metagenomics protocol for the diagnosis of infection from CSF and tissue from sterile sites. Heliyon 9, e19854 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Alcolea-Medina, A. et al. Unified metagenomic method for rapid detection of microorganisms in clinical samples. Commun. Med. 4, 135 (2024). This paper describes a rapid clinical metagenomics workflow for diagnosis of respiratory infections in patients in intensive care units.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Charalampous, T. et al. Nanopore metagenomics enables rapid clinical diagnosis of bacterial lower respiratory infection. Nat. Biotechnol. 37, 783–792 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Schuele, L., Cassidy, H., Peker, N., Rossen, J. W. A. & Couto, N. Future potential of metagenomics in microbiology laboratories. Expert Rev. Mol. Diagn. 21, 1273–1285 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. Pichler, I. et al. Rapid and sensitive single-sample viral metagenomics using Nanopore Flongle sequencing. J. Virol. Methods 320, 114784 (2023).

    Article  CAS  PubMed  Google Scholar 

  38. Kohl, C. et al. Protocol for metagenomic virus detection in clinical specimens1. Emerg. Infect. Dis. 21, 48–57 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wylie, T. N., Wylie, K. M., Herter, B. N. & Storch, G. A. Enhanced virome sequencing using targeted sequence capture. Genome Res. 25, 1910–1920 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bonsall, D. et al. ve-SEQ: robust, unbiased enrichment for streamlined detection and whole-genome sequencing of HCV and other highly diverse pathogens. F1000Res 4, 1062 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Buddle, S. et al. Evaluating metagenomics and targeted approaches for diagnosis and surveillance of viruses. Genome Med. 16, 111 (2024). This study provides a detailed comparison of different sequencing approaches and bioinformatics tools for the detection of viral pathogens.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Briese, T. et al. Virome capture sequencing enables sensitive viral diagnosis and comprehensive virome analysis. mBio 6, e01491-15 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Pyöriä, L. et al. Unmasking the tissue-resident eukaryotic DNA virome in humans. Nucleic Acids Res. 51, 3223–3239 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kapoor, V. et al. Validation of the VirCapSeq-VERT system for differential diagnosis, detection, and surveillance of viral infections. J. Clin. Microbiol. 62, e0061223 (2024).

    Article  PubMed  Google Scholar 

  45. Kapel, N. et al. Evaluation of sequence hybridization for respiratory viruses using the twist bioscience respiratory virus research panel and the OneCodex respiratory virus sequence analysis workflow. Microb. Genom. 9, 001103 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Lin, G.-L. et al. Targeted metagenomics reveals association between severity and pathogen co-detection in infants with respiratory syncytial virus. Nat. Commun. 15, 2379 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bermudez, T., Schmitz, J. E., Boswell, M. & Humphries, R. Novel technologies for the diagnosis of urinary tract infections. J. Clin. Microbiol. 63, e0030624 (2025).

    Article  PubMed  Google Scholar 

  48. Deng, X. et al. Metagenomic sequencing with spiked primer enrichment for viral diagnostics and genomic surveillance. Nat. Microbiol. 5, 443–454 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lopez-Labrador, F. X. et al. Multicenter benchmarking of short and long read wet lab protocols for clinical viral metagenomics. J. Clin. Virol. 173, 105695 (2024).

    Article  CAS  PubMed  Google Scholar 

  50. Wilson, M. R. et al. Clinical metagenomic sequencing for diagnosis of meningitis and encephalitis. N. Engl. J. Med. 380, 2327–2340 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kantor, R. S. & Jiang, M. Considerations and opportunities for probe capture enrichment sequencing of emerging viruses from wastewater. Environ. Sci. Technol. 58, 8161–8168 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cook, R. et al. The long and short of it: benchmarking viromics using Illumina, Nanopore and PacBio sequencing technologies. Microb. Genom. 10, 001198 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Zaragoza-Solas, A., Haro-Moreno, J. M., Rodriguez-Valera, F. & López-Pérez, M. Long-read metagenomics improves the recovery of viral diversity from complex natural marine samples. mSystems 7, e00192-22 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Mishra, D., Satpathy, G., Chawla, R., Paliwal, D. & Panda, S. K. Targeted metagenomics using next generation sequencing in laboratory diagnosis of culture negative endophthalmitis. Heliyon 7, e06780 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Meslier, V. et al. Benchmarking second and third-generation sequencing platforms for microbial metagenomics. Sci. Data 9, 694 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. de Vries, J. J. C. et al. Recommendations for the introduction of metagenomic next-generation sequencing in clinical virology, part II: bioinformatic analysis and reporting. J. Clin. Virol. 138, 104812 (2021).

    Article  PubMed  Google Scholar 

  57. Sczyrba, A. et al. Critical assessment of metagenome interpretation — a benchmark of metagenomics software. Nat. Methods 14, 1063–1071 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Meyer, F. et al. Critical assessment of metagenome interpretation: the second round of challenges. Nat. Methods 19, 429–440 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Morfopoulou, S. & Plagnol, V. Bayesian mixture analysis for metagenomic community profiling. Bioinformatics 31, 2930–2938 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. de Vries, J. J. C. et al. Benchmark of thirteen bioinformatic pipelines for metagenomic virus diagnostics using datasets from clinical samples. J. Clin. Virol. 141, 104908 (2021). Together with Lopez-Labrador et al. (2024), this benchmarking study compares laboratory and data analysis methods used by clinical virology laboratories across Europe.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Rajeev, S. et al. Investigation of acute encephalitis syndrome with implementation of metagenomic next generation sequencing in Nepal. BMC Infect. Dis. 24, 734 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. O’Leary, N. A. et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 44, D733–D745 (2016).

    Article  PubMed  Google Scholar 

  63. Huson, D. H., Auch, A. F., Qi, J. & Schuster, S. C. MEGAN analysis of metagenomic data. Genome Res. 17, 377–386 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wood, D. E. & Salzberg, S. L. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 15, R46 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Bharucha, T. et al. STROBE-metagenomics: a STROBE extension statement to guide the reporting of metagenomics studies. Lancet Infect. Dis. 20, e251–e260 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. López-Labrador, F. X. et al. Recommendations for the introduction of metagenomic high-throughput sequencing in clinical virology, part I: wet lab procedure. J. Clin. Virol. 134, 104691 (2021).

    Article  PubMed  Google Scholar 

  67. Salter, S. J. et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 12, 87 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Chrisman, B. et al. The human “contaminome”: bacterial, viral, and computational contamination in whole genome sequences from 1000 families. Sci. Rep. 12, 9863 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Eisenhofer, R. et al. Contamination in low microbial biomass microbiome studies: issues and recommendations. Trends Microbiol. 27, 105–117 (2019).

    Article  CAS  PubMed  Google Scholar 

  70. Tan, J. K. et al. Laboratory validation of a clinical metagenomic next-generation sequencing assay for respiratory virus detection and discovery. Nat. Commun. 15, 9016 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Karius Test® receives FDA breakthrough device designation to aid in the diagnosis of infectious disease. Karius https://kariusdx.com/resources/press-releases/karius-test-r-receives-fda-breakthrough-device-designation-to-aid-in-the-diagnosis-of-infectious-disease (2024).

  72. Pathogenomix granted FDA breakthrough device designation. BioSpace https://www.biospace.com/pathogenomix-granted-fda-breakthrough-device-designation (2022).

  73. Klaften, M. et al. P20 Clinical metagenomics from cell-free DNA: overview and lessons learned from 4 years as a clinical metagenomics provider. JAC Antimicrob. Resist. 6, dlad143.024 (2024).

    Article  PubMed Central  Google Scholar 

  74. First CE-IVD marked NGS-based metagenomics test for blood pathogens. Rapid Microbiology https://www.rapidmicrobiology.com/news/first-ce-ivd-marked-ngs-based-metagenomics-test-for-blood-pathogens (2016).

  75. Chen, X. et al. Comparison of traditional methods and high-throughput genetic sequencing in the detection of pathogens in pulmonary infectious diseases. Ann. Transl. Med. 9, 702 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Vijayvargiya, P. et al. Metagenomic shotgun sequencing of blood to identify bacteria and viruses in leukemic febrile neutropenia. PLoS ONE 17, e0269405 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Laboratory developed tests. FDA https://www.fda.gov/medical-devices/in-vitro-diagnostics/laboratory-developed-tests (2025).

  78. Vogeser, M., Brüggemann, M., Lennerz, J., Stenzinger, A. & Gassner, U. M. Laboratory-developed tests in the new European Union 2017/746 Regulation: opportunities and risks. Clin. Chem. 68, 40–42 (2022).

    Article  Google Scholar 

  79. Gihawi, A. et al. Major data analysis errors invalidate cancer microbiome findings. mBio 14, e0160723 (2023).

    Article  PubMed  Google Scholar 

  80. Johnson, T., Jamrozik, E., Ramachandran, P. & Johnson, S. Clinical metagenomics: ethical issues. J. Med. Microbiol. 74, 001967 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Charalampous, T. et al. Routine metagenomics service for ICU patients with respiratory infection. Am. J. Respir. Crit. Care Med. 209, 164–174 (2024).

    Article  CAS  PubMed  Google Scholar 

  82. Zhu, Y. et al. Diagnostic performance and clinical impact of metagenomic next-generation sequencing for pediatric infectious diseases. J. Clin. Microbiol. 61, e0011523 (2023).

    Article  PubMed  Google Scholar 

  83. Lin, K. et al. Clinical application and drug-use-guidance value of metagenomic next-generation sequencing in central nervous system infection. Am. J. Transl. Res. 15, 47–62 (2023).

    PubMed  PubMed Central  Google Scholar 

  84. Piantadosi, A. et al. Enhanced virus detection and metagenomic sequencing in patients with meningitis and encephalitis. mBio 12, e0114321 (2021).

    Article  PubMed  Google Scholar 

  85. Junier, T. et al. Viral metagenomics in the clinical realm: lessons learned from a Swiss-wide ring trial. Genes 10, 655 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Morfopoulou, S. et al. Human coronavirus OC43 associated with fatal encephalitis. N. Engl. J. Med. 375, 497–498 (2016).

    Article  PubMed  Google Scholar 

  87. Winter, S. et al. Fatal encephalitis caused by Newcastle disease virus in a child. Acta Neuropathol. 142, 605–608 (2021).

    Article  PubMed  Google Scholar 

  88. Maimaris, J. et al. Safety and diagnostic utility of brain biopsy and metagenomics in decision-making for patients with inborn errors of immunity (IEI) and unexplained neurological manifestations. J. Clin. Immunol. 45, 86 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Erickson, T. A. et al. Infectious and autoimmune causes of encephalitis in children. Pediatrics 145, e20192543 (2020).

    Article  PubMed  Google Scholar 

  90. Coletti Moja, M., Riva, G. & Catalfamo, E. Dual drug-induced aseptic meningoencephalitis: more than a suggestion. SAGE Open Med. Case Rep. 9, 2050313X211021179 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Pallerla, S. R. et al. Diagnosis of pathogens causing bacterial meningitis using Nanopore sequencing in a resource-limited setting. Ann. Clin. Microbiol. Antimicrob. 21, 39 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Jain, S. et al. Community-acquired pneumonia requiring hospitalization among U.S. adults. N. Engl. J. Med. 373, 415–427 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Onwuchekwa, C. et al. Underascertainment of respiratory syncytial virus infection in adults due to diagnostic testing limitations: a systematic literature review and meta-analysis. J. Infect. Dis. 228, 173–184 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Gaston, D. C. et al. Evaluation of metagenomic and targeted next-generation sequencing workflows for detection of respiratory pathogens from bronchoalveolar lavage fluid specimens. J. Clin. Microbiol. 60, e0052622 (2022).

    Article  PubMed  Google Scholar 

  95. Zhou, H. et al. Clinical impact of metagenomic next-generation sequencing of bronchoalveolar lavage in the diagnosis and management of pneumonia: a multicenter prospective observational study. J. Mol. Diagn. 23, 1259–1268 (2021).

    Article  CAS  PubMed  Google Scholar 

  96. Mao, Y. et al. Detection of Coccidioides posadasii in a patient with meningitis using metagenomic next-generation sequencing: a case report. BMC Infect. Dis. 21, 968 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Osterman, A. et al. Travel-associated neurological disease terminated in a postmortem diagnosed atypical HSV-1 encephalitis after high-dose steroid therapy — a case report. BMC Infect. Dis. 20, 150 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Williams, E. et al. Case report: confirmation by metagenomic sequencing of visceral leishmaniasis in an immunosuppressed returned traveler. Am. J. Trop. Med. Hyg. 103, 1930–1933 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Woodworth, M. H. et al. Sentinel case of Candida auris in the Western United States following prolonged occult colonization in a returned traveler from India. Microb. Drug Resist. 25, 677–680 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gao, Y., Qu, M., Song, C., Yin, L. & Zhang, M. Cerebral vasculitis caused by Talaromyces marneffei and Aspergillus niger in a HIV-positive patient: a case report and literature review. J. Neurovirol. 28, 274–280 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Camprubí-Ferrer, D. et al. Assessing viral metagenomics for the diagnosis of acute undifferentiated fever in returned travellers: a multicenter cohort study. J. Travel Med. 31, taae029 (2024).

    Article  PubMed  Google Scholar 

  102. Jerome, H. et al. Metagenomic next-generation sequencing aids the diagnosis of viral infections in febrile returning travellers. J. Infect. 79, 383–388 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Reyes, A. et al. Viral metagenomic sequencing in a cohort of international travellers returning with febrile illness. J. Clin. Virol. 143, 104940 (2021).

    Article  CAS  PubMed  Google Scholar 

  104. Van Poelvoorde, L. A. E. et al. Whole-genome-based phylogenomic analysis of the Belgian 2016–2017 influenza A(H3N2) outbreak season allows improved surveillance. Microb. Genom. 7, 000643 (2021).

    PubMed  PubMed Central  Google Scholar 

  105. Amman, F. et al. Viral variant-resolved wastewater surveillance of SARS-CoV-2 at national scale. Nat. Biotechnol. 40, 1814–1822 (2022).

    Article  CAS  PubMed  Google Scholar 

  106. Singh, P., Sharma, K., Bhargava, A. & Negi, S. S. Genomic characterization of influenza A (H1N1)pdm09 and SARS-CoV-2 from influenza like illness (ILI) and severe acute respiratory illness (SARI) cases reported between July–December, 2022. Sci. Rep. 14, 10660 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zhang, S. et al. Evolutionary trajectory and characteristics of Mpox virus in 2023 based on a large-scale genomic surveillance in Shenzhen, China. Nat. Commun. 15, 7452 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Fyles, F. et al. Surveillance towards preventing paediatric incidence of respiratory syncytial virus attributable respiratory tract infection in primary and secondary/tertiary healthcare settings in Merseyside, Cheshire and Bristol, UK. BMJ Open Respir. Res. 10, e001457 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Mahdi, H. A. et al. Syndromic surveillance of respiratory-tract infections and hand hygiene practice among pilgrims attended Hajj in 2021: a cohort study. BMC Infect. Dis. 22, 578 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Kazazian, L. et al. A toolkit for planning and implementing acute febrile illness (AFI) surveillance. PLoS Glob. Public Health 4, e0003115 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Tomashek, K. M. et al. Clinical and epidemiologic characteristics of dengue and other etiologic agents among patients with acute febrile illness, Puerto Rico, 2012–2015. PLoS Negl. Trop. Dis. 11, e0005859 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Kayiwa, J. T. et al. Confirmation of Zika virus infection through hospital-based sentinel surveillance of acute febrile illness in Uganda, 2014–2017. J. Gen. Virol. 99, 1248–1252 (2018).

    Article  CAS  PubMed  Google Scholar 

  113. Shih, D. C. et al. Incorporating COVID-19 into acute febrile illness surveillance systems, Belize, Kenya, Ethiopia, Peru, and Liberia, 2020–2021. Emerg. Infect. Dis. 28, S34–S41 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Liu, J. et al. Development of a TaqMan array card for acute-febrile-illness outbreak investigation and surveillance of emerging pathogens, including Ebola virus. J. Clin. Microbiol. 54, 49–58 (2020).

    Article  Google Scholar 

  115. Rhee, C. et al. Global knowledge gaps in acute febrile illness etiologic investigations: a scoping review. PLoS Negl. Trop. Dis. 13, e0007792 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Bohl, J. A. et al. Discovering disease-causing pathogens in resource-scarce Southeast Asia using a global metagenomic pathogen monitoring system. Proc. Natl Acad. Sci. USA 119, e2115285119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Oguzie, J. U. et al. Metagenomic surveillance uncovers diverse and novel viral taxa in febrile patients from Nigeria. Nat. Commun. 14, 4693 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Levine, Z. C. et al. Investigating the etiologies of non-malarial febrile illness in Senegal using metagenomic sequencing. Nat. Commun. 15, 747 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Guidelines for environmental surveillance of poliovirus circulation. World Health Organization IRIS https://iris.who.int/handle/10665/67854 (2003).

  120. Mercier, E. et al. Municipal and neighbourhood level wastewater surveillance and subtyping of an influenza virus outbreak. Sci. Rep. 12, 15777 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Wolfe, M. K. et al. Wastewater-based detection of two influenza outbreaks. Environ. Sci. Technol. Lett. 9, 687–692 (2022).

    Article  CAS  Google Scholar 

  122. Boehm, A. B. et al. Wastewater concentrations of human influenza, metapneumovirus, parainfluenza, respiratory syncytial virus, rhinovirus, and seasonal coronavirus nucleic-acids during the COVID-19 pandemic: a surveillance study. Lancet Microbe 4, e340–e348 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Oghuan, J. et al. Wastewater analysis of Mpox virus in a city with low prevalence of Mpox disease: an environmental surveillance study. Lancet Reg. Health Am. 28, 100639 (2023).

    PubMed  PubMed Central  Google Scholar 

  124. Brunner, F. S. et al. Utility of wastewater genomic surveillance compared to clinical surveillance to track the spread of the SARS-CoV-2 Omicron variant across England. Water Res. 247, 120804 (2023).

    Article  CAS  PubMed  Google Scholar 

  125. Martínez-Puchol, S. et al. Characterisation of the sewage virome: comparison of NGS tools and occurrence of significant pathogens. Sci. Total Environ. 713, 136604 (2020).

    Article  PubMed  Google Scholar 

  126. Child, H. T. et al. Comparison of metagenomic and targeted methods for sequencing human pathogenic viruses from wastewater. mBio 14, e01468-23 (2023). This study provides a detailed comparison of different untargeted and targeted approaches used for wastewater surveillance.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Tisza, M. et al. Wastewater sequencing reveals community and variant dynamics of the collective human virome. Nat. Commun. 14, 6878 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Sirleaf, E. J. & Clark, H. Report of the independent panel for pandemic preparedness and response: making COVID-19 the last pandemic. Lancet 398, 101–103 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Ko, K. K. K., Chng, K. R. & Nagarajan, N. Metagenomics-enabled microbial surveillance. Nat. Microbiol. 7, 486–496 (2022). This review presents a comprehensive overview of the use of metagenomics for pathogen surveillance.

    Article  CAS  PubMed  Google Scholar 

  130. Cherry, J. D. & Krogstad, P. SARS: the first pandemic of the 21st century. Pediatr. Res. 56, 1–5 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Saxena, S. K., Mishra, N., Saxena, R. & Saxena, S. Swine flu: influenza A/H1N1 2009: the unseen and unsaid. Future Microbiol. 4, 945–947 (2009).

    Article  PubMed  Google Scholar 

  132. Zaki, A. M., Boheemen, S., van Bestebroer, T. M., Osterhaus, A. D. M. E. & Fouchier, R. A. M. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med. 367, 1814–1820 (2012).

    Article  CAS  PubMed  Google Scholar 

  133. Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Grange, Z. L. et al. Ranking the risk of animal-to-human spillover for newly discovered viruses. Proc. Natl Acad. Sci. USA 118, e2002324118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Gebreyes, W. A. et al. The global one health paradigm: challenges and opportunities for tackling infectious diseases at the human, animal, and environment interface in low-resource settings. PLoS Negl. Trop. Dis. 8, e3257 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Taylor, L. H., Latham, S. M. & Woolhouse, M. E. Risk factors for human disease emergence. Philos. Trans. R. Soc. Lond. B Biol. Sci. 356, 983–989 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Van Brussel, K. & Holmes, E. C. Zoonotic disease and virome diversity in bats. Curr. Opin. Virol. 52, 192–202 (2022).

    Article  PubMed  Google Scholar 

  138. Liu, W. J. et al. Surveillance of SARS-CoV-2 at the Huanan seafood market. Nature 631, 402–408 (2024).

    Article  CAS  PubMed  Google Scholar 

  139. Vibin, J., Chamings, A., Klaassen, M., Bhatta, T. R. & Alexandersen, S. Metagenomic characterisation of avian parvoviruses and picornaviruses from Australian wild ducks. Sci. Rep. 10, 12800 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Delaune, D. et al. A novel SARS-CoV-2 related coronavirus in bats from Cambodia. Nat. Commun. 12, 6563 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Cibulski, S. P. et al. Detection of multiple viruses in oropharyngeal samples from Brazilian free-tailed bats (Tadarida brasiliensis) using viral metagenomics. Arch. Virol. 166, 207–212 (2021).

    Article  CAS  PubMed  Google Scholar 

  142. Liao, F. et al. Metagenomics of gut microbiome for migratory seagulls in Kunming City revealed the potential public risk to human health. BMC Genom. 24, 269 (2023).

    Article  CAS  Google Scholar 

  143. Grard, G. et al. A novel rhabdovirus associated with acute hemorrhagic fever in Central Africa. PLoS Pathog. 8, e1002924 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Hou, X. et al. Using artificial intelligence to document the hidden RNA virosphere. Cell 187, 6929–6942.e16 (2024).

    Article  CAS  PubMed  Google Scholar 

  145. Sweeney, T. E., Shidham, A., Wong, H. R. & Khatri, P. A comprehensive time-course-based multicohort analysis of sepsis and sterile inflammation reveals a robust diagnostic gene set. Sci. Transl. Med. 7, 287ra71 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Woods, C. W. et al. A host transcriptional signature for presymptomatic detection of infection in humans exposed to influenza H1N1 or H3N2. PLoS ONE 8, e52198 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Tsalik, E. L. et al. Host gene expression classifiers diagnose acute respiratory illness etiology. Sci. Transl. Med. 8, 322ra11 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Habgood-Coote, D. et al. Diagnosis of childhood febrile illness using a multi-class blood RNA molecular signature. Med 4, 635–654.e5 (2023).

    Article  CAS  PubMed  Google Scholar 

  149. Ramilo, O. et al. Gene expression patterns in blood leukocytes discriminate patients with acute infections. Blood 109, 2066–2077 (2006).

    Article  PubMed  Google Scholar 

  150. Mejias, A. et al. Whole blood gene expression profiles to assess pathogenesis and disease severity in infants with respiratory syncytial virus infection. PLoS Med. 10, e1001549 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Gu, W. et al. Rapid pathogen detection by metagenomic next-generation sequencing of infected body fluids. Nat. Med. 27, 115–124 (2021).

    Article  CAS  PubMed  Google Scholar 

  152. Ramachandran, P. S. et al. Integrating central nervous system metagenomics and host response for diagnosis of tuberculosis meningitis and its mimics. Nat. Commun. 13, 1675 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Loy, C. J. et al. Plasma cell-free RNA signatures of inflammatory syndromes in children. Proc. Natl Acad. Sci. USA 121, e2403897121 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Wang, Y. et al. Plasma cell-free RNA characteristics in COVID-19 patients. Genome Res. 32, 228–241 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Chang, A. et al. Circulating cell-free RNA in blood as a host response biomarker for detection of tuberculosis. Nat. Commun. 15, 4949 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Tzani-Tzanopoulou, P. et al. Interactions of bacteriophages and bacteria at the airway mucosa: new insights into the pathophysiology of asthma. Front. Allergy 1, 617240 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Rolain, J.-M. et al. Genomic analysis of an emerging multiresistant Staphylococcus aureus strain rapidly spreading in cystic fibrosis patients revealed the presence of an antibiotic inducible bacteriophage. Biol. Direct 4, 1 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Pride, D. T. et al. Evidence of a robust resident bacteriophage population revealed through analysis of the human salivary virome. ISME J. 6, 915–926 (2012).

    Article  CAS  PubMed  Google Scholar 

  159. Li, R., Li, J. & Zhou, X. Lung microbiome: new insights into the pathogenesis of respiratory diseases. Signal Transduct. Target. Ther. 9, 19 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Willner, D. et al. Metagenomic analysis of respiratory tract DNA viral communities in cystic fibrosis and non-cystic fibrosis individuals. PLoS ONE 4, e7370 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Lakbar, I., Singer, M. & Leone, M. 2030: will we still need our microbiologist? Intensiv. Care Med. 49, 1232–1234 (2023).

    Article  Google Scholar 

  162. Gauthier, N. P. G. et al. Validation of an automated, end-to-end metagenomic sequencing assay for agnostic detection of respiratory viruses. J. Infect. Dis. 230, e1245–e1253 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Hoffmann, A., Timm, A., Johnson, C., Rupp, S. & Grumaz, C. Automation of customizable library preparation for next-generation sequencing into an open microfluidic platform. Sci. Rep. 14, 17150 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. World Health Organization. The World Health Report 2007: A Safer Future: Global Public Health Security in the 21st Century (WHO, 2007).

  165. Charon, J., Buchmann, J. P., Sadiq, S. & Holmes, E. C. RdRp-scan: a bioinformatic resource to identify and annotate divergent RNA viruses in metagenomic sequence data. Virus Evol. 8, veac082 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Olendraite, I., Brown, K. & Firth, A. E. Identification of RNA virus-derived RdRp sequences in publicly available transcriptomic data sets. Mol. Biol. Evol. 40, msad060 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Zhao, J. et al. Farmed fur animals harbour viruses with zoonotic spillover potential. Nature 634, 228–233 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Kawasaki, J., Suzuki, T. & Hamada, M. Hidden challenges in evaluating spillover risk of zoonotic viruses using machine learning models. Commun. Med. 5, 187 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Mollentze, N., Babayan, S. A. & Streicker, D. G. Identifying and prioritizing potential human-infecting viruses from their genome sequences. PLoS Biol. 19, e3001390 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Panca, M. et al. Evaluating the cost implications of integrating SARS-CoV-2 genome sequencing for infection prevention and control investigation of nosocomial transmission within hospitals. J. Hosp. Infect. 139, 23–32 (2023).

    Article  CAS  PubMed  Google Scholar 

  171. Stirrup, O. et al. Rapid feedback on hospital onset SARS-CoV-2 infections combining epidemiological and sequencing data. eLife 10, e65828 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Fu, Z. et al. Pathogen quantitative efficacy of different spike-in internal controls and clinical application in central nervous system infection with metagenomic sequencing. Microbiol. Spectr. 11, e01139-23 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinform. 10, 421 (2009).

    Article  Google Scholar 

  174. Cadenas-Castrejón, E., Verleyen, J., Boukadida, C., Díaz-González, L. & Taboada, B. Evaluation of tools for taxonomic classification of viruses. Brief. Funct. Genom. 22, 31–41 (2023).

    Article  Google Scholar 

  175. Fan, J., Huang, S. & Chorlton, S. D. BugSeq: a highly accurate cloud platform for long-read metagenomic analyses. BMC Bioinform. 22, 160 (2021).

    Article  CAS  Google Scholar 

  176. Portik, D. M., Brown, C. T. & Pierce-Ward, N. T. Evaluation of taxonomic classification and profiling methods for long-read shotgun metagenomic sequencing datasets. BMC Bioinform. 23, 541 (2022).

    Article  CAS  Google Scholar 

  177. Kim, D., Song, L., Breitwieser, F. P. & Salzberg, S. L. Centrifuge: rapid and sensitive classification of metagenomic sequences. Genome Res. 26, 1721–1729 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Carbo, E. C. et al. Performance of five metagenomic classifiers for virus pathogen detection using respiratory samples from a clinical cohort. Pathogens 11, 340 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Ounit, R., Wanamaker, S., Close, T. J. & Lonardi, S. CLARK: fast and accurate classification of metagenomic and genomic sequences using discriminative k-mers. BMC Genom. 16, 236 (2015).

    Article  Google Scholar 

  180. Kalantar, K. L. et al. IDseq — an open source cloud-based pipeline and analysis service for metagenomic pathogen detection and monitoring. GigaScience 9, giaa111 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Alawi, M. et al. DAMIAN: an open source bioinformatics tool for fast, systematic and cohort based analysis of microorganisms in diagnostic samples. Sci. Rep. 9, 16841 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).

    Article  CAS  PubMed  Google Scholar 

  183. Lin, H.-H. & Liao, Y.-C. drVM: a new tool for efficient genome assembly of known eukaryotic viruses from metagenomes. GigaScience 6, gix003 (2017).

    Article  Google Scholar 

  184. Tithi, S. S., Aylward, F. O., Jensen, R. V. & Zhang, L. FastViromeExplorer: a pipeline for virus and phage identification and abundance profiling in metagenomics data. PeerJ 6, e4227 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Fernandes, J. F. et al. Unbiased metagenomic next-generation sequencing of blood from hospitalized febrile children in Gabon. Emerg. Microbes Infect. 9, 1242–1244 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Vilsker, M. et al. Genome Detective: an automated system for virus identification from high-throughput sequencing data. Bioinformatics 35, 871–873 (2019).

    Article  CAS  PubMed  Google Scholar 

  187. Schmitz, D. et al. Accessible viral metagenomics for public health and clinical domains with Jovian. Sci. Rep. 14, 26018 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Menzel, P., Ng, K. L. & Krogh, A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat. Commun. 7, 11257 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 20, 257 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Lu, J., Breitwieser, F. P., Thielen, P. & Salzberg, S. L. Bracken: estimating species abundance in metagenomics data. PeerJ Comput. Sci. 3, e104 (2017).

    Article  PubMed  Google Scholar 

  191. Breitwieser, F. P., Baker, D. N. & Salzberg, S. L. KrakenUniq: confident and fast metagenomics classification using unique k-mer counts. Genome Biol. 19, 198 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Minot, S. S., Krumm, N. & Greenfield, N. B. One Codex: a sensitive and accurate data platform for genomic microbial identification. Preprint at bioRxiv https://doi.org/10.1101/027607 (2015).

  193. Scheuch, M., Höper, D. & Beer, M. RIEMS: a software pipeline for sensitive and comprehensive taxonomic classification of reads from metagenomics datasets. BMC Bioinform. 16, 69 (2015).

    Article  Google Scholar 

  194. Dadi, T. H., Renard, B. Y., Wieler, L. H., Semmler, T. & Reinert, K. SLIMM: species level identification of microorganisms from metagenomes. PeerJ 5, e3138 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Benoit, P. et al. Seven-year performance of a clinical metagenomic next-generation sequencing test for diagnosis of central nervous system infections. Nat. Med. 30, 3522–3533 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Lin, J. et al. Vipie: web pipeline for parallel characterization of viral populations from multiple NGS samples. BMC Genom. 18, 378 (2017).

    Article  Google Scholar 

  197. Claro, I. M. et al. Rapid viral metagenomics using SMART-9N amplification and nanopore sequencing. Wellcome Open Res. 6, 241 (2021).

    Article  PubMed  Google Scholar 

  198. Tsitsiklis, A. et al. Lower respiratory tract infections in children requiring mechanical ventilation: a multicentre prospective surveillance study incorporating airway metagenomics. Lancet Microbe 3, e284–e293 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Minor, N. R. et al. Metagenomic sequencing detects human respiratory and enteric viruses in air samples collected from congregate settings. Sci. Rep. 13, 21398 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Severe acute hepatitis of unknown aetiology in children — multi-country. World Health Organization https://www.who.int/emergencies/disease-outbreak-news/item/2022-DON400 (2022).

  201. Gutierrez Sanchez, L. H. et al. A case series of children with acute hepatitis and human adenovirus infection. N. Engl. J. Med. 387, 620–630 (2022).

    Article  PubMed  Google Scholar 

  202. Kelgeri, C. et al. Clinical spectrum of children with acute hepatitis of unknown cause. N. Engl. J. Med. 387, 611–619 (2022).

    Article  PubMed  Google Scholar 

  203. Hodcroft, E. B. et al. Spread of a SARS-CoV-2 variant through Europe in the summer of 2020. Nature 595, 707–712 (2021).

    Article  CAS  PubMed  Google Scholar 

  204. Caserta, L. C. et al. Spillover of highly pathogenic avian influenza H5N1 virus to dairy cattle. Nature 634, 669–676 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Uhart, M. M. et al. Epidemiological data of an influenza A/H5N1 outbreak in elephant seals in Argentina indicates mammal-to-mammal transmission. Nat. Commun. 15, 9516 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Banyard, A. C. et al. Detection and spread of high pathogenicity avian influenza virus H5N1 in the Antarctic region. Nat. Commun. 15, 7433 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Wu, F. et al. A new coronavirus associated with human respiratory disease in China. Nature 579, 265–269 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Brito, A. F. et al. Global disparities in SARS-CoV-2 genomic surveillance. Nat. Commun. 13, 7003 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Tegally, H. et al. Detection of a SARS-CoV-2 variant of concern in South Africa. Nature 592, 438–443 (2021).

    Article  CAS  PubMed  Google Scholar 

  210. Faria, N. R. et al. Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil. Science 372, 815–821 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Smyth, D. S. et al. Tracking cryptic SARS-CoV-2 lineages detected in NYC wastewater. Nat. Commun. 13, 635 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Karthikeyan, S. et al. Wastewater sequencing reveals early cryptic SARS-CoV-2 variant transmission. Nature 609, 101–108 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Morvan, M. et al. An analysis of 45 large-scale wastewater sites in England to estimate SARS-CoV-2 community prevalence. Nat. Commun. 13, 4313 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Otieno, J. R. et al. Global genomic surveillance of monkeypox virus. Nat. Med. 31, 342–350 (2025).

    Article  CAS  PubMed  Google Scholar 

  215. Nicholls, S. M. et al. CLIMB-COVID: continuous integration supporting decentralised sequencing for SARS-CoV-2 genomic surveillance. Genome Biol. 22, 196 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. The COVID-19 Genomics UK (COG-UK) Consortium. An integrated national scale SARS-CoV-2 genomic surveillance network. Lancet Microbe 1, e99–e100 (2020).

    Article  Google Scholar 

  217. Tegally, H. et al. The evolving SARS-CoV-2 epidemic in Africa: insights from rapidly expanding genomic surveillance. Science 378, eabq5358 (2022).

    Article  CAS  PubMed  Google Scholar 

  218. Sahadeo, N. S. D. et al. Implementation of genomic surveillance of SARS-CoV-2 in the Caribbean: lessons learned for sustainability in resource-limited settings. PLoS Glob. Public Health 3, e0001455 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  219. UK to create world-first ‘early warning system’ for pandemics. GOV.UK https://www.gov.uk/government/news/uk-to-create-world-first-early-warning-system-for-pandemics (2024).

Download references

Acknowledgements

The authors acknowledge the clinical metagenomics team at Great Ormond Street Hospital and colleagues at University College London Genomics. O.E.T.M., S.B. and S.M. acknowledge the support of the National Institute for Health Research Blood and Transplant Research Unit in Genomics to Enhance Microbiology Screening (NIHR BTRU-GEMS). All research at Great Ormond Street Hospital NHS Foundation Trust and UCL Great Ormond Street Institute of Child Health is made possible by the NIHR Great Ormond Street Hospital Biomedical Research Centre. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Sofia Morfopoulou or Judith Breuer.

Ethics declarations

Competing interests

J.B. receives research support from Illumina PLC, Oxford Nanopore Technologies, and Twist Bioscience. O.E.T.M., S.B. and J.B. are authors on a patent application concerning the use of target capture sequencing with ONT. S.M. declares no competing interests.

Peer review

Peer review information

Nature Reviews Microbiology thanks Charles Chiu; Jelle Matthijnssens, who submitted a co-report with Mustafa Karatas; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

ISO/IEC 17025:2017: https://www.virology.uzh.ch/de/services.html

NCBI RefSeq: https://www.ncbi.nlm.nih.gov/refseq/

Six sequences of the novel coronavirus: https://virological.org/t/novel-2019-coronavirus-genome/319

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torres Montaguth, O.E., Buddle, S., Morfopoulou, S. et al. Clinical metagenomics for diagnosis and surveillance of viral pathogens. Nat Rev Microbiol (2025). https://doi.org/10.1038/s41579-025-01223-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41579-025-01223-5

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology