Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Degrons: defining the rules of protein degradation

Subjects

Abstract

Degrons are pivotal components of the ubiquitin–proteasome system, serving as the recognition determinants through which E3 ubiquitin ligases identify their substrates. Degrons have central roles in both protein quality control and intracellular signalling pathways, and mutations that dysregulate degron activity are associated with a wide range of diseases, including cancer, immunological disorders and neurodegeneration. The number of well-defined degrons remains sparse relative to the ~600 E3 ubiquitin ligases encoded in the human genome. Recent advances in high-throughput degron discovery technologies have accelerated progress in this area, expanding the number of N- and C-terminal degrons, internal degrons and ubiquitin-independent degrons defined experimentally at high resolution. In this Review, we discuss the latest insights into the molecular mechanisms through which degrons act, their functional importance and their relevance in human disease, and consider how bifunctional molecules harness degrons to enable targeted protein degradation for therapeutic benefit.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: An overview of the UPS and summary of E3s with known degrons.
Fig. 2: Regulation of protein turnover through the recognition of terminal degrons in eukaryotes.
Fig. 3: Recognition and regulation of internal degrons.
Fig. 4: Ubiquitin-independent mechanisms of targeting to the proteasome.
Fig. 5: Roles of degrons in facilitating protein quality control.

Similar content being viewed by others

References

  1. Zheng, N. & Shabek, N. Ubiquitin ligases: structure, function, and regulation. Annu. Rev. Biochem. 86, 129–157 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Collins, G. A. & Goldberg, A. L. The logic of the 26S proteasome. Cell 169, 792–806 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dikic, I. & Elazar, Z. Mechanism and medical implications of mammalian autophagy. Nat. Rev. Mol. Cell Biol. 19, 349–364 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Deshaies, R. J. & Joazeiro, C. A. P. RING domain E3 ubiquitin ligases. Annu. Rev. Biochem. 78, 399–434 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Oughtred, R. et al. The BioGRID database: a comprehensive biomedical resource of curated protein, genetic, and chemical interactions. Protein Sci. 30, 187–200 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Yau, R. & Rape, M. The increasing complexity of the ubiquitin code. Nat. Cell Biol. 18, 579–586 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Dikic, I., Wakatsuki, S. & Walters, K. J. Ubiquitin-binding domains—from structures to functions. Nat. Rev. Mol. Cell Biol. 10, 659–671 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Komander, D., Clague, M. J. & Urbé, S. Breaking the chains: structure and function of the deubiquitinases. Nat. Rev. Mol. Cell Biol. 10, 550–563 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Zhang, Z. & Elledge, S. J. Harnessing GPT-4 for automated curation of E3–substrate relationships in the ubiquitin-proteasome system. Preprint at bioRxiv https://doi.org/10.1101/2024.10.20.619305 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Morreale, F. E. & Walden, H. Types of ubiquitin ligases. Cell 165, 248 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Harper, J. W. & Schulman, B. A. Cullin-RING ubiquitin ligase regulatory circuits: a quarter century beyond the F-box hypothesis. Annu. Rev. Biochem. 90, 403–429 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Skowyra, D., Craig, K. L., Tyers, M., Elledge, S. J. & Harper, J. W. F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex. Cell 91, 209–219 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Bachmair, A., Finley, D. & Varshavsky, A. In vivo half-life of a protein is a function of its amino-terminal residue. Science 234, 179–186 (1986). This study provides the first demonstration that degrons are transferable and that the nature of the amino acid at the N terminus affects protein turnover rate.

    Article  CAS  PubMed  Google Scholar 

  14. Varshavsky, A. The N‐end rule pathway and regulation by proteolysis. Protein Sci. 20, 1298–1345 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Winston, J. T. et al. The SCFβ–TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IkBα and β-catenin and stimulates IkBα ubiquitination in vitro. Genes Dev. 13, 270–283 (1999). The studies by Winston et al. 1999 and Yaron et al. 1998 identify, to our knowledge, the first phosphodegron.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yaron, A. et al. Identification of the receptor component of the IκBα–ubiquitin ligase. Nature 396, 590–594 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Glotzer, M., Murray, A. W. & Kirschner, M. W. Cyclin is degraded by the ubiquitin pathway. Nature 349, 132–138 (1991). This study shows that fusing a peptide derived from cyclin to a heterologous protein is sufficient to confer instability and represents the first report, to our knowledge, of an internal degron.

    Article  CAS  PubMed  Google Scholar 

  18. Timms, R. T. et al. A glycine-specific N-degron pathway mediates the quality control of protein N-myristoylation. Science 365, eaaw4912 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Koren, I. et al. The eukaryotic proteome is shaped by E3 ubiquitin ligases targeting C-terminal degrons. Cell 173, 1622–1635.e14 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lin, H. C. et al. C-terminal end-directed protein elimination by CRL2 ubiquitin ligases. Mol. Cell 70, 602–613.e3 (2018). The studies by Koren et al. 2018 and Lin et al. 2018 develop the GPS–peptidome technology and represent the first systematic characterization of C-degrons in a mammalian system.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kats, I. et al. Mapping degradation signals and pathways in a eukaryotic N-terminome. Mol. Cell 70, 488–501.e5 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Geffen, Y. et al. Mapping the landscape of a eukaryotic degronome. Mol. Cell 63, 1055–1065 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Zhang, Z. et al. Elucidation of E3 ubiquitin ligase specificity through proteome-wide internal degron mapping. Mol. Cell 83, 3377–3392.e6 (2023). This study performs the first human proteome-wide characterization of internal degrons, and discovers 14 additional E3–degron pairs that were previously unknown or had not been accurately defined.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gu, X. et al. The midnolin–proteasome pathway catches proteins for ubiquitination-independent degradation. Science 381, eadh5021 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Makaros, Y. et al. Ubiquitin-independent proteasomal degradation driven by C-degron pathways. Mol. Cell 83, 1921–1935.e7 (2023). This study performs the first systematic characterization of ubiquitin-independent degrons in a mammalian system.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Szulc, N. A. et al. DEGRONOPEDIA: a web server for proteome-wide inspection of degrons. Nucleic Acids Res. 52, W221–W232 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Levine, B. & Kroemer, G. Biological functions of autophagy genes: a disease perspective. Cell 176, 11–42 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu, J. et al. Genetic fusions favor tumorigenesis through degron loss in oncogenes. Nat. Commun. 12, 6704 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tokheim, C. et al. Systematic characterization of mutations altering protein degradation in human cancers. Mol. Cell 81, 1292–1308.e11 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sherpa, D., Chrustowicz, J. & Schulman, B. A. How the ends signal the end: regulation by E3 ubiquitin ligases recognizing protein termini. Mol. Cell 82, 1424–1438 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kim, Y. et al. Targeted kinase degradation via the KLHDC2 ubiquitin E3 ligase. Cell Chem. Biol. 30, 1414–1420.e5 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Röth, S. et al. Identification of KLHDC2 as an efficient proximity-induced degrader of K-RAS, STK33, β-catenin, and FoxP3. Cell Chem. Biol. 30, 1261–1276.e7 (2023).

    Article  PubMed  Google Scholar 

  33. Hickey, C. M. et al. Co-opting the E3 ligase KLHDC2 for targeted protein degradation by small molecules. Nat. Struct. Mol. Biol. 31, 311–322 (2024).

    Article  CAS  PubMed  Google Scholar 

  34. Chana, C. K. et al. Discovery and structural characterization of small molecule binders of the human CTLH E3 ligase subunit GID4. J. Med. Chem. 65, 12725–12746 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Henning, N. J. et al. Discovery of a covalent FEM1B recruiter for targeted protein degradation applications. J. Am. Chem. Soc. 144, 701–708 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ichikawa, S. et al. The E3 ligase adapter cereblon targets the C-terminal cyclic imide degron. Nature 610, 775–782 (2022). This study shows that cereblon recognizes C-terminal cyclin imide degrons.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Heim, C., Spring, A. K., Kirchgäßner, S., Schwarzer, D. & Hartmann, M. D. Identification and structural basis of C-terminal cyclic imides as natural degrons for cereblon. Biochem. Biophys. Res. Commun. 637, 66–72 (2022).

    Article  CAS  PubMed  Google Scholar 

  38. Miyawaki, S. et al. The mouse Sry locus harbors a cryptic exon that is essential for male sex determination. Science 370, 121–124 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Zhang, P. et al. CRL2–KLHDC3 E3 ubiquitin ligase complex suppresses ferroptosis through promoting p14ARF degradation. Cell Death Differ. 29, 58–771 (2022).

    Article  Google Scholar 

  40. Varshavsky, A. N-degron and C-degron pathways of protein degradation. Proc. Natl Acad. Sci. USA 116, 358–366 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Timms, R. T. & Koren, I. Tying up loose ends: the N-degron and C-degron pathways of protein degradation. Biochem. Soc. Trans. 48, 1557–1567 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Varshavsky, A. N-degron pathways. Proc. Natl Acad. Sci. USA 121, e2408697121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tran, A. The N-end rule pathway and Ubr1 enforce protein compartmentalization via P2-encoded cellular location signals. J. Cell Sci. 132, jcs231662 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. Lee, K. E., Heo, J. E., Kim, J. M. & Hwang, C. S. N-terminal acetylation-targeted N-end rule proteolytic system: the Ac/N-end rule pathway. Mol. Cells 39, 169–178 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Aksnes, H., Ree, R. & Arnesen, T. Co-translational, post-translational, and non-catalytic roles of N-terminal acetyltransferases. Mol. Cell 73, 1097–1114 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shemorry, A., Hwang, C. S. & Varshavsky, A. Control of protein quality and stoichiometries by N-terminal acetylation and the N-end rule pathway. Mol. Cell 50, 540–551 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hwang, C.-S., Shemorry, A. & Varshavsky, A. N-terminal acetylation of cellular proteins creates specific degradation signals. Science 327, 973–977 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen, S.-J., Wu, X., Wadas, B., Oh, J.-H. & Varshavsky, A. An N-end rule pathway that recognizes proline and destroys gluconeogenic enzymes. Science 355, eaal3655 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Sherpa, D. et al. GID E3 ligase supramolecular chelate assembly configures multipronged ubiquitin targeting of an oligomeric metabolic enzyme. Mol. Cell 81, 2445–2459.e13 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Qiao, S. et al. Interconversion between anticipatory and active GID E3 ubiquitin ligase conformations via metabolically driven substrate receptor assembly. Mol. Cell 77, 150–163.e9 (2020).

    Article  CAS  PubMed  Google Scholar 

  51. Shin, J. S., Park, S. H., Kim, L., Heo, J. & Song, H. K. Crystal structure of yeast Gid10 in complex with Pro/N-degron. Biochem. Biophys. Res. Commun. 582, 86–92 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. Melnykov, A., Chen, S. J. & Varshavsky, A. Gid10 as an alternative N-recognin of the Pro/N-degron pathway. Proc. Natl Acad. Sci. USA 116, 15914–15923 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kong, K. Y. E. et al. Timer-based proteomic profiling of the ubiquitin-proteasome system reveals a substrate receptor of the GID ubiquitin ligase. Mol. Cell 81, 2460–2476.e11 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dong, C. et al. Recognition of nonproline N-terminal residues by the Pro/N-degron pathway. Proc. Natl Acad. Sci. USA 117, 14158–14167 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yi, S. A., Sepic, S., Schulman, B. A., Ordureau, A. & An, H. mTORC1–CTLH E3 ligase regulates the degradation of HMG-CoA synthase 1 through the Pro/N-degron pathway. Mol. Cell 84, 2166–2184.e9 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Li, Y. et al. CRL2ZER1/ZYG11B recognizes small N-terminal residues for degradation. Nat. Commun. 13, 7636 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yan, X. et al. Molecular basis for recognition of Gly/N-degrons by CRL2ZYG11B and CRL2ZER1. Mol. Cell 81, 3262–3274.e3 (2021).

    Article  CAS  PubMed  Google Scholar 

  58. Robinson, K. S. et al. Enteroviral 3C protease activates the human NLRP1 inflammasome in airway epithelia. Science 370, eaay2002 (2020).

    Article  CAS  PubMed  Google Scholar 

  59. Rusnac, D.-V. et al. Recognition of the diglycine C-end degron by CRL2KLHDC2 ubiquitin ligase. Mol. Cell 72, 813–822.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Scott, D. C. et al. E3 ligase autoinhibition by C-degron mimicry maintains C-degron substrate fidelity. Mol. Cell 83, 770–786.e9 (2023). This study shows that KLHDC2 distinguishes bona fide substrates from non-substrates through an autoinhibitory mechanism involving C-degron mimicry.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Scott, D. C. et al. Structural basis for C-degron selectivity across KLHDCX family E3 ubiquitin ligases. Nat. Commun. 15, 9899 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Thrun, A. et al. Convergence of mammalian RQC and C-end rule proteolytic pathways via alanine tailing. Mol. Cell 81, 2112–2122.e7 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Patil, P. R. et al. Mechanism and evolutionary origins of alanine-tail C-degron recognition by E3 ligases Pirh2 and CRL2-KLHDC10. Cell Rep. 42, 113100 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang, X. et al. Recognition of an Ala-rich C-degron by the E3 ligase Pirh2. Nat. Commun. 14, 2474 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhao, S. et al. Molecular basis for C-degron recognition by CRL2APPBP2 ubiquitin ligase. Proc. Natl Acad. Sci. USA 120, e2308870120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yan, X. et al. Molecular basis for ubiquitin ligase CRL2FEM1C-mediated recognition of C-degron. Nat. Chem. Biol. 17, 263–271 (2021).

    Article  CAS  PubMed  Google Scholar 

  67. Zhao, S. et al. Structural insights into SMCR8 C-degron recognition by FEM1B. Biochem. Biophys. Res. Commun. 557, 236–239 (2021).

    Article  CAS  PubMed  Google Scholar 

  68. Timms, R. T. et al. Defining E3 ligase–substrate relationships through multiplex CRISPR screening. Nat. Cell Biol. 25, 1535–1545 (2023). This study describes a scalable technology platform for multiplex E3–degron/substrate mapping.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chen, X. et al. Mechanism of Ψ-Pro/C-degron recognition by the CRL2FEM1B ubiquitin ligase. Nat. Commun. 15, 3558 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Geiger, T. & Clarke, S. Deamidation, isomerization, and racemization at asparaginyl and aspartyl residues in peptides. Succinimide-linked reactions that contribute to protein degradation. J. Biol. Chem. 262, 785–794 (1987).

    Article  CAS  PubMed  Google Scholar 

  71. Voorter, C. E. M., De Haard-Hoekman, W. A., Van Den Oetelaar, P. J. M., Bloemendal, H. & De Jong, W. W. Spontaneous peptide bond cleavage in aging α-crystallin through a succinimide intermediate. J. Biol. Chem. 263, 19020–19023 (1988).

    Article  CAS  PubMed  Google Scholar 

  72. Tyler-Cross, R. & Schirch, V. Effects of amino acid sequence, buffers, and ionic strength on the rate and mechanism of deamidation of asparagine residues in small peptides. J. Biol. Chem. 266, 22549–22556 (1991).

    Article  CAS  PubMed  Google Scholar 

  73. Brennan, T. V. & Clarke, S. Effect of adjacent histidine and cysteine residues on the spontaneous degradation of asparaginyl‐ and aspartyl‐containing peptides. Int. J. Pept. Protein Res. 45, 547–553 (1995).

    Article  CAS  PubMed  Google Scholar 

  74. Paulus, H. Protein splicing and related forms of protein autoprocessing. Annu. Rev. Biochem. 69, 447–496 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Mills, K. V., Manning, J. S., Garcia, A. M. & Wuerdeman, L. A. Protein splicing of a pyrococcus abyssi intein with a C-terminal glutamine. J. Biol. Chem. 279, 20685–20691 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Zhao, Z. et al. PCMT1 generates the C-terminal cyclic imide degron on CRBN substrates. Preprint at bioRxiv https://doi.org/10.1101/2025.03.24.645050 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Pla‐Prats, C., Cavadini, S., Kempf, G. & Thomä, N. H. Recognition of the CCT5 di‐Glu degron by CRL4 DCAF12 is dependent on TRiC assembly. EMBO J. 42, e112253 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Ravichandran, R., Kodali, K., Peng, J. & Potts, P. R. Regulation of MAGE-A3/6 by the CRL4-DCAF12 ubiquitin ligase and nutrient availability. EMBO Rep. 20, e47352 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Hasenjäger, S., Bologna, A., Essen, L. O., Spadaccini, R. & Taxis, C. C-terminal sequence stability profiling in Saccharomyces cerevisiae reveals protective protein quality control pathways. J. Biol. Chem. 299, 105166 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Kong, K.-Y. E., Shankar, S., Rühle, F. & Khmelinskii, A. Orphan quality control by an SCF ubiquitin ligase directed to pervasive C-degrons. Nat. Commun. 14, 8363 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Muhar, M. F. et al. C-terminal amides mark proteins for degradation via SCF-FBXO31. Nature 638, 519–527 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ravalin, M. et al. Specificity for latent C termini links the E3 ubiquitin ligase CHIP to caspases. Nat. Chem. Biol. 15, 786–794 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ru, Y. et al. C-terminal glutamine acts as a C-degron targeted by E3 ubiquitin ligase TRIM7. Proc. Natl Acad. Sci. USA 119, e2203218119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Liang, X. et al. A C-terminal glutamine recognition mechanism revealed by E3 ligase TRIM7 structures. Nat. Chem. Biol. 18, 1214–1223 (2022).

    Article  CAS  PubMed  Google Scholar 

  85. Kumar, M. et al. ELM — the eukaryotic linear motif resource — 2024 update. Nucleic Acids Res. 52, D442–D455 (2024).

    Article  CAS  PubMed  Google Scholar 

  86. Yada, M. et al. Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7. EMBO J. 23, 2116–2125 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Welcker, M. et al. The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proc. Natl Acad. Sci. USA 101, 9085–9090 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Koepp, D. M. et al. Phosphorylation-dependent ubiquitination of cyclin E by the SCFFbw7 ubiquitin ligase. Science 294, 173–177 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Strohmaier, H. et al. Human F-box protein hCdc4 targets cyclin E for proteolysis and is mutated in a breast cancer cell line. Nature 413, 316–322 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Fryer, C. J., White, J. B. & Jones, K. A. Mastermind recruits CycC:CDK8 to phosphorylate the notch ICD and coordinate activation with turnover. Mol. Cell 16, 509–520 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Jin, J. et al. SCFβ-TRCP links Chk1 signaling to degradation of the Cdc25A protein phosphatase. Genes. Dev. 17, 3062–3074 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Liu, C. et al. β-Trcp couples β-catenin phosphorylation-degradation and regulates Xenopus axis formation. Proc. Natl Acad. Sci. USA 96, 6273–6278 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hart, M. et al. The F-box protein β-TrCP associates with phosphorylated β-catenin and regulates its activity in the cell. Curr. Biol. 9, 207–211 (1999).

    Article  CAS  PubMed  Google Scholar 

  94. Busino, L. et al. Degradation of Cdc25A by β-TrCP during S phase and in response to DNA damage. Nature 426, 87–91 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Liu, C. et al. Control of β-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 108, 837–847 (2002).

    Article  CAS  PubMed  Google Scholar 

  96. Spencer, E., Jiang, J. & Chen, Z. J. Signal-induced ubiquitination of IkBα by the F-box protein Slimb/β-TrCP. Genes. Dev. 13, 284–294 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Peters, J.-M. The anaphase promoting complex/cyclosome: a machine designed to destroy. Nat. Rev. Mol. Cell Biol. 7, 644–656 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Zhang, J. et al. Cyclin D–CDK4 kinase destabilizes PD-L1 via cullin 3–SPOP to control cancer immune surveillance. Nature 553, 91–95 (2018).

    Article  CAS  PubMed  Google Scholar 

  99. Kavsak, P. et al. Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGFβ receptor for degradation. Mol. Cell 6, 1365–1375 (2000).

    Article  CAS  PubMed  Google Scholar 

  100. Willems, A. R. et al. Cdc53 targets phosphorylated G1 cyclins for degradation by the ubiquitin proteolytic pathway. Cell 86, 453–463 (1996).

    Article  CAS  PubMed  Google Scholar 

  101. Lanker, S., Valdivieso, M. H. & Wittenberg, C. Rapid degradation of the G1 cyclin Cln2 induced by CDK-dependent phosphorylation. Science 271, 1597–1601 (1996).

    Article  CAS  PubMed  Google Scholar 

  102. Barral, Y., Jentsch, S. & Mann, C. G1 cyclin turnover and nutrient uptake are controlled by a common pathway in yeast. Genes Dev. 9, 399–409 (1995).

    Article  CAS  PubMed  Google Scholar 

  103. Nash, P. et al. Multisite phosphorylation of a CDK inhibitor sets a threshold for the onset of DNA replication. Nature 414, 514–521 (2001). This study shows that multisite phosphorylation of suboptimal Cdc4 phosphodegron motifs is crucial for establishing a regulatory threshold for temporal regulation of cell cycle progression.

    Article  CAS  PubMed  Google Scholar 

  104. Roff, M. et al. Role of IkBα ubiquitination in signal-induced activation of NFkB in vivo. J. Biol. Chem. 271, 7844–7850 (1996).

    Article  CAS  PubMed  Google Scholar 

  105. Papavassiliou, A. G., Treier, M., Chavrier, C. & Bohmann, D. Targeted degradation of c-Fos, but not v-Fos, by a phosphorylation-dependent signal on c-Jun. Science 258, 1941–1944 (1992).

    Article  CAS  PubMed  Google Scholar 

  106. Didonato, J. et al. Mapping of the inducible IκB phosphorylation sites that signal its ubiquitination and degradation. Mol. Cell Biol. 16, 1295–1304 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Vlach, J. Phosphorylation-dependent degradation of the cyclin-dependent kinase inhibitor p27Kip1. EMBO J. 16, 5334–5344 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Carrano, A. C., Eytan, E., Hershko, A. & Pagano, M. SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat. Cell Biol. 1, 193–199 (1999).

    Article  CAS  PubMed  Google Scholar 

  109. Aberle, H., Bauer, A., Stappert, J., Kispert, A. & Kemler, R. β-Catenin is a target for the ubiquitin–proteasome pathway. EMBO J. 16, 3797–3804 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Orford, K., Crockett, C., Jensen, J. P., Weissman, A. M. & Byers, S. W. Serine phosphorylation-regulated ubiquitination and degradation of β-catenin. J. Biol. Chem. 272, 24735–24738 (1997).

    Article  CAS  PubMed  Google Scholar 

  111. Rada, P. et al. SCF/β-TrCP promotes glycogen synthase kinase 3-dependent degradation of the Nrf2 transcription factor in a Keap1-independent manner. Mol. Cell Biol. 31, 1121–1133 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ding, Q. et al. Degradation of Mcl-1 by β-TrCP mediates glycogen synthase kinase 3-induced tumor suppression and chemosensitization. Mol. Cell Biol. 27, 4006–4017 (2007).

    Article  CAS  PubMed  Google Scholar 

  113. Westbrook, T. F. et al. SCFβ-TRCP controls oncogenic transformation and neural differentiation through REST degradation. Nature 452, 370–374 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Nardone, C. et al. A central role for regulated protein stability in the control of TFE3 and MITF by nutrients. Mol. Cell 83, 57–73.e9 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Welcker, M. & Clurman, B. E. FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nat. Rev. Cancer 8, 83–93 (2008).

    Article  CAS  PubMed  Google Scholar 

  116. Nateri, A. S., Riera-Sans, L., Da Costa, C. & Behrens, A. The ubiquitin ligase SCFFbw7 antagonizes apoptotic JNK signaling. Science 303, 1374–1378 (2004).

    Article  CAS  PubMed  Google Scholar 

  117. Tetzlaff, M. T. et al. Defective cardiovascular development and elevated cyclin E and notch proteins in mice lacking the Fbw7 F-box protein. Proc. Natl Acad. Sci. USA 101, 3338–3345 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Yu, F., White, S. B., Zhao, Q. & Lee, F. S. HIF-1α binding to VHL is regulated by stimulus-sensitive proline hydroxylation. Proc. Natl Acad. Sci. USA 98, 9630–9635 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ivan, M. et al. HIFα targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292, 464–468 (2001).

    Article  CAS  PubMed  Google Scholar 

  120. Lee, J. M. et al. EZH2 generates a methyl degron that is recognized by the DCAF1/DDB1/CUL4 E3 ubiquitin ligase complex. Mol. Cell 48, 572–586 (2012).

    Article  CAS  PubMed  Google Scholar 

  121. Sakaguchi, K. et al. Damage-mediated phosphorylation of human p53 threonine 18 through a cascade mediated by a casein 1-like kinase. J. Biol. Chem. 275, 9278–9283 (2000).

    Article  CAS  PubMed  Google Scholar 

  122. Wei, W. et al. Degradation of the SCF component Skp2 in cell-cycle phase G1 by the anaphase-promoting complex. Nature 428, 194–198 (2004).

    Article  CAS  PubMed  Google Scholar 

  123. Irniger, S., Piatti, S., Michaelis, C. & Nasmyth, K. Genes involved in sister chromatid separation are needed for b-type cyclin proteolysis in budding yeast. Cell 81, 269–278 (1995).

    Article  CAS  PubMed  Google Scholar 

  124. McGarry, T. J. & Kirschner, M. W. Geminin, an inhibitor of DNA replication, is degraded during mitosis. Cell 93, 1043–1053 (1998).

    Article  CAS  PubMed  Google Scholar 

  125. Fang, G., Yu, H. & Kirschner, M. W. Direct binding of CDC20 protein family members activates the anaphase-promoting complex in mitosis and G1. Mol. Cell 2, 163–171 (1998).

    Article  CAS  PubMed  Google Scholar 

  126. Rape, M., Reddy, S. K. & Kirschner, M. W. The processivity of multiubiquitination by the APC determines the order of substrate degradation. Cell 124, 89–103 (2006).

    Article  CAS  PubMed  Google Scholar 

  127. D’Angiolella, V. et al. SCFCyclin F controls centrosome homeostasis and mitotic fidelity through CP110 degradation. Nature 466, 138–142 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Sauvé, V. et al. Mechanism of parkin activation by phosphorylation. Nat. Struct. Mol. Biol. 25, 623–630 (2018).

    Article  PubMed  Google Scholar 

  129. Ganoth, D. et al. The cell-cycle regulatory protein Cks1 is required for SCFSkp2-mediated ubiquitinylation of p27. Nat. Cell Biol. 3, 321–324 (2001).

    Article  CAS  PubMed  Google Scholar 

  130. Spruck, C. et al. A CDK-independent function of mammalian Cks1. Mol. Cell 7, 639–650 (2001).

    Article  CAS  PubMed  Google Scholar 

  131. Hao, B. et al. Structural basis of the Cks1-dependent recognition of p27Kip1 by the SCFSkp2 ubiquitin ligase. Mol. Cell 20, 9–19 (2005).

    Article  CAS  PubMed  Google Scholar 

  132. Havens, C. G. & Walter, J. C. Docking of a specialized PIP box onto chromatin-bound PCNA creates a degron for the ubiquitin ligase CRL4Cdt2. Mol. Cell 35, 93–104 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Havens, C. G. & Walter, J. C. Mechanism of CRL4Cdt2, a PCNA-dependent E3 ubiquitin ligase. Genes Dev. 25, 1568–1582 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Abbas, T. et al. PCNA-dependent regulation of p21 ubiquitylation and degradation via the CRL4Cdt2 ubiquitin ligase complex. Genes Dev. 22, 2496–2506 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Hessa, T. et al. Protein targeting and degradation are coupled for elimination of mislocalized proteins. Nature 475, 394–397 (2011). This study shows that BAG6 promotes the degradation of mislocalized proteins in the cytosol by recognizing exposed hydrophobic targeting signals.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Murakami, Y. et al. Ornithine decarboxylase is degraded by the 26S proteasome without ubiquitination. Nature 360, 597–9 (1992).

    Article  CAS  PubMed  Google Scholar 

  137. Rosenberg‐Hasson, Y., Bercovich, Z., Ciechanover, A. & Kahana, C. Degradation of ornithine decarboxylase in mammalian cells is ATP dependent but ubiquitin independent. Eur. J. Biochem. 185, 469–474 (1989).

    Article  PubMed  Google Scholar 

  138. Bercovich, Z., Rosenberg-Hasson, Y., Ciechanover, A. & Kahana, C. Degradation of ornithine decarboxylase in reticulocyte lysate is ATP-dependent but ubiquitin-independent. J. Biol. Chem. 264, 15949–15952 (1989). The studies by Murakami et al. 1992 and Berkovich et al. 1989 indicate that alongside the ubiquitin-dependent proteolytic pathway, reticulocyte lysates and mammalian cells also contain a ubiquitin-independent, proteasome-dependent pathway.

    Article  CAS  PubMed  Google Scholar 

  139. Matsufuji, S. et al. Autoregulatory frameshifting in decoding mammalian ornithine decarboxylase antizyme. Cell 80, 51–60 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Rom, E. & Kahana, C. Polyamines regulate the expression of ornithine decarboxylase antizyme in vitro by inducing ribosomal frame-shifting. Proc. Natl Acad. Sci. USA 91, 3959–3963 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Li, X. & Coffino, P. Degradation of ornithine decarboxylase: exposure of the C-terminal target by a polyamine-inducible inhibitory protein. Mol. Cell Biol. 13, 2377–2383 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Ghoda, L., Van Daalen Wetters, T., Macrae, M., Ascherman, D. & Coffino, P. Prevention of rapid intracellular degradation of ODC by a carboxyl-terminal truncation. Science 243, 1493–1495 (1989).

    Article  CAS  PubMed  Google Scholar 

  143. Zhang, M., Pickart, C. M. & Coffino, P. Determinants of proteasome recognition of ornithine decarboxylase, a ubiquitin-independent substrate. EMBO J. 22, 1488–1496 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Asher, G., Tsvetkov, P., Kahana, C. & Shaul, Y. A mechanism of ubiquitin-independent proteasomal degradation of the tumor suppressors p53 and p73. Genes Dev. 19, 316–321 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Wiggins, C. M. et al. BIMEL, an intrinsically disordered protein, is degraded by 20S proteasomes in the absence of poly-ubiquitylation. J. Cell Sci. 124, 969–977 (2011).

    Article  CAS  PubMed  Google Scholar 

  146. Adamovich, Y. et al. The protein level of PGC-1α, a key metabolic regulator, is controlled by NADH-NQO1. Mol. Cell Biol. 33, 2603–2613 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Chen, X., Barton, L. F., Chi, Y., Clurman, B. E. & Roberts, J. M. Ubiquitin-independent degradation of cell-cycle inhibitors by the REGγ proteasome. Mol. Cell 26, 843–852 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Chen, X. et al. N-acetylation and ubiquitin-independent proteasomal degradation of p21Cip1. Mol. Cell 16, 839–847 (2004).

    Article  CAS  PubMed  Google Scholar 

  149. Li, X. et al. Ubiquitin- and ATP-independent proteolytic turnover of p21 by the REGγ-proteasome pathway. Mol. Cell 26, 831–842 (2007).

    Article  PubMed  Google Scholar 

  150. Bossis, G., Ferrara, P., Acquaviva, C., Jariel-Encontre, I. & Piechaczyk, M. c-Fos proto-oncoprotein is degraded by the proteasome independently of its own ubiquitinylation in vivo. Mol. Cell Biol. 23, 7425–7436 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Basbous, J., Chalbos, D., Hipskind, R., Jariel-Encontre, I. & Piechaczyk, M. Ubiquitin-independent proteasomal degradation of Fra-1 is antagonized by Erk1/2 pathway-mediated phosphorylation of a unique C-terminal destabilizer. Mol. Cell Biol. 27, 3936–3950 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Forsthoefel, A. M., Peña, M. M. O., Xing, Y. Y., Rafique, Z. & Berger, F. G. Structural determinants for the intracellular degradation of human thymidylate synthase. Biochemistry 43, 1972–1979 (2004).

    Article  CAS  PubMed  Google Scholar 

  153. Ukmar-Godec, T. et al. Proteasomal degradation of the intrinsically disordered protein tau at single-residue resolution. Sci. Adv. 6, eaba3916 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Du, J. et al. Stuxnet facilitates the degradation of polycomb protein during development. Dev. Cell 37, 507–519 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Nardone, C. et al. Structural basis for the midnolin-proteasome pathway and its role in suppressing myeloma. Preprint at bioRxiv https://doi.org/10.1101/2025.02.22.639686 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Bahrami, S. & Drabløs, F. Gene regulation in the immediate-early response process. Adv. Biol. Regul. 62, 37–49 (2016).

    Article  CAS  PubMed  Google Scholar 

  157. Collins, G. A. & Goldberg, A. L. Proteins containing ubiquitin-like (Ubl) domains not only bind to 26S proteasomes but also induce their activation. Proc. Natl Acad. Sci. USA 117, 4664–4674 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Hipp, M. S., Kalveram, B., Raasi, S., Groettrup, M. & Schmidtke, G. FAT10, a ubiquitin-independent signal for proteasomal degradation. Mol. Cell Biol. 25, 3483–3491 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Rani, N., Aichem, A., Schmidtke, G., Kreft, S. G. & Groettrup, M. FAT10 and NUB1L bind to the VWA domain of Rpn10 and Rpn1 to enable proteasome-mediated proteolysis. Nat. Commun. 3, 749 (2012).

    Article  PubMed  Google Scholar 

  160. Schmidtke, G., Kalveram, B. & Groettrup, M. Degradation of FAT10 by the 26S proteasome is independent of ubiquitylation but relies on NUB1L. FEBS Lett. 583, 591–594 (2009).

    Article  CAS  PubMed  Google Scholar 

  161. Raasi, S., Schmidtke, G., De Giuli, R. & Groettrup, M. A ubiquitin-like protein which is synergistically inducible by interferon-γ and tumor necrosis factor-α. Eur. J. Immunol. 29, 4030–4036 (1999).

    Article  CAS  PubMed  Google Scholar 

  162. Aichem, A. & Groettrup, M. The ubiquitin-like modifier FAT10 – much more than a proteasome-targeting signal. J. Cell Sci. 133, jcs246041 (2020).

    Article  CAS  PubMed  Google Scholar 

  163. Aichem, A. et al. The proteomic analysis of endogenous FAT10 substrates identifies p62/SQSTM1 as a substrate of FAT10ylation. J. Cell Sci. 125, 4576–4585 (2012).

    CAS  PubMed  Google Scholar 

  164. Padovani, C., Jevtić, P. & Rapé, M. Quality control of protein complex composition. Mol. Cell 82, 1439–1450 (2022).

    Article  CAS  PubMed  Google Scholar 

  165. Juszkiewicz, S. & Hegde, R. S. Quality control of orphaned proteins. Mol. Cell 71, 443–457 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Mena, E. L. et al. Dimerization quality control ensures neuronal development and survival. Science 362, eaap8236 (2018).

    Article  PubMed  Google Scholar 

  167. Mena, E. L. et al. Structural basis for dimerization quality control. Nature 586, 452–456 (2020). The studies by Mena et al. 2018 and Mena et al. 2020 delineate an example of how a conditionally exposed degron allows quality control of complex assembly.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Yanagitani, K., Juszkiewicz, S. & Hegde, R. S. UBE2O is a quality control factor for orphans of multiprotein complexes. Science 357, 472–475 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Mark, K. G. et al. Orphan quality control shapes network dynamics and gene expression. Cell 186, 3460–3475.e23 (2023).

    Article  CAS  PubMed  Google Scholar 

  170. Yagita, Y., Zavodszky, E., Peak-Chew, S.-Y. & Hegde, R. S. Mechanism of orphan subunit recognition during assembly quality control. Cell 186, 3443–3459.e24 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Carrillo Roas, S. et al. Convergence of orphan quality control pathways at a ubiquitin chain-elongating ligase. Mol. Cell 85, 815–828.e10 (2025).

    Article  CAS  PubMed  Google Scholar 

  172. Rodrigo-Brenni, M. C., Gutierrez, E. & Hegde, R. S. Cytosolic quality control of mislocalized proteins requires RNF126 recruitment to Bag6. Mol. Cell 55, 227–237 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Müller, M. B. D., Kasturi, P., Jayaraj, G. G. & Hartl, F. U. Mechanisms of readthrough mitigation reveal principles of GCN1-mediated translational quality control. Cell 186, 3227–3244.e20 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Kesner, J. S. et al. Noncoding translation mitigation. Nature 617, 395–402 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Hu, X. et al. RNF126-mediated reubiquitination is required for proteasomal degradation of p97-extracted membrane proteins. Mol. Cell 79, 320–331.e9 (2020).

    Article  CAS  PubMed  Google Scholar 

  176. Haakonsen, D. L. et al. Stress response silencing by an E3 ligase mutated in neurodegeneration. Nature 626, 874–880 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Itakura, E. et al. Ubiquilins chaperone and triage mitochondrial membrane proteins for degradation. Mol. Cell 63, 21–33 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Finger, Y. et al. Proteasomal degradation induced by DPP9‐mediated processing competes with mitochondrial protein import. EMBO J. 39, e103889 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Shimshon, A. et al. Dipeptidyl peptidases and E3 ligases of N-degron pathways cooperate to regulate protein stability. J. Cell Biol. 223, e202311035 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Salghetti, S. E. Destruction of Myc by ubiquitin-mediated proteolysis: cancer-associated and transforming mutations stabilize Myc. EMBO J. 18, 717–726 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Gregory, M. A. & Hann, S. R. c-Myc proteolysis by the ubiquitin-proteasome pathway: stabilization of c-Myc in Burkitt’s lymphoma cells. Mol. Cell Biol. 20, 2423–2435 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Bahram, F., von der Lehr, N., Cetinkaya, C. & Larsson, L.-G. c-Myc hot spot mutations in lymphomas result in inefficient ubiquitination and decreased proteasome-mediated turnover. Blood 95, 2104–2110 (2000).

    Article  CAS  PubMed  Google Scholar 

  183. Thompson, B. J. et al. The SCFFBW7 ubiquitin ligase complex as a tumor suppressor in T cell leukemia. J. Exp. Med. 204, 1825–1835 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Weng, A. P. et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306, 269–271 (2004).

    Article  CAS  PubMed  Google Scholar 

  185. Dhamija, S. et al. A pan-cancer analysis reveals nonstop extension mutations causing SMAD4 tumour suppressor degradation. Nat. Cell Biol. 22, 999–1010 (2020).

    Article  CAS  PubMed  Google Scholar 

  186. Senft, D., Qi, J. & Ronai, Z. A. Ubiquitin ligases in oncogenic transformation and cancer therapy. Nat. Rev. Cancer 18, 69–88 (2018).

    Article  CAS  PubMed  Google Scholar 

  187. Leach, F. S. et al. p53 mutation and MDM2 amplification in human soft tissue sarcomas. Cancer Res. 53, 2231–2234 (1993).

    CAS  PubMed  Google Scholar 

  188. Reifenberger, G., Liu, L., Ichimura, K., Schmidt, E. E. & Collins, V. P. Amplification and overexpression of the MDM2 gene in a subset of human malignant gliomas without p53 mutations. Cancer Res. 53, 2736–2739 (1993).

    CAS  PubMed  Google Scholar 

  189. Rajagopalan, H. et al. Inactivation of hCDC4 can cause chromosomal instability. Nature 428, 77–81 (2004).

    Article  CAS  PubMed  Google Scholar 

  190. Mao, J.-H. et al. Fbxw7/Cdc4 is a p53-dependent, haploinsufficient tumour suppressor gene. Nature 432, 775–779 (2004).

    Article  CAS  PubMed  Google Scholar 

  191. Chen, Z. et al. Disease-associated KBTBD4 mutations in medulloblastoma elicit neomorphic ubiquitylation activity to promote CoREST degradation. Cell Death Differ. 29, 1955–1969 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Popovic, D., Vucic, D. & Dikic, I. Ubiquitination in disease pathogenesis and treatment. Nat. Med. 20, 1242–1253 (2014).

    Article  CAS  PubMed  Google Scholar 

  193. Meyer-Schwesinger, C. The ubiquitin–proteasome system in kidney physiology and disease. Nat. Rev. Nephrol. 15, 393–411 (2019).

    Article  PubMed  Google Scholar 

  194. Rotin, D. & Kumar, S. Physiological functions of the HECT family of ubiquitin ligases. Nat. Rev. Mol. Cell Biol. 10, 398–409 (2009).

    Article  CAS  PubMed  Google Scholar 

  195. Rape, M. Ubiquitylation at the crossroads of development and disease. Nat. Rev. Mol. Cell Biol. 19, 59–70 (2018).

    Article  CAS  PubMed  Google Scholar 

  196. Zheng, Q. et al. Dysregulation of ubiquitin-proteasome system in neurodegenerative diseases. Front. Aging Neurosci. 8, 303 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  197. George, A. J., Hoffiz, Y. C., Charles, A. J., Zhu, Y. & Mabb, A. M. A comprehensive atlas of E3 ubiquitin ligase mutations in neurological disorders. Front. Genet. 9, 29 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Clausen, L. et al. A mutational atlas for parkin proteostasis. Nat. Commun. 15, 1541 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Shimura, H. et al. Ubiquitination of a new form of α-synuclein by parkin from human brain: implications for Parkinson’s disease. Science 293, 263–269 (2001).

    Article  CAS  PubMed  Google Scholar 

  200. Kitada, T. et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392, 605–608 (1998).

    Article  CAS  PubMed  Google Scholar 

  201. Lin, Z. et al. Stabilizing mutations of KLHL24 ubiquitin ligase cause loss of keratin 14 and human skin fragility. Nat. Genet. 48, 1508–1516 (2016).

    Article  PubMed  Google Scholar 

  202. Knies, K. et al. Biallelic mutations in the ubiquitin ligase RFWD3 cause Fanconi anemia. J. Clin. Investig. 127, 3013–3027 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Ahel, J. et al. Moyamoya disease factor RNF213 is a giant E3 ligase with a dynein-like core and a distinct ubiquitin-transfer mechanism. eLife 9, e56185 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Locke, M., Tinsley, C. L., Benson, M. A. & Blake, D. J. TRIM32 is an E3 ubiquitin ligase for dysbindin. Hum. Mol. Genet. 18, 2344–2358 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Frosk, P. et al. Limb-girdle muscular dystrophy type 2H associated with mutation in TRIM32, a putative E3–ubiquitin-ligase gene. Am. J. Hum. Genet. 70, 663–672 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Bodine, S. C. & Baehr, L. M. Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1. Am. J. Physiol. Endocrinol. Metab. 307, E469–E484 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Scheffner, M., Huibregtse, J. M., Vierstra, R. D. & Howley, P. M. The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 75, 495–505 (1993).

    Article  CAS  PubMed  Google Scholar 

  208. Scheffner, M., Werness, B. A., Huibregtse, J. M., Levine, A. J. & Howley, P. M. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63, 1129–1136 (1990).

    Article  CAS  PubMed  Google Scholar 

  209. Margottin, F. et al. A novel human WD protein, h-βTrCP, that interacts with HIV-1 Vpu connects CD4 to the ER degradation pathway through an F-box motif. Mol. Cell 1, 565–574 (1998).

    Article  CAS  PubMed  Google Scholar 

  210. Douglas, J. L. et al. Vpu directs the degradation of the human immunodeficiency virus restriction factor BST-2/Tetherin via a βTrCP-dependent mechanism. J. Virol. 83, 7931–7947 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Wąchalska, M. et al. The herpesvirus UL49.5 protein hijacks a cellular C-degron pathway to drive TAP transporter degradation. Proc. Natl Acad. Sci. USA 121, e2309841121 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Rohde, J. R., Breitkreutz, A., Chenal, A., Sansonetti, P. J. & Parsot, C. Type III secretion effectors of the IpaH family are E3 ubiquitin ligases. Cell Host Microbe 1, 77–83 (2007).

    Article  CAS  PubMed  Google Scholar 

  213. Singer, A. U. et al. Structure of the Shigella T3SS effector IpaH defines a new class of E3 ubiquitin ligases. Nat. Struct. Mol. Biol. 15, 1293–1301 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Zhu, Y. et al. Structure of a Shigella effector reveals a new class of ubiquitin ligases. Nat. Struct. Mol. Biol. 15, 1302–1308 (2008).

    Article  CAS  PubMed  Google Scholar 

  215. Ravid, T. & Hochstrasser, M. Diversity of degradation signals in the ubiquitin–proteasome system. Nat. Rev. Mol. Cell Biol. 9, 679–689 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Chen, X. et al. Molecular basis for arginine C-terminal degron recognition by Cul2FEM1 E3 ligase. Nat. Chem. Biol. 17, 254–262 (2021).

    Article  CAS  PubMed  Google Scholar 

  217. Manford, A. G. et al. Structural basis and regulation of the reductive stress response. Cell 184, 5375–5390.e16 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Fischer, E. S. et al. Structure of the DDB1–CRBN E3 ubiquitin ligase in complex with thalidomide. Nature 512, 49–53 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Van Nguyen, T. et al. Glutamine triggers acetylation-dependent degradation of glutamine synthetase via the thalidomide receptor cereblon. Mol. Cell 61, 809–820 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Mancias, J. D. et al. Ferritinophagy via NCOA4 is required for erythropoiesis and is regulated by iron dependent HERC2-mediated proteolysis. eLife 4, e10308 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Davey, N. E. & Morgan, D. O. Building a regulatory network with short linear sequence motifs: lessons from the degrons of the anaphase-promoting complex. Mol. Cell 64, 12–23 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Gan, W. et al. SPOP promotes ubiquitination and degradation of the ERG oncoprotein to suppress prostate cancer progression. Mol. Cell 59, 917–930 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Inuzuka, H. et al. SCFFBW7 regulates cellular apoptosis by targeting MCL1 for ubiquitylation and destruction. Nature 471, 104–109 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Wei, W., Jin, J., Schlisio, S., Harper, J. W. & Kaelin, W. G. The v-Jun point mutation allows c-Jun to escape GSK3-dependent recognition and destruction by the Fbw7 ubiquitin ligase. Cancer Cell 8, 25–33 (2005).

    Article  CAS  PubMed  Google Scholar 

  225. An, J. et al. Truncated ERG oncoproteins from TMPRSS2–ERG fusions are resistant to SPOP-mediated proteasome degradation. Mol. Cell 59, 904–916 (2015).

    Article  CAS  PubMed  Google Scholar 

  226. Ferretti, L. P. et al. Cullin3-KLHL15 ubiquitin ligase mediates CtIP protein turnover to fine-tune DNA-end resection. Nat. Commun. 7, 12628 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Langan, R. A. et al. De novo design of bioactive protein switches. Nature 572, 205–210 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Ng, A. H. et al. Modular and tunable biological feedback control using a de novo protein switch. Nature 572, 265–269 (2019).

    Article  CAS  PubMed  Google Scholar 

  229. Gao, X. J., Chong, L. S., Kim, M. S. & Elowitz, M. B. Programmable protein circuits in living cells. Science 361, 1252–1258 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Chassin, H. et al. A modular degron library for synthetic circuits in mammalian cells. Nat. Commun. 10, 2013 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  231. Santner, A. & Estelle, M. Recent advances and emerging trends in plant hormone signalling. Nature 459, 1071–1078 (2009).

    Article  CAS  PubMed  Google Scholar 

  232. Zhang, L., Ward, J. D., Cheng, Z. & Dernburg, A. F. The auxin-inducible degradation (AID) system enables versatile conditional protein depletion in C. elegans. Development 142, 4374–4384 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Yesbolatova, A. et al. The auxin-inducible degron 2 technology provides sharp degradation control in yeast, mammalian cells, and mice. Nat. Commun. 11, 5701 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Holland, A. J., Fachinetti, D., Han, J. S. & Cleveland, D. W. Inducible, reversible system for the rapid and complete degradation of proteins in mammalian cells. Proc. Natl Acad. Sci. USA 109, E3350–E3357 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Nishimura, K., Fukagawa, T., Takisawa, H., Kakimoto, T. & Kanemaki, M. An auxin-based degron system for the rapid depletion of proteins in nonplant cells. Nat. Methods 6, 917–922 (2009).

    Article  CAS  PubMed  Google Scholar 

  236. Békés, M., Langley, D. R. & Crews, C. M. PROTAC targeted protein degraders: the past is prologue. Nat. Rev. Drug Discov. 21, 181–200 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  237. Tsai, J. M., Nowak, R. P., Ebert, B. L. & Fischer, E. S. Targeted protein degradation: from mechanisms to clinic. Nat. Rev. Mol. Cell Biol. 25, 740–757 (2024).

    Article  CAS  PubMed  Google Scholar 

  238. Schneider, M. et al. The PROTACtable genome. Nat. Rev. Drug Discov. 20, 789–797 (2021).

    Article  CAS  PubMed  Google Scholar 

  239. Liu, Y. et al. Expanding PROTACtable genome universe of E3 ligases. Nat. Commun. 14, 6509 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Burroughs, A. M., Iyer, L. M. & Aravind, L. Structure and evolution of ubiquitin and ubiquitin-related domains. Methods Mol. Biol. 832, 15–63 (2012).

    Article  CAS  PubMed  Google Scholar 

  241. Battesti, A. & Gottesman, S. Roles of adaptor proteins in regulation of bacterial proteolysis. Curr. Opin. Microbiol. 16, 140–147 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Dixit, A. et al. Perturb-Seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167, 1853–1866.e17 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Replogle, J. M. et al. Mapping information-rich genotype-phenotype landscapes with genome-scale Perturb-seq. Cell 185, 2559–2575.e28 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Klein, A. M. et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187–1201 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Chaikovsky, A. C. et al. The AMBRA1 E3 ligase adaptor regulates the stability of cyclin D. Nature 592, 794–798 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Haupt, Y., Maya, R., Kazaz, A. & Oren, M. Mdm2 promotes the rapid degradation of p53. Nature 387, 296–299 (1997).

    Article  CAS  PubMed  Google Scholar 

  248. Gudjonsson, T. et al. TRIP12 and UBR5 suppress spreading of chromatin ubiquitylation at damaged chromosomes. Cell 150, 697–709 (2012).

    Article  CAS  PubMed  Google Scholar 

  249. Lafranchi, L. et al. APC/CCdh1 controls CtIP stability during the cell cycle and in response to DNA damage. EMBO J. 33, 2860–2879 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Sahasrabuddhe, A. A., Dimri, M., Bommi, P. V. & Dimri, G. P. βTrCP regulates BMI1 protein turnover via ubiquitination and degradation. Cell Cycle 10, 1322–1330 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Subramanian, A., Andronache, A., Li, Y. C. & Wade, M. Inhibition of MARCH5 ubiquitin ligase abrogates MCL1-dependent resistance to BH3 mimetics via NOXA. Oncotarget 7, 15986–16002 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  252. Marti, A., Wirbelauer, C., Scheffner, M. & Krek, W. Interaction between ubiquitin-protein ligase SCFSKP2 and E2F-1 underlies the regulation of E2F-1 degradation. Nat. Cell Biol. 1, 14–19 (1999).

    Article  CAS  PubMed  Google Scholar 

  253. Vitari, A. C. et al. COP1 is a tumour suppressor that causes degradation of ETS transcription factors. Nature 474, 403–406 (2011).

    Article  CAS  PubMed  Google Scholar 

  254. Kim, Y., Starostina, N. G. & Kipreos, E. T. The CRL4Cdt2 ubiquitin ligase targets the degradation of p21Cip1 to control replication licensing. Genes Dev. 22, 2507–2519 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Wang, Z. et al. SCF β-TRCP promotes cell growth by targeting PR-Set7/Set8 for degradation. Nat. Commun. 6, 10185 (2015).

    Article  CAS  PubMed  Google Scholar 

  256. Pineda, C. T. et al. Degradation of AMPK by a cancer-specific ubiquitin ligase. Cell 160, 715–728 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Menzies, S. A. et al. The sterol-responsive RNF145 E3 ubiquitin ligase mediates the degradation of HMG-CoA reductase together with gp78 and hrd1. eLife 7, e40009 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  258. Liu, C. C. et al. Cul3-KLHL20 ubiquitin ligase governs the turnover of ULK1 and VPS34 complexes to control autophagy termination. Mol. Cell 61, 84–97 (2016).

    Article  CAS  PubMed  Google Scholar 

  259. Ullah, K. et al. The E3 ubiquitin ligase STUB1 attenuates cell senescence by promoting the ubiquitination and degradation of the core circadian regulator BMAL1. J. Biol. Chem. 295, 4696–4708 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Zhu, H. et al. SPOP E3 ubiquitin ligase adaptor promotes cellular senescence by degrading the SENP7 deSUMOylase. Cell Rep. 13, 1183–1193 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Johmura, Y. et al. SCF Fbxo22-KDM4A targets methylated p53 for degradation and regulates senescence. Nat. Commun. 7, 10574 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Cao, Y. & Zhang, L. A Smurf1 tale: function and regulation of an ubiquitin ligase in multiple cellular networks. Cell. Mol. Life Sci. 70, 2305–2317 (2013).

    Article  CAS  PubMed  Google Scholar 

  263. Gupta-Rossi, N. et al. Functional interaction between SEL-10, an F-box protein, and the nuclear form of activated Notch1 receptor. J. Biol. Chem. 276, 34371–34378 (2001).

    Article  CAS  PubMed  Google Scholar 

  264. Zhang, Y. et al. DCAF 13 promotes pluripotency by negatively regulating SUV 39H1 stability during early embryonic development. EMBO J. 37, e98981 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  265. Schwamborn, J. C., Berezikov, E. & Knoblich, J. A. The TRIM-NHL protein TRIM32 activates MicroRNAs and prevents self-renewal in mouse neural progenitors. Cell 136, 913–925 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Urbán, N. et al. Return to quiescence of mouse neural stem cells by degradation of a proactivation protein. Science 353, 292–295 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  267. Spencer, E., Jiang, J. & Chen, Z. J. Signal-induced ubiquitination of IκBα by the F-box protein Slimb/β-TrCP. Genes. Dev. 13, 284–94 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Zhong, B. et al. The ubiquitin ligase RNF5 regulates antiviral responses by mediating degradation of the adaptor protein MITA. Immunity 30, 284–294 (2009).

    Article  Google Scholar 

  269. Sun, A. X. et al. Potassium channel dysfunction in human neuronal models of Angelman syndrome. Science 366, 1486–1492 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Chung, K. K. K. et al. Parkin ubiquitinates the α-synuclein-interacting protein, synphilin-1: implications for Lewy-body formation in Parkinson disease. Nat. Med. 7, 1144–1150 (2001).

    Article  CAS  PubMed  Google Scholar 

  271. Wang, X. et al. NEDD4-1 is a proto-oncogenic ubiquitin ligase for PTEN. Cell 128, 129–139 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Maxwell, P. H. et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399, 271–275 (1999).

    Article  CAS  PubMed  Google Scholar 

  273. McMahon, M., Itoh, K., Yamamoto, M. & Hayes, J. D. Keap1-dependent proteasomal degradation of transcription factor Nrf2 contributes to the negative regulation of antioxidant response element-driven gene expression. J. Biol. Chem. 278, 21592–21600 (2003).

    Article  CAS  PubMed  Google Scholar 

  274. Manford, A. G. et al. A cellular mechanism to detect and alleviate reductive stress. Cell 183, 46–61.e21 (2020).

    Article  CAS  PubMed  Google Scholar 

  275. Evans, R. et al. Protein complex prediction with AlphaFold-multimer. Preprint at bioRxiv https://doi.org/10.1101/2021.10.04.463034 (2022).

  276. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Watson, J. L. et al. De novo design of protein structure and function with RFdiffusion. Nature 620, 1089–1100 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Mashahreh, B. et al. Conserved degronome features governing quality control associated proteolysis. Nat. Commun. 13, 7588 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Khmelinskii, A. et al. Tandem fluorescent protein timers for in vivo analysis of protein dynamics. Nat. Biotechnol. 30, 708–714 (2012).

    Article  CAS  PubMed  Google Scholar 

  280. Maurer, M. J. et al. Degradation signals for ubiquitin-proteasome dependent cytosolic protein quality control (CytoQC) in yeast. G3 6, 1853–1866 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank W. Xu (Harvard), C. Woo (Harvard), E. Shrock and C. Nardone (Harvard Medical School) and members of the Elledge lab for helpful suggestions. Z.Z. is a Croucher Ph.D. Scholar. E.L.M. is supported by a US National Institutes of Health (NIH) K99 award (no. K99AG081456). R.T.T. is a Pemberton-Trinity Fellow and is supported by the European Research Council (ERC-2024-STG 101160971). I.K. is supported by the European Research Council (ERC-2020-STG 947709), the Israel Science Foundation (ISF grant nos. 2380/21 and 3096/21) and the United States–Israel Binational Science Foundation (grant no. 2021029). This work was supported by NIH Aging grant no. AG11085 (to S.J.E.). S.J.E. is a member of the Ludwig Center at Harvard and an Investigator with the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

Z.Z., I.K., R.T.T. and E.L.M. wrote the manuscript, supervised by S.J.E. Z.Z. and I.K. prepared the figures with input from S.J.E. All authors discussed, reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Richard T. Timms, Itay Koren or Stephen J. Elledge.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks Peter Kaiser and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Chaperone

A class of proteins that promote folding, assembly, or disassembly of other proteins. They help prevent misfolding and aggregation, especially under stress conditions. In certain contexts, they can promote the degradation of aberrant substrates by recruiting E3s.

C-terminome stability profiling

A systems biology approach to assess the influence of C-terminal sequences on protein stability.

Global protein stability (GPS)–peptidome system

An adaptation of the GPS platform that focuses on measuring the degradation profiles of short peptide sequences to identify degron motifs.

GPS

(Global protein stability). A reporter-based genetic screening method for quantifying the relative stabilities of thousands of proteins in mammalian cells by generating GFP-fusion lentiviral libraries.

GPT-4

A large language model developed by OpenAI, designed to perform advanced natural language processing and reasoning tasks. GPT-4 can synthesize information, extract structured knowledge from unstructured text and assist in the automated curation of biological data, offering new possibilities for accelerating discovery in life sciences.

Immediate early gene

Immediate early genes encode transcription factors from the Fos, EGR and NR4A families. Although the proteins encoded are rapidly and consistently activated across nearly all mammalian cell types, they drive the expression of late-response genes in a cell-type-specific manner, shaping the appropriate response to the initial stimulus.

Molecular degraders

Small molecules that induce selective degradation of target proteins by recruiting them to an E3.

p97 AAA ATPase

A hexameric ATPase that extracts ubiquitinated substrates from membranes or complexes for proteasomal degradation.

Proteasome

The proteasome is a large protein complex responsible for degrading unwanted or damaged proteins tagged with ubiquitin, maintaining protein quality and regulating cellular processes. It consists of a 20S core particle, which carries out proteolysis, and one or two 19S regulatory particles that recognize ubiquitinated proteins, unfold them and feed them into the 20S core for degradation.

Ribosome quality control

A surveillance pathway that detects and resolves stalled ribosomes. It ensures the degradation of incomplete nascent polypeptides and the recycling of ribosomal subunits to maintain translation fidelity and protein homeostasis.

Thalidomide class of drugs

Immunomodulatory imide drugs, including thalidomide, lenalidomide and pomalidomide, act as molecular glues by promoting neosubstrate recognition by the CUL4CRBN E3 complex.

Ubiquilin

A family of ubiquitin-like (Ubl) and ubiquitin-associated (Uba) domain-containing adaptor proteins that can target proteins to the proteasome for both ubiquitin-dependent and ubiquitin-independent degradation.

Ubiquitin-like (Ubl) domain

Ubiquitin-like (Ubl) domains are protein domains that share structural similarity with ubiquitin. Small proteins such as SUMO, NEDD8 and FAT10 are composed mainly of a Ubl domain and can be covalently conjugated to target proteins, thereby modifying their stability, activity or localization; larger proteins such as the ubiquilins contain a Ubl domain in addition to other protein domains, with the Ubl domain thought to enable interactions with the proteasome or other cellular machinery.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Mena, E.L., Timms, R.T. et al. Degrons: defining the rules of protein degradation. Nat Rev Mol Cell Biol (2025). https://doi.org/10.1038/s41580-025-00870-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41580-025-00870-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing