Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Bacterial cell envelope-targeting antibiotics

Abstract

The emergence of multidrug-resistant bacteria presents a critical threat to global health. These multidrug-resistant bacteria are often protected by complex cell envelopes that many antibiotics cannot penetrate, creating an important barrier to treatment. In response, targeting bacterial envelopes has long been recognized as an effective strategy, offering potential to bypass the challenges of drug entry and efflux resistance mechanisms. Moreover, many unique bacterial envelope sites remain clinically untapped, and new compounds directed at them have the potential to diversify the space of antimicrobial mechanisms, lowering the risk for cross-resistance. Compounds that target non-proteinaceous envelope components, such as lipopolysaccharide or prenylated peptidoglycan-precursors, are particularly attractive owing to their reduced susceptibility to antimicrobial resistance development. In this Review, we explore both recently discovered compounds and established envelope-targeting antibiotics, including compounds that target Gram-positive bacteria, more complex Gram-negative bacteria and mycobacterial pathogens, shedding light on this still clinically underexplored and vital therapeutic approach.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Bacterial cell envelopes.
Fig. 2: The envelope of Gram-positive bacteria as an antibiotic target.
Fig. 3: The envelope of Gram-negative bacteria as an antibiotic target.
Fig. 4: The mycobacterial envelope as an antibiotic target.

Similar content being viewed by others

References

  1. Naghavi, M. et al. Global burden of bacterial antimicrobial resistance 1990–2021: a systematic analysis with forecasts to 2050. Lancet 404, 1199–1226 (2024).

    Article  Google Scholar 

  2. Okeke, I. N. et al. The scope of the antimicrobial resistance challenge. Lancet 403, 2426–2438 (2024).

    Article  CAS  PubMed  Google Scholar 

  3. Theuretzbacher, U., Jumde, R. P., Hennessy, A., Cohn, J. & Piddock, L. J. V. Global health perspectives on antibacterial drug discovery and the preclinical pipeline. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-025-01167-w (2025).

    Article  PubMed  Google Scholar 

  4. Lewis, K. et al. Sophisticated natural products as antibiotics. Nature 632, 39–49 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. World Health Organization. WHO bacterial priority pathogens list, 2024: bacterial pathogens of public health importance to guide research, development and strategies to prevent and control antimicrobial resistance (WHO, 2024).

  6. Dulberger, C. L., Rubin, E. J. & Boutte, C. C. The mycobacterial cell envelope — a moving target. Nat. Rev. Microbiol. 18, 47–59 (2019).

    Article  PubMed  Google Scholar 

  7. Richter, M. F. et al. Predictive compound accumulation rules yield a broad-spectrum antibiotic. Nature 545, 299–304 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Walesch, S. et al. Fighting antibiotic resistance — strategies and (pre)clinical developments to find new antibacterials. EMBO Rep. 24, e56033 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Breukink, E. & de Kruijff, B. Lipid II as a target for antibiotics. Nat. Rev. Drug Discov. 5, 321–323 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Lazzaro, B. P., Zasloff, M. & Rolff, J. Antimicrobial peptides: application informed by evolution. Science 368, eaau5480 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zasloff, M. Antimicrobial peptides of multicellular organisms. Nature 415, 389–395 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Torres, M. D. T., Melo, M. C. R., Crescenzi, O., Notomista, E. & de la Fuente-Nunez, C. Mining for encrypted peptide antibiotics in the human proteome. Nat. Biomed. Eng. 6, 67–75 (2021).

    Article  PubMed  Google Scholar 

  13. Turner, N. A. et al. Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research. Nat. Rev. Microbiol. 17, 203–218 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Taylor, S. D. Synthesis, mechanism of action, and SAR studies on the cyclic lipopeptide antibiotic daptomycin. Can. J. Chem. 102, 414–424 (2024).

    Article  CAS  Google Scholar 

  15. Hartley, M. D. & Imperiali, B. At the membrane frontier: a prospectus on the remarkable evolutionary conservation of polyprenols and polyprenyl-phosphates. Arch. Biochem. Biophysics 517, 83–97 (2012).

    Article  CAS  Google Scholar 

  16. Sheldrick, G. M., Jones, P. G., Kennard, O., Williams, D. H. & Smith, G. A. Structure of vancomycin and its complex with acetyl-D-alanyl-D-alanine. Nature 271, 223–225 (1978).

    Article  CAS  PubMed  Google Scholar 

  17. Centers for Disease Control and Prevention. Reduced susceptibility of Staphylococcus aureus to vancomycin--Japan, 1996. MMWR Morb. Mortal. Wkly Rep. 46, 624–626 (1997).

  18. van Groesen, E., Innocenti, P. & Martin, N. I. Recent advances in the development of semisynthetic glycopeptide antibiotics: 2014–2022. ACS Infect. Dis. 8, 1381–1407 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Brčić, J., Tong, A., Wender, P. A. & Cegelski, L. Conjugation of vancomycin with a single arginine improves efficacy against mycobacteria by more effective peptidoglycan targeting. J. Medicinal Chem. 66, 10226–10237 (2023).

    Article  Google Scholar 

  20. Padilla, M. S. T. L. & Nowick, J. S. Vancomycin–teixobactin conjugates. J. Am. Chem. Soc. https://doi.org/10.1021/jacs.4c17175 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Rahn, H. P. et al. Biguanide-vancomycin conjugates are effective broad-spectrum antibiotics against actively growing and biofilm-associated Gram-positive and Gram-negative ESKAPE pathogens and Mycobacteria. J. Am. Chem. Soc. 146, 22541–22552 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Malabarba, A. & Goldstein, B. P. Origin, structure, and activity in vitro and in vivo of dalbavancin. J. Antimicrob. Chemother. 55, ii15–ii20 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Cooper, R. D. G. et al. Reductive alkylation of glycopeptide antibiotics: synthesis and antibacterial activity. J. Antibiot. 49, 575–581 (1996).

    Article  CAS  Google Scholar 

  24. van Groesen, E. et al. Semisynthetic guanidino lipoglycopeptides with potent in vitro and in vivo antibacterial activity. Sci. Transl. Med. 16, eabo4736 (2024).

    Article  PubMed  Google Scholar 

  25. Ling, L. L. et al. A new antibiotic kills pathogens without detectable resistance. Nature 517, 455–459 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shukla, R. et al. Teixobactin kills bacteria by a two-pronged attack on the cell envelope. Nature 608, 390–396 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shukla, R. et al. Mode of action of teixobactins in cellular membranes. Nat. Commun. 11, 2848 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yang, H., Chen, K. H. & Nowick, J. S. Elucidation of the teixobactin pharmacophore. ACS Chem. Biol. 11, 1823–1826 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shukla, R. et al. An antibiotic from an uncultured bacterium binds to an immutable target. Cell 186, 4059–4073.e27 (2023).

    Article  CAS  PubMed  Google Scholar 

  30. Wirtz, D. A. et al. Biosynthesis and mechanism of action of the cell wall targeting antibiotic hypeptin. Angew. Chem. Int. Ed. 60, 13579–13586 (2021).

    Article  CAS  Google Scholar 

  31. Jekhmane, S. et al. Host defence peptide plectasin targets bacterial cell wall precursor lipid II by a calcium-sensitive supramolecular mechanism. Nat. Microbiol. 9, 1778–1791 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Loll, P. J. et al. Vancomycin forms ligand-mediated supramolecular complexes. J. Mol. Biol. 385, 200–211 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Lawrence, W. S. et al. Teixobactin: a resistance-evading antibiotic for treating anthrax. ACS Infect. Dis. https://doi.org/10.1021/acsinfecdis.4c00835 (2025).

    Article  PubMed  Google Scholar 

  34. Jones, C. R., Lai, G. H., Padilla, M. S. T. L. & Nowick, J. S. Investigation of isobactin analogues of teixobactin. ACS Med. Chem. Lett. 15, 1136–1142 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ludwig, K. C. et al. The dual mode of antibacterial action of the synthetic small molecule DCAP involves lipid II binding. J. Am. Chem. Soc. 146, 24855–24862 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Reithuber, E. et al. THCz: small molecules with antimicrobial activity that block cell wall lipid intermediates. Proc. Natl Acad. Sci. USA 118, e2108244118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Johnson, B. A., Anker, H. & Meleney, F. L. Bacitracin: a new antibiotic produced by a member of the B. subtilis group. Science 102, 376–377 (1945).

    Article  CAS  PubMed  Google Scholar 

  38. Economou, N. J., Cocklin, S. & Loll, P. J. High-resolution crystal structure reveals molecular details of target recognition by bacitracin. Proc. Natl Acad. Sci. USA 110, 14207–14212 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Buijs, N. P. et al. A classic antibiotic reimagined: rationally designed bacitracin variants exhibit potent activity against vancomycin-resistant pathogens. Proc. Natl Acad. Sci. USA 121, e2315310121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Genkins, G. Bacitracin nephropathy. J. Am. Med. Assoc. 155, 894–897 (1954).

    Article  CAS  PubMed  Google Scholar 

  41. Culp, E. J. et al. Evolution-guided discovery of antibiotics that inhibit peptidoglycan remodelling. Nature 578, 582–587 (2020).

    Article  CAS  PubMed  Google Scholar 

  42. Steenbergen, J. N., Alder, J., Thorne, G. M. & Tally, F. P. Daptomycin: a lipopeptide antibiotic for the treatment of serious Gram-positive infections. J. Antimicrob. Chemother. 55, 283–288 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Grein, F. et al. Ca2+-Daptomycin targets cell wall biosynthesis by forming a tripartite complex with undecaprenyl-coupled intermediates and membrane lipids. Nat. Commun. 11, 1455 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Müller, A. et al. Daptomycin inhibits cell envelope synthesis by interfering with fluid membrane microdomains. Proc. Natl Acad. Sci. USA 113, E7077–E7086 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kotsogianni, I., Wood, T. M., Alexander, F. M., Cochrane, S. A. & Martin, N. I. Binding studies reveal phospholipid specificity and its role in the calcium-dependent mechanism of action of daptomycin. ACS Infect. Dis. 7, 2612–2619 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Moreira, R. & Taylor, S. D. The chiral target of daptomycin is the 2R,2′S stereoisomer of phosphatidylglycerol. Angew. Chem. Int. Ed. 61, e202114858 (2021).

    Article  Google Scholar 

  47. Machhua, P. et al. Daptomycin forms a stable complex with phosphatidylglycerol for selective uptake to bacterial membrane. eLife 13, RP93267 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Rimal, B. et al. The effects of daptomycin on cell wall biosynthesis in Enterococcal faecalis. Sci. Rep. 13, 12227 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang, T., Muraih, J. K., MacCormick, B., Silverman, J. & Palmer, M. Daptomycin forms cation- and size-selective pores in model membranes. Bioch. Biophys. Acta Biomembranes 1838, 2425–2430 (2014).

    Article  CAS  Google Scholar 

  50. Beriashvili, D. et al. Mechanistic studies on the effect of membrane lipid acyl chain composition on daptomycin pore formation. Chem. Phys. Lipids 216, 73–79 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Howe, A. & Sofou, S. Daptomycin-induced lipid phases on model lipid bilayers: effect of lipid type and of lipid leaflet order on membrane permeability. J. Phys. Chem. B 125, 5775–5785 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. Tran, T. T., Munita, J. M. & Arias, C. A. Mechanisms of drug resistance: daptomycin resistance. Ann. N. Y. Acad. Sci. 1354, 32–53 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Nguyen, A. H., Hood, K. S., Mileykovskaya, E., Miller, W. R. & Tran, T. T. Bacterial cell membranes and their role in daptomycin resistance: a review. Front. Mol. Biosci. 9, 1035574 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Makitrynskyy, R. et al. Olikomycin A–A novel calcium-dependent lipopeptide with antibiotic activity against multidrug-resistant bacteria. Chemistry 31, e202403985 (2024).

    Article  PubMed  Google Scholar 

  55. Goodyear, J., Diamandas, M., Moreira, R. & Taylor, S. D. The calcium-dependent antibiotics: structure–activity relationships and determination of their lipid target. ACS Infect. Dis. 11, 226–237 (2024).

    Article  PubMed  Google Scholar 

  56. Bertani, B. & Ruiz, N. Function and biogenesis of lipopolysaccharides. EcoSal Plus https://doi.org/10.1128/ecosalplus.ESP-0001-2018 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Simpson, B. W. & Trent, M. S. Pushing the envelope: LPS modifications and their consequences. Nat. Rev. Microbiol. 17, 403–416 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Clifton, L. A. et al. Effect of divalent cation removal on the structure of Gram-negative bacterial outer membrane models. Langmuir 31, 404–412 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  59. MacNair, C. R., Brown, E. D. & Dunman, P. Outer membrane disruption overcomes intrinsic, acquired, and spontaneous antibiotic resistance. mBio 11, e01615-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  60. MacNair, C. R., Rutherford, S. T. & Tan, M.-W. Alternative therapeutic strategies to treat antibiotic-resistant pathogens. Nat. Rev. Microbiol. 22, 262–275 (2023).

    Article  PubMed  Google Scholar 

  61. MacNair, C. R. et al. Preclinical development of pentamidine analogs identifies a potent and nontoxic antibiotic adjuvant. ACS Infect. Dis. 8, 768–777 (2022).

    Article  CAS  PubMed  Google Scholar 

  62. Zavascki, A. P., Goldani, L. Z., Li, J. & Nation, R. L. Polymyxin B for the treatment of multidrug-resistant pathogens: a critical review. J. Antimicrob. Chemother. 60, 1206–1215 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Nang, S. C. et al. Rescuing the last-line polymyxins: achievements and challenges. Pharmacol. Rev. 73, 679–728 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Trimble, M. J., Mlynárčik, P., Kolář, M. & Hancock, R. E. W. Polymyxin: alternative mechanisms of action and resistance. Cold Spring Harb. Perspect. Med. 6, a025288 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Velkov, T., Thompson, P. E., Nation, R. L. & Li, J. Structure−activity relationships of polymyxin antibiotics. J. Med. Chem. 53, 1898–1916 (2009).

    Article  Google Scholar 

  66. Savenko, M., Vácha, R., Ramseyer, C. & Rivel, T. Role of divalent ions in membrane models of polymyxin-sensitive and resistant Gram-negative bacteria. J. Chem. Inf. Modeling 65, 1476–1491 (2025).

    Article  CAS  Google Scholar 

  67. Buchholz, K. R. et al. Potent activity of polymyxin B is associated with long-lived super-stoichiometric accumulation mediated by weak-affinity binding to lipid A. Nat. Commun. 15, 4733 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Manioglu, S. et al. Antibiotic polymyxin arranges lipopolysaccharide into crystalline structures to solidify the bacterial membrane. Nat. Commun. 13, 6195 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Benn, G., Silhavy, T. J., Kleanthous, C. & Hoogenboom, B. W. Antibiotics and hexagonal order in the bacterial outer membrane. Nat. Commun. 14, 4772 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Manioglu, S. et al. Reply to: antibiotics and hexagonal order in the bacterial outer membrane. Nat. Commun. 14, 4773 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Borrelli, C. et al. Polymyxin B lethality requires energy-dependent outer membrane disruption. Nat. Microbiol. https://doi.org/10.1038/s41564-025-02133-1 (2025).

    Article  PubMed  Google Scholar 

  72. Sabnis, A. et al. Colistin kills bacteria by targeting lipopolysaccharide in the cytoplasmic membrane. eLife 10, e65836 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gadar, K. et al. Disrupting iron homeostasis can potentiate colistin activity and overcome colistin resistance mechanisms in Gram-negative bacteria. Commun. Biol. 6, 937 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sampson, T. R. et al. Rapid killing of Acinetobacter baumannii by polymyxins is mediated by a hydroxyl radical death pathway. Antimicrobial Agents Chemother. 56, 5642–5649 (2012).

    Article  CAS  Google Scholar 

  75. Ledger, E. V. K., Sabnis, A. & Edwards, A. M. Polymyxin and lipopeptide antibiotics: membrane-targeting drugs of last resort. Microbiology 168, 001136 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wang, R. et al. The global distribution and spread of the mobilized colistin resistance gene mcr-1. Nat. Commun. 9, 1179 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  77. MacNair, C. R. et al. Overcoming mcr-1 mediated colistin resistance with colistin in combination with other antibiotics. Nat. Commun. 9, 458 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Humphrey, M. et al. Colistin resistance in Escherichia coli confers protection of the cytoplasmic but not outer membrane from the polymyxin antibiotic. Microbiology 167, 001104 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Carfrae, L. A. et al. Inhibiting fatty acid synthesis overcomes colistin resistance. Nat. Microbiol. 8, 1026–1038 (2023).

    Article  CAS  PubMed  Google Scholar 

  80. Wang, Z. et al. A naturally inspired antibiotic to target multidrug-resistant pathogens. Nature 601, 606–611 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Roberts, K. D. et al. A synthetic lipopeptide targeting top-priority multidrug-resistant Gram-negative pathogens. Nat. Commun. 13, 1625 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Slingerland, C. J. et al. Semisynthetic polymyxins with potent antibacterial activity and reduced kidney cell toxicity. RSC Med. Chem. 14, 2417–2425 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yang, H.-X. et al. Design, synthesis, and bioactivity investigation of cyclic lipopeptide antibiotics containing eight to nine amino acids. J. Med. Chem. 66, 2524–2541 (2023).

    Article  CAS  PubMed  Google Scholar 

  84. Slingerland, C. J. & Martin, N. I. Recent advances in the development of polymyxin antibiotics: 2010-2023. ACS Infect. Dis. 10, 1056–1079 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Li, J. et al. Total and semisyntheses of polymyxin analogues with 2-thr or 10-thr modifications to decipher the structure-activity relationship and improve the antibacterial activity. J. Med. Chem. 64, 5746–5765 (2021).

    Article  CAS  PubMed  Google Scholar 

  86. Patil, N. A. et al. Critical role of position 10 residue in the polymyxin antimicrobial activity. J. Med. Chem. 66, 2865–2876 (2023).

    Article  CAS  PubMed  Google Scholar 

  87. Slingerland, C. J. et al. Synthesis and evaluation of polymyxins bearing reductively labile disulfide-linked lipids. J. Med. Chem. 65, 15878–15892 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Brown, P. et al. Design of next generation polymyxins with lower toxicity: the discovery of SPR206. ACS Infect. Dis. 5, 1645–1656 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Outeda-Garcia, M. et al. The novel polymyxin analogue SPR206 exhibits higher activity than colistin against both colistin-susceptible and colistin-resistant strains of Acinetobacter baumannii. Antimicrob. Agents Chemother. 69, e0194024 (2025).

    Article  PubMed  Google Scholar 

  90. Spero Therapeutics. Spero Therapeutics Announces Fourth Quarter and Full Year 2024 Operating Results and Provides a Business Update. https://www.globenewswire.com/news-release/2025/03/27/3050978/0/en/Spero-Therapeutics-Announces-Fourth-Quarter-and-Full-Year-2024-Operating-Results-and-Provides-a-Business-Update.html (2025).

  91. Jiang, X. et al. Structure-interaction relationship of polymyxins with lung surfactant. J. Med. Chem. 66, 16109–16119 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Li, S. et al. Pharmacokinetics and safety of EVER206, a novel polymyxin antimicrobial, in healthy Chinese subjects. Antimicrob. Agents Chemother. 68, e0156323 (2024).

    Article  PubMed  Google Scholar 

  93. Lepak, A. J., Wang, W. & Andes, D. R. Pharmacodynamic evaluation of MRX-8, a novel polymyxin, in the neutropenic mouse thigh and lung infection models against Gram-negative pathogens. Antimicrob. Agents Chemother. 64, e01517-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Qu, X. et al. Pharmacokinetics and nephrotoxicity of polymyxin MRX-8 in rats: a novel agent against resistant Gram-negative bacteria. Antibiotics 13, 354 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. MicuRX. Pipeline. https://www.micurxchina.com/en/pipeline (2025).

  96. Corbett, D. et al. Potentiation of antibiotic activity by a novel cationic peptide: potency and spectrum of activity of SPR741. Antimicrob. Agents Chemother. 61, e00200-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  97. French, S. et al. Potentiation of antibiotics against Gram-negative bacteria by polymyxin B analogue SPR741 from unique perturbation of the outer membrane. ACS Infect. Dis. 6, 1405–1412 (2020).

    Article  CAS  PubMed  Google Scholar 

  98. Zurawski, D. V. et al. SPR741, an antibiotic adjuvant, potentiates the in vitro and in vivo activity of rifampin against clinically relevant extensively drug-resistant Acinetobacter baumannii. Antimicrob. Agents Chemother. 61, e01239-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Song, M. et al. A broad-spectrum antibiotic adjuvant reverses multidrug-resistant Gram-negative pathogens. Nat. Microbiol. 5, 1040–1050 (2020).

    Article  CAS  PubMed  Google Scholar 

  100. Sabnis, A. & Edwards, A. M. Lipopolysaccharide as an antibiotic target. Bioch. Biophys. Acta Mol. Cell Res. 1870, 119507 (2023).

    Article  CAS  Google Scholar 

  101. Törk, L., Moffatt, C. B., Bernhardt, T. G., Garner, E. C. & Kahne, D. Single-molecule dynamics show a transient lipopolysaccharide transport bridge. Nature 623, 814–819 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Zhang, T. et al. Native mass spectrometry and structural studies reveal modulation of MsbA–nucleotide interactions by lipids. Nat. Commun. 15, 5946 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wu, H. et al. Research progress of LpxC inhibitor on Gram-negative bacteria. Eur. J. Medicinal Chem. 289, 117440 (2025).

    Article  CAS  Google Scholar 

  104. Huseby, D. L. et al. Antibiotic class with potent in vivo activity targeting lipopolysaccharide synthesis in Gram-negative bacteria. Proc. Natl Acad. Sci. USA 121, e2317274121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Thélot, F. A. et al. Distinct allosteric mechanisms of first-generation MsbA inhibitors. Science 374, 580–585 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Verma, V. A. et al. Discovery of inhibitors of the lipopolysaccharide transporter MsbA: from a screening hit to potent wild-type Gram-negative activity. J. Medicinal Chem. 65, 4085–4120 (2022).

    Article  CAS  Google Scholar 

  107. Wang, H. et al. Cerastecins inhibit membrane lipooligosaccharide transport in drug-resistant Acinetobacter baumannii. Nat. Microbiol. 9, 1244–1255 (2024).

    Article  CAS  PubMed  Google Scholar 

  108. Zhang, Q. et al. Re-sensitization of mcr carrying multidrug resistant bacteria to colistin by silver. Proc. Natl Acad. Sci. USA 119, e2119417119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Srinivas, N. et al. Peptidomimetic antibiotics target outer-membrane biogenesis in Pseudomonas aeruginosa. Science 327, 1010–1013 (2010).

    Article  CAS  PubMed  Google Scholar 

  110. Li, D. & Schneider-Futschik, E. K. Current and emerging inhaled antibiotics for chronic pulmonary Pseudomonas aeruginosa and Staphylococcus aureus infections in cystic fibrosis. Antibiotics 12, 484 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Pahil, K. S. et al. A new antibiotic traps lipopolysaccharide in its intermembrane transporter. Nature 625, 572–577 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zampaloni, C. et al. A novel antibiotic class targeting the lipopolysaccharide transporter. Nature 625, 566–571 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Vetterli, S. U. et al. Thanatin targets the intermembrane protein complex required for lipopolysaccharide transport in Escherichia coli. Sci. Adv. 4, eaau2634 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Fiorentino, F. et al. Dynamics of an LPS translocon induced by substrate and an antimicrobial peptide. Nat. Chem. Biol. 17, 187–195 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Schuster, M. et al. Peptidomimetic antibiotics disrupt the lipopolysaccharide transport bridge of drug-resistant Enterobacteriaceae. Sci. Adv. 9, eadg3683 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Gu, Y. et al. Structural basis of outer membrane protein insertion by the BAM complex. Nature 531, 64–69 (2016).

    Article  CAS  PubMed  Google Scholar 

  117. Bakelar, J., Buchanan, S. K. & Noinaj, N. The structure of the β-barrel assembly machinery complex. Science 351, 180–186 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. dos Santos, T. M. A. et al. Native β-barrel substrates pass through two shared intermediates during folding on the BAM complex. Proc. Natl Acad. Sci. USA 121, e2409672121 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Imai, Y. et al. A new antibiotic selectively kills Gram-negative pathogens. Nature 576, 459–464 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kaur, H. et al. The antibiotic darobactin mimics a β-strand to inhibit outer membrane insertase. Nature 593, 125–129 (2021).

    Article  CAS  PubMed  Google Scholar 

  121. Groß, S. et al. Improved broad-spectrum antibiotics against Gram-negative pathogens via darobactin biosynthetic pathway engineering. Chem. Sci. 12, 11882–11893 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Miller, R. D. et al. Computational identification of a systemic antibiotic for Gram-negative bacteria. Nat. Microbiol. 7, 1661–1672 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Sun, D. et al. The discovery and structural basis of two distinct state-dependent inhibitors of BamA. Nat. Commun. 15, 8718 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Luther, A. et al. Chimeric peptidomimetic antibiotics against Gram-negative bacteria. Nature 576, 452–458 (2019).

    Article  CAS  PubMed  Google Scholar 

  125. Javed, A. et al. Chimeric peptidomimetic antibiotic efficiently neutralizes lipopolysaccharides (LPS) and bacteria-induced activation of RAW macrophages. ACS Infect. Dis. 9, 518–526 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Muñoz, K. A. et al. A Gram-negative-selective antibiotic that spares the gut microbiome. Nature 630, 429–436 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Smith, P. A. et al. Optimized arylomycins are a new class of Gram-negative antibiotics. Nature 561, 189–194 (2018).

    Article  CAS  PubMed  Google Scholar 

  128. World Health Organization. Global Tuberculosis Report 2019 https://apps.who.int/iris/bitstream/handle/10665/329368/9789241565714-eng.pdf?ua=1 (2019).

  129. Dartois, V. A. & Rubin, E. J. Anti-tuberculosis treatment strategies and drug development: challenges and priorities. Nat. Rev. Microbiol. 20, 685–701 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Wu, M.-L., Aziz, D. B., Dartois, V. & Dick, T. NTM drug discovery: status, gaps and the way forward. Drug Discov. Today 23, 1502–1519 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Conradie, F. et al. Bedaquiline–pretomanid–linezolid regimens for drug-resistant tuberculosis. N. Engl. J. Med. 387, 810–823 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Forget, E. J. & Menzies, D. Adverse reactions to first-line antituberculosis drugs. Expert Opin. Drug Saf. 5, 231–249 (2006).

    Article  CAS  PubMed  Google Scholar 

  133. Daley, C. L. et al. Treatment of nontuberculous mycobacterial pulmonary disease: an official ATS/ERS/ESCMID/IDSA clinical practice guideline. Eur. Respiratory J. 56, 2000535 (2020).

    Article  Google Scholar 

  134. Russell, D. G., Cardona, P.-J., Kim, M.-J., Allain, S. & Altare, F. Foamy macrophages and the progression of the human tuberculosis granuloma. Nat. Immunol. 10, 943–948 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Jarlier, V. & Nikaido, H. Permeability barrier to hydrophilic solutes in Mycobacterium chelonei. J. Bacteriol. 172, 1418–1423 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Nessar, R., Cambau, E., Reyrat, J. M., Murray, A. & Gicquel, B. Mycobacterium abscessus: a new antibiotic nightmare. J. Antimicrob. Chemother. 67, 810–818 (2012).

    Article  CAS  PubMed  Google Scholar 

  137. Jarlier, V. & Nikaido, H. Mycobacterial cell wall: structure and role in natural resistance to antibiotics. FEMS Microbiol. Lett. 123, 11–18 (1994).

    Article  CAS  PubMed  Google Scholar 

  138. Nguyen, T. Q. et al. Exploring antibiotic resistance mechanisms in Mycobacterium abscessus for enhanced therapeutic approaches. Front. Microbiol. 15, 1331508 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Alderwick, L. J., Harrison, J., Lloyd, G. S. & Birch, H. L. The mycobacterial cell wall— peptidoglycan and arabinogalactan. Cold Spring Harb. Perspect. Med. 5, a021113 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Sparks, I. L. et al. Lipoarabinomannan mediates localized cell wall integrity during division in mycobacteria. Nat. Commun. 15, 2191 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Dartois, V. & Dick, T. Therapeutic developments for tuberculosis and nontuberculous mycobacterial lung disease. Nat. Rev. Drug Discov. 23, 381–403 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Yadav, S. et al. DprE1 inhibitors: enduring aspirations for future antituberculosis drug discovery. ChemMedChem 18, e202300099 (2023).

    Article  CAS  PubMed  Google Scholar 

  143. Mikušová, K. et al. Decaprenylphosphoryl arabinofuranose, the donor of the D-arabinofuranosyl residues of mycobacterial arabinan, is formed via a two-step epimerization of decaprenylphosphoryl ribose. J. Bacteriol. 187, 8020–8025 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Chikhale, R. V., Barmade, M. A., Murumkar, P. R. & Yadav, M. R. Overview of the development of DprE1 inhibitors for combating the menace of tuberculosis. J. Med. Chem. 61, 8563–8593 (2018).

    Article  CAS  PubMed  Google Scholar 

  145. Makarov, V. et al. Benzothiazinones kill Mycobacterium tuberculosis by blocking arabinan synthesis. Science 324, 801–804 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Römpp, A. et al. The clinical-stage drug BTZ-043 accumulates in murine tuberculosis lesions and efficiently acts against Mycobacterium tuberculosis. Nat. Commun. 16, 826 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Makarov, V. & Mikušová, K. Development of macozinone for TB treatment: an update. Appl. Sci. 10, 2269 (2020).

    Article  CAS  Google Scholar 

  148. Shirude, P. S. et al. Azaindoles: noncovalent DprE1 inhibitors from scaffold morphing efforts, kill Mycobacterium tuberculosis and are efficacious in vivo. J. Med. Chem. 56, 9701–9708 (2013).

    Article  CAS  PubMed  Google Scholar 

  149. Hariguchi, N. et al. OPC-167832, a novel carbostyril derivative with potent antituberculosis activity as a DprE1 inhibitor. Antimicrobial Agents Chemother. 64, e02020-19 (2020).

    Article  Google Scholar 

  150. Kerantzas, C. A., Jacobs, W. R., Rubin, E. J. & Collier, R. J. Origins of combination therapy for tuberculosis: lessons for future antimicrobial development and application. mBio 8, e01586-16 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Zhang, L. et al. Structures of cell wall arabinosyltransferases with the anti-tuberculosis drug ethambutol. Science 368, 1211–1219 (2020).

    Article  CAS  PubMed  Google Scholar 

  152. Tan, Y. Z. et al. Cryo-EM structure of arabinosyltransferase EmbB from Mycobacterium smegmatis. Nat. Commun. 11, 3396 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Rozwarski, D. A., Grant, G. A., Barton, D. H. R., Jacobs, W. R. & Sacchettini, J. C. Modification of the NADH of the isoniazid target (InhA) from Mycobacterium tuberculosis. Science 279, 98–102 (1998).

    Article  CAS  PubMed  Google Scholar 

  154. Xu, Z., Meshcheryakov, V. A., Poce, G. & Chng, S.-S. MmpL3 is the flippase for mycolic acids in Mycobacteria. Proc. Natl Acad. Sci. USA 114, 7993–7998 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Waldor, M. K. et al. Structures of the mycobacterial membrane protein MmpL3 reveal its mechanism of lipid transport. PLoS Biol. 19, e3001370 (2021).

    Article  Google Scholar 

  156. Adams, O. et al. Cryo-EM structure and resistance landscape of M. tuberculosis MmpL3: an emergent therapeutic target. Structure 29, 1182–1191.e4 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Degiacomi, G. et al. Essentiality of mmpL3 and impact of its silencing on Mycobacterium tuberculosis gene expression. Sci. Rep. 7, 43495 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  158. North, E. J., Schwartz, C. P., Zgurskaya, H. I. & Jackson, M. Recent advances in mycobacterial membrane protein large 3 inhibitor drug design for mycobacterial infections. Expert Opin. Drug Discov. 18, 707–724 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Jia, L. et al. Pharmacodynamics and pharmacokinetics of SQ109, a new diamine-based antitubercular drug. Br. J. Pharmacol. 144, 80–87 (2009).

    Article  Google Scholar 

  160. Stevens, C. M. et al. Proton transfer activity of the reconstituted Mycobacterium tuberculosis MmpL3 is modulated by substrate mimics and inhibitors. Proc. Natl Acad. Sci. USA 119, e2113963119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Zhang, B. et al. Crystal structures of membrane transporter MmpL3, an anti-TB drug target. Cell 176, 636–648.e13 (2019).

    Article  CAS  PubMed  Google Scholar 

  162. Yang, X. et al. Structural basis for the inhibition of mycobacterial MmpL3 by NITD-349 and SPIRO. J. Mol. Biol. 432, 4426–4434 (2020).

    Article  CAS  PubMed  Google Scholar 

  163. Tenland, E. et al. A novel derivative of the fungal antimicrobial peptide plectasin is active against Mycobacterium tuberculosis. Tuberculosis 113, 231–238 (2018).

    Article  CAS  PubMed  Google Scholar 

  164. Martelli, G. et al. N-Thio-β-lactams targeting L,D-transpeptidase-2, with activity against drug-resistant strains of Mycobacterium tuberculosis. Cell Chem. Biol. 28, 1321–1332.e5 (2021).

    Article  CAS  PubMed  Google Scholar 

  165. de Munnik, M. et al. Biochemical and crystallographic studies of l,d-transpeptidase 2 from Mycobacterium tuberculosis with its natural monomer substrate. Commun. Biol. 7, 1173 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  166. de Munnik, M. et al. High-throughput screen with the l,d-transpeptidase LdtMt2 of Mycobacterium tuberculosis reveals novel classes of covalently reacting inhibitors. Chem. Sci. 14, 7262–7278 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Ramón-García, S. et al. Sanfetrinem, an oral β-lactam antibiotic repurposed for the treatment of tuberculosis. Drug Resist. Update 80, 101213 (2025).

    Article  Google Scholar 

  168. Süssmuth, R. D., Kulike-Koczula, M., Gao, P. & Kosol, S. Fighting antimicrobial resistance: innovative drugs in antibacterial research. Angew. Chem. Int. Ed. https://doi.org/10.1002/anie.202414325 (2025).

    Article  Google Scholar 

  169. Santos-Júnior, C. D. et al. Discovery of antimicrobial peptides in the global microbiome with machine learning. Cell 187, 3761–3778.e16 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Liu, G. et al. Deep learning-guided discovery of an antibiotic targeting Acinetobacter baumannii. Nat. Chem. Biol. 19, 1342–1350 (2023).

    Article  CAS  PubMed  Google Scholar 

  172. Moffat, J. G., Vincent, F., Lee, J. A., Eder, J. & Prunotto, M. Opportunities and challenges in phenotypic drug discovery: an industry perspective. Nat. Rev. Drug Discov. 16, 531–543 (2017).

    Article  CAS  PubMed  Google Scholar 

  173. Klapper, M. et al. Natural products from reconstructed bacterial genomes of the Middle and Upper Paleolithic. Science 380, 619–624 (2023).

    Article  CAS  PubMed  Google Scholar 

  174. Wan, F., Torres, M. D. T., Peng, J. & de la Fuente-Nunez, C. Deep-learning-enabled antibiotic discovery through molecular de-extinction. Nat. Biomed. Eng. 8, 854–871 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Kühlbrandt, W. The resolution revolution. Science 343, 1443–1444 (2014).

    Article  PubMed  Google Scholar 

  176. Medeiros-Silva, J. et al. High-resolution NMR studies of antibiotics in cellular membranes. Nat. Commun. 9, 3963 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Parker, E. N. et al. Implementation of permeation rules leads to a FabI inhibitor with activity against Gram-negative pathogens. Nat. Microbiol. 5, 67–75 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Sarathy, J. P., Dartois, V. & Lee, E. J. D. The role of transport mechanisms in Mycobacterium tuberculosis drug resistance and tolerance. Pharmaceuticals 5, 1210–1235 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Hoffmann, C., Leis, A., Niederweis, M., Plitzko, J. M. & Engelhardt, H. Disclosure of the mycobacterial outer membrane: cryo-electron tomography and vitreous sections reveal the lipid bilayer structure. Proc. Natl Acad. Sci. USA 105, 3963–3967 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Zuber, B. et al. Direct visualization of the outer membrane of mycobacteria and corynebacteria in their native state. J. Bacteriol. 190, 5672–5680 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Chiaradia, L. et al. Dissecting the mycobacterial cell envelope and defining the composition of the native mycomembrane. Sci. Rep. 7, 12807 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Batt, S. M., Burke, C. E., Moorey, A. R. & Besra, G. S. Antibiotics and resistance: the two-sided coin of the mycobacterial cell wall. Cell Surf. 6, 100044 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Fleming, A. On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzæ. Br. J. Exp. Pathol. 10, 226–236 (1929).

    CAS  PubMed Central  Google Scholar 

  184. Tipper, D. J. & Strominger, J. L. Mechanism of action of penicillins: a proposal based on their structural similarity to acyl-D-alanyl-D-alanine. Proc. Natl Acad. Sci. USA 54, 1133–1141 (1965).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Bush, K. & Bradford, P. A. β-Lactams and β-lactamase inhibitors: an overview. Cold Spring Harb. Perspect. Med. 6, a025247 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Projects in the M.W. laboratory are supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 101045485 to M.W.). A.M.E. is supported by the Biotechnology and Biological Sciences Research Council (BB/Y003667/1) and the National Institute for Health and Care Research Imperial Biomedical Research Centre.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Markus Weingarth.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Microbiology thanks Paul J. Hergenrother, Michael Lobritz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ntallis, C., Martin, N.I., Edwards, A.M. et al. Bacterial cell envelope-targeting antibiotics. Nat Rev Microbiol (2025). https://doi.org/10.1038/s41579-025-01247-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41579-025-01247-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing