Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Sequencing technologies to measure translation in single cells

Abstract

Translation is one of the most energy-intensive processes in a cell and, accordingly, is tightly regulated. Genome-wide methods to measure translation and the translatome and to study the complex regulation of protein synthesis have enabled unprecedented characterization of this crucial step of gene expression. However, technological limitations have hampered our understanding of translation control in multicellular tissues, rare cell types and dynamic cellular processes. Recent optimizations, adaptations and new techniques have enabled these measurements to be made at single-cell resolution. In this Progress, we discuss single-cell sequencing technologies to measure translation, including ribosome profiling, ribosome affinity purification and spatial translatome methods.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of bulk and single-cell ribosome profiling methods.
Fig. 2: Single-cell technologies to measure the degree of ribosome association.

Similar content being viewed by others

References

  1. Kolodziejczyk, A. A., Kim, J. K., Svensson, V., Marioni, J. C. & Teichmann, S. A. The technology and biology of single-cell RNA sequencing. Mol. Cell 58, 610–620 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Jovic, D. et al. Single-cell RNA sequencing technologies and applications: a brief overview. Clin. Transl. Med. 12, e694 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Heumos, L. et al. Best practices for single-cell analysis across modalities. Nat. Rev. Genet. 24, 550–572 (2023).

    Article  CAS  PubMed  Google Scholar 

  4. Kashima, Y. et al. Single-cell sequencing techniques from individual to multiomics analyses. Exp. Mol. Med. 52, 1419–1427 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Brito Querido, J., Diaz-Lopez, I. & Ramakrishnan, V. The molecular basis of translation initiation and its regulation in eukaryotes. Nat. Rev. Mol. Cell Biol. 25, 168–186 (2024).

    Article  CAS  PubMed  Google Scholar 

  6. Dever, T. E., Dinman, J. D. & Green, R. Translation elongation and recoding in eukaryotes. Cold Spring Harb. Perspect. Biol. 10, a032649 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hellen, C. U. T. Translation termination and ribosome recycling in eukaryotes. Cold Spring Harb. Perspect. Biol. 10, a032656 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Saba, J. A., Liakath-Ali, K., Green, R. & Watt, F. M. Translational control of stem cell function. Nat. Rev. Mol. Cell Biol. 22, 671–690 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Teixeira, F. K. & Lehmann, R. Translational control during developmental transitions. Cold Spring Harb. Perspect. Biol. 11, a032987 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tahmasebi, S., Khoutorsky, A., Mathews, M. B. & Sonenberg, N. Translation deregulation in human disease. Nat. Rev. Mol. Cell Biol. 19, 791–807 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Kapur, M., Monaghan, C. E. & Ackerman, S. L. Regulation of mRNA translation in neurons—a matter of life and death. Neuron 96, 616–637 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Robichaud, N., Sonenberg, N., Ruggero, D. & Schneider, R. J. Translational control in cancer. Cold Spring Harb. Perspect. Biol. 11, a032896 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Advani, V. M. & Ivanov, P. Translational control under stress: reshaping the translatome. Bioessays 41, e1900009 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ingolia, N. T., Ghaemmaghami, S., Newman, J. R. & Weissman, J. S. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324, 218–223 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ingolia, N. T., Hussmann, J. A. & Weissman, J. S. Ribosome profiling: global views of translation. Cold Spring Harb. Perspect. Biol. 11, a032698 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kiniry, S. J., Michel, A. M. & Baranov, P. V. Computational methods for ribosome profiling data analysis. Wiley Interdiscip. Rev. RNA 11, e1577 (2020).

    Article  CAS  PubMed  Google Scholar 

  17. Andreev, D. E. et al. Insights into the mechanisms of eukaryotic translation gained with ribosome profiling. Nucleic Acids Res. 45, 513–526 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Bicknell, A. A. et al. Attenuating ribosome load improves protein output from mRNA by limiting translation-dependent mRNA decay. Cell Rep. 43, 114098 (2024).

    Article  CAS  PubMed  Google Scholar 

  19. Lobanov, A. V. et al. Position-dependent termination and widespread obligatory frameshifting in Euplotes translation. Nat. Struct. Mol. Biol. 24, 61–68 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Ingolia, N. T., Brar, G. A., Rouskin, S., McGeachy, A. M. & Weissman, J. S. The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments. Nat. Protoc. 7, 1534–1550 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gerashchenko, M. V. & Gladyshev, V. N. Ribonuclease selection for ribosome profiling. Nucleic Acids Res. 45, e6 (2017).

    Article  PubMed  Google Scholar 

  22. Fuchs, R. T., Sun, Z., Zhuang, F. & Robb, G. B. Bias in ligation-based small RNA sequencing library construction is determined by adaptor and RNA structure. PLoS ONE 10, e0126049 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Munafo, D. B. & Robb, G. B. Optimization of enzymatic reaction conditions for generating representative pools of cDNA from small RNA. RNA 16, 2537–2552 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. VanInsberghe, M., van den Berg, J., Andersson-Rolf, A., Clevers, H. & van Oudenaarden, A. Single-cell Ribo-seq reveals cell cycle-dependent translational pausing. Nature 597, 561–565 (2021).

    Article  CAS  PubMed  Google Scholar 

  25. Ozadam, H. et al. Single-cell quantification of ribosome occupancy in early mouse development. Nature 618, 1057–1064 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hornstein, N. et al. Ligation-free ribosome profiling of cell type-specific translation in the brain. Genome Biol. 17, 149 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Xiong, Z. et al. Ultrasensitive Ribo-seq reveals translational landscapes during mammalian oocyte-to-embryo transition and pre-implantation development. Nat. Cell Biol. 24, 968–980 (2022).

    Article  CAS  PubMed  Google Scholar 

  28. Ferguson, L. et al. Streamlined and sensitive mono- and di-ribosome profiling in yeast and human cells. Nat. Methods 20, 1704–1715 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Arava, Y. et al. Genome-wide analysis of mRNA translation profiles in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 100, 3889–3894 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Heiman, M. et al. A translational profiling approach for the molecular characterization of CNS cell types. Cell 135, 738–748 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Clamer, M. et al. Active ribosome profiling with RiboLace. Cell Rep. 25, 1097–1108.e5 (2018).

    Article  CAS  PubMed  Google Scholar 

  32. Hu, W. et al. Single-cell transcriptome and translatome dual-omics reveals potential mechanisms of human oocyte maturation. Nat. Commun. 13, 5114 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Brannan, K. W. et al. Robust single-cell discovery of RNA targets of RNA-binding proteins and ribosomes. Nat. Methods 18, 507–519 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Halbeisen, R. E., Scherrer, T. & Gerber, A. P. Affinity purification of ribosomes to access the translatome. Methods 48, 306–310 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Moses, L. & Pachter, L. Museum of spatial transcriptomics. Nat. Methods 19, 534–546 (2022).

    Article  CAS  PubMed  Google Scholar 

  36. Rao, A., Barkley, D., Franca, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ren, J., Luo, S., Shi, H. & Wang, X. Spatial omics advances for in situ RNA biology. Mol. Cell 84, 3737–3757 (2024).

    Article  CAS  PubMed  Google Scholar 

  38. Das, S., Vera, M., Gandin, V., Singer, R. H. & Tutucci, E. Intracellular mRNA transport and localized translation. Nat. Rev. Mol. Cell Biol. 22, 483–504 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bourke, A. M., Schwarz, A. & Schuman, E. M. De-centralizing the central dogma: mRNA translation in space and time. Mol. Cell 83, 452–468 (2023).

    Article  CAS  PubMed  Google Scholar 

  40. Liu, J., Xu, Y., Stoleru, D. & Salic, A. Imaging protein synthesis in cells and tissues with an alkyne analog of puromycin. Proc. Natl Acad. Sci. USA 109, 413–418 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Yan, X., Hoek, T. A., Vale, R. D. & Tanenbaum, M. E. Dynamics of translation of single mRNA molecules in vivo. Cell 165, 976–989 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Katz, Z. B. et al. Mapping translation ‘hot-spots’ in live cells by tracking single molecules of mRNA and ribosomes. eLife 5, e10415 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zeng, H. et al. Spatially resolved single-cell translatomics at molecular resolution. Science 380, eadd3067 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang, X. et al. Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science 361, eaat5691 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Sui, X. et al. Scalable spatial single-cell transcriptomics and translatomics in 3D thick tissue blocks. Preprint at bioRxiv https://doi.org/10.1101/2024.08.05.606553 (2024).

  46. Tahmasebi, S., Sonenberg, N., Hershey, J. W. B. & Mathews, M. B. Protein synthesis and translational control: a historical perspective. Cold Spring Harb. Perspect. Biol. 11, a035584 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Buccitelli, C. & Selbach, M. mRNAs, proteins and the emerging principles of gene expression control. Nat. Rev. Genet. 21, 630–644 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Ding, J., Sharon, N. & Bar-Joseph, Z. Temporal modelling using single-cell transcriptomics. Nat. Rev. Genet. 23, 355–368 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. O’Connor, P. B., Andreev, D. E. & Baranov, P. V. Comparative survey of the relative impact of mRNA features on local ribosome profiling read density. Nat. Commun. 7, 12915 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Sharma, P., Wu, J., Nilges, B. S. & Leidel, S. A. Humans and other commonly used model organisms are resistant to cycloheximide-mediated biases in ribosome profiling experiments. Nat. Commun. 12, 5094 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. van den Brink, S. C. et al. Single-cell sequencing reveals dissociation-induced gene expression in tissue subpopulations. Nat. Methods 14, 935–936 (2017).

    Article  PubMed  Google Scholar 

  52. Hücker, S. M. et al. Single-cell microRNA sequencing method comparison and application to cell lines and circulating lung tumor cells. Nat. Commun. 12, 4316 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Grun, D., Kester, L. & van Oudenaarden, A. Validation of noise models for single-cell transcriptomics. Nat. Methods 11, 637–640 (2014).

    Article  PubMed  Google Scholar 

  54. Svensson, V. Droplet scRNA-seq is not zero-inflated. Nat. Biotechnol. 38, 147–150 (2020).

    Article  CAS  PubMed  Google Scholar 

  55. Floor, S. N. & Doudna, J. A. Tunable protein synthesis by transcript isoforms in human cells. eLife 5, e10921 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Passmore, L. A. & Coller, J. Roles of mRNA poly(A) tails in regulation of eukaryotic gene expression. Nat. Rev. Mol. Cell Biol. 23, 93–106 (2022).

    Article  CAS  PubMed  Google Scholar 

  57. Árzalluz-Luque, A. & Conesa, A. Single-cell RNAseq for the study of isoforms—how is that possible? Genome Biol. 19, 110 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ramsköld, D. et al. Full-length mRNA-seq from single-cell levels of RNA and individual circulating tumor cells. Nat. Biotechnol. 30, 777–782 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Salmen, F. et al. High-throughput total RNA sequencing in single cells using VASA-seq. Nat. Biotechnol. 40, 1780–1793 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cole, C., Byrne, A., Beaudin, A. E., Forsberg, E. C. & Vollmers, C. Tn5Prime, a Tn5 based 5′ capture method for single cell RNA-seq. Nucleic Acids Res. 46, e62 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Kouno, T. et al. C1 CAGE detects transcription start sites and enhancer activity at single-cell resolution. Nat. Commun. 10, 360 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Byrne, A. et al. Nanopore long-read RNAseq reveals widespread transcriptional variation among the surface receptors of individual B cells. Nat. Commun. 8, 16027 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Karlsson, K. & Linnarsson, S. Single-cell mRNA isoform diversity in the mouse brain. BMC Genomics 18, 126 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Fansler, M. M., Mitschka, S. & Mayr, C. Quantifying 3′ UTR length from scRNA-seq data reveals changes independent of gene expression. Nat. Commun. 15, 4050 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kowalski, M. H. et al. Multiplexed single-cell characterization of alternative polyadenylation regulators. Cell 87, 4408–4425.e23 (2024).

    Article  Google Scholar 

  66. Liu, Y., Nie, H., Liu, H. & Lu, F. poly(A) inclusive RNA isoform sequencing (PAIso-seq) reveals wide-spread non-adenosine residues within RNA poly(A) tails. Nat. Commun. 10, 5292 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Delaunay, S., Helm, M. & Frye, M. RNA modifications in physiology and disease: towards clinical applications. Nat. Rev. Genet. 25, 104–122 (2024).

    Article  CAS  PubMed  Google Scholar 

  68. Gilbert, W. V. & Nachtergaele, S. mRNA regulation by RNA modifications. Annu. Rev. Biochem. 92, 175–198 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Franco, M. K. & Koutmou, K. S. Chemical modifications to mRNA nucleobases impact translation elongation and termination. Biophys. Chem. 285, 106780 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Owens, M. C., Zhang, C. & Liu, K. F. Recent technical advances in the study of nucleic acid modifications. Mol. Cell 81, 4116–4136 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yao, H. et al. scm6A-seq reveals single-cell landscapes of the dynamic m6A during oocyte maturation and early embryonic development. Nat. Commun. 14, 315 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Li, Y. et al. Single-cell m6A mapping in vivo using picoMeRIP-seq. Nat. Biotechnol. 42, 591–596 (2024).

    Article  CAS  PubMed  Google Scholar 

  73. Tegowski, M., Flamand, M. N. & Meyer, K. D. scDART-seq reveals distinct m6A signatures and mRNA methylation heterogeneity in single cells. Mol. Cell 82, 868–878.e10 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tegowski, M., Prater, A. K., Holley, C. L. & Meyer, K. D. Single-cell m6A profiling in the mouse brain uncovers cell type-specific RNA methylomes and age-dependent differential methylation. Nat. Neurosci. 27, 2512–2520 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Georgakopoulos-Soares, I., Parada, G. E. & Hemberg, M. Secondary structures in RNA synthesis, splicing and translation. Comput. Struct. Biotechnol. J. 20, 2871–2884 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Spitale, R. C. & Incarnato, D. Probing the dynamic RNA structurome and its functions. Nat. Rev. Genet. 24, 178–196 (2023).

    Article  CAS  PubMed  Google Scholar 

  77. Wang, J. et al. RNA structure profiling at single-cell resolution reveals new determinants of cell identity. Nat. Methods 21, 411–422 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gerstberger, S., Hafner, M. & Tuschl, T. A census of human RNA-binding proteins. Nat. Rev. Genet. 15, 829–845 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ramanathan, M., Porter, D. F. & Khavari, P. A. Methods to study RNA–protein interactions. Nat. Methods 16, 225–234 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Xiang, J. S., Schafer, D. M., Rothamel, K. L. & Yeo, G. W. Decoding protein–RNA interactions using CLIP-based methodologies. Nat. Rev. Genet. 25, 879–895 (2024).

    Article  CAS  PubMed  Google Scholar 

  81. Su, R. et al. Global profiling of RNA-binding protein target sites by LACE-seq. Nat. Cell Biol. 23, 664–675 (2021).

    Article  CAS  PubMed  Google Scholar 

  82. McMahon, A. C. et al. TRIBE: hijacking an RNA-editing enzyme to identify cell-specific targets of RNA-binding proteins. Cell 165, 742–753 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. van Leeuwen, W. et al. Identification of the stress granule transcriptome via RNA-editing in single cells and in vivo. Cell Rep. Methods 2, 100235 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Ruan, X., Hu, K. & Zhang, X. PIE-seq: identifying RNA-binding protein targets by dual RNA-deaminase editing and sequencing. Nat. Commun. 14, 3275 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gebert, L. F. R. & MacRae, I. J. Regulation of microRNA function in animals. Nat. Rev. Mol. Cell Biol. 20, 21–37 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Guo, H., Ingolia, N. T., Weissman, J. S. & Bartel, D. P. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466, 835–840 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Faridani, O. R. et al. Single-cell sequencing of the small-RNA transcriptome. Nat. Biotechnol. 34, 1264–1266 (2016).

    Article  CAS  PubMed  Google Scholar 

  88. Wang, N. et al. Single-cell microRNA-mRNA co-sequencing reveals non-genetic heterogeneity and mechanisms of microRNA regulation. Nat. Commun. 10, 95 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Isakova, A., Neff, N. & Quake, S. R. Single-cell quantification of a broad RNA spectrum reveals unique noncoding patterns associated with cell types and states. Proc. Natl Acad. Sci. USA 118, e2113568118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Li, J., Zhang, Z., Zhuang, Y., Wang, F. & Cai, T. Small RNA transcriptome analysis using parallel single-cell small RNA sequencing. Sci. Rep. 13, 7501 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Chen, Y. et al. Highly multiplexed, efficient, and automated single-cell microRNA sequencing with digital microfluidics. Small Methods 8, e2301250 (2024).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a European Research Council Advanced grant (ERC-AdG 101053581-scTranslatomics).

Author information

Authors and Affiliations

Authors

Contributions

M.V. contributed to all aspects of the article. A.v.O contributed substantially to discussion of the content and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Michael VanInsberghe.

Ethics declarations

Competing interests

M.V. and A.v.O are inventors on a patent application related to measuring translation in single cells.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks Shu-Bing Qian, Marko Jovanovic, who co-reviewed with Ella Doron-Mandel, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Adapters

Sequences attached to a diverse set of RNA molecules, which are used to label, amplify and sequence those molecules.

Barcodes

Unique sequences that are added to all RNA fragments originating from the same source, thereby enabling pooling together of material from many samples for efficient sequencing, after which the barcodes are used to identify the original source of each read.

Isotachophoresis

(ITP). An electrophoretic technique for the selective separation and concentration of charged molecules.

Monosomes

Single ribosomes attached to an mRNA or mRNA fragment.

Polysome

Several ribosomes attached to an mRNA or mRNA fragment.

Random forest

A machine learning method that combines the output of multiple decision trees for classification and regression predictions.

Ribosome density

The number of ribosomes per mRNA.

Translation efficiency

The rate of polypeptide synthesis per mRNA per time.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

VanInsberghe, M., van Oudenaarden, A. Sequencing technologies to measure translation in single cells. Nat Rev Mol Cell Biol 26, 337–346 (2025). https://doi.org/10.1038/s41580-024-00822-z

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41580-024-00822-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing