Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms and regulation of DNA end resection in the maintenance of genome stability

Abstract

DNA end resection is a crucial early step in most DNA double-strand break (DSB) repair pathways. Resection involves the nucleolytic degradation of 5′ ends at DSB sites to generate 3′ single-stranded DNA overhangs. The first, short-range resection step is catalysed by the nuclease MRE11, acting as part of the MRE11–RAD50–NBS1 complex. Subsequent long-range resection is catalysed by the nucleases EXO1 and/or DNA2. Resected DNA is necessary for homology search and the priming of DNA synthesis in homologous recombination. DNA overhangs may also mediate DNA annealing in the microhomology-mediated end-joining and single-strand annealing pathways, and activate the DNA damage response. By contrast, DNA end resection inhibits DSB repair by non-homologous end-joining. In this Review, we discuss the importance of DNA end resection in various DSB repair pathways, the molecular mechanisms of end resection and its regulation, focusing on phosphorylation and other post-translational modifications that control resection throughout the cell cycle and in response to DNA damage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: DNA end processing in various DSB repair pathways.
Fig. 2: Mechanism of short-range and long-range resection.
Fig. 3: Regulation of DNA end resection by CtIP phosphorylation.

Similar content being viewed by others

References

  1. Lombard, D. B. et al. DNA repair, genome stability, and aging. Cell 120, 497–512 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Cejka, P. & Symington, L. S. DNA end resection: mechanism and control. Annu. Rev. Genet. 55, 285–307 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Kawale, A. S. & Sung, P. Mechanism and significance of chromosome damage repair by homologous recombination. Essays Biochem. 64, 779–790 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Lee, R. S., Twarowski, J. M. & Malkova, A. Stressed? Break-induced replication comes to the rescue! DNA Repair 142, 103759 (2024).

    Article  CAS  PubMed  Google Scholar 

  5. Triplett, M. K., Johnson, M. J. & Symington, L. S. Induction of homologous recombination by site-specific replication stress. DNA Repair 142, 103753 (2024).

    Article  CAS  PubMed  Google Scholar 

  6. Sfeir, A., Tijsterman, M. & McVey, M. Microhomology-mediated end-joining chronicles: tracing the evolutionary footprints of genome protection. Annu. Rev. Cell Dev. Biol. 40, 195–218 (2024).

    Article  CAS  PubMed  Google Scholar 

  7. Lieber, M. R. The mechanism of human nonhomologous DNA end joining. J. Biol. Chem. 283, 1–5 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Kieffer, S. R. & Lowndes, N. F. Immediate-early, early, and late responses to DNA double stranded breaks. Front. Genet. 13, 793884 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li, S. et al. Evidence that the DNA endonuclease ARTEMIS also has intrinsic 5′-exonuclease activity. J. Biol. Chem. 289, 7825–7834 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li, J., Summerlin, M., Nitiss, K. C., Nitiss, J. L. & Hanakahi, L. A. TDP1 is required for efficient non-homologous end joining in human cells. DNA Repair 60, 40–49 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Cortes Ledesma, F., El Khamisy, S. F., Zuma, M. C., Osborn, K. & Caldecott, K. W. A human 5′-tyrosyl DNA phosphodiesterase that repairs topoisomerase-mediated DNA damage. Nature 461, 674–678 (2009).

    Article  PubMed  Google Scholar 

  12. Gomez-Herreros, F. et al. TDP2-dependent non-homologous end-joining protects against topoisomerase II-induced DNA breaks and genome instability in cells and in vivo. PLoS Genet. 9, e1003226 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gomez-Herreros, F. et al. TDP2 suppresses chromosomal translocations induced by DNA topoisomerase II during gene transcription. Nat. Commun. 8, 233 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kim, M. S. et al. Cracking the DNA code for V(D)J recombination. Mol. Cell 70, 358–370.e354 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ma, Y., Pannicke, U., Schwarz, K. & Lieber, M. R. Hairpin opening and overhang processing by an Artemis/DNA-dependent protein kinase complex in nonhomologous end joining and V(D)J recombination. Cell 108, 781–794 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Deshpande, R. A. et al. Genome-wide analysis of DNA-PK-bound MRN cleavage products supports a sequential model of DSB repair pathway choice. Nat. Commun. 14, 5759 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Deshpande, R. A. et al. DNA-dependent protein kinase promotes DNA end processing by MRN and CtIP. Sci. Adv. 6, eaay0922 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gnugge, R., Reginato, G., Cejka, P. & Symington, L. S. Sequence and chromatin features guide DNA double-strand break resection initiation. Mol. Cell 83, 1237–1250.e1215 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Reginato, G., Cannavo, E. & Cejka, P. Physiological protein blocks direct the Mre11–Rad50–Xrs2 and Sae2 nuclease complex to initiate DNA end resection. Genes. Dev. 31, 2325–2330 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang, W., Daley, J. M., Kwon, Y., Krasner, D. S. & Sung, P. Plasticity of the Mre11–Rad50–Xrs2–Sae2 nuclease ensemble in the processing of DNA-bound obstacles. Genes. Dev. 31, 2331–2336 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chanut, P., Britton, S., Coates, J., Jackson, S. P. & Calsou, P. Coordinated nuclease activities counteract Ku at single-ended DNA double-strand breaks. Nat. Commun. 7, 12889 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Britton, S. et al. ATM antagonizes NHEJ proteins assembly and DNA-ends synapsis at single-ended DNA double strand breaks. Nucleic Acids Res. 48, 9710–9723 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Paull, T. T. Reconsidering pathway choice: a sequential model of mammalian DNA double-strand break pathway decisions. Curr. Opin. Genet. Dev. 71, 55–62 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Britton, S., Coates, J. & Jackson, S. P. A new method for high-resolution imaging of Ku foci to decipher mechanisms of DNA double-strand break repair. J. Cell Biol. 202, 579–595 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ingram, S. P. et al. Mechanistic modelling supports entwined rather than exclusively competitive DNA double-strand break repair pathway. Sci. Rep. 9, 6359 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ceccaldi, R., Rondinelli, B. & D’Andrea, A. D. Repair pathway choices and consequences at the double-strand break. Trends Cell Biol. 26, 52–64 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Yun, M. H. & Hiom, K. CtIP–BRCA1 modulates the choice of DNA double-strand-break repair pathway throughout the cell cycle. Nature 459, 460–463 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Truong, L. N. et al. Microhomology-mediated end joining and homologous recombination share the initial end resection step to repair DNA double-strand breaks in mammalian cells. Proc. Natl Acad. Sci. USA 110, 7720–7725 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Boulton, S. J. & Jackson, S. P. Saccharomyces cerevisiae Ku70 potentiates illegitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways. EMBO J. 15, 5093–5103 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. McVey, M. & Lee, S. E. MMEJ repair of double-strand breaks (director’s cut): deleted sequences and alternative endings. Trends Genet. 24, 529–538 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Stroik, S. et al. Stepwise requirements for polymerases δ and θ in theta-mediated end joining. Nature 623, 836–841 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schimmel, J., van Schendel, R., den Dunnen, J. T. & Tijsterman, M. Templated insertions: a smoking gun for polymerase theta-mediated end joining. Trends Genet. 35, 632–644 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Carvajal-Garcia, J. et al. Mechanistic basis for microhomology identification and genome scarring by polymerase theta. Proc. Natl Acad. Sci. USA 117, 8476–8485 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Howard, S. M., Yanez, D. A. & Stark, J. M. DNA damage response factors from diverse pathways, including DNA crosslink repair, mediate alternative end joining. PLoS Genet. 11, e1004943 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Deng, S. K., Gibb, B., de Almeida, M. J., Greene, E. C. & Symington, L. S. RPA antagonizes microhomology-mediated repair of DNA double-strand breaks. Nat. Struct. Mol. Biol. 21, 405–412 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang, F. et al. The DNA replication FoSTeS/MMBIR mechanism can generate genomic, genic and exonic complex rearrangements in humans. Nat. Genet. 41, 849–853 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hastings, P. J., Ira, G. & Lupski, J. R. A microhomology-mediated break-induced replication model for the origin of human copy number variation. PLoS Genet. 5, e1000327 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. van de Kooij, B., Kruswick, A., van Attikum, H. & Yaffe, M. B. Multi-pathway DNA-repair reporters reveal competition between end-joining, single-strand annealing and homologous recombination at Cas9-induced DNA double-strand breaks. Nat. Commun. 13, 5295 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  39. van de Kooij, B. et al. EXO1 protects BRCA1-deficient cells against toxic DNA lesions. Mol. Cell 84, 659–674.e657 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bhargava, R., Onyango, D. O. & Stark, J. M. Regulation of single-strand annealing and its role in genome maintenance. Trends Genet. 32, 566–575 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gravel, S., Chapman, J. R., Magill, C. & Jackson, S. P. DNA helicases Sgs1 and BLM promote DNA double-strand break resection. Genes. Dev. 22, 2767–2772 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shibata, A. et al. DNA double-strand break repair pathway choice is directed by distinct MRE11 nuclease activities. Mol. Cell 53, 7–18 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Mirman, Z. et al. 53BP1–RIF1–shieldin counteracts DSB resection through CST- and Polalpha-dependent fill-in. Nature 560, 112–116 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mirman, Z., Sasi, N. K., King, A., Chapman, J. R. & de Lange, T. 53BP1–shieldin-dependent DSB processing in BRCA1-deficient cells requires CST–Polα–primase fill-in synthesis. Nat. Cell Biol. 24, 51–61 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. King, A. et al. Shieldin and CST co-orchestrate DNA polymerase-dependent tailed-end joining reactions independently of 53BP1-governed repair pathway choice. Nat. Struct. Mol. Biol. 32, 86–97 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Paiano, J. et al. Role of 53BP1 in end protection and DNA synthesis at DNA breaks. Genes. Dev. 35, 1356–1367 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kimble, M. T., Johnson, M. J., Nester, M. R. & Symington, L. S. Long-range DNA end resection supports homologous recombination by checkpoint activation rather than extensive homology generation. eLife 12, e84322 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yamada, S. et al. Molecular structures and mechanisms of DNA break processing in mouse meiosis. Genes. Dev. 34, 806–818 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Paiano, J. et al. ATM and PRDM9 regulate SPO11-bound recombination intermediates during meiosis. Nat. Commun. 11, 857 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zakharyevich, K. et al. Temporally and biochemically distinct activities of Exo1 during meiosis: double-strand break resection and resolution of double Holliday junctions. Mol. Cell 40, 1001–1015 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mimitou, E. P., Yamada, S. & Keeney, S. A global view of meiotic double-strand break end resection. Science 355, 40–45 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhu, Z., Chung, W. H., Shim, E. Y., Lee, S. E. & Ira, G. Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends. Cell 134, 981–994 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mimitou, E. P. & Symington, L. S. Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing. Nature 455, 770–774 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Dumont, A. et al. Mechanism of homology search expansion during recombinational DNA break repair in Saccharomyces cerevisiae. Mol. Cell 84, 3237–3253 e3236 (2024).

    Article  CAS  PubMed  Google Scholar 

  55. Berti, M., Cortez, D. & Lopes, M. The plasticity of DNA replication forks in response to clinically relevant genotoxic stress. Nat. Rev. Mol. Cell Biol. 21, 633–651 (2020).

    Article  CAS  PubMed  Google Scholar 

  56. Cybulla, E. & Vindigni, A. Leveraging the replication stress response to optimize cancer therapy. Nat. Rev. Cancer 23, 6–24 (2023).

    Article  CAS  PubMed  Google Scholar 

  57. Quinet, A. et al. PRIMPOL-mediated adaptive response suppresses replication fork reversal in BRCA-deficient cells. Mol. Cell 77, 461–474.e469 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Taglialatela, A. et al. REV1–Polzeta maintains the viability of homologous recombination-deficient cancer cells through mutagenic repair of PRIMPOL-dependent ssDNA gaps. Mol. Cell 81, 4008–4025.e4007 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hashimoto, Y., Ray Chaudhuri, A., Lopes, M. & Costanzo, V. Rad51 protects nascent DNA from Mre11-dependent degradation and promotes continuous DNA synthesis. Nat. Struct. Mol. Biol. 17, 1305–1311 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mijic, S. et al. Replication fork reversal triggers fork degradation in BRCA2-defective cells. Nat. Commun. 8, 859 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Cong, K. et al. Replication gaps are a key determinant of PARP inhibitor synthetic lethality with BRCA deficiency. Mol. Cell 81, 3227 (2021).

    Article  CAS  PubMed  Google Scholar 

  62. Paes Dias, M. et al. Loss of nuclear DNA ligase III reverts PARP inhibitor resistance in BRCA1/53BP1 double-deficient cells by exposing ssDNA gaps. Mol. Cell 81, 4692–4708.e4699 (2021).

    Article  CAS  PubMed  Google Scholar 

  63. Hanzlikova, H. et al. The importance of poly(ADP-ribose) polymerase as a sensor of unligated okazaki fragments during DNA replication. Mol. Cell 71, 319–331.e313 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Vaitsiankova, A. et al. PARP inhibition impedes the maturation of nascent DNA strands during DNA replication. Nat. Struct. Mol. Biol. 29, 329–338 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kawale, A. S. et al. APOBEC3A induces DNA gaps through PRIMPOL and confers gap-associated therapeutic vulnerability. Sci. Adv. 10, eadk2771 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tirman, S. et al. Temporally distinct post-replicative repair mechanisms fill PRIMPOL-dependent ssDNA gaps in human cells. Mol. Cell 81, 4026–4040.e4028 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Simoneau, A., Xiong, R. & Zou, L. The trans cell cycle effects of PARP inhibitors underlie their selectivity toward BRCA1/2-deficient cells. Genes Dev. 35, 1271–1289 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Kolinjivadi, A. M. et al. Smarcal1-mediated fork reversal triggers mre11-dependent degradation of nascent DNA in the absence of Brca2 and stable Rad51 nucleofilaments. Mol. Cell 67, 867–881.e867 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Schlacher, K. et al. Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell 145, 529–542 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Schlacher, K., Wu, H. & Jasin, M. A distinct replication fork protection pathway connects Fanconi anemia tumor suppressors to RAD51–BRCA1/2. Cancer Cell 22, 106–116 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Thangavel, S. et al. DNA2 drives processing and restart of reversed replication forks in human cells. J. Cell Biol. 208, 545–562 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ray Chaudhuri, A. et al. Replication fork stability confers chemoresistance in BRCA-deficient cells. Nature 535, 382–387 (2016).

    Article  PubMed  Google Scholar 

  73. Dibitetto, D. et al. H2AX promotes replication fork degradation and chemosensitivity in BRCA-deficient tumours. Nat. Commun. 15, 4430 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Dungrawala, H. et al. RADX promotes genome stability and modulates chemosensitivity by regulating RAD51 at replication forks. Mol. Cell 67, 374–386.e375 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang, A. T. et al. A dominant mutation in human RAD51 reveals its function in DNA interstrand crosslink repair independent of homologous recombination. Mol. Cell 59, 478–490 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lim, P. X., Zaman, M., Feng, W. & Jasin, M. BRCA2 promotes genomic integrity and therapy resistance primarily through its role in homology-directed repair. Mol. Cell 84, 447–462.e410 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Taglialatela, A. et al. Restoration of replication fork stability in BRCA1- and BRCA2-deficient cells by inactivation of SNF2-family fork remodelers. Mol. Cell 68, 414–430.e418 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Deshpande, R. A., Lee, J. H. & Paull, T. T. Rad50 ATPase activity is regulated by DNA ends and requires coordination of both active sites. Nucleic Acids Res. 45, 5255–5268 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hopfner, K. P. et al. The Rad50 zinc-hook is a structure joining Mre11 complexes in DNA recombination and repair. Nature 418, 562–566 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. Wang, H. et al. The interaction of CtIP and Nbs1 connects CDK and ATM to regulate HR-mediated double-strand break repair. PLoS Genet. 9, e1003277 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Anand, R. et al. NBS1 promotes the endonuclease activity of the MRE11–RAD50 complex by sensing CtIP phosphorylation. EMBO J. https://doi.org/10.15252/embj.2018101005 (2019).

  82. Kim, J. H. et al. The Mre11–Nbs1 interface is essential for viability and tumor suppression. Cell Rep. 18, 496–507 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Oh, J., Al-Zain, A., Cannavo, E., Cejka, P. & Symington, L. S. Xrs2 dependent and independent functions of the Mre11–Rad50 complex. Mol. Cell 64, 405–415 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Deshpande, R. A., Lee, J. H., Arora, S. & Paull, T. T. Nbs1 converts the human Mre11/Rad50 nuclease complex into an endo/exonuclease machine specific for protein–DNA adducts. Mol. Cell 64, 593–606 (2016).

    Article  CAS  PubMed  Google Scholar 

  85. Anand, R., Ranjha, L., Cannavo, E. & Cejka, P. Phosphorylated CtIP functions as a co-factor of the MRE11–RAD50–NBS1 endonuclease in DNA end resection. Mol. Cell 64, 940–950 (2016).

    Article  CAS  PubMed  Google Scholar 

  86. Kashammer, L. et al. Mechanism of DNA end sensing and processing by the Mre11–Rad50 complex. Mol. Cell 76, 382–394.e386 (2019).

    Article  PubMed  Google Scholar 

  87. Cannavo, E. & Cejka, P. Sae2 promotes dsDNA endonuclease activity within Mre11–Rad50–Xrs2 to resect DNA breaks. Nature 514, 122–125 (2014).

    Article  CAS  PubMed  Google Scholar 

  88. Neale, M. J., Pan, J. & Keeney, S. Endonucleolytic processing of covalent protein-linked DNA double-strand breaks. Nature 436, 1053–1057 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Gut, F. et al. Structural mechanism of endonucleolytic processing of blocked DNA ends and hairpins by Mre11–Rad50. Mol. Cell 82, 3513–3522 e3516 (2022).

    Article  CAS  PubMed  Google Scholar 

  90. Cannavo, E., Reginato, G. & Cejka, P. Stepwise 5′ DNA end-specific resection of DNA breaks by the Mre11–Rad50–Xrs2 and Sae2 nuclease ensemble. Proc. Natl Acad. Sci. USA 116, 5505–5513 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kissling, V. M. et al. Mre11–Rad50 oligomerization promotes DNA double-strand break repair. Nat. Commun. 13, 2374 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Garcia, V., Phelps, S. E., Gray, S. & Neale, M. J. Bidirectional resection of DNA double-strand breaks by Mre11 and Exo1. Nature 479, 241–244 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Nicolas, Y. et al. Molecular insights into the activation of Mre11–Rad50 endonuclease activity by Sae2/CtIP. Mol. Cell 84, 2223–2237 e2224 (2024).

    Article  CAS  PubMed  Google Scholar 

  94. Reginato, G. et al. HLTF disrupts Cas9–DNA post-cleavage complexes to allow DNA break processing. Nat. Commun. 15, 5789 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lobachev, K. S., Gordenin, D. A. & Resnick, M. A. The Mre11 complex is required for repair of hairpin-capped double-strand breaks and prevention of chromosome rearrangements. Cell 108, 183–193 (2002).

    Article  CAS  PubMed  Google Scholar 

  96. Tamai, T. et al. Sae2 controls Mre11 endo- and exonuclease activities by different mechanisms. Nat. Commun. 15, 7221 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Keeney, S., Giroux, C. N. & Kleckner, N. Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell 88, 375–384 (1997).

    Article  CAS  PubMed  Google Scholar 

  98. Llorente, B. & Symington, L. S. The Mre11 nuclease is not required for 5′ to 3′ resection at multiple HO-induced double-strand breaks. Mol. Cell Biol. 24, 9682–9694 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sartori, A. A. et al. Human CtIP promotes DNA end resection. Nature 450, 509–514 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sun, Y. et al. Excision repair of topoisomerase DNA–protein crosslinks (TOP–DPC). DNA Repair 89, 102837 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Gittens, W. H. et al. A nucleotide resolution map of Top2-linked DNA breaks in the yeast and human genome. Nat. Commun. 10, 4846 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Sasanuma, H. et al. BRCA1 ensures genome integrity by eliminating estrogen-induced pathological topoisomerase II–DNA complexes. Proc. Natl Acad. Sci. USA 115, E10642–E10651 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hoa, N. N. et al. Mre11 is essential for the removal of lethal topoisomerase 2 covalent cleavage complexes. Mol. Cell 64, 580–592 (2016).

    Article  CAS  PubMed  Google Scholar 

  104. Aparicio, T., Baer, R., Gottesman, M. & Gautier, J. MRN, CtIP, and BRCA1 mediate repair of topoisomerase II–DNA adducts. J. Cell Biol. 212, 399–408 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Daley, J. M. et al. Specificity of end resection pathways for double-strand break regions containing ribonucleotides and base lesions. Nat. Commun. 11, 3088 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zhou, Y., Caron, P., Legube, G. & Paull, T. T. Quantitation of DNA double-strand break resection intermediates in human cells. Nucleic Acids Res. 42, e19 (2014).

    Article  CAS  PubMed  Google Scholar 

  107. Canela, A. et al. DNA breaks and end resection measured genome-wide by end sequencing. Mol. Cell 63, 898–911 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Yan, Z. et al. Rad52 restrains resection at DNA double-strand break ends in yeast. Mol. Cell 76, 699–711 e696 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Bonetti, D. et al. Escape of Sgs1 from Rad9 inhibition reduces the requirement for Sae2 and functional MRX in DNA end resection. EMBO Rep. 16, 351–361 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Soniat, M. M., Nguyen, G., Kuo, H. C. & Finkelstein, I. J. The MRN complex and topoisomerase IIIa–RMI1/2 synchronize DNA resection motor proteins. J. Biol. Chem. 299, 102802 (2023).

    Article  CAS  PubMed  Google Scholar 

  111. Nimonkar, A. V. et al. BLM–DNA2–RPA–MRN and EXO1–BLM–RPA–MRN constitute two DNA end resection machineries for human DNA break repair. Genes. Dev. 25, 350–362 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ceppi, I. et al. Mechanism of BRCA1–BARD1 function in DNA end resection and DNA protection. Nature 634, 492–500 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Cannavo, E., Cejka, P. & Kowalczykowski, S. C. Relationship of DNA degradation by Saccharomyces cerevisiae exonuclease 1 and its stimulation by RPA and Mre11–Rad50–Xrs2 to DNA end resection. Proc. Natl Acad. Sci. USA 110, E1661–E1668 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Niu, H. et al. Mechanism of the ATP-dependent DNA end-resection machinery from Saccharomyces cerevisiae. Nature 467, 108–111 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Myler, L. R. et al. Single-molecule imaging reveals how Mre11–Rad50–Nbs1 initiates DNA break repair. Mol. Cell 67, 891–898.e894 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Gobbini, E. et al. The MRX complex regulates Exo1 resection activity by altering DNA end structure. EMBO J. 37, e98588 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Daley, J. M. et al. Enhancement of BLM–DNA2-mediated long-range DNA end resection by CtIP. Cell Rep. 21, 324–332 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Whelan, D. R. & Rothenberg, E. Super-resolution mapping of cellular double-strand break resection complexes during homologous recombination. Proc. Natl Acad. Sci. USA 118, e2021963118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kim, S. et al. The MRE11–RAD50–NBS1 complex both starts and extends DNA end resection in mouse meiosis. Preprint at bioRxiv https://doi.org/10.1101/2024.08.17.608390 (2024).

  120. Cejka, P. et al. DNA end resection by Dna2–Sgs1–RPA and its stimulation by Top3–Rmi1 and Mre11–Rad50–Xrs2. Nature 467, 112–116 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Sturzenegger, A. et al. DNA2 cooperates with the WRN and BLM RecQ helicases to mediate long-range DNA end resection in human cells. J. Biol. Chem. 289, 27314–27326 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Zhou, C., Pourmal, S. & Pavletich, N. P. Dna2 nuclease–helicase structure, mechanism and regulation by Rpa. eLife 4, e09832 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Levikova, M., Pinto, C. & Cejka, P. The motor activity of DNA2 functions as an ssDNA translocase to promote DNA end resection. Genes Dev. 31, 493–502 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Miller, A. S. et al. A novel role of the Dna2 translocase function in DNA break resection. Genes Dev. 31, 503–510 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Salunkhe, S. et al. Promotion of DNA end resection by BRCA1–BARD1 in homologous recombination. Nature 634, 482–491 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Ceppi, I. et al. PLK1 regulates CtIP and DNA2 interplay in long-range DNA end resection. Genes Dev. 37, 119–135 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Ceppi, I. et al. CtIP promotes the motor activity of DNA2 to accelerate long-range DNA end resection. Proc. Natl Acad. Sci. USA 117, 8859–8869 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Callen, E. et al. 53BP1 mediates productive and mutagenic DNA repair through distinct phosphoprotein interactions. Cell 153, 1266–1280 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Bunting, S. F. et al. 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell 141, 243–254 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Buis, J., Stoneham, T., Spehalski, E. & Ferguson, D. O. Mre11 regulates CtIP-dependent double-strand break repair by interaction with CDK2. Nat. Struct. Mol. Biol. 19, 246–252 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Yu, X. & Chen, J. DNA damage-induced cell cycle checkpoint control requires CtIP, a phosphorylation-dependent binding partner of BRCA1 C-terminal domains. Mol. Cell Biol. 24, 9478–9486 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Cruz-Garcia, A., Lopez-Saavedra, A. & Huertas, P. BRCA1 accelerates CtIP-mediated DNA-end resection. Cell Rep. 9, 451–459 (2014).

    Article  CAS  PubMed  Google Scholar 

  133. Nimonkar, A. V., Ozsoy, A. Z., Genschel, J., Modrich, P. & Kowalczykowski, S. C. Human exonuclease 1 and BLM helicase interact to resect DNA and initiate DNA repair. Proc. Natl Acad. Sci. USA 105, 16906–16911 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Myler, L. R. et al. Single-molecule imaging reveals the mechanism of Exo1 regulation by single-stranded DNA binding proteins. Proc. Natl Acad. Sci. USA 113, E1170–E1179 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Chen, H., Lisby, M. & Symington, L. S. RPA coordinates DNA end resection and prevents formation of DNA hairpins. Mol. Cell 50, 589–600 (2013).

    Article  CAS  PubMed  Google Scholar 

  136. Vermeulen, K., Van Bockstaele, D. R. & Berneman, Z. N. The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif. 36, 131–149 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Ferretti, L. P., Lafranchi, L. & Sartori, A. A. Controlling DNA-end resection: a new task for CDKs. Front. Genet. 4, 99 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Shiotani, B. & Zou, L. Single-stranded DNA orchestrates an ATM-to-ATR switch at DNA breaks. Mol. Cell 33, 547–558 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Blackford, A. N. & Jackson, S. P. ATM, ATR, and DNA-PK: the trinity at the heart of the DNA damage response. Mol. Cell 66, 801–817 (2017).

    Article  CAS  PubMed  Google Scholar 

  140. Galanti, L. et al. Dbf4-dependent kinase promotes cell cycle controlled resection of DNA double-strand breaks and repair by homologous recombination. Nat. Commun. 15, 2890 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Campos, A. et al. Cdc14 phosphatase counteracts Cdk-dependent Dna2 phosphorylation to inhibit resection during recombinational DNA repair. Nat. Commun. 14, 2738 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Isobe, S. Y. et al. Protein phosphatase 1 acts as a RIF1 effector to suppress DSB resection prior to Shieldin action. Cell Rep. 36, 109383 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Tomimatsu, N. et al. Phosphorylation of EXO1 by CDKs 1 and 2 regulates DNA end resection and repair pathway choice. Nat. Commun. 5, 3561 (2014).

    Article  PubMed  Google Scholar 

  144. Huertas, P., Cortes-Ledesma, F., Sartori, A. A., Aguilera, A. & Jackson, S. P. CDK targets Sae2 to control DNA-end resection and homologous recombination. Nature 455, 689–692 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Huertas, P. & Jackson, S. P. Human CtIP mediates cell cycle control of DNA end resection and double strand break repair. J. Biol. Chem. 284, 9558–9565 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Cannavo, E. et al. Regulatory control of DNA end resection by Sae2 phosphorylation. Nat. Commun. 9, 4016 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Falck, J. et al. CDK targeting of NBS1 promotes DNA-end resection, replication restart and homologous recombination. EMBO Rep. 13, 561–568 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Chen, X. et al. Cell cycle regulation of DNA double-strand break end resection by Cdk1-dependent Dna2 phosphorylation. Nat. Struct. Mol. Biol. 18, 1015–1019 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Faustova, I. et al. A synthetic biology approach reveals diverse and dynamic CDK response profiles via multisite phosphorylation of NLS–NES modules. Sci. Adv. 8, eabp8992 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Kelliher, J. L. et al. Evolved histone tail regulates 53BP1 recruitment at damaged chromatin. Nat. Commun. 15, 4634 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Fradet-Turcotte, A. et al. 53BP1 is a reader of the DNA-damage-induced H2A Lys 15 ubiquitin mark. Nature 499, 50–54 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Lee, D. H. et al. Dephosphorylation enables the recruitment of 53BP1 to double-strand DNA breaks. Mol. Cell 54, 512–525 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Orthwein, A. et al. Mitosis inhibits DNA double-strand break repair to guard against telomere fusions. Science 344, 189–193 (2014).

    Article  CAS  PubMed  Google Scholar 

  154. Escribano-Diaz, C. et al. A cell cycle-dependent regulatory circuit composed of 53BP1–RIF1 and BRCA1–CtIP controls DNA repair pathway choice. Mol. Cell 49, 872–883 (2013).

    Article  CAS  PubMed  Google Scholar 

  155. Noordermeer, S. M. et al. The shieldin complex mediates 53BP1-dependent DNA repair. Nature 560, 117–121 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Gupta, R. et al. DNA repair network analysis reveals shieldin as a key regulator of NHEJ and PARP inhibitor sensitivity. Cell 173, 972–988.e923 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Dev, H. et al. Shieldin complex promotes DNA end-joining and counters homologous recombination in BRCA1-null cells. Nat. Cell Biol. 20, 954–965 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Ghezraoui, H. et al. 53BP1 cooperation with the REV7-shieldin complex underpins DNA structure-specific NHEJ. Nature 560, 122–127 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Chen, L., Nievera, C. J., Lee, A. Y. & Wu, X. Cell cycle-dependent complex formation of BRCA1.CtIP.MRN is important for DNA double-strand break repair. J. Biol. Chem. 283, 7713–7720 (2008).

    Article  CAS  PubMed  Google Scholar 

  160. Li, S. et al. Binding of CtIP to the BRCT repeats of BRCA1 involved in the transcription regulation of p21 is disrupted upon DNA damage. J. Biol. Chem. 274, 11334–11338 (1999).

    Article  CAS  PubMed  Google Scholar 

  161. Li, S. et al. Functional link of BRCA1 and ataxia telangiectasia gene product in DNA damage response. Nature 406, 210–215 (2000).

    Article  CAS  PubMed  Google Scholar 

  162. Peterson, S. E. et al. Activation of DSB processing requires phosphorylation of CtIP by ATR. Mol. Cell 49, 657–667 (2013).

    Article  CAS  PubMed  Google Scholar 

  163. Palermo, V. et al. Switch-like phosphorylation of WRN integrates end-resection with RAD51 metabolism at collapsed replication forks. Nucleic Acids Res. 52, 12334–12350 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Matsuoka, S. et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316, 1160–1166 (2007).

    Article  CAS  PubMed  Google Scholar 

  165. Dibitetto, D. et al. Intrinsic ATR signaling shapes DNA end resection and suppresses toxic DNA-PKcs signaling. NAR Cancer 2, zcaa006 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Kibe, T., Zimmermann, M. & de Lange, T. TPP1 blocks an ATR-mediated resection mechanism at telomeres. Mol. Cell 61, 236–246 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. El-Shemerly, M., Janscak, P., Hess, D., Jiricny, J. & Ferrari, S. Degradation of human exonuclease 1b upon DNA synthesis inhibition. Cancer Res. 65, 3604–3609 (2005).

    Article  CAS  PubMed  Google Scholar 

  168. El-Shemerly, M., Hess, D., Pyakurel, A. K., Moselhy, S. & Ferrari, S. ATR-dependent pathways control hEXO1 stability in response to stalled forks. Nucleic Acids Res. 36, 511–519 (2008).

    Article  CAS  PubMed  Google Scholar 

  169. Soniat, M. M., Myler, L. R., Kuo, H. C., Paull, T. T. & Finkelstein, I. J. RPA phosphorylation inhibits DNA resection. Mol. Cell 75, 145–153.e145 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Buisson, R. et al. Coupling of homologous recombination and the checkpoint by ATR. Mol. Cell 65, 336–346 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Esashi, F. et al. CDK-dependent phosphorylation of BRCA2 as a regulatory mechanism for recombinational repair. Nature 434, 598–604 (2005).

    Article  CAS  PubMed  Google Scholar 

  172. Ayoub, N. et al. The carboxyl terminus of Brca2 links the disassembly of Rad51 complexes to mitotic entry. Curr. Biol. 19, 1075–1085 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Gelot, C. et al. Poltheta is phosphorylated by PLK1 to repair double-strand breaks in mitosis. Nature 621, 415–422 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Brambati, A. et al. RHINO directs MMEJ to repair DNA breaks in mitosis. Science 381, 653–660 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Wang, H. et al. PLK1 targets CtIP to promote microhomology-mediated end joining. Nucleic Acids Res. 46, 10724–10739 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Peterson, S. E. et al. Cdk1 uncouples CtIP-dependent resection and Rad51 filament formation during M-phase double-strand break repair. J. Cell Biol. 194, 705–720 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Fowler, F. C. et al. DNA-PK promotes DNA end resection at DNA double strand breaks in G(0) cells. eLife 11, e74700 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Averbeck, N. B. et al. DNA end resection is needed for the repair of complex lesions in G1-phase human cells. Cell Cycle 13, 2509–2516 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Orthwein, A. et al. A mechanism for the suppression of homologous recombination in G1 cells. Nature 528, 422–426 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Yajima, H. et al. The complexity of DNA double strand breaks is a critical factor enhancing end-resection. DNA Repair 12, 936–946 (2013).

    Article  CAS  PubMed  Google Scholar 

  181. Quennet, V., Beucher, A., Barton, O., Takeda, S. & Lobrich, M. CtIP and MRN promote non-homologous end-joining of etoposide-induced DNA double-strand breaks in G1. Nucleic Acids Res. 39, 2144–2152 (2011).

    Article  CAS  PubMed  Google Scholar 

  182. Li, F. et al. Low CDK activity and enhanced degradation by APC/C(CDH1) abolishes CtIP activity and alt-EJ in quiescent cells. Cells 12, 1530 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Yu, W. et al. Repair of G1 induced DNA double-strand breaks in S–G2/M by alternative NHEJ. Nat. Commun. 11, 5239 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Barton, O. et al. Polo-like kinase 3 regulates CtIP during DNA double-strand break repair in G1. J. Cell Biol. 206, 877–894 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Yilmaz, D. et al. Activation of homologous recombination in G1 preserves centromeric integrity. Nature 600, 748–753 (2021).

    Article  CAS  PubMed  Google Scholar 

  186. Robert, T. et al. HDACs link the DNA damage response, processing of double-strand breaks and autophagy. Nature 471, 74–79 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Di Giorgio, E. et al. HDAC4 influences the DNA damage response and counteracts senescence by assembling with HDAC1/HDAC2 to control H2BK120 acetylation and homology-directed repair. Nucleic Acids Res. 52, 8218–8240 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Chen, Y. et al. Metabolic regulation of homologous recombination repair by MRE11 lactylation. Cell 187, 294–311.e221 (2024).

    Article  CAS  PubMed  Google Scholar 

  189. Chen, H. et al. NBS1 lactylation is required for efficient DNA repair and chemotherapy resistance. Nature 631, 663–669 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Jimeno, S. et al. Neddylation inhibits CtIP-mediated resection and regulates DNA double strand break repair pathway choice. Nucleic Acids Res. 43, 987–999 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Sarangi, P. et al. Sumoylation influences DNA break repair partly by increasing the solubility of a conserved end resection protein. PLoS Genet. 11, e1004899 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Soria-Bretones, I. et al. DNA end resection requires constitutive sumoylation of CtIP by CBX4. Nat. Commun. 8, 113 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Zhang, T. et al. Crosstalk between SUMOylation and ubiquitylation controls DNA end resection by maintaining MRE11 homeostasis on chromatin. Nat. Commun. 13, 5133 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Locke, A. J. et al. SUMOylation mediates CtIP’s functions in DNA end resection and replication fork protection. Nucleic Acids Res. 49, 928–953 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Han, J. et al. ATM controls the extent of DNA end resection by eliciting sequential posttranslational modifications of CtIP. Proc. Natl Acad. Sci. USA 118, e2022600118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Bologna, S. et al. Sumoylation regulates EXO1 stability and processing of DNA damage. Cell Cycle 14, 2439–2450 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Caron, M. C. et al. Poly(ADP-ribose) polymerase-1 antagonizes DNA resection at double-strand breaks. Nat. Commun. 10, 2954 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Zhang, Z., Samsa, W. E. & Gong, Z. NUDT16 regulates CtIP PARylation to dictate homologous recombination repair. Nucleic Acids Res. 52, 3761–3777 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Muoio, D. et al. PARP2 promotes break induced replication-mediated telomere fragility in response to replication stress. Nat. Commun. 15, 2857 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Luedeman, M. E. et al. Poly(ADP) ribose polymerase promotes DNA polymerase theta-mediated end joining by activation of end resection. Nat. Commun. 13, 4547 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Steger, M. et al. Prolyl isomerase PIN1 regulates DNA double-strand break repair by counteracting DNA end resection. Mol. Cell 50, 333–343 (2013).

    Article  CAS  PubMed  Google Scholar 

  202. Lafranchi, L. et al. APC/C(Cdh1) controls CtIP stability during the cell cycle and in response to DNA damage. EMBO J. 33, 2860–2879 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Ferretti, L. P. et al. Cullin3–KLHL15 ubiquitin ligase mediates CtIP protein turnover to fine-tune DNA-end resection. Nat. Commun. 7, 12628 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Qiu, Z. et al. PLK1-mediated phosphorylation of PPIL2 regulates HR via CtIP. Front. Cell Dev. Biol. 10, 902403 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Gao, M. et al. USP52 regulates DNA end resection and chemosensitivity through removing inhibitory ubiquitination from CtIP. Nat. Commun. 11, 5362 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Kim, H., Kim, D., Choi, H., Shin, G. & Lee, J. K. Deubiquitinase USP2 stabilizes the MRE11–RAD50–NBS1 complex at DNA double-strand break sites by counteracting the ubiquitination of NBS1. J. Biol. Chem. 299, 102752 (2023).

    Article  CAS  PubMed  Google Scholar 

  207. Yu, X., Fu, S., Lai, M., Baer, R. & Chen, J. BRCA1 ubiquitinates its phosphorylation-dependent binding partner CtIP. Genes. Dev. 20, 1721–1726 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Schmidt, C. K. et al. Systematic E2 screening reveals a UBE2D–RNF138–CtIP axis promoting DNA repair. Nat. Cell Biol. 17, 1458–1470 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Jeong, S. Y. et al. SIAH2 regulates DNA end resection and replication fork recovery by promoting CtIP ubiquitination. Nucleic Acids Res. 50, 10469–10486 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Wang, M. et al. Crucial roles of the BRCA1–BARD1 E3 ubiquitin ligase activity in homology-directed DNA repair. Mol. Cell 83, 3679–3691.e3678 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Tomimatsu, N. et al. DNA-damage-induced degradation of EXO1 exonuclease limits DNA end resection to ensure accurate DNA repair. J. Biol. Chem. 292, 10779–10790 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Elia, A. E. et al. Quantitative proteomic atlas of ubiquitination and acetylation in the DNA damage response. Mol. Cell 59, 867–881 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Dion, V., Kalck, V., Horigome, C., Towbin, B. D. & Gasser, S. M. Increased mobility of double-strand breaks requires Mec1, Rad9 and the homologous recombination machinery. Nat. Cell Biol. 14, 502–509 (2012).

    Article  CAS  PubMed  Google Scholar 

  214. Mine-Hattab, J. & Rothstein, R. Increased chromosome mobility facilitates homology search during recombination. Nat. Cell Biol. 14, 510–517 (2012).

    Article  CAS  PubMed  Google Scholar 

  215. Chen, B. R. & Sleckman, B. P. The regulation of DNA end resection by chromatin response to DNA double strand breaks. Front. Cell Dev. Biol. 10, 932633 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Adkins, N. L., Niu, H., Sung, P. & Peterson, C. L. Nucleosome dynamics regulates DNA processing. Nat. Struct. Mol. Biol. 20, 836–842 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Hays, E. et al. The SWI/SNF ATPase BRG1 stimulates DNA end resection and homologous recombination by reducing nucleosome density at DNA double strand breaks and by promoting the recruitment of the CtIP nuclease. Cell Cycle 19, 3096–3114 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Fitieh, A. et al. BMI-1 regulates DNA end resection and homologous recombination repair. Cell Rep. 38, 110536 (2022).

    Article  CAS  PubMed  Google Scholar 

  219. Gospodinov, A. et al. Mammalian Ino80 mediates double-strand break repair through its role in DNA end strand resection. Mol. Cell Biol. 31, 4735–4745 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Costelloe, T. et al. The yeast Fun30 and human SMARCAD1 chromatin remodellers promote DNA end resection. Nature 489, 581–584 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Chen, X. et al. The Fun30 nucleosome remodeller promotes resection of DNA double-strand break ends. Nature 489, 576–580 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Bantele, S. C., Ferreira, P., Gritenaite, D., Boos, D. & Pfander, B. Targeting of the Fun30 nucleosome remodeller by the Dpb11 scaffold facilitates cell cycle-regulated DNA end resection. eLife 6, e21687 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Huang, P. C. et al. Meiotic DNA break resection and recombination rely on chromatin remodeler Fun30. Preprint at bioRxiv https://doi.org/10.1101/2024.04.17.589955 (2024).

  224. de Lange, T. Shelterin-mediated telomere protection. Annu. Rev. Genet. 52, 223–247 (2018).

    Article  PubMed  Google Scholar 

  225. Khayat, F., Alshmery, M., Pal, M., Oliver, A. W. & Bianchi, A. Binding of the TRF2 iDDR motif to RAD50 highlights a convergent evolutionary strategy to inactivate MRN at telomeres. Nucleic Acids Res. 52, 7704–7719 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Myler, L. R. et al. DNA-PK and the TRF2 iDDR inhibit MRN-initiated resection at leading-end telomeres. Nat. Struct. Mol. Biol. 30, 1346–1356 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Khayat, F. et al. Inhibition of MRN activity by a telomere protein motif. Nat. Commun. 12, 3856 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Roisne-Hamelin, F. et al. Mechanism of MRX inhibition by Rif2 at telomeres. Nat. Commun. 12, 2763 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. van de Kooij, B. et al. The Fanconi anemia core complex promotes CtIP-dependent end resection to drive homologous recombination at DNA double-strand breaks. Nat. Commun. 15, 7076 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Nath, S. & Nagaraju, G. FANCJ helicase promotes DNA end resection by facilitating CtIP recruitment to DNA double-strand breaks. PLoS Genet. 16, e1008701 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Murina, O. et al. FANCD2 and CtIP cooperate to repair DNA interstrand crosslinks. Cell Rep. 7, 1030–1038 (2014).

    Article  CAS  PubMed  Google Scholar 

  232. Unno, J. et al. FANCD2 binds CtIP and regulates DNA-end resection during DNA interstrand crosslink repair. Cell Rep. 7, 1039–1047 (2014).

    Article  CAS  PubMed  Google Scholar 

  233. Yeo, J. E., Lee, E. H., Hendrickson, E. A. & Sobeck, A. CtIP mediates replication fork recovery in a FANCD2-regulated manner. Hum. Mol. Genet. 23, 3695–3705 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Alonso-de Vega, I. et al. PHF2 regulates homology-directed DNA repair by controlling the resection of DNA double strand breaks. Nucleic Acids Res. 48, 4915–4927 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Kapoor-Vazirani, P. et al. SAMHD1 deacetylation by SIRT1 promotes DNA end resection by facilitating DNA binding at double-strand breaks. Nat. Commun. 13, 6707 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Daddacha, W. et al. SAMHD1 promotes DNA end resection to facilitate DNA repair by homologous recombination. Cell Rep. 20, 1921–1935 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Wang, Y. L. et al. MRNIP condensates promote DNA double-strand break sensing and end resection. Nat. Commun. 13, 2638 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Staples, C. J. et al. MRNIP/C5orf45 interacts with the MRN complex and contributes to the DNA damage response. Cell Rep. 16, 2565–2575 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Bennett, L. G. et al. MRNIP is a replication fork protection factor. Sci. Adv. 6, eaba5974 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Zeng, X. et al. METTL16 antagonizes MRE11-mediated DNA end resection and confers synthetic lethality to PARP inhibition in pancreatic ductal adenocarcinoma. Nat. Cancer 3, 1088–1104 (2022).

    Article  CAS  PubMed  Google Scholar 

  241. Swift, M. L. et al. Dynamics of the DYNLL1–MRE11 complex regulate DNA end resection and recruitment of Shieldin to DSBs. Nat. Struct. Mol. Biol. 30, 1456–1467 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. He, Y. J. et al. DYNLL1 binds to MRE11 to limit DNA end resection in BRCA1-deficient cells. Nature 563, 522–526 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Oh, J. M. et al. MSH2–MSH3 promotes DNA end resection during homologous recombination and blocks polymerase theta-mediated end-joining through interaction with SMARCAD1 and EXO1. Nucleic Acids Res. 51, 5584–5602 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Gong, Y., Handa, N., Kowalczykowski, S. C. & de Lange, T. PHF11 promotes DSB resection, ATR signaling, and HR. Genes Dev. 31, 46–58 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Zhao, Y. et al. Human HELQ regulates DNA end resection at DNA double-strand breaks and stalled replication forks. Nucleic Acids Res. 51, 12207–12223 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Lomonosov, M., Anand, S., Sangrithi, M., Davies, R. & Venkitaraman, A. R. Stabilization of stalled DNA replication forks by the BRCA2 breast cancer susceptibility protein. Genes Dev. 17, 3017–3022 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Liu, W. et al. RAD51 bypasses the CMG helicase to promote replication fork reversal. Science 380, 382–387 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Pavani, R. et al. Structure and repair of replication-coupled DNA breaks. Science 385, eado3867 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Higgs, M. R. et al. BOD1L is required to suppress deleterious resection of stressed replication forks. Mol. Cell 59, 462–477 (2015).

    Article  CAS  PubMed  Google Scholar 

  250. Xu, S. et al. Abro1 maintains genome stability and limits replication stress by protecting replication fork stability. Genes Dev. 31, 1469–1482 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Przetocka, S. et al. CtIP-mediated fork protection synergizes with BRCA1 to suppress genomic instability upon DNA replication stress. Mol. Cell 72, 568–582.e566 (2018).

    Article  CAS  PubMed  Google Scholar 

  252. Trujillo, K. M. & Sung, P. DNA structure-specific nuclease activities in the Saccharomyces cerevisiae Rad50*Mre11 complex. J. Biol. Chem. 276, 35458–35464 (2001).

    Article  CAS  PubMed  Google Scholar 

  253. Paull, T. T. & Gellert, M. The 3′ to 5′ exonuclease activity of Mre 11 facilitates repair of DNA double-strand breaks. Mol. Cell 1, 969–979 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work has received fundings from the French ARC foundation for cancer research (label program, grant ARGPGA2023110007360_7961), La Ligue (grant RS24/75-14) and the French National Research Agency (ANR) (grant ANR-23-CE12-0032) for the Ceccaldi laboratory. The Swiss National Science Foundation (SNSF) (grants 310030_207588 and 310030_205199) and the European Research Council (ERC) (grant 101018257) support the research in the Cejka laboratory. We thank members of the Cejka laboratory for critical comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Raphael Ceccaldi or Petr Cejka.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks Patrick Sung, David Yu, who co-reviewed with Sandip Kumar Rath, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

BRCA1–C complex

Contains the BRCA1–BARD1 heterodimer, CtIP and MRN. Binds to sites of DNA damage and promotes DNA end resection.

BRCA1–PALB2–BRCA2 complex

Protein complex crucial for homologous recombination, in which PALB2 bridges BRCA1 and BRCA2, thereby enabling RAD51 loading at resected ends.

Break-induced replication (BIR)

A mutagenic subpathway of homologous recombination, in which one broken DNA end invades a homologous template and initiates DNA synthesis that often proceeds to the end of chromosomal DNA, without engaging a second DNA end.

Degradation of nascent DNA

An enzymatic process leading to the removal of newly synthesized DNA at reversed forks or post-replication gaps.

Hairpin-capped ends

A DNA break in which one the strand folds back on itself, forming a hairpin-like loop structure.

Homologous recombination (HR)

A high-fidelity DNA break repair pathway that uses a homologous sequence from the sister chromatid as a repair template, and which can give rise to crossovers.

Long-range end resection

Extended trimming of DSBs by the nucleases EXO1 or DNA2, producing long ssDNA overhangs.

Microhomology-mediated end-joining (MMEJ)

An error-prone DNA repair pathway that relies on short homologous DNA sequences near break sites, often resulting in small insertions and/or deletions.

Non-homologous end-joining (NHEJ)

A fast DNA repair pathway that ligates broken ends without requiring sequence homology, often causing small insertions or deletions at the break site.

Replication-fork reversal

Conversion of standard three-stranded replication fork into a four-stranded junction, resulting from backtracking of the replication fork.

Short-range end resection

Initial trimming of DSBs by the MRN complex and its cofactor CtIP, producing ssDNA overhangs.

Single-ended DSB

A DSB in which only one DNA end is present, typically resulting from the collapse of a DNA replication fork.

Single-strand annealing (SSA)

An error-prone DNA repair pathway that uses long homologous sequences flanking a DSB, often leading to large deletions.

ssDNA gaps

Stretches of ssDNA on newly replicated DNA.

Synthesis-dependent strand annealing (SDSA)

A high-fidelity subpathway of HR, in which the invading strand is extended by DNA synthesis and then re-anneals with the complementary sequence to complete repair without crossover formation.

T-loop

A protective DNA structure formed at telomeres.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ceccaldi, R., Cejka, P. Mechanisms and regulation of DNA end resection in the maintenance of genome stability. Nat Rev Mol Cell Biol 26, 586–599 (2025). https://doi.org/10.1038/s41580-025-00841-4

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41580-025-00841-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing