Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanistic insights into gasdermin-mediated pyroptosis

Abstract

Pyroptosis, a novel mode of inflammatory cell death, is executed by membrane pore-forming gasdermin (GSDM) family members in response to extracellular or intracellular injury cues and is characterized by a ballooning cell morphology, plasma membrane rupture and the release of inflammatory mediators such as interleukin-1β (IL-1β), IL-18 and high mobility group protein B1 (HMGB1). It is a key effector mechanism for host immune defence and surveillance against invading pathogens and aberrant cancerous cells, and contributes to the onset and pathogenesis of inflammatory and autoimmune diseases. Manipulating the pore-forming activity of GSDMs and pyroptosis could lead to novel therapeutic strategies. In this Review, we discuss the current knowledge regarding how GSDM-mediated pyroptosis is initiated, executed and regulated, its roles in physiological and pathological processes, and the crosstalk between different modes of programmed cell death. We also highlight the development of drugs that target pyroptotic pathways for disease treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of pyroptosis.
Fig. 2: GSDM activation and pore formation.
Fig. 3: Mechanism of GSDM activation and pore formation.
Fig. 4: Regulation of pyroptosis and GSDMs.
Fig. 5: Transition from apoptosis to pyroptosis.
Fig. 6: Roles of pyroptosis in disease.

Similar content being viewed by others

References

  1. Friedlander, A. M. Macrophages are sensitive to anthrax lethal toxin through an acid-dependent process. J. Biol. Chem. 261, 7123–7126 (1986).

    Article  CAS  PubMed  Google Scholar 

  2. Zychlinsky, A., Prevost, M. C. & Sansonetti, P. J. Shigella flexneri induces apoptosis in infected macrophages. Nature 358, 167–169 (1992).

    Article  CAS  PubMed  Google Scholar 

  3. Monack, D. M., Raupach, B., Hromockyj, A. E. & Falkow, S. Salmonella typhimurium invasion induces apoptosis in infected macrophages. Proc. Natl Acad. Sci. USA 93, 9833–9838 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lindgren, S. W., Stojiljkovic, I. & Heffron, F. Macrophage killing is an essential virulence mechanism of Salmonella typhimurium. Proc. Natl Acad. Sci. USA 93, 4197–4201 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen, Y., Smith, M. R., Thirumalai, K. & Zychlinsky, A. A bacterial invasin induces macrophage apoptosis by binding directly to ICE. EMBO J. 15, 3853–3860 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hilbi, H. et al. Shigella-induced apoptosis is dependent on caspase-1 which binds to IpaB. J. Biol. Chem. 273, 32895–32900 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Hersh, D. et al. The Salmonella invasin SipB induces macrophage apoptosis by binding to caspase-1. Proc. Natl Acad. Sci. USA 96, 2396–2401 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brennan, M. A. & Cookson, B. T. Salmonella induces macrophage death by caspase-1-dependent necrosis. Mol. Microbiol. 38, 31–40 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Cookson, B. T. & Brennan, M. A. Pro-inflammatory programmed cell death. Trends Microbiol. 9, 113–114 (2001). This article is the first to present the term inflammatory caspase-mediated cell death pyroptosis.

    Article  CAS  PubMed  Google Scholar 

  10. Martinon, F., Burns, K. & Tschopp, J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol. Cell 10, 417–426 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Latz, E., Xiao, T. S. & Stutz, A. Activation and regulation of the inflammasomes. Nat. Rev. Immunol. 13, 397–411 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Broz, P. & Dixit, V. M. Inflammasomes: mechanism of assembly, regulation and signalling. Nat. Rev. Immunol. 16, 407–420 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Barnett, K. C., Li, S., Liang, K. & Ting, J. P. A 360° view of the inflammasome: mechanisms of activation, cell death, and diseases. Cell 186, 2288–2312 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hara, H. et al. The NLRP6 inflammasome recognizes lipoteichoic acid and regulates Gram-positive pathogen infection. Cell 175, 1651–1664.e14 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhao, Y. et al. The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 477, 596–600 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Kofoed, E. M. & Vance, R. E. Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature 477, 592–595 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rathinam, V. A. et al. The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat. Immunol. 11, 395–402 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kanneganti, T. D. et al. Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3. Nature 440, 233–236 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Sutterwala, F. S. et al. Critical role for NALP3/CIAS1/cryopyrin in innate and adaptive immunity through its regulation of caspase-1. Immunity 24, 317–327 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Deng, M. et al. The endotoxin delivery protein HMGB1 mediates caspase-11-dependent lethality in sepsis. Immunity 49, 740–753.e7 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kayagaki, N. et al. Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science 341, 1246–1249 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Hagar, J. A., Powell, D. A., Aachoui, Y., Ernst, R. K. & Miao, E. A. Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. Science 341, 1250–1253 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shi, J. et al. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 514, 187–192 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Wandel, M. P. et al. Guanylate-binding proteins convert cytosolic bacteria into caspase-4 signaling platforms. Nat. Immunol. 21, 880–891 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dickinson, M. S. et al. LPS-aggregating proteins GBP1 and GBP2 are each sufficient to enhance caspase-4 activation both in cellulo and in vitro. Proc. Natl Acad. Sci. USA 120, e2216028120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Santos, J. C. et al. Human GBP1 binds LPS to initiate assembly of a caspase-4 activating platform on cytosolic bacteria. Nat. Commun. 11, 3276 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Santos, J. C. et al. LPS targets host guanylate-binding proteins to the bacterial outer membrane for non-canonical inflammasome activation. EMBO J. 37, e98089 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Pilla, D. M. et al. Guanylate binding proteins promote caspase-11-dependent pyroptosis in response to cytoplasmic LPS. Proc. Natl Acad. Sci. USA 111, 6046–6051 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shi, J. et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526, 660–665 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Kayagaki, N. et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526, 666–671 (2015). Together with Shi et al. (2015), this article reports that GSDMD is cleaved and activated by inflammatory caspases, which are sufficient and required to trigger pyroptosis.

    Article  CAS  PubMed  Google Scholar 

  31. Liu, X. et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 535, 153–158 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ding, J. et al. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 535, 111–116 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Aglietti, R. A. et al. GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes. Proc. Natl Acad. Sci. USA 113, 7858–7863 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sborgi, L. et al. GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death. EMBO J. 35, 1766–1778 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen, X. et al. Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis. Cell Res. 26, 1007–1020 (2016). Together with Liu et al. (2016), Ding et al. (2016), Aglietti et al. (2016) and Sborgi et al. (2016), this article demonstrates that GSDMD-NT binds with high affinity to acidic phospholipids, oligomerizes and forms pores on plasma or organelle membranes to cause pyroptosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Angosto-Bazarra, D. et al. Evolutionary analyses of the gasdermin family suggest conserved roles in infection response despite loss of pore-forming functionality. BMC Biol. 20, 9 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shi, J., Gao, W. & Shao, F. Pyroptosis: gasdermin-mediated programmed necrotic cell death. Trends Biochem. Sci. 42, 245–254 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Liu, X., Xia, S., Zhang, Z., Wu, H. & Lieberman, J. Channelling inflammation: gasdermins in physiology and disease. Nat. Rev. Drug Discov. 20, 384–405 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu, Y. et al. Gasdermin E-mediated target cell pyroptosis by CAR T cells triggers cytokine release syndrome. Sci. Immunol. 5, eaax7969 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. Wei, Y. et al. GSDME-mediated pyroptosis promotes the progression and associated inflammation of atherosclerosis. Nat. Commun. 14, 929 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cao, Z. et al. Pyroptosis in diabetes and diabetic nephropathy. Clin. Chim. Acta 531, 188–196 (2022).

    Article  CAS  PubMed  Google Scholar 

  42. You, R. et al. Pyroptosis and its role in autoimmune disease: a potential therapeutic target. Front. Immunol. 13, 841732 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kanneganti, A. et al. GSDMD is critical for autoinflammatory pathology in a mouse model of familial Mediterranean fever. J. Exp. Med. 215, 1519–1529 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Xiao, J. et al. Gasdermin D mediates the pathogenesis of neonatal-onset multisystem inflammatory disease in mice. PLoS Biol. 16, e3000047 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Liu, Z. et al. Structures of the Gasdermin D C-terminal domains reveal mechanisms of autoinhibition. Structure 26, 778–784.e3 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Liu, Z. et al. Crystal structures of the full-length murine and human gasdermin D reveal mechanisms of autoinhibition, lipid binding, and oligomerization. Immunity 51, 43–49.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lunny, D. P. et al. Mutations in gasdermin 3 cause aberrant differentiation of the hair follicle and sebaceous gland. J. Invest. Dermatol. 124, 615–621 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Porter, R. M. et al. Defolliculated (dfl): a dominant mouse mutation leading to poor sebaceous gland differentiation and total elimination of pelage follicles. J. Invest. Dermatol. 119, 32–37 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Li, J. et al. Gsdma3 is required for hair follicle differentiation in mice. Biochem. Biophys. Res. Commun. 403, 18–23 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Runkel, F. et al. The dominant alopecia phenotypes Bareskin, Rex-denuded, and Reduced Coat 2 are caused by mutations in gasdermin 3. Genomics 84, 824–835 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Tanaka, S. et al. A new Gsdma3 mutation affecting anagen phase of first hair cycle. Biochem. Biophys. Res. Commun. 359, 902–907 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Sato, H. et al. A new mutation Rim3 resembling Re(den) is mapped close to retinoic acid receptor ɑ (Rara) gene on mouse chromosome 11. Mamm. Genome 9, 20–25 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Lin, P. H., Lin, H. Y., Kuo, C. C. & Yang, L. T. N-terminal functional domain of gasdermin A3 regulates mitochondrial homeostasis via mitochondrial targeting. J. Biomed. Sci. 22, 44 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Zhou, Y. et al. Gsdma3 mutation causes bulge stem cell depletion and alopecia mediated by skin inflammation. Am. J. Pathol. 180, 763–774 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Kumar, S. et al. Gsdma3I359N is a novel ENU-induced mutant mouse line for studying the function of Gasdermin A3 in the hair follicle and epidermis. J. Dermatol. Sci. 67, 190–192 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Deng, W. et al. Streptococcal pyrogenic exotoxin B cleaves GSDMA and triggers pyroptosis. Nature 602, 496–502 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. LaRock, D. L. et al. Group A Streptococcus induces GSDMA-dependent pyroptosis in keratinocytes. Nature 605, 527–531 (2022). Together with Deng et al. (2022), this article reports that SpeB cleaves and activates GSDMA to initiate pyroptosis in keratinocytes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Katoh, M. & Katoh, M. Evolutionary recombination hotspot around GSDML–GSDM locus is closely linked to the oncogenomic recombination hotspot around the PPP1R1B–ERBB2–GRB7 amplicon. Int. J. Oncol. 24, 757–763 (2004).

    CAS  PubMed  Google Scholar 

  59. Zhong, X. et al. Structural mechanisms for regulation of GSDMB pore-forming activity. Nature 616, 598–605 (2023).

    Article  CAS  PubMed  Google Scholar 

  60. Wang, C. et al. Structural basis for GSDMB pore formation and its targeting by IpaH7.8. Nature 616, 590–597 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kong, Q. et al. Alternative splicing of GSDMB modulates killer lymphocyte-triggered pyroptosis. Sci. Immunol. 8, eadg3196 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhou, Z. et al. Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells. Science 368, eaaz7548 (2020).

    Article  CAS  PubMed  Google Scholar 

  63. Voskoboinik, I., Whisstock, J. C. & Trapani, J. A. Perforin and granzymes: function, dysfunction and human pathology. Nat. Rev. Immunol. 15, 388–400 (2015).

    Article  CAS  PubMed  Google Scholar 

  64. Hou, J. et al. PD-L1-mediated gasdermin C expression switches apoptosis to pyroptosis in cancer cells and facilitates tumour necrosis. Nat. Cell Biol. 22, 1264–1275 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhang, J.-y et al. The metabolite α-KG induces GSDMC-dependent pyroptosis through death receptor 6-activated caspase-8. Cell Res. 31, 980–997 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yang, L. et al. Intraepithelial mast cells drive gasdermin C-mediated type 2 immunity. Immunity 57, 1056–1070.e5 (2024).

    Article  CAS  PubMed  Google Scholar 

  67. Orning, P. et al. Pathogen blockade of TAK1 triggers caspase-8-dependent cleavage of gasdermin D and cell death. Science 362, 1064–1069 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sarhan, J. et al. Caspase-8 induces cleavage of gasdermin D to elicit pyroptosis during Yersinia infection. Proc. Natl Acad. Sci. USA 115, E10888–E10897 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhang, H. et al. TMEM173 drives lethal coagulation in sepsis. Cell Host Microbe 27, 556–570.e6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Schwarzer, R., Jiao, H., Wachsmuth, L., Tresch, A. & Pasparakis, M. FADD and caspase-8 regulate gut homeostasis and inflammation by controlling MLKL- and GSDMD-mediated death of intestinal epithelial cells. Immunity 52, 978–993.e6 (2020).

    Article  CAS  PubMed  Google Scholar 

  71. Hughes, S. A. et al. Caspase-8-driven apoptotic and pyroptotic crosstalk causes cell death and IL-1β release in X-linked inhibitor of apoptosis (XIAP) deficiency. EMBO J. 42, e110468 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wu, S. et al. Targeting STING elicits GSDMD-dependent pyroptosis and boosts anti-tumor immunity in renal cell carcinoma. Oncogene 43, 1534–1548 (2024).

    Article  CAS  PubMed  Google Scholar 

  73. Kambara, H. et al. Gasdermin D exerts anti-inflammatory effects by promoting neutrophil death. Cell Rep. 22, 2924–2936 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Burgener, S. S. et al. Cathepsin G inhibition by Serpinb1 and Serpinb6 prevents programmed necrosis in neutrophils and monocytes and reduces GSDMD-driven inflammation. Cell Rep. 27, 3646–3656.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Karmakar, M. et al. N-GSDMD trafficking to neutrophil organelles facilitates IL-1β release independently of plasma membrane pores and pyroptosis. Nat. Commun. 11, 2212 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Du, G. et al. ROS-dependent S-palmitoylation activates cleaved and intact gasdermin D. Nature 630, 437–446 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chen, W. et al. Allergen protease-activated stress granule assembly and gasdermin D fragmentation control interleukin-33 secretion. Nat. Immunol. 23, 1021–1030 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Van Laer, L. et al. Nonsyndromic hearing impairment is associated with a mutation in DFNA5. Nat. Genet. 20, 194–197 (1998).

    Article  PubMed  Google Scholar 

  79. Park, H. J. et al. Evidence for a founder mutation causing DFNA5 hearing loss in East Asians. J. Hum. Genet. 55, 59–62 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Cheng, J. et al. A novel DFNA5 mutation, IVS8 + 4 A>G, in the splice donor site of intron 8 causes late-onset non-syndromic hearing loss in a Chinese family. Clin. Genet. 72, 471–477 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Bischoff, A. M. et al. A novel mutation identified in the DFNA5 gene in a Dutch family: a clinical and genetic evaluation. Audiol. Neurootol. 9, 34–46 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Yu, C. et al. A 3-nucleotide deletion in the polypyrimidine tract of intron 7 of the DFNA5 gene causes nonsyndromic hearing impairment in a Chinese family. Genomics 82, 575–579 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Op de Beeck, K. et al. The DFNA5 gene, responsible for hearing loss and involved in cancer, encodes a novel apoptosis-inducing protein. Eur. J. Hum. Genet. 19, 965–973 (2011).

    Article  CAS  PubMed  Google Scholar 

  84. Van Rossom, S. et al. The splicing mutant of the human tumor suppressor protein DFNA5 induces programmed cell death when expressed in the yeast Saccharomyces cerevisiae. Front. Oncol. 2, 77 (2012).

    PubMed  PubMed Central  Google Scholar 

  85. Nadol, J. B. Jr, Handzel, O. & Amr, S. Histopathology of the human inner ear in a patient with sensorineural hearing loss caused by a variant in DFNA5. Otol. Neurotol. 36, 1616–1621 (2015).

    Article  PubMed  Google Scholar 

  86. Zhou, B. et al. Full-length GSDME mediates pyroptosis independent from cleavage. Nat. Cell Biol. 26, 1545–1557 (2024).

    Article  CAS  PubMed  Google Scholar 

  87. Wang, Y. et al. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature 547, 99–103 (2017).

    Article  CAS  PubMed  Google Scholar 

  88. Rogers, C. et al. Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death. Nat. Commun. 8, 14128 (2017). Together with Wang et al. (2017), this study reports that apoptotic caspase 3 mediates GSDME cleavage and activation, converting apoptosis into pyroptosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhang, Z. et al. Gasdermin E suppresses tumour growth by activating anti-tumour immunity. Nature 579, 415–420 (2020). Together with Zhou et al. (2020), this article reports that cytotoxic granzymes produced by killer lymphocytes cleave and activate GSDMs to induce tumour cell pyroptosis, which increases host antitumour immunity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Billman, Z. P. et al. Caspase-1 activates gasdermin A in non-mammals. eLife 12, RP92362 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Jiang, S., Zhou, Z., Sun, Y., Zhang, T. & Sun, L. Coral gasdermin triggers pyroptosis. Sci. Immunol. 5, eabd2591 (2020).

    Article  CAS  PubMed  Google Scholar 

  92. Johnson, A. G. et al. Bacterial gasdermins reveal an ancient mechanism of cell death. Science 375, 221–225 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Johnson, A. G. et al. Structure and assembly of a bacterial gasdermin pore. Nature 628, 657–663 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Li, Y. et al. Cleavage-independent activation of ancient eukaryotic gasdermins and structural mechanisms. Science 384, adm9190 (2024). Together with Du et al. (2024) and Zhou et al. (2024), this article describes alternative activation of GSDM in a cleavage-independent manner.

    Article  CAS  PubMed  Google Scholar 

  95. Clave, C. et al. Fungal gasdermin-like proteins are controlled by proteolytic cleavage. Proc. Natl Acad. Sci. USA 119, e2109418119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Miao, R. et al. Gasdermin D permeabilization of mitochondrial inner and outer membranes accelerates and enhances pyroptosis. Immunity 56, 2523–2541.e8 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kondolf, H. C., D’Orlando, D. A., Dubyak, G. R. & Abbott, D. W. Protein engineering reveals that gasdermin A preferentially targets mitochondrial membranes over the plasma membrane during pyroptosis. J. Biol. Chem. 299, 102908 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. van Meer, G., Voelker, D. R. & Feigenson, G. W. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9, 112–124 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Lorent, J. H. et al. Plasma membranes are asymmetric in lipid unsaturation, packing and protein shape. Nat. Chem. Biol. 16, 644–652 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Mari, S. A. et al. Gasdermin-A3 pore formation propagates along variable pathways. Nat. Commun. 13, 2609 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Mulvihill, E. et al. Mechanism of membrane pore formation by human gasdermin-D. EMBO J. 37, e98321 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Liu, Y. et al. Visualization of perforin/gasdermin/complement-formed pores in real cell membranes using atomic force microscopy. Cell Mol. Immunol. 16, 611–620 (2019).

    Article  CAS  PubMed  Google Scholar 

  103. Ruan, J., Xia, S., Liu, X., Lieberman, J. & Wu, H. Cryo-EM structure of the gasdermin A3 membrane pore. Nature 557, 62–67 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Xia, S. et al. Gasdermin D pore structure reveals preferential release of mature interleukin-1. Nature 593, 607–611 (2021). Together with Zhong, X. et al. (2023), Wang, C. et al. (2023), Johnson et al. (2024), Li et al. (2024) and Ruan et al. (2018), this article describes the GSDM membrane pore structure resolved via cryo electron microscopy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Akino, K. et al. Identification of DFNA5 as a target of epigenetic inactivation in gastric cancer. Cancer Sci. 98, 88–95 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Kim, M. S. et al. Aberrant promoter methylation and tumor suppressive activity of the DFNA5 gene in colorectal carcinoma. Oncogene 27, 3624–3634 (2008).

    Article  CAS  PubMed  Google Scholar 

  107. Saeki, N. et al. GASDERMIN, suppressed frequently in gastric cancer, is a target of LMO1 in TGF-β-dependent apoptotic signalling. Oncogene 26, 6488–6498 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Kothari, P. H. et al. Role of local CpG DNA methylation in mediating the 17q21 asthma susceptibility gasdermin B (GSDMB)/ORMDL sphingolipid biosynthesis regulator 3 (ORMDL3) expression quantitative trait locus. J. Allergy Clin. Immunol. 141, 2282–2286.e6 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Ning, H. et al. Enhancer decommissioning by MLL4 ablation elicits dsRNA–interferon signaling and GSDMD-mediated pyroptosis to potentiate anti-tumor immunity. Nat. Commun. 13, 6578 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Oltra, S. S. et al. Distinct GSDMB protein isoforms and protease cleavage processes differentially control pyroptotic cell death and mitochondrial damage in cancer cells. Cell Death Differ. 30, 1366–1381 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Croes, L. et al. Large-scale analysis of DFNA5 methylation reveals its potential as biomarker for breast cancer. Clin. Epigenetics 10, 51 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Hansen, J. M. et al. Pathogenic ubiquitination of GSDMB inhibits NK cell bactericidal functions. Cell 184, 3178–3191.e18 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Taabazuing, C. Y., Okondo, M. C. & Bachovchin, D. A. Pyroptosis and apoptosis pathways engage in bidirectional crosstalk in monocytes and macrophages. Cell Chem. Biol. 24, 507–514.e4 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Lei, X. et al. Enterovirus 71 inhibits pyroptosis through cleavage of Gasdermin D. J. Virol. https://doi.org/10.1128/JVI.01069-17 (2017).

  115. Luchetti, G. et al. Shigella ubiquitin ligase IpaH7.8 targets gasdermin D for degradation to prevent pyroptosis and enable infection. Cell Host Microbe 29, 1521–1530.e10 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Gao, W. et al. TRIM21 regulates pyroptotic cell death by promoting gasdermin D oligomerization. Cell Death Differ. 29, 439–450 (2022).

    Article  CAS  PubMed  Google Scholar 

  117. Margheritis, E. et al. Gasdermin D cysteine residues synergistically control its palmitoylation-mediated membrane targeting and assembly. EMBO J. 43, 4274–4297 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Liu, Z. et al. Palmitoylation at a conserved cysteine residue facilitates gasdermin D-mediated pyroptosis and cytokine release. Proc. Natl Acad. Sci. USA 121, e2400883121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zhang, N. et al. A palmitoylation–depalmitoylation relay spatiotemporally controls GSDMD activation in pyroptosis. Nat. Cell Biol. 26, 757–769 (2024).

    Article  PubMed  Google Scholar 

  120. Balasubramanian, A. et al. The palmitoylation of gasdermin D directs its membrane translocation and pore formation during pyroptosis. Sci. Immunol. 9, eadn1452 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Hu, L. et al. Chemotherapy-induced pyroptosis is mediated by BAK/BAX–caspase-3–GSDME pathway and inhibited by 2-bromopalmitate. Cell Death Dis. 11, 281 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Yu, T. et al. NLRP3 Cys126 palmitoylation by ZDHHC7 promotes inflammasome activation. Cell Rep. 43, 114070 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Zheng, S. et al. ZDHHC5-mediated NLRP3 palmitoylation promotes NLRP3–NEK7 interaction and inflammasome activation. Mol. Cell 83, 4570–4585.e7 (2023).

    Article  CAS  PubMed  Google Scholar 

  124. Wang, L. et al. Palmitoylation prevents sustained inflammation by limiting NLRP3 inflammasome activation through chaperone-mediated autophagy. Mol. Cell 83, 281–297.e10 (2023).

    Article  CAS  PubMed  Google Scholar 

  125. Humphries, F. et al. Succination inactivates gasdermin D and blocks pyroptosis. Science 369, 1633–1637 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Hu, J. J. et al. FDA-approved disulfiram inhibits pyroptosis by blocking gasdermin D pore formation. Nat. Immunol. 21, 736–745 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Rathkey, J. K. et al. Chemical disruption of the pyroptotic pore-forming protein gasdermin D inhibits inflammatory cell death and sepsis. Sci. Immunol. https://doi.org/10.1126/sciimmunol.aat2738 (2018). Together with Humphries et al. (2020) and Hu et al. (2020), this article identifies Cys-reactive drugs that modify Cys191 in GSDMD and block GSDMD pore-forming activity.

  128. Chai, Q. et al. A bacterial phospholipid phosphatase inhibits host pyroptosis by hijacking ubiquitin. Science 378, eabq0132 (2022).

    Article  CAS  PubMed  Google Scholar 

  129. Santa Cruz Garcia, A. B., Schnur, K. P., Malik, A. B. & Mo, G. C. H. Gasdermin D pores are dynamically regulated by local phosphoinositide circuitry. Nat. Commun. 13, 52 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Jimenez, A. J. et al. ESCRT machinery is required for plasma membrane repair. Science 343, 1247136 (2014).

    Article  PubMed  Google Scholar 

  131. Ruhl, S. et al. ESCRT-dependent membrane repair negatively regulates pyroptosis downstream of GSDMD activation. Science 362, 956–960 (2018).

    Article  PubMed  Google Scholar 

  132. Evavold, C. L. et al. The pore-forming protein Gasdermin D regulates interleukin-1 secretion from living macrophages. Immunity 48, 35–44.e6 (2018).

    Article  CAS  PubMed  Google Scholar 

  133. Zanoni, I. et al. An endogenous caspase-11 ligand elicits interleukin-1 release from living dendritic cells. Science 352, 1232–1236 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Zhang, J. et al. Epithelial gasdermin D shapes the host–microbial interface by driving mucus layer formation. Sci. Immunol. 7, eabk2092 (2022).

    Article  CAS  PubMed  Google Scholar 

  135. Zhou, B. & Abbott, D. W. Gasdermin E permits interleukin-1β release in distinct sublytic and pyroptotic phases. Cell Rep. 35, 108998 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Gaidt, M. M. et al. The DNA inflammasome in human myeloid cells is initiated by a STING-cell death program upstream of NLRP3. Cell 171, 1110–1124.e18 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Zheng, Z. et al. The lysosomal Rag–Ragulator complex licenses RIPK1 and caspase-8-mediated pyroptosis by yersinia. Science 372, eabg0269 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Neel, D. V. et al. Gasdermin-E mediates mitochondrial damage in axons and neurodegeneration. Neuron 111, 1222–1240.e9 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Zhou, B. et al. Tom20 senses iron-activated ROS signaling to promote melanoma cell pyroptosis. Cell Res. 28, 1171–1185 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Xia, S. et al. Synthetic protein circuits for programmable control of mammalian cell death. Cell 187, 2785–2800.e16 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Yuan, J. & Ofengeim, D. A guide to cell death pathways. Nat. Rev. Mol. Cell Biol. 25, 379–395 (2024).

    Article  CAS  PubMed  Google Scholar 

  142. Fritsch, M. et al. Caspase-8 is the molecular switch for apoptosis, necroptosis and pyroptosis. Nature 575, 683–687 (2019).

    Article  CAS  PubMed  Google Scholar 

  143. Pierini, R. et al. AIM2/ASC triggers caspase-8-dependent apoptosis in Francisella-infected caspase-1-deficient macrophages. Cell Death Differ. 19, 1709–1721 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Sagulenko, V. et al. AIM2 and NLRP3 inflammasomes activate both apoptotic and pyroptotic death pathways via ASC. Cell Death Differ. 20, 1149–1160 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Antonopoulos, C. et al. Caspase-8 as an effector and regulator of NLRP3 inflammasome signaling. J. Biol. Chem. 290, 20167–20184 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Van Opdenbosch, N. et al. Caspase-1 engagement and TLR-induced c-FLIP expression suppress ASC/caspase-8-dependent apoptosis by inflammasome sensors NLRP1b and NLRC4. Cell Rep. 21, 3427–3444 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Rauch, I. et al. NAIP–NLRC4 inflammasomes coordinate intestinal epithelial cell expulsion with eicosanoid and IL-18 release via activation of caspase-1 and -8. Immunity 46, 649–659 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Tsuchiya, K. et al. Caspase-1 initiates apoptosis in the absence of gasdermin D. Nat. Commun. 10, 2091 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Wang, C. et al. NLRP3 inflammasome activation triggers gasdermin D-independent inflammation. Sci. Immunol. 6, eabj3859 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Pasparakis, M. & Vandenabeele, P. Necroptosis and its role in inflammation. Nature 517, 311–320 (2015).

    Article  CAS  PubMed  Google Scholar 

  151. Conos, S. A. et al. Active MLKL triggers the NLRP3 inflammasome in a cell-intrinsic manner. Proc. Natl Acad. Sci. USA 114, E961–E969 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Gutierrez, K. D. et al. MLKL activation triggers NLRP3-mediated processing and release of IL-1β independently of gasdermin-D. J. Immunol. 198, 2156–2164 (2017).

    Article  CAS  PubMed  Google Scholar 

  153. Polykratis, A. et al. A20 prevents inflammasome-dependent arthritis by inhibiting macrophage necroptosis through its ZnF7 ubiquitin-binding domain. Nat. Cell Biol. 21, 731–742 (2019).

    Article  CAS  PubMed  Google Scholar 

  154. Kang, T. B., Yang, S. H., Toth, B., Kovalenko, A. & Wallach, D. Caspase-8 blocks kinase RIPK3-mediated activation of the NLRP3 inflammasome. Immunity 38, 27–40 (2013).

    Article  CAS  PubMed  Google Scholar 

  155. Zheng, M., Karki, R., Vogel, P. & Kanneganti, T. D. Caspase-6 is a key regulator of innate immunity, inflammasome activation, and host defense. Cell 181, 674–687.e13 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Lee, S. et al. AIM2 forms a complex with pyrin and ZBP1 to drive PANoptosis and host defence. Nature 597, 415–419 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Banerjee, I. et al. Gasdermin D restrains type I interferon response to cytosolic DNA by disrupting ionic homeostasis. Immunity 49, 413–426.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Zhu, Q., Zheng, M., Balakrishnan, A., Karki, R. & Kanneganti, T. D. Gasdermin D promotes AIM2 inflammasome activation and is required for host protection against Francisella novicida. J. Immunol. 201, 3662–3668 (2018).

    Article  CAS  PubMed  Google Scholar 

  159. Goncalves, A. V. et al. Gasdermin-D and caspase-7 are the key caspase-1/8 substrates downstream of the NAIP5/NLRC4 inflammasome required for restriction of Legionella pneumophila. PLoS Pathog. 15, e1007886 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Cerqueira, D. M. et al. Guanylate-binding protein 5 licenses caspase-11 for gasdermin-D mediated host resistance to Brucella abortus infection. PLoS Pathog. 14, e1007519 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Chen, K. W. et al. Noncanonical inflammasome signaling elicits gasdermin D-dependent neutrophil extracellular traps. Sci. Immunol. 3, eaar6676 (2018).

    Article  PubMed  Google Scholar 

  162. Wang, J., Deobald, K. & Re, F. Gasdermin D protects from melioidosis through pyroptosis and direct killing of bacteria. J. Immunol. 202, 3468–3473 (2019).

    Article  CAS  PubMed  Google Scholar 

  163. Yang, X. et al. Bacterial endotoxin activates the coagulation cascade through gasdermin D-dependent phosphatidylserine exposure. Immunity 51, 983–996.e6 (2019).

    Article  CAS  PubMed  Google Scholar 

  164. Wu, C. et al. Inflammasome activation triggers blood clotting and host death through pyroptosis. Immunity 50, 1401–1411.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Wei, C. et al. Brain endothelial GSDMD activation mediates inflammatory BBB breakdown. Nature 629, 893–900 (2024).

    Article  CAS  PubMed  Google Scholar 

  166. Zhu, S. et al. Nlrp9b inflammasome restricts rotavirus infection in intestinal epithelial cells. Nature 546, 667–670 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Liu, T. et al. NOD-like receptor family, pyrin domain containing 3 (NLRP3) contributes to inflammation, pyroptosis, and mucin production in human airway epithelium on rhinovirus infection. J. Allergy Clin. Immunol. 144, 777–787.e9 (2019).

    Article  CAS  PubMed  Google Scholar 

  168. Rodrigues, T. S. et al. Inflammasomes are activated in response to SARS-CoV-2 infection and are associated with COVID-19 severity in patients. J. Exp. Med. 218, e20201707 (2021).

    Article  CAS  PubMed  Google Scholar 

  169. Junqueira, C. et al. FcγR-mediated SARS-CoV-2 infection of monocytes activates inflammation. Nature 606, 576–584 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Rosli, S. et al. Gasdermin D promotes hyperinflammation and immunopathology during severe influenza A virus infection. Cell Death Dis. 14, 727 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Speaks, S. et al. Gasdermin D promotes influenza virus-induced mortality through neutrophil amplification of inflammation. Nat. Commun. 15, 2751 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Dubois, H. et al. Nlrp3 inflammasome activation and gasdermin D-driven pyroptosis are immunopathogenic upon gastrointestinal norovirus infection. PLoS Pathog. 15, e1007709 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Zhao, Z. et al. Zika virus causes placental pyroptosis and associated adverse fetal outcomes by activating GSDME. eLife 11, e73792 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Dong, S. et al. Gasdermin E is required for induction of pyroptosis and severe disease during enterovirus 71 infection. J. Biol. Chem. 298, 101850 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Wan, X. et al. H7N9 virus infection triggers lethal cytokine storm by activating gasdermin E-mediated pyroptosis of lung alveolar epithelial cells. Natl Sci. Rev. 9, nwab137 (2022).

    Article  CAS  PubMed  Google Scholar 

  176. Wei, Z. et al. Baicalin inhibits influenza A (H1N1)-induced pyroptosis of lung alveolar epithelial cells via caspase-3/GSDME pathway. J. Med. Virol. 95, e28790 (2023).

    Article  CAS  PubMed  Google Scholar 

  177. Batista, S. J. et al. Gasdermin-D-dependent IL-1‒release from microglia promotes protective immunity during chronic Toxoplasma gondii infection. Nat. Commun. 11, 3687 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Sateriale, A. et al. The intestinal parasite Cryptosporidium is controlled by an enterocyte intrinsic inflammasome that depends on NLRP6. Proc. Natl. Acad. Sci. USA 118, e2007807118 (2021).

    Article  CAS  PubMed  Google Scholar 

  179. de Sa, K. S. G. et al. Gasdermin-D activation promotes NLRP3 activation and host resistance to Leishmania infection. Nat. Commun. 14, 1049 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Ding, X. et al. Inflammasome-mediated GSDMD activation facilitates escape of Candida albicans from macrophages. Nat. Commun. 12, 6699 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Soderman, J., Berglind, L. & Almer, S. Gene expression–genotype analysis implicates GSDMA, GSDMB, and LRRC3C as contributors to inflammatory bowel disease susceptibility. Biomed. Res. Int. 2015, 834805 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Moreno-Moral, A. et al. Changes in macrophage transcriptome associate with systemic sclerosis and mediate GSDMA contribution to disease risk. Ann. Rheum. Dis. 77, 596–601 (2018).

    Article  CAS  PubMed  Google Scholar 

  183. Terao, C. et al. Transethnic meta-analysis identifies GSDMA and PRDM1 as susceptibility genes to systemic sclerosis. Ann. Rheum. Dis. 76, 1150–1158 (2017).

    Article  CAS  PubMed  Google Scholar 

  184. Yu, J. et al. Polymorphisms in GSDMA and GSDMB are associated with asthma susceptibility, atopy and BHR. Pediatr. Pulmonol. 46, 701–708 (2011).

    Article  PubMed  Google Scholar 

  185. Moffatt, M. F. et al. A large-scale, consortium-based genomewide association study of asthma. N. Engl. J. Med. 363, 1211–1221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. French, F. M. F. C. A candidate gene for familial Mediterranean fever. Nat. Genet. 17, 25–31 (1997).

    Article  Google Scholar 

  187. Feldmann, J. et al. Chronic infantile neurological cutaneous and articular syndrome is caused by mutations in CIAS1, a gene highly expressed in polymorphonuclear cells and chondrocytes. Am. J. Hum. Genet. 71, 198–203 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Chae, J. J. et al. Gain-of-function Pyrin mutations induce NLRP3 protein-independent interleukin-1β activation and severe autoinflammation in mice. Immunity 34, 755–768 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Bertoni, A. et al. A novel knock-in mouse model of cryopyrin-associated periodic syndromes with development of amyloidosis: therapeutic efficacy of proton pump inhibitors. J. Allergy Clin. Immunol. 145, 368–378.e13 (2020).

    Article  CAS  PubMed  Google Scholar 

  190. Ma, X. et al. Prussian blue nanozyme as a pyroptosis inhibitor alleviates neurodegeneration. Adv. Mater. 34, e2106723 (2022).

    Article  PubMed  Google Scholar 

  191. Van Schoor, E. et al. Increased pyroptosis activation in white matter microglia is associated with neuronal loss in ALS motor cortex. Acta Neuropathol. 144, 393–411 (2022).

    Article  PubMed  Google Scholar 

  192. McKenzie, B. A. et al. Caspase-1 inhibition prevents glial inflammasome activation and pyroptosis in models of multiple sclerosis. Proc. Natl Acad. Sci. USA 115, E6065–E6074 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Li, S. et al. Gasdermin D in peripheral myeloid cells drives neuroinflammation in experimental autoimmune encephalomyelitis. J. Exp. Med. 216, 2562–2581 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Li, J. et al. Blocking GSDMD processing in innate immune cells but not in hepatocytes protects hepatic ischemia–reperfusion injury. Cell Death Dis. 11, 244 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Wu, X. Y., Chen, Y. J., Liu, C. A., Gong, J. H. & Xu, X. S. STING induces liver ischemia–reperfusion injury by promoting calcium-dependent caspase 1-GSDMD processing in macrophages. Oxid. Med. Cell Longev. 2022, 8123157 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Shi, H. et al. GSDMD-mediated cardiomyocyte pyroptosis promotes myocardial I/R injury. Circ. Res. 129, 383–396 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Zhong, L. et al. Novel GSDMD inhibitor GI-Y1 protects heart against pyroptosis and ischemia/reperfusion injury by blocking pyroptotic pore formation. Basic. Res. Cardiol. 118, 40 (2023).

    Article  CAS  PubMed  Google Scholar 

  198. Zhang, D. et al. Gasdermin D serves as a key executioner of pyroptosis in experimental cerebral ischemia and reperfusion model both in vivo and in vitro. J. Neurosci. Res. 97, 645–660 (2019).

    Article  CAS  PubMed  Google Scholar 

  199. Yang, F. et al. Silencing long non-coding RNA Kcnq1ot1 alleviates pyroptosis and fibrosis in diabetic cardiomyopathy. Cell Death Dis. 9, 1000 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Wang, Y. et al. TLR4/NF-κB signaling induces GSDMD-related pyroptosis in tubular cells in diabetic kidney disease. Front. Endocrinol. 10, 603 (2019).

    Article  Google Scholar 

  201. Xu, B. et al. Gasdermin D plays a key role as a pyroptosis executor of non-alcoholic steatohepatitis in humans and mice. J. Hepatol. 68, 773–782 (2018).

    Article  CAS  PubMed  Google Scholar 

  202. Khanova, E. et al. Pyroptosis by caspase11/4–gasdermin-D pathway in alcoholic hepatitis in mice and patients. Hepatology 67, 1737–1753 (2018).

    Article  CAS  PubMed  Google Scholar 

  203. Lu, Y. et al. Caspase-11 signaling enhances graft-versus-host disease. Nat. Commun. 10, 4044 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Xiao, J. et al. Radiation causes tissue damage by dysregulating inflammasome–gasdermin D signaling in both host and transplanted cells. PLoS Biol. 18, e3000807 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Tan, G., Huang, C., Chen, J., Chen, B. & Zhi, F. Gasdermin-E-mediated pyroptosis participates in the pathogenesis of Crohn’s disease by promoting intestinal inflammation. Cell Rep. 35, 109265 (2021).

    Article  CAS  PubMed  Google Scholar 

  206. Zhai, Z. et al. Attenuation of rheumatoid arthritis through the inhibition of tumor necrosis factor-induced caspase 3/gasdermin E-mediated pyroptosis. Arthritis Rheumatol. 74, 427–440 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Xia, W. et al. Gasdermin E deficiency attenuates acute kidney injury by inhibiting pyroptosis and inflammation. Cell Death Dis. 12, 139 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Saeki, N., Kuwahara, Y., Sasaki, H., Satoh, H. & Shiroishi, T. Gasdermin (Gsdm) localizing to mouse chromosome 11 is predominantly expressed in upper gastrointestinal tract but significantly suppressed in human gastric cancer cells. Mamm. Genome 11, 718–724 (2000).

    Article  CAS  PubMed  Google Scholar 

  209. Molina-Crespo, A. et al. Intracellular delivery of an antibody targeting gasdermin-B reduces HER2 breast cancer aggressiveness. Clin. Cancer Res. 25, 4846–4858 (2019).

    Article  CAS  PubMed  Google Scholar 

  210. Hergueta-Redondo, M. et al. Gasdermin-B promotes invasion and metastasis in breast cancer cells. PLoS ONE 9, e90099 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Cui, Y., Zhou, Z., Chai, Y. & Zhang, Y. Upregulated GSDMB in clear cell renal cell carcinoma is associated with immune infiltrates and poor prognosis. J. Immunol. Res. 2021, 7753553 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  212. He, H. et al. USP24–GSDMB complex promotes bladder cancer proliferation via activation of the STAT3 pathway. Int. J. Biol. Sci. 17, 2417–2429 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Miguchi, M. et al. Gasdermin C is upregulated by inactivation of transforming growth factor β receptor type II in the presence of mutated Apc, promoting colorectal cancer proliferation. PLoS ONE 11, e0166422 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Cui, Y. Q., Meng, F., Zhan, W. L., Dai, Z. T. & Liao, X. High expression of GSDMC is associated with poor survival in kidney clear cell cancer. Biomed. Res. Int. 2021, 5282894 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Yan, C., Niu, Y., Li, F., Zhao, W. & Ma, L. System analysis based on the pyroptosis-related genes identifies GSDMC as a novel therapy target for pancreatic adenocarcinoma. J. Transl. Med. 20, 455 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Wang, W. J. et al. Downregulation of gasdermin D promotes gastric cancer proliferation by regulating cell cycle-related proteins. J. Dig. Dis. 19, 74–83 (2018).

    Article  CAS  PubMed  Google Scholar 

  217. Peng, J. et al. CD147 expression is associated with tumor proliferation in bladder cancer via GSDMD. Biomed. Res. Int. 2020, 7638975 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Wang, S. et al. Gasdermin C sensitizes tumor cells to PARP inhibitor therapy in cancer models. J. Clin. Invest. 134, e166841 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Wang, Q. et al. A bioorthogonal system reveals antitumour immune function of pyroptosis. Nature 579, 421–426 (2020).

    Article  CAS  PubMed  Google Scholar 

  220. Yuan, R. et al. Cucurbitacin B inhibits non-small cell lung cancer in vivo and in vitro by triggering TLR4/NLRP3/GSDMD-dependent pyroptosis. Pharmacol. Res. 170, 105748 (2021).

    Article  CAS  PubMed  Google Scholar 

  221. Johnson, D. C. et al. DPP8/DPP9 inhibitor-induced pyroptosis for treatment of acute myeloid leukemia. Nat. Med. 24, 1151–1156 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Fontana, P. et al. Small-molecule GSDMD agonism in tumors stimulates antitumor immunity without toxicity. Cell 197, 6165–6181.e22 (2024).

    Article  Google Scholar 

  223. Lu, H. et al. Molecular targeted therapies elicit concurrent apoptotic and GSDME-dependent pyroptotic tumor cell death. Clin. Cancer Res. 24, 6066–6077 (2018).

    Article  CAS  PubMed  Google Scholar 

  224. Zhang, C. C. et al. Chemotherapeutic paclitaxel and cisplatin differentially induce pyroptosis in A549 lung cancer cells via caspase-3/GSDME activation. Apoptosis 24, 312–325 (2019).

    Article  CAS  PubMed  Google Scholar 

  225. Zhang, Z. et al. Caspase-3-mediated GSDME induced pyroptosis in breast cancer cells through the ROS/JNK signalling pathway. J. Cell Mol. Med. 25, 8159–8168 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Jiang, Y. et al. Gasdermin D restricts anti-tumor immunity during PD-L1 checkpoint blockade. Cell Rep. 41, 111553 (2022).

    Article  CAS  PubMed  Google Scholar 

  227. Ren, F. et al. ER stress induces caspase-2–tBID–GSDME-dependent cell death in neurons lytically infected with herpes simplex virus type 2. EMBO J. 42, e113118 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Xiao, C. et al. Tisp40 induces tubular epithelial cell GSDMD-mediated pyroptosis in renal ischemia–reperfusion injury via NF-κB signaling. Front. Physiol. 11, 906 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Delmaghani, S. et al. Hypervulnerability to sound exposure through impaired adaptive proliferation of peroxisomes. Cell 163, 894–906 (2015).

    Article  CAS  PubMed  Google Scholar 

  230. Kayagaki, N. et al. IRF2 transcriptionally induces GSDMD expression for pyroptosis. Sci. Signal. 12, eaax4917 (2019).

    Article  PubMed  Google Scholar 

  231. Kayagaki, N. et al. NINJ1 mediates plasma membrane rupture during lytic cell death. Nature 591, 131–136 (2021). This publication uncovers the key role for NINJ1 in pyroptotic plasma membrane rupture.

    Article  CAS  PubMed  Google Scholar 

  232. Pourmal, S. et al. Autoinhibition of dimeric NINJ1 prevents plasma membrane rupture. Nature 637, 446–452 (2025).

    Article  CAS  PubMed  Google Scholar 

  233. Degen, M. et al. Structural basis of NINJ1-mediated plasma membrane rupture in cell death. Nature 618, 1065–1071 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. David, L. et al. NINJ1 mediates plasma membrane rupture by cutting and releasing membrane disks. Cell 187, 2224–2235.e16 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Sahoo, B., Mou, Z., Liu, W., Dubyak, G. & Dai, X. How NINJ1 mediates plasma membrane rupture and why NINJ2 cannot. Cell 188, 292–302.e11 (2025).

    Article  CAS  PubMed  Google Scholar 

  236. Kayagaki, N. et al. Inhibiting membrane rupture with NINJ1 antibodies limits tissue injury. Nature 618, 1072–1077 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Cardoso, C. C. et al. Ninjurin 1 asp110ala single nucleotide polymorphism is associated with protection in leprosy nerve damage. J. Neuroimmunol. 190, 131–138 (2007).

    Article  CAS  PubMed  Google Scholar 

  238. Graca, C. R. et al. NINJURIN1 single nucleotide polymorphism and nerve damage in leprosy. Infect. Genet. Evol. 12, 597–600 (2012).

    Article  CAS  PubMed  Google Scholar 

  239. Tamura, M. et al. Members of a novel gene family, Gsdm, are expressed exclusively in the epithelium of the skin and gastrointestinal tract in a highly tissue-specific manner. Genomics 89, 618–629 (2007).

    Article  CAS  PubMed  Google Scholar 

  240. Delmaghani, S. et al. Mutations in the gene encoding pejvakin, a newly identified protein of the afferent auditory pathway, cause DFNB59 auditory neuropathy. Nat. Genet. 38, 770–778 (2006).

    Article  CAS  PubMed  Google Scholar 

  241. Collin, R. W. et al. Involvement of DFNB59 mutations in autosomal recessive nonsyndromic hearing impairment. Hum. Mutat. 28, 718–723 (2007).

    Article  CAS  PubMed  Google Scholar 

  242. Kazmierczak, M. et al. Pejvakin, a candidate stereociliary rootlet protein, regulates hair cell function in a cell-autonomous manner. J. Neurosci. 37, 3447–3464 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Katoh, M. & Katoh, M. Identification and characterization of human DFNA5L, mouse Dfna5l, and rat Dfna5l genes in silico. Int. J. Oncol. 25, 765–770 (2004).

    Article  CAS  PubMed  Google Scholar 

  244. van Camp, G. et al. Localization of a gene for non-syndromic hearing loss (DFNA5) to chromosome 7p15. Hum. Mol. Genet. 4, 2159–2163 (1995).

    Article  PubMed  Google Scholar 

  245. Watabe, K. et al. Structure, expression and chromosome mapping of MLZE, a novel gene which is preferentially expressed in metastatic melanoma cells. Jpn J. Cancer Res. 92, 140–151 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the National Natural Science Foundation of China (32425023, 32400723, 32122034), the National Key R&D Program of China (2020YFA0509600), the Shanghai Pilot Program for Basic Research-Chinese Academy of Sciences, Shanghai Branch (JCYJ-SHFY-2021-009), the Strategic Priority Research Program of Chinese Academy of Sciences (XDB0570000), the Innovative Research Team of High-Level Local Universities in Shanghai (SHSMU-ZDCX20211002), the National Postdoctoral Program for Innovative Talents (BX20240395), the Chinese Postdoctoral Science Foundation (2024M753367) and the Shanghai Sailing Program (24YF2754200). X.L. is a SANS Exploration Scholar. The authors apologize to colleagues whose work could not be cited owing to space limitations.

Author information

Authors and Affiliations

Authors

Contributions

X.L. and Y.B. researched data for the article, contributed substantially to discussion of the content and wrote the article. X.L. and Y.P. reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Xing Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks Fiachra Humphries and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Bacterial effector protein

A bacteria-encoded toxic protein that is directly injected into host cells through bacterial secretion systems to interfere with host cell functions, especially hijacking antimicrobial immunity to facilitate bacterial proliferation and pathogenesis.

cGAS–STING pathway

An innate immune signalling pathway responsible for recognition of cytosolic aberrant DNA by cyclic GMP–AMP synthase (cGAS) to produce 2′3′-cyclic GMP–AMP (cGAMP) as a second messenger to activate downstream signalling through endoplasmic reticulum (ER)-resident protein stimulator of interferon genes (STING), resulting in the induction of type I interferon and pro-inflammatory cytokines.

Cold tumours

Cold tumours are immunosuppressive tumours that are unresponsive to immune surveillance or immune checkpoint blockade (ICB) therapy.

Endosomal sorting complexes required for transport

(ESCRT). A molecular machinery that drives the invagination of endosomes to form multivesicular bodies that are critical for sorting and transporting membrane proteins.

Familial Mediterranean fever

A genetic inflammatory disease caused by constitutively active mutations in the pyrin-encoding gene (MEFV) and characterized by recurrent fevers as well as pain in the abdomen, chest and joints.

Goblet cells

A group of specialized epithelial cells on the mucosal surface that produce and secrete mucus to maintain mucosal homeostasis.

Hot tumours

Hot tumours can trigger antitumour immune responses and effectively respond to immune checkpoint blockade (ICB) therapy.

Immune checkpoint blockade

(ICB). An antitumour immunotherapy that blocks immunosuppressive checkpoints in cytotoxic T lymphocytes (CTLs) to increase CTL-mediated killing of cancer cells.

Immune synapses

A specialized and highly-ordered cell–cell contact interface between immune cells and their target cells, where cell–cell communications take place.

Immunologically silent

It is characterized by non-immunogenicity as no immune responses are provoked.

Inflammatory bowel disease

A group of chronic inflammatory disorders in the gastrointestinal tract that can be divided into ulcerative colitis with colorectal inflammation and Crohn’s disease characterized by small intestinal inflammation.

Neonatal-onset multisystem inflammatory disease

A rare genetic inflammatory disease caused by gain-of-function mutations in NLRP3 that occurs in infancy and is characterized by an urticaria-like rash, recurrent fever, skeletal dysplasia and pathological changes in the central nervous system including meningitis, intellectual delay and loss of vision or hearing.

NETosis

A form of neutrophil death characterized by the release of neutrophil nuclear DNA and granule proteins forming neutrophil extracellular traps (NETs) to capture and kill the invading pathogens.

Poly(ADP-ribosyl)ation

(PARylation). A type of post-translational protein modification catalysed by poly(ADP-ribose) polymerases that transfer ADP-ribose polymers onto target proteins using NAD+ as a substrate.

Rheumatoid arthritis

A chronic inflammatory autoimmune disease that manifests as pain, swelling and even deformity in joints.

Triple-negative breast cancer

The most aggressive subtype of breast cancer with the worst prognosis, characterized by a lack of three biomarkers, namely, oestrogen receptor, progesterone receptor and epidermal growth factor receptor 2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, Y., Pan, Y. & Liu, X. Mechanistic insights into gasdermin-mediated pyroptosis. Nat Rev Mol Cell Biol 26, 501–521 (2025). https://doi.org/10.1038/s41580-025-00837-0

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41580-025-00837-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing