Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

CRISPR–Cas applications in agriculture and plant research

Abstract

Growing world population and deteriorating climate conditions necessitate the development of new crops with high yields and resilience. CRISPR–Cas-mediated genome engineering presents unparalleled opportunities to engineer crop varieties cheaper, easier and faster than ever. In this Review, we discuss how the CRISPR–Cas toolbox has rapidly expanded from Cas9 and Cas12 to include different Cas orthologues and engineered variants. We present various CRISPR–Cas-based methods, including base editing and prime editing, which are used for precise genome, epigenome and transcriptome engineering, and methods used to deliver the genome editors into plants, such as bacterial-mediated and viral-mediated transformation. We then discuss how promoter editing and chromosome engineering are used in crop breeding for trait engineering and fixation, and important applications of CRISPR–Cas in crop improvement, such as de novo domestication and enhancing tolerance to abiotic stresses. We conclude with discussing future prospects of plant genome engineering.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Representative CRISPR–Cas nucleases used in plants.
Fig. 2: Cas nuclease-derived genome editing technologies in plants.
Fig. 3: Delivering genome editors into plants.
Fig. 4: Engineering reproduction and inheritance through targeted genome modifications.
Fig. 5: Crop improvement by genome editing.

Similar content being viewed by others

References

  1. Searchinger, T., Waite, R., Hanson, C. & Ranganathan, J. Creating a Sustainable Food Future: A Menu of Solutions to Feed Nearly 10 Billion People By 2050. (World Resources Institute, 2019).

  2. van Dijk, M., Morley, T., Rau, M. L. & Saghai, Y. A meta-analysis of projected global food demand and population at risk of hunger for the period 2010-2050. Nat. Food 2, 494–501 (2021).

    Article  PubMed  Google Scholar 

  3. World Resources Institute. Climate Watch Historical GHG Emissions. https://www.climatewatchdata.org/ghg-emissions (accessed 1 August 2024).

  4. Ritchie, H. & Roser, M. Water Use and Stress. How Much Water Do We Use? How Did it Change Over Time? https://ourworldindata.org/water-use-stress (accessed 20 January 2025).

  5. Zhao, C. et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl Acad. Sci. USA 114, 9326–9331 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Food and Agriculture Organization. The future of food and agriculture — trends and challenges. (2017).

  7. Cassman, K. G. & Grassini, P. A global perspective on sustainable intensification research. Nat. Sustain. 3, 262–268 (2020).

    Article  Google Scholar 

  8. Gao, C. Genome engineering for crop improvement and future agriculture. Cell 184, 1621–1635 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Grassini, P., Eskridge, K. M. & Cassman, K. G. Distinguishing between yield advances and yield plateaus in historical crop production trends. Nat. Commun. 4, 2918 (2013).

    Article  PubMed  Google Scholar 

  10. Ray, D. K., Ramankutty, N., Mueller, N. D., West, P. C. & Foley, J. A. Recent patterns of crop yield growth and stagnation. Nat. Commun. 3, 1293 (2012).

    Article  PubMed  Google Scholar 

  11. Malzahn, A., Lowder, L. & Qi, Y. Plant genome editing with TALEN and CRISPR. Cell Biosci. 7, 21 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Molla, K. A., Sretenovic, S., Bansal, K. C. & Qi, Y. Precise plant genome editing using base editors and prime editors. Nat. Plants 7, 1166–1187 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Zhang, Y., Malzahn, A. A., Sretenovic, S. & Qi, Y. The emerging and uncultivated potential of CRISPR technology in plant science. Nat. Plants 5, 778–794 (2019).

    Article  PubMed  Google Scholar 

  14. Wang, J. Y. & Doudna, J. A. CRISPR technology: a decade of genome editing is only the beginning. Science 379, eadd8643 (2023).

    Article  CAS  PubMed  Google Scholar 

  15. Food and Agriculture Organization. Gene editing and agrifood systems. (FAO, 2022).

  16. Food and Agriculture Organization. Gene editing and food safety — technical considerations and potential relevance to the work of Codex Alimentarius. (FAO, 2023).

  17. Tuncel, A. et al. Genome-edited foods. Nat. Rev. Bioeng. 1, 799–816 (2023).

    Article  CAS  Google Scholar 

  18. Makarova, K. S. et al. Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nat. Rev. Microbiol. 18, 67–83 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Shan, Q. et al. Targeted genome modification of crop plants using a CRISPR–Cas system. Nat. Biotechnol. 31, 686–688 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Nekrasov, V., Staskawicz, B., Weigel, D., Jones, J. D. & Kamoun, S. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat. Biotechnol. 31, 691–693 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nishimasu, H. et al. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156, 935–949 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhu, H., Li, C. & Gao, C. Applications of CRISPR–Cas in agriculture and plant biotechnology. Nat. Rev. Mol. Cell Biol. 21, 661–677 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Agudelo, D. et al. Versatile and robust genome editing with Streptococcus thermophilus CRISPR1–Cas9. Genome Res. 30, 107–117 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ran, F. A. et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186–191 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chatterjee, P., Jakimo, N. & Jacobson, J. M. Minimal PAM specificity of a highly similar SpCas9 ortholog. Sci. Adv. 4, eaau0766 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chatterjee, P. et al. An engineered ScCas9 with broad PAM range and high specificity and activity. Nat. Biotechnol. 38, 1154–1158 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Zhong, Z. et al. Efficient plant genome engineering using a probiotic sourced CRISPR–Cas9 system. Nat. Commun. 14, 6102 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cui, Z. et al. FrCas9 is a CRISPR/Cas9 system with high editing efficiency and fidelity. Nat. Commun. 13, 1425 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hirano, H. et al. Structure and engineering of Francisella novicida Cas9. Cell 164, 950–961 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hou, Z. et al. Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc. Natl Acad. Sci. USA 110, 15644–15649 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Edraki, A. et al. A compact, high-accuracy Cas9 with a dinucleotide PAM for In vivo genome editing. Mol. Cell 73, 714–726 e714 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Kleinstiver, B. P. et al. Engineered CRISPR–Cas9 nucleases with altered PAM specificities. Nature 523, 481–485 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Miller, S. M. et al. Continuous evolution of SpCas9 variants compatible with non-G PAMs. Nat. Biotechnol. 38, 471–481 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chatterjee, P. et al. A Cas9 with PAM recognition for adenine dinucleotides. Nat. Commun. 11, 2474 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yamamoto, A., Ishida, T., Yoshimura, M., Kimura, Y. & Sawa, S. Developing heritable mutations in Arabidopsis thaliana using a modified CRISPR/Cas9 toolkit comprising PAM-altered Cas9 variants and gRNAs. Plant. Cell Physiol. 60, 2255–2262 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. Sretenovic, S. et al. Expanding plant genome-editing scope by an engineered iSpyMacCas9 system that targets A-rich PAM sequences. Plant. Commun. 2, 100101 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Hu, X. et al. Expanding the range of CRISPR/Cas9 genome editing in rice. Mol. Plant. 9, 943–945 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Hu, X., Meng, X., Liu, Q., Li, J. & Wang, K. Increasing the efficiency of CRISPR–Cas9–VQR precise genome editing in rice. Plant. Biotechnol. J. 16, 292–297 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Hu, J. H. et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556, 57–63 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nishimasu, H. et al. Engineered CRISPR–Cas9 nuclease with expanded targeting space. Science 361, 1259–1262 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Walton, R. T., Christie, K. A., Whittaker, M. N. & Kleinstiver, B. P. Unconstrained genome targeting with near-PAMless engineered CRISPR–Cas9 variants. Science 368, 290–296 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ren, B. et al. Cas9-NG greatly expands the targeting scope of the genome-editing toolkit by recognizing NG and other atypical PAMs in rice. Mol. Plant. 12, 1015–1026 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. Ren, J. et al. Expanding the scope of genome editing with SpG and SpRY variants in rice. Sci. China Life Sci 64, 1784–1787 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Endo, M. et al. Genome editing in plants by engineered CRISPR–Cas9 recognizing NG PAM. Nat. Plants 5, 14–17 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Hua, K., Tao, X., Han, P., Wang, R. & Zhu, J. K. Genome engineering in rice using Cas9 Variants that recognize NG PAM sequences. Mol. Plant. 12, 1003–1014 (2019).

    Article  CAS  PubMed  Google Scholar 

  47. Zhong, Z. et al. Improving plant genome editing with high-fidelity xCas9 and non-canonical PAM-targeting Cas9-NG. Mol. Plant. 12, 1027–1036 (2019).

    Article  CAS  PubMed  Google Scholar 

  48. Xu, Z. et al. SpRY greatly expands the genome editing scope in rice with highly flexible PAM recognition. Genome Biol. 22, 6 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang, J. et al. xCas9 expands the scope of genome editing with reduced efficiency in rice. Plant. Biotechnol. J. 17, 709–711 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ge, Z. et al. Engineered xCas9 and SpCas9-NG variants broaden PAM recognition sites to generate mutations in Arabidopsis plants. Plant. Biotechnol. J. 17, 1865–1867 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Niu, Q. et al. Expanding the scope of CRISPR/Cas9-mediated genome editing in plants using an xCas9 and Cas9-NG hybrid. J. Integr. Plant. Biol. 62, 398–402 (2020).

    Article  CAS  PubMed  Google Scholar 

  52. Zhang, C. et al. Genome engineering in plant using an efficient CRISPR-xCas9 toolset with an expanded PAM compatibility. Front. Genome Ed. 2, 618385 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ren, Q. et al. PAM-less plant genome editing using a CRISPR-SpRY toolbox. Nat. Plants 7, 25–33 (2021).

    Article  CAS  PubMed  Google Scholar 

  54. Yan, W. X. et al. Functionally diverse type V CRISPR–Cas systems. Science 363, 88–91 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR–Cas system. Cell 163, 759–771 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yin, X. et al. CRISPR–Cas9 and CRISPR–Cpf1 mediated targeting of a stomatal developmental gene EPFL9 in rice. Plant. Cell Rep. 36, 745–757 (2017).

    Article  CAS  PubMed  Google Scholar 

  57. Tang, X. et al. A CRISPR–Cpf1 system for efficient genome editing and transcriptional repression in plants. Nat. Plants 3, 17018 (2017).

    Article  CAS  PubMed  Google Scholar 

  58. Kim, H. et al. CRISPR/Cpf1-mediated DNA-free plant genome editing. Nat. Commun. 8, 14406 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Endo, A., Masafumi, M., Kaya, H. & Toki, S. Efficient targeted mutagenesis of rice and tobacco genomes using Cpf1 from Francisella novicida. Sci. Rep. 6, 38169 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Xu, R. et al. Generation of targeted mutant rice using a CRISPR–Cpf1 system. Plant. Biotechnol. J. 15, 713–717 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang, M., Mao, Y., Lu, Y., Tao, X. & Zhu, J. K. Multiplex gene editing in rice using the CRISPR–Cpf1 system. Mol. Plant. 10, 1011–1013 (2017).

    Article  CAS  PubMed  Google Scholar 

  62. Begemann, M. B. et al. Precise insertion and guided editing of higher plant genomes using Cpf1 CRISPR nucleases. Sci. Rep. 7, 11606 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Hu, X., Wang, C., Liu, Q., Fu, Y. & Wang, K. Targeted mutagenesis in rice using CRISPR–Cpf1 system. J. Genet. Genomics 44, 71–73 (2017).

    Article  CAS  PubMed  Google Scholar 

  64. Malzahn, A. A. et al. Application of CRISPR–Cas12a temperature sensitivity for improved genome editing in rice, maize, and Arabidopsis. BMC Biol. 17, 9 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Bernabe-Orts, J. M. et al. Assessment of Cas12a-mediated gene editing efficiency in plants. Plant. Biotechnol. J. 17, 1971–1984 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lee, K. et al. Activities and specificities of CRISPR/Cas9 and Cas12a nucleases for targeted mutagenesis in maize. Plant. Biotechnol. J. 17, 362–372 (2019).

    Article  CAS  PubMed  Google Scholar 

  67. Zhang, Y. et al. Expanding the scope of plant genome engineering with Cas12a orthologs and highly multiplexable editing systems. Nat. Commun. 12, 1944 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Li, G., Zhang, Y., Dailey, M. & Qi, Y. Hs1Cas12a and Ev1Cas12a confer efficient genome editing in plants. Front. Genome Ed. 5, 1251903 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Gao, L. et al. Engineered Cpf1 variants with altered PAM specificities. Nat. Biotechnol. 35, 789–792 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhong, Z. et al. Plant genome editing using FnCpf1 and LbCpf1 nucleases at redefined and altered PAM sites. Mol. Plant. 11, 999–1002 (2018).

    Article  CAS  PubMed  Google Scholar 

  71. Zhang, L. et al. Boosting genome editing efficiency in human cells and plants with novel LbCas12a variants. Genome Biol. 24, 102 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Schindele, P. & Puchta, H. Engineering CRISPR/LbCas12a for highly efficient, temperature-tolerant plant gene editing. Plant. Biotechnol. J. 18, 1118–1120 (2020).

    Article  PubMed  Google Scholar 

  73. Xin, C. et al. Enhanced editing efficiency in Arabidopsis with a LbCas12a variant harboring D156R and E795L mutations. aBIOTECH 5, 117–126 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Strecker, J. et al. Engineering of CRISPR–Cas12b for human genome editing. Nat. Commun. 10, 212 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ming, M. et al. CRISPR–Cas12b enables efficient plant genome engineering. Nat. Plants 6, 202–208 (2020).

    Article  CAS  PubMed  Google Scholar 

  76. Wu, F. et al. Targeted mutagenesis in Arabidopsis thaliana using CRISPR–Cas12b/C2c1. J. Integr. Plant. Biol. 62, 1653–1658 (2020).

    Article  CAS  PubMed  Google Scholar 

  77. Duan, Z. et al. An engineered Cas12i nuclease that is an efficient genome editing tool in animals and plants. Innovation 5, 100564 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Han, X., Chen, Y., Liu, R., Zhu, J.-K. & Duan, Z. Engineering hfCas12Max for improved gene editing efficiency. Innov. Life 2, 100067 (2024).

    Article  Google Scholar 

  79. Pausch, P. et al. CRISPR–CasΦ from huge phages is a hypercompact genome editor. Science 369, 333–337 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Pausch, P. et al. DNA interference states of the hypercompact CRISPR–CasΦ effector. Nat. Struct. Mol. Biol. 28, 652–661 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Duan, Z. et al. Molecular basis for DNA cleavage by the hypercompact Cas12j-SF05. Cell Discov. 9, 117 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bigelyte, G. et al. Miniature type V-F CRISPR–Cas nucleases enable targeted DNA modification in cells. Nat. Commun. 12, 6191 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Kim, D. Y. et al. Efficient CRISPR editing with a hypercompact Cas12f1 and engineered guide RNAs delivered by adeno-associated virus. Nat. Biotechnol. 40, 94–102 (2022).

    Article  CAS  PubMed  Google Scholar 

  84. Hino, T. et al. An AsCas12f-based compact genome-editing tool derived by deep mutational scanning and structural analysis. Cell 186, 4920–4935 e4923 (2023).

    Article  CAS  PubMed  Google Scholar 

  85. Xu, X. et al. Engineered miniature CRISPR–Cas system for mammalian genome regulation and editing. Mol. Cell 81, 4333–4345 e4334 (2021).

    Article  CAS  PubMed  Google Scholar 

  86. Xiang, G. et al. Evolutionary mining and functional characterization of TnpB nucleases identify efficient miniature genome editors. Nat. Biotechnol. 42, 745–757 (2024).

    Article  CAS  PubMed  Google Scholar 

  87. Karvelis, T. et al. Transposon-associated TnpB is a programmable RNA-guided DNA endonuclease. Nature 599, 692–696 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Li, Q. et al. Genome editing in plants using the TnpB transposase system. aBIOTECH 5, 225–230 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Karmakar, S. et al. A miniature alternative to Cas9 and Cas12: transposon-associated TnpB mediates targeted genome editing in plants. Plant Biotechnol. J. 22, 2950–2953 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhang, R. et al. IsDge10 is a hypercompact TnpB nuclease that confers efficient genome editing in rice. Plant Commun. 5, 101068 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Abudayyeh, O. O. et al. RNA targeting with CRISPR–Cas13. Nature 550, 280–284 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Konermann, S. et al. Transcriptome engineering with RNA-targeting type VI-D CRISPR effectors. Cell 173, 665–676 e614 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Mahas, A., Aman, R. & Mahfouz, M. CRISPR–Cas13d mediates robust RNA virus interference in plants. Genome Biol. 20, 263 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Aman, R. et al. RNA virus interference via CRISPR/Cas13a system in plants. Genome Biol. 19, 1 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Sharma, V. K. et al. CRISPR guides induce gene silencing in plants in the absence of Cas. Genome Biol. 23, 6 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Brouns, S. J. et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321, 960–964 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Osakabe, K. et al. Genome editing in plants using CRISPR type I-D nuclease. Commun. Biol. 3, 648 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Li, Y. et al. Targeted large fragment deletion in plants using paired crRNAs with type I CRISPR system. Plant. Biotechnol. J. 21, 2196–2208 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Li, S., Zhang, Y., Xia, L. & Qi, Y. CRISPR–Cas12a enables efficient biallelic gene targeting in rice. Plant. Biotechnol. J. 18, 1351–1353 (2020).

    Article  PubMed  Google Scholar 

  100. Wolter, F. & Puchta, H. In planta gene targeting can be enhanced by the use of CRISPR/Cas12a. Plant. J. 100, 1083–1094 (2019).

    Article  CAS  PubMed  Google Scholar 

  101. Atkins, P. A. & Voytas, D. F. Overcoming bottlenecks in plant gene editing. Curr. Opin. Plant. Biol. 54, 79–84 (2020).

    Article  CAS  PubMed  Google Scholar 

  102. Cermak, T., Baltes, N. J., Cegan, R., Zhang, Y. & Voytas, D. F. High-frequency, precise modification of the tomato genome. Genome Biol. 16, 232 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Gil-Humanes, J. et al. High-efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR/Cas9. Plant. J. 89, 1251–1262 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Barone, P. et al. Efficient gene targeting in maize using inducible CRISPR–Cas9 and marker-free donor template. Mol. Plant. 13, 1219–1227 (2020).

    Article  CAS  PubMed  Google Scholar 

  105. Wolter, F., Klemm, J. & Puchta, H. Efficient in planta gene targeting in Arabidopsis using egg cell-specific expression of the Cas9 nuclease of Staphylococcus aureus. Plant. J. 94, 735–746 (2018).

    Article  CAS  PubMed  Google Scholar 

  106. Miki, D., Zhang, W., Zeng, W., Feng, Z. & Zhu, J. K. CRISPR/Cas9-mediated gene targeting in Arabidopsis using sequential transformation. Nat. Commun. 9, 1967 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Sun, Y. et al. Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase. Mol. Plant. 9, 628–631 (2016).

    Article  CAS  PubMed  Google Scholar 

  108. Qi, Y. et al. Increasing frequencies of site-specific mutagenesis and gene targeting in Arabidopsis by manipulating DNA repair pathways. Genome Res. 23, 547–554 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Schreiber, T. et al. Efficient scar-free knock-ins of several kilobases in plants by engineered CRISPR–Cas endonucleases. Mol. Plant. 17, 824–837 (2024).

    Article  CAS  PubMed  Google Scholar 

  110. Vu, T. V. et al. Highly efficient homology-directed repair using CRISPR/Cpf1-geminiviral replicon in tomato. Plant. Biotechnol. J. 18, 2133–2143 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Gaudelli, N. M. et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Li, B., Sun, C., Li, J. & Gao, C. Targeted genome-modification tools and their advanced applications in crop breeding. Nat. Rev. Genet. 25, 603–622 (2024).

    Article  CAS  PubMed  Google Scholar 

  114. Huang, J. et al. Discovery of deaminase functions by structure-based protein clustering. Cell 186, 3182–3195 e3114 (2023).

    Article  CAS  PubMed  Google Scholar 

  115. Sretenovic, S. et al. Exploring C-to-G base editing in rice, tomato, and poplar. Front. Genome Ed. 3, 756766 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Li, Y. et al. Engineering a plant A-to-K base editor with improved performance by fusion with a transactivation module. Plant. Commun. 4, 100667 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Liu, L. et al. Developing guanine base editors for G-to-T editing in rice. J. Integr. Plant. Biol. 66, 1557–1560 (2024).

    Article  CAS  PubMed  Google Scholar 

  118. Li, C. et al. Targeted, random mutagenesis of plant genes with dual cytosine and adenine base editors. Nat. Biotechnol. 38, 875–882 (2020).

    Article  CAS  PubMed  Google Scholar 

  119. Li, C. et al. SWISS: multiplexed orthogonal genome editing in plants with a Cas9 nickase and engineered CRISPR RNA scaffolds. Genome Biol. 21, 141 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Zhang, A. et al. Directed evolution rice genes with randomly multiplexed sgRNAs assembly of base editors. Plant. Biotechnol. J. 21, 2597–2610 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Neugebauer, M. E. et al. Evolution of an adenine base editor into a small, efficient cytosine base editor with low off-target activity. Nat. Biotechnol. 41, 673–685 (2023).

    Article  CAS  PubMed  Google Scholar 

  122. Fan, T. et al. High performance TadA-8e derived cytosine and dual base editors with undetectable off-target effects in plants. Nat. Commun. 15, 5103 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Gaillochet, C. et al. Systematic optimization of Cas12a base editors in wheat and maize using the ITER platform. Genome Biol. 24, 6 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Cheng, Y. et al. CRISPR–Cas12a base editors confer efficient multiplexed genome editing in rice. Plant. Commun. 4, 100601 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Jin, S. et al. Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice. Science 364, 292–295 (2019).

    Article  CAS  PubMed  Google Scholar 

  126. Grunewald, J. et al. CRISPR DNA base editors with reduced RNA off-target and self-editing activities. Nat. Biotechnol. 37, 1041–1048 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Grunewald, J. et al. Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors. Nature 569, 433–437 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Anzalone, A. V., Koblan, L. W. & Liu, D. R. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 38, 824–844 (2020).

    Article  CAS  PubMed  Google Scholar 

  129. Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Lin, Q. et al. Prime genome editing in rice and wheat. Nat. Biotechnol. 38, 582–585 (2020).

    Article  CAS  PubMed  Google Scholar 

  131. Jiang, Y. et al. Optimized prime editing efficiently generates glyphosate-resistant rice plants carrying homozygous TAP-IVS mutation in EPSPS. Mol. Plant. 15, 1646–1649 (2022).

    Article  CAS  PubMed  Google Scholar 

  132. Zong, Y. et al. An engineered prime editor with enhanced editing efficiency in plants. Nat. Biotechnol. 40, 1394–1402 (2022).

    Article  CAS  PubMed  Google Scholar 

  133. Lin, Q. et al. High-efficiency prime editing with optimized, paired pegRNAs in plants. Nat. Biotechnol. 39, 923–927 (2021).

    Article  CAS  PubMed  Google Scholar 

  134. Liu, X. et al. Conditional knockdown of OsMLH1 to improve plant prime editing systems without disturbing fertility in rice. Genome Biol. 25, 131 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Cao, Z. et al. PE6c greatly enhances prime editing in transgenic rice plants. J. Integr. Plant Biol. 66, 1864–1870 (2024).

    Article  CAS  PubMed  Google Scholar 

  136. Xu, R. et al. Engineering PE6 prime editors to efficiently insert tags in rice. Plant Biotechnol. J. 22, 3383–3385 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Ni, P. et al. Efficient and versatile multiplex prime editing in hexaploid wheat. Genome Biol. 24, 156 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Vu, T. V. et al. Optimized dicot prime editing enables heritable desired edits in tomato and Arabidopsis. Nat. Plants 10, 1502–1513 (2024).

    Article  CAS  PubMed  Google Scholar 

  139. Anzalone, A. V. et al. Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing. Nat. Biotechnol. 40, 731–740 (2022).

    Article  CAS  PubMed  Google Scholar 

  140. Sun, C. et al. Precise integration of large DNA sequences in plant genomes using PrimeRoot editors. Nat. Biotechnol. 42, 316–327 (2024).

    Article  CAS  PubMed  Google Scholar 

  141. Liu, P. et al. Transposase-assisted target-site integration for efficient plant genome engineering. Nature 631, 593–600 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Gallego-Bartolome, J. et al. Co-targeting RNA polymerases IV and V promotes efficient de novo DNA methylation in Arabidopsis. Cell 176, 1068–1082 e1019 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Papikian, A., Liu, W., Gallego-Bartolome, J. & Jacobsen, S. E. Site-specific manipulation of Arabidopsis loci using CRISPR–Cas9 SunTag systems. Nat. Commun. 10, 729 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Ghoshal, B., Picard, C. L., Vong, B., Feng, S. & Jacobsen, S. E. CRISPR-based targeting of DNA methylation in Arabidopsis thaliana by a bacterial CG-specific DNA methyltransferase. Proc. Natl Acad. Sci. USA 118, e2125016118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Oberkofler, V. & Baurle, I. Inducible epigenome editing probes for the role of histone H3K4 methylation in Arabidopsis heat stress memory. Plant. Physiol. 189, 703–714 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Nunez, J. K. et al. Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing. Cell 184, 2503–2519 e2517 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Liu, S. et al. Hypercompact CRISPR–Cas12j2 (CasΦ) enables genome editing, gene activation, and epigenome editing in plants. Plant. Commun. 3, 100453 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Tang, J., Chen, S. & Jia, G. Detection, regulation, and functions of RNA N6-methyladenosine modification in plants. Plant. Commun. 4, 100546 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Liu, X. M., Zhou, J., Mao, Y., Ji, Q. & Qian, S. B. Programmable RNA N6-methyladenosine editing by CRISPR–Cas9 conjugates. Nat. Chem. Biol. 15, 865–871 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Wilson, C., Chen, P. J., Miao, Z. & Liu, D. R. Programmable m6A modification of cellular RNAs with a Cas13-directed methyltransferase. Nat. Biotechnol. 38, 1431–1440 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Li, J. et al. Targeted mRNA demethylation using an engineered dCas13b–ALKBH5 fusion protein. Nucleic Acids Res. 48, 5684–5694 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Shi, C. et al. Programmable RNA N6-methyladenosine editing with CRISPR/dCas13a in plants. Plant. Biotechnol. J. 22, 1867–1880 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Amabile, A. et al. Inheritable silencing of endogenous genes by hit-and-run targeted epigenetic editing. Cell 167, 219–232 e214 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Cappelluti, M. A. et al. Durable and efficient gene silencing in vivo by hit-and-run epigenome editing. Nature 627, 416–423 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Piatek, A. et al. RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors. Plant. Biotechnol. J. 13, 578–589 (2015).

    Article  CAS  PubMed  Google Scholar 

  156. Lowder, L. G. et al. A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant. Physiol. 169, 971–985 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Lowder, L. G. et al. Robust transcriptional activation in plants using multiplexed CRISPR-Act2.0 and mTALE-Act systems. Mol. Plant. 11, 245–256 (2018).

    Article  CAS  PubMed  Google Scholar 

  158. Li, Z. et al. A potent Cas9-derived gene activator for plant and mammalian cells. Nat. Plants 3, 930–936 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Selma, S. et al. Strong gene activation in plants with genome-wide specificity using a new orthogonal CRISPR/Cas9-based programmable transcriptional activator. Plant. Biotechnol. J. 17, 1703–1705 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Casas-Mollano, J. A., Zinselmeier, M. H., Sychla, A. & Smanski, M. J. Efficient gene activation in plants by the MoonTag programmable transcriptional activator. Nucleic Acids Res. 51, 7083–7093 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Pan, C. et al. CRISPR-Act3.0 for highly efficient multiplexed gene activation in plants. Nat. Plants 7, 942–953 (2021).

    Article  CAS  PubMed  Google Scholar 

  162. Pan, C. et al. Boosting plant genome editing with a versatile CRISPR-Combo system. Nat. Plants 8, 513–525 (2022).

    Article  CAS  PubMed  Google Scholar 

  163. Pan, C. & Qi, Y. CRISPR-Combo-mediated orthogonal genome editing and transcriptional activation for plant breeding. Nat. Protoc. 18, 1760–1794 (2023).

    Article  CAS  PubMed  Google Scholar 

  164. Chen, Z., Debernardi, J. M., Dubcovsky, J. & Gallavotti, A. Recent advances in crop transformation technologies. Nat. Plants 8, 1343–1351 (2022).

    Article  CAS  PubMed  Google Scholar 

  165. Chen, L. et al. A method for the production and expedient screening of CRISPR/Cas9-mediated non-transgenic mutant plants. Hortic. Res. 5, 13 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Banfalvi, Z., Csakvari, E., Villanyi, V. & Kondrak, M. Generation of transgene-free PDS mutants in potato by Agrobacterium-mediated transformation. BMC Biotechnol. 20, 25 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Huang, X. et al. Transgene-free genome editing of vegetatively propagated and perennial plant species in the T0 generation via a co-editing strategy. Nat. Plants 9, 1591–1597 (2023).

    Article  CAS  PubMed  Google Scholar 

  168. Nishizawa-Yokoi, A. & Toki, S. A piggyBac-mediated transgenesis system for the temporary expression of CRISPR/Cas9 in rice. Plant. Biotechnol. J. 19, 1386–1395 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Svitashev, S., Schwartz, C., Lenderts, B., Young, J. K. & Mark Cigan, A. Genome editing in maize directed by CRISPR–Cas9 ribonucleoprotein complexes. Nat. Commun. 7, 13274 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Liang, Z. et al. Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat. Commun. 8, 14261 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Liu, J. et al. Genome-scale sequence disruption following biolistic transformation in rice and maize. Plant. Cell 31, 368–383 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Hamada, H. et al. Biolistic-delivery-based transient CRISPR/Cas9 expression enables in planta genome editing in wheat. Sci. Rep. 8, 14422 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Imai, R. et al. In planta particle bombardment (iPB): a new method for plant transformation and genome editing. Plant. Biotechnol. 37, 171–176 (2020).

    Article  CAS  Google Scholar 

  174. Li, J. F. et al. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat. Biotechnol. 31, 688–691 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Laforest, L. C. & Nadakuduti, S. S. Advances in delivery mechanisms of CRISPR gene-editing reagents in plants. Front. Genome Ed. 4, 830178 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Woo, J. W. et al. DNA-free genome editing in plants with preassembled CRISPR–Cas9 ribonucleoproteins. Nat. Biotechnol. 33, 1162–1164 (2015).

    Article  CAS  PubMed  Google Scholar 

  177. Andersson, M. et al. Genome editing in potato via CRISPR–Cas9 ribonucleoprotein delivery. Physiol. Plant. 164, 378–384 (2018).

    Article  CAS  PubMed  Google Scholar 

  178. Liu, Y. et al. Establishment of a DNA-free genome editing and protoplast regeneration method in cultivated tomato (Solanum lycopersicum). Plant. Cell Rep. 41, 1843–1852 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Fossi, M., Amundson, K., Kuppu, S., Britt, A. & Comai, L. Regeneration of Solanum tuberosum plants from protoplasts induces widespread genome instability. Plant. Physiol. 180, 78–86 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Ali, Z. et al. Efficient virus-mediated genome editing in plants using the CRISPR/Cas9 system. Mol. Plant. 8, 1288–1291 (2015).

    Article  CAS  PubMed  Google Scholar 

  181. Ellison, E. E. et al. Multiplexed heritable gene editing using RNA viruses and mobile single guide RNAs. Nat. Plants 6, 620–624 (2020).

    Article  CAS  PubMed  Google Scholar 

  182. Nagalakshmi, U., Meier, N., Liu, J. Y., Voytas, D. F. & Dinesh-Kumar, S. P. High-efficiency multiplex biallelic heritable editing in Arabidopsis using an RNA virus. Plant. Physiol. 189, 1241–1245 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Liu, D. et al. Heritable base-editing in Arabidopsis using RNA viral vectors. Plant. Physiol. 189, 1920–1924 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Li, T. et al. Highly efficient heritable genome editing in wheat using an RNA virus and bypassing tissue culture. Mol. Plant. 14, 1787–1798 (2021).

    Article  CAS  PubMed  Google Scholar 

  185. Liu, D. et al. Heritable, multinucleotide deletions in plants using viral delivery of a repair exonuclease and guide RNAs. Plant. Physiol. 194, 2229–2239 (2024).

    Article  CAS  PubMed  Google Scholar 

  186. Liu, Q., Zhao, C., Sun, K., Deng, Y. & Li, Z. Engineered biocontainable RNA virus vectors for non-transgenic genome editing across crop species and genotypes. Mol. Plant. 16, 616–631 (2023).

    Article  CAS  PubMed  Google Scholar 

  187. Ma, X., Zhang, X., Liu, H. & Li, Z. Highly efficient DNA-free plant genome editing using virally delivered CRISPR–Cas9. Nat. Plants 6, 773–779 (2020).

    Article  CAS  PubMed  Google Scholar 

  188. Yang, L., Machin, F., Wang, S., Saplaoura, E. & Kragler, F. Heritable transgene-free genome editing in plants by grafting of wild-type shoots to transgenic donor rootstocks. Nat. Biotechnol. 41, 958–967 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Cao, X. et al. Cut-dip-budding delivery system enables genetic modifications in plants without tissue culture. Innovation 4, 100345 (2023).

    PubMed  Google Scholar 

  190. Rodriguez-Leal, D., Lemmon, Z. H., Man, J., Bartlett, M. E. & Lippman, Z. B. Engineering quantitative trait variation for crop improvement by genome editing. Cell 171, 470–480.e478 (2017).

    Article  CAS  PubMed  Google Scholar 

  191. Liu, L. et al. Enhancing grain-yield-related traits by CRISPR–Cas9 promoter editing of maize CLE genes. Nat. Plants 7, 287–294 (2021).

    Article  CAS  PubMed  Google Scholar 

  192. Zhou, S. et al. Fine-tuning rice heading date through multiplex editing of the regulatory regions of key genes by CRISPR–Cas9. Plant. Biotechnol. J. 22, 751–758 (2024).

    Article  CAS  PubMed  Google Scholar 

  193. Zhou, J. et al. An efficient CRISPR–Cas12a promoter editing system for crop improvement. Nat. Plants 9, 588–604 (2023).

    Article  CAS  PubMed  Google Scholar 

  194. Patel-Tupper, D. et al. Multiplexed CRISPR–Cas9 mutagenesis of rice PSBS1 noncoding sequences for transgene-free overexpression. Sci. Adv. 10, eadm7452 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Yao, Q. et al. Efficient and multiplex gene upregulation in plants through CRISPR/Cas-mediated knock-in of enhancers. Mol. Plant. 17, 1472–1483 (2024).

    Article  CAS  PubMed  Google Scholar 

  196. Tanaka, M. et al. Boric acid intercepts 80S ribosome migration from AUG-stop by stabilizing eRF1. Nat. Chem. Biol. 20, 605–614 (2024).

    Article  CAS  PubMed  Google Scholar 

  197. Xu, G. et al. uORF-mediated translation allows engineered plant disease resistance without fitness costs. Nature 545, 491–494 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Zhang, H. et al. Genome editing of upstream open reading frames enables translational control in plants. Nat. Biotechnol. 36, 894–898 (2018).

    Article  CAS  PubMed  Google Scholar 

  199. Xing, S. et al. Fine-tuning sugar content in strawberry. Genome Biol. 21, 230 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Xue, C. et al. Tuning plant phenotypes by precise, graded downregulation of gene expression. Nat. Biotechnol. 41, 1758–1764 (2023).

    Article  CAS  PubMed  Google Scholar 

  201. Shen, R. et al. In-locus gene silencing in plants using genome editing. New Phytol 243, 2501–2511 (2024).

    Article  CAS  PubMed  Google Scholar 

  202. Li, Y. R. & Liu, M. J. Prevalence of alternative AUG and non-AUG translation initiators and their regulatory effects across plants. Genome Res. 30, 1418–1433 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Wang, H. et al. Genome editing of 3′ UTR-embedded inhibitory region enables generation of gene knock-up alleles in plants. Plant. Commun. 5, 100745 (2024).

    Article  CAS  PubMed  Google Scholar 

  204. Pan, C., Li, G., Bandyopadhyay, A. & Qi, Y. Guide RNA library-based CRISPR screens in plants: opportunities and challenges. Curr. Opin. Biotechnol. 79, 102883 (2023).

    Article  CAS  PubMed  Google Scholar 

  205. Gaillochet, C., Develtere, W. & Jacobs, T. B. CRISPR screens in plants: approaches, guidelines, and future prospects. Plant. Cell 33, 794–813 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Lu, Y. et al. Genome-wide targeted mutagenesis in rice using the CRISPR/Cas9 system. Mol. Plant. 10, 1242–1245 (2017).

    Article  CAS  PubMed  Google Scholar 

  207. Meng, X. et al. Construction of a genome-wide mutant library in rice using CRISPR/Cas9. Mol. Plant. 10, 1238–1241 (2017).

    Article  CAS  PubMed  Google Scholar 

  208. Xu, R., Liu, X., Li, J., Qin, R. & Wei, P. Identification of herbicide resistance OsACC1 mutations via in planta prime-editing-library screening in rice. Nat. Plants 7, 888–892 (2021).

    Article  CAS  PubMed  Google Scholar 

  209. Birchler, J. A., Yao, H. & Chudalayandi, S. Unraveling the genetic basis of hybrid vigor. Proc. Natl Acad. Sci. USA 103, 12957–12958 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Wang, C. et al. Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes. Nat. Biotechnol. 37, 283–286 (2019).

    Article  CAS  PubMed  Google Scholar 

  211. Khanday, I., Skinner, D., Yang, B., Mercier, R. & Sundaresan, V. A male-expressed rice embryogenic trigger redirected for asexual propagation through seeds. Nature 565, 91–95 (2019).

    Article  CAS  PubMed  Google Scholar 

  212. Marimuthu, M. P. et al. Synthetic clonal reproduction through seeds. Science 331, 876 (2011).

    Article  CAS  PubMed  Google Scholar 

  213. Liu, C. et al. Synthetic apomixis enables stable transgenerational transmission of heterotic phenotypes in hybrid rice. Plant. Commun. 4, 100470 (2023).

    Article  PubMed  Google Scholar 

  214. Wang, Y. et al. Harnessing clonal gametes in hybrid crops to engineer polyploid genomes. Nat. Genet. 56, 1075–1079 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Westermann, J., Srikant, T., Gonzalo, A., Tan, H. S. & Bomblies, K. Defective pollen tube tip growth induces neo-polyploid infertility. Science 383, eadh0755 (2024).

    Article  CAS  PubMed  Google Scholar 

  216. Kelliher, T. et al. One-step genome editing of elite crop germplasm during haploid induction. Nat. Biotechnol. 37, 287–292 (2019).

    Article  CAS  PubMed  Google Scholar 

  217. Impens, L. et al. Combining multiplex gene editing and doubled haploid technology in maize. N. Phytol. 239, 1521–1532 (2023).

    Article  CAS  Google Scholar 

  218. Ronspies, M. et al. Massive crossover suppression by CRISPR–Cas-mediated plant chromosome engineering. Nat. Plants 8, 1153–1159 (2022).

    Article  PubMed  Google Scholar 

  219. Schmidt, C. et al. Changing local recombination patterns in Arabidopsis by CRISPR/Cas mediated chromosome engineering. Nat. Commun. 11, 4418 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Beying, N., Schmidt, C., Pacher, M., Houben, A. & Puchta, H. CRISPR–Cas9-mediated induction of heritable chromosomal translocations in Arabidopsis. Nat. Plants 6, 638–645 (2020).

    Article  CAS  PubMed  Google Scholar 

  221. Lu, Y. et al. A donor-DNA-free CRISPR/Cas-based approach to gene knock-up in rice. Nat. Plants 7, 1445–1452 (2021).

    Article  CAS  PubMed  Google Scholar 

  222. Schwartz, C. et al. CRISPR–Cas9-mediated 75.5-Mb inversion in maize. Nat. Plants 6, 1427–1431 (2020).

    Article  CAS  PubMed  Google Scholar 

  223. Hu, H. et al. Unravelling inversions: technological advances, challenges, and potential impact on crop breeding. Plant. Biotechnol. J. 22, 544–554 (2024).

    Article  PubMed  Google Scholar 

  224. Liu, J. et al. GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice. Nat. Plants 3, 17043 (2017).

    Article  CAS  PubMed  Google Scholar 

  225. Zhang, Y. et al. Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat. Commun. 7, 12617 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Wang, W. et al. Gene editing of the wheat homologs of TONNEAU1-recruiting motif encoding gene affects grain shape and weight in wheat. Plant. J. 100, 251–264 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Xu, R. et al. Rapid improvement of grain weight via highly efficient CRISPR/Cas9-mediated multiplex genome editing in rice. J. Genet. Genomics 43, 529–532 (2016).

    Article  CAS  PubMed  Google Scholar 

  228. Zhou, J. et al. Multiplex QTL editing of grain-related genes improves yield in elite rice varieties. Plant. Cell Rep. 38, 475–485 (2019).

    Article  CAS  PubMed  Google Scholar 

  229. Kwon, C. T. et al. Rapid customization of Solanaceae fruit crops for urban agriculture. Nat. Biotechnol. 38, 182–188 (2020).

    Article  CAS  PubMed  Google Scholar 

  230. Song, X. et al. IPA1 functions as a downstream transcription factor repressed by D53 in strigolactone signaling in rice. Cell Res. 27, 1128–1141 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Song, X. et al. Targeting a gene regulatory element enhances rice grain yield by decoupling panicle number and size. Nat. Biotechnol. 40, 1403–1411 (2022).

    Article  CAS  PubMed  Google Scholar 

  232. Wang, S. et al. Architecture design of cucurbit crops for enhanced productivity by a natural allele. Nat. Plants 8, 1394–1407 (2022).

    Article  CAS  PubMed  Google Scholar 

  233. Meyer, R. S. & Purugganan, M. D. Evolution of crop species: genetics of domestication and diversification. Nat. Rev. Genet. 14, 840–852 (2013).

    Article  CAS  PubMed  Google Scholar 

  234. Gasparini, K., Moreira, J. D. R., Peres, L. E. P. & Zsogon, A. De novo domestication of wild species to create crops with increased resilience and nutritional value. Curr. Opin. Plant. Biol. 60, 102006 (2021).

    Article  CAS  PubMed  Google Scholar 

  235. Li, T. et al. Domestication of wild tomato is accelerated by genome editing. Nat. Biotechnol. 36, 1160–1163 (2018).

    Article  CAS  Google Scholar 

  236. Zsogon, A. et al. De novo domestication of wild tomato using genome editing. Nat. Biotechnol. 36, 1211–1216 (2018).

    Article  CAS  Google Scholar 

  237. Lemmon, Z. H. et al. Rapid improvement of domestication traits in an orphan crop by genome editing. Nat. Plants 4, 766–770 (2018).

    Article  CAS  PubMed  Google Scholar 

  238. Yu, H. et al. A route to de novo domestication of wild allotetraploid rice. Cell 184, 1156–1170 e1114 (2021).

    Article  CAS  PubMed  Google Scholar 

  239. Enciso-Rodriguez, F. et al. Overcoming self-incompatibility in diploid potato using CRISPR–Cas9. Front. Plant. Sci. 10, 376 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  240. Ye, M. et al. Generation of self-compatible diploid potato by knockout of S-RNase. Nat. Plants 4, 651–654 (2018).

    Article  CAS  PubMed  Google Scholar 

  241. Tuncel, A. & Qi, Y. CRISPR/Cas mediated genome editing in potato: past achievements and future directions. Plant. Sci. 325, 111474 (2022).

    Article  CAS  PubMed  Google Scholar 

  242. Zaidi, S. S., Mahas, A., Vanderschuren, H. & Mahfouz, M. M. Engineering crops of the future: CRISPR approaches to develop climate-resilient and disease-resistant plants. Genome Biol. 21, 289 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  243. Gupta, A., Rico-Medina, A. & Cano-Delgado, A. I. The physiology of plant responses to drought. Science 368, 266–269 (2020).

    Article  CAS  PubMed  Google Scholar 

  244. Reuters. Kenya Lifts Ban on Genetically Modified Crops in Response to Drought. https://www.reuters.com/world/africa/kenya-lifts-ban-genetically-modified-crops-response-drought-2022-10-04/ (2022).

  245. Shelake, R. M. et al. Engineering drought and salinity tolerance traits in crops through CRISPR-mediated genome editing: targets, tools, challenges, and perspectives. Plant. Commun. 3, 100417 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Liao, S. Y. et al. CRISPR/Cas9-induced mutagenesis of semi-rolled leaf1,2 confers curled leaf phenotype and drought tolerance by influencing protein expression patterns and ROS scavenging in rice (Oryza sativa L.). Agronomy-Basel 9, 728 (2019).

    Article  CAS  Google Scholar 

  247. Liu, S. et al. Mapping regulatory variants controlling gene expression in drought response and tolerance in maize. Genome Biol. 21, 163 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Gabay, G. et al. Dosage differences in 12-OXOPHYTODIENOATE REDUCTASE genes modulate wheat root growth. Nat. Commun. 14, 539 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Shi, J. et al. Overexpression of ARGOS genes modifies plant sensitivity to ethylene, leading to improved drought tolerance in both Arabidopsis and Maize. Plant. Physiol. 169, 266–282 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Shi, J. et al. ARGOS8 variants generated by CRISPR–Cas9 improve maize grain yield under field drought stress conditions. Plant. Biotechnol. J. 15, 207–216 (2017).

    Article  CAS  PubMed  Google Scholar 

  251. Tian, T. et al. Genome assembly and genetic dissection of a prominent drought-resistant maize germplasm. Nat. Genet. 55, 496–506 (2023).

    Article  CAS  PubMed  Google Scholar 

  252. Mao, H. et al. Variation in cis-regulation of a NAC transcription factor contributes to drought tolerance in wheat. Mol. Plant. 15, 276–292 (2022).

    Article  CAS  PubMed  Google Scholar 

  253. Nascimento, F. D. S. et al. Gene editing for plant resistance to abiotic factors: a systematic review. Plants 12, 305 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Bowerman, A. F. et al. Potential abiotic stress targets for modern genetic manipulation. Plant. Cell 35, 139–161 (2023).

    Article  PubMed  Google Scholar 

  255. Zong, Y. et al. Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A. Nat. Biotechnol. 36, 950–953 (2018).

    Article  CAS  Google Scholar 

  256. Butt, H. et al. Engineering herbicide resistance via prime editing in rice. Plant. Biotechnol. J. 18, 2370–2372 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Liu, X. et al. A CRISPR–Cas9-mediated domain-specific base-editing screen enables functional assessment of ACCase variants in rice. Plant. Biotechnol. J. 18, 1845–1847 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Ren, Q. et al. Improved plant cytosine base editors with high editing activity, purity, and specificity. Plant. Biotechnol. J. 19, 2052–2068 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Pacesa, M., Pelea, O. & Jinek, M. Past, present, and future of CRISPR genome editing technologies. Cell 187, 1076–1100 (2024).

    Article  CAS  PubMed  Google Scholar 

  260. Ferreira da Silva, J. et al. Click editing enables programmable genome writing using DNA polymerases and HUH endonucleases. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02324-x (2024).

  261. Durrant, M. G. et al. Bridge RNAs direct programmable recombination of target and donor DNA. Nature 630, 984–993 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Yu, G. et al. Prediction of efficiencies for diverse prime editing systems in multiple cell types. Cell 186, 2256–2272 e2223 (2023).

    Article  CAS  PubMed  Google Scholar 

  263. Baek, M. et al. Accurate prediction of protein-nucleic acid complexes using RoseTTAFoldNA. Nat. Methods 21, 117–121 (2024).

    Article  CAS  PubMed  Google Scholar 

  264. Sulis, D. B. et al. Multiplex CRISPR editing of wood for sustainable fiber production. Science 381, 216–221 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Stokstad, E. European Parliament votes to ease regulation of gene-edited crops. Science https://doi.org/10.1126/science.zdjbra4 (2024).

  266. Puchta, H. Regulation of gene-edited plants in Europe: from the valley of tears into the shining sun? aBIOTECH 5, 231–238 (2024).

    Article  PubMed  Google Scholar 

  267. Atimango, A. O., Wesana, J., Kalule, S. W., Verbeke, W. & De Steur, H. Genome editing in food and agriculture: from regulations to consumer perspectives. Curr. Opin. Biotechnol. 87, 103127 (2024).

    Article  CAS  PubMed  Google Scholar 

  268. Li, J. et al. Genome editing mediated by SpCas9 variants with broad non-canonical PAM compatibility in plants. Mol. Plant. 14, 352–360 (2021).

    Article  CAS  PubMed  Google Scholar 

  269. Chen, X. et al. Advancing PAM-less genome editing in soybean using CRISPR-SpRY. Hortic. Res. 11, uhae160 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Steinert, J., Schiml, S., Fauser, F. & Puchta, H. Highly efficient heritable plant genome engineering using Cas9 orthologues from Streptococcus thermophilus and Staphylococcus aureus. Plant. J. 84, 1295–1305 (2015).

    Article  CAS  PubMed  Google Scholar 

  271. Jia, H., Xu, J., Orbovic, V., Zhang, Y. & Wang, N. Editing citrus genome via SaCas9/sgRNA system. Front. Plant. Sci. 8, 2135 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  272. Veillet, F., Kermarrec, M. P., Chauvin, L., Chauvin, J. E. & Nogue, F. CRISPR-induced indels and base editing using the Staphylococcus aureus Cas9 in potato. PLoS ONE 15, e0235942 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Kaya, H., Mikami, M., Endo, A., Endo, M. & Toki, S. Highly specific targeted mutagenesis in plants using Staphylococcus aureus Cas9. Sci. Rep. 6, 26871 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Wang, M. et al. Targeted base editing in rice with CRISPR/ScCas9 system. Plant. Biotechnol. J. 18, 1645–1647 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  275. Xu, Y. et al. ScCas9 recognizes NNG protospacer adjacent motif in genome editing of rice. Sci. China Life Sci 63, 450–452 (2020).

    Article  PubMed  Google Scholar 

  276. Ma, G. et al. CRISPR/Sc++ -mediated genome editing in rice. J. Integr. Plant. Biol. 63, 1606–1610 (2021).

    Article  CAS  PubMed  Google Scholar 

  277. Liu, T. et al. The ScCas9++ variant expands the CRISPR toolbox for genome editing in plants. J. Integr. Plant. Biol. 63, 1611–1619 (2021).

    Article  CAS  PubMed  Google Scholar 

  278. He, Y. et al. Expanding plant genome editing scope and profiles with CRISPR-FrCas9 systems targeting palindromic TA sites. Plant Biotechnol. J. 22, 2488–2503 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Wang, H. et al. Developing a CRISPR/FrCas9 system for core promoter editing in rice. aBIOTECH 5, 189–195 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Zhang, T. et al. Establishing RNA virus resistance in plants by harnessing CRISPR immune system. Plant. Biotechnol. J. 16, 1415–1423 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Xu, R. et al. Genome editing with type II-C CRISPR–Cas9 systems from Neisseria meningitidis in rice. Plant. Biotechnol. J. 20, 350–359 (2022).

    Article  PubMed  Google Scholar 

  282. Jia, H., Orbovic, V. & Wang, N. CRISPR-LbCas12a-mediated modification of citrus. Plant. Biotechnol. J. 17, 1928–1937 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Li, B. et al. Robust CRISPR/Cpf1 (Cas12a)-mediated genome editing in allotetraploid cotton (Gossypium hirsutum). Plant. Biotechnol. J. 17, 1862–1864 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  284. Li, S. et al. Expanding the scope of CRISPR/Cpf1-mediated genome editing in rice. Mol. Plant. 11, 995–998 (2018).

    Article  CAS  PubMed  Google Scholar 

  285. Schindele, P. et al. Enhancing gene editing and gene targeting efficiencies in Arabidopsis thaliana by using an intron-containing version of ttLbCas12a. Plant. Biotechnol. J. 21, 457–459 (2023).

    Article  CAS  PubMed  Google Scholar 

  286. Hui, F. et al. Robust CRISPR/Mb2Cas12a genome editing tools in cotton plants. Imeta 3, e209 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Wang, Q. et al. The application of a heat-inducible CRISPR/Cas12b (C2c1) genome editing system in tetraploid cotton (G. hirsutum) plants. Plant. Biotechnol. J. 18, 2436–2443 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Lv, P. et al. Genome editing in rice using CRISPR/Cas12i3. Plant. Biotechnol. J. 22, 379–385 (2024).

    Article  CAS  PubMed  Google Scholar 

  289. Li, Z. et al. Genome editing in plants using the compact editor CasΦ. Proc. Natl Acad. Sci. USA 120, e2216822120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Sun, Y. et al. Engineer and split an efficient hypercompact CRISPR–CasΦ genome editor in plants. Plant. Commun. 5, 100881 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Ye, Z. et al. Efficient genome editing in rice with miniature Cas12f variants. aBIOTECH 5, 184–188 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Tang, X. et al. Genome editing in rice and tomato with a small Un1Cas12f1 nuclease. Plant. Genome 17, e20465 (2024).

    Article  CAS  PubMed  Google Scholar 

  293. Sukegawa, S., Nureki, O., Toki, S. & Saika, H. Genome editing in rice mediated by miniature size Cas nuclease SpCas12f. Front. Genome Ed. 5, 1138843 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  294. Knott, G. J. et al. Broad-spectrum enzymatic inhibition of CRISPR–Cas12a. Nat. Struct. Mol. Biol. 26, 315–321 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Yang, H. & Patel, D. J. Structures, mechanisms and applications of RNA-centric CRISPR–Cas13. Nat. Chem. Biol. 20, 673–688 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Mieulet, D. et al. Turning rice meiosis into mitosis. Cell Res. 26, 1242–1254 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. d’Erfurth, I. et al. Turning meiosis into mitosis. PLoS Biol. 7, e1000124 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  298. Song, M. et al. Simultaneous production of high-frequency synthetic apomixis with high fertility and improved agronomic traits in hybrid rice. Mol. Plant. 17, 4–7 (2024).

    Article  CAS  PubMed  Google Scholar 

  299. Dan, J. et al. One-line hybrid rice with high-efficiency synthetic apomixis and near-normal fertility. Plant. Cell Rep. 43, 79 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Vernet, A. et al. High-frequency synthetic apomixis in hybrid rice. Nat. Commun. 13, 7963 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Huang, Y. et al. OsWUS-driven synthetic apomixis in hybrid rice. Plant. Commun. 6, 101136 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  302. Lv, J. et al. Generation of paternal haploids in wheat by genome editing of the centromeric histone CENH3. Nat. Biotechnol. 38, 1397–1401 (2020).

    Article  CAS  PubMed  Google Scholar 

  303. Kelliher, T. et al. MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction. Nature 542, 105–109 (2017).

    Article  CAS  PubMed  Google Scholar 

  304. Lowe, K. et al. Morphogenic regulators baby boom and wuschel improve monocot transformation. Plant. Cell 28, 1998–2015 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. Debernardi, J. M. et al. A GRF-GIF chimeric protein improves the regeneration efficiency of transgenic plants. Nat. Biotechnol. 38, 1274–1279 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Wang, K. et al. The gene TaWOX5 overcomes genotype dependency in wheat genetic transformation. Nat. Plants 8, 110–117 (2022).

    Article  PubMed  Google Scholar 

  307. Maher, M. F. et al. Plant gene editing through de novo induction of meristems. Nat. Biotechnol. 38, 84–89 (2020).

    Article  CAS  PubMed  Google Scholar 

  308. Lian, Z. et al. Application of developmental regulators to improve in planta or in vitro transformation in plants. Plant. Biotechnol. J. 20, 1622–1635 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A.T., C.P., J.S.C and Y.Q. researched data for the article, contributed substantially to discussion of the content, wrote the article and reviewed and/or edited the manuscript before submission. D.L. wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Yiping Qi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks Zhenghe Li and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Activity window

Specific range of nucleotides within a target DNA sequence, where the base editor converts one nucleotide to another.

Bystander mutations

Unintended genetic alterations that occur near the primary target site (often at adjacent bases within the activity window) owing to the activity of base editor.

Cascade

An RNA-guided protein complex in type I CRISPR–Cas systems that recognizes target DNA sequences.

CRISPR–Cas

Stands for clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein. A bacterial and archaeal adaptive immunity mechanism, in which CRISPR arrays (repeats interspersed with spacers) and Cas proteins identify and degrade viral nucleic acids.

CRISPR RNA

In adaptive immunity in bacteria and archaea, a short RNA molecule that is complementary to a specific sequence of an invading nucleic acid and guides Cas proteins to cleave it.

Crop yield potentials

Maximum possible agricultural outputs that can be achieved under optimal growing conditions. Represents the highest yield a crop can attain based on its genetic characteristics in the absence of limiting environmental factors.

Filler DNA

Inadvertent integration of a segment(s) of the transduced plasmid DNA into the host genome at or near the site of the intended edit.

Homology-directed repair

An error-free or high fidelity DNA double-strand break repair pathway, which uses a homologous template to guide repair, resulting in precise editing outcomes.

Non-homologous end joining

An error-prone pathway of DNA double-strand break repair through direct joining of the DNA ends without requiring a homologous template. This process can introduce insertions or deletions of varying sizes.

Primer-binding sequence

A short sequence included in the prime editing guide RNA that is complementary to the DNA strand targeted for editing; serves as the reverse transcriptase primer for initiation of DNA synthesis during the prime editing.

Promoter bashing

Serial targeted deletions or mutagenesis of a promoter to optimize gene expression.

Protospacer-adjacent motif

A short DNA sequence that is recognized by the Cas protein as a prerequisite for DNA targeting by a CRISPR–Cas system.

Pyramiding mutations

Stacking or combining multiple beneficial genetic mutations or traits in a single organism, typically through selective breeding or genetic engineering.

Replicons

DNA or RNA molecules capable of autonomous replication within a host cell, owing to harbouring sequences such as an origin of replication.

Single guide RNA

(sgRNA). A fusion of CRISPR RNA and trans-activating CRISPR RNA. sgRNAs are used with certain Cas proteins such as Cas9 and Cas12b.

Trans-activating CRISPR RNA

A short RNA encoded adjacent to the CRISPR locus, which can hybridize with the precursor CRISPR RNA and form a complex that guides the CRISPR-associated nuclease to the DNA target site.

Transposase

An enzyme that catalyses the movement of transposable elements (or ‘jumping genes’) within the genome. It facilitates the excision of transposable elements from one location and their integration into another site in the DNA, contributing to genetic diversity.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuncel, A., Pan, C., Clem, J.S. et al. CRISPR–Cas applications in agriculture and plant research. Nat Rev Mol Cell Biol 26, 419–441 (2025). https://doi.org/10.1038/s41580-025-00834-3

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41580-025-00834-3

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research