Abstract
Heart development has been extensively explored on the anatomical, cellular and molecular levels. Yet, the intricate interplay of tissue organization, cellular lineages and molecular factors that orchestrate heart development, culminating in forming a seamlessly synchronized functional heart, remains challenging to investigate. Mechanistic studies conducted both in vivo using animal models and in vitro stem-cell-derived systems aim to unravel this complexity. In this Review, we discuss how the recent surge in technological advancements in imaging and genomics, coupled with the evolution of next-generation cardiac organoid models, has provided profound insights into these processes, holding significant implications for the development of novel therapies for congenital or acquired heart diseases. We discuss the development of the heart as the first functional organ — from the morphogenesis of the mesoderm, heart tube and cardiac chambers to the establishment of the initial heartbeat and pacemaker and further how morphogenesis and function collaboratively drive heart maturation.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
References
Kanemaru, K. et al. Spatially resolved multiomics of human cardiac niches. Nature 619, 801–810 (2023).
Meilhac, S. M. & Buckingham, M. E. The deployment of cell lineages that form the mammalian heart. Nat. Rev. Cardiol. 15, 705–724 (2018).
Andrews, T. G. R. & Priya, R. The mechanics of building functional organs. Cold Spring Harb. Perspect. Biol. https://doi.org/10.1101/cshperspect.a041520 (2024).
Karbassi, E. et al. Cardiomyocyte maturation: advances in knowledge and implications for regenerative medicine. Nat. Rev. Cardiol. 36, 1–19 (2020).
Groen, E., Mummery, C. L., Yiangou, L. & Davis, R. P. Three-dimensional cardiac models: a pre-clinical testing platform. Biochem. Soc. Trans. https://doi.org/10.1042/BST20230444 (2024).
Garcia-Martinez, V. & Schoenwolf, G. C. Primitive-streak origin of the cardiovascular system in avian embryos. Dev. Biol. 159, 706–719 (1993).
Keegan, B. R., Meyer, D. & Yelon, D. Organization of cardiac chamber progenitors in the zebrafish blastula. Dev. Camb. Engl. 131, 3081–3091 (2004).
Rosenquist, G. C. Location and movements of cardiogenic cells in the chick embryo: the heart-forming portion of the primitive streak. Dev. Biol. 22, 461–475 (1970).
Stainier, D. Y., Lee, R. K. & Fishman, M. C. Cardiovascular development in the zebrafish. I. Myocardial fate map and heart tube formation. Dev. Camb. Engl. 119, 31–40 (1993).
Ivanovitch, K. et al. Ventricular, atrial, and outflow tract heart progenitors arise from spatially and molecularly distinct regions of the primitive streak. PLoS Biol. 19, e3001200 (2021).
Lawson, K. A., Meneses, J. J. & Pedersen, R. A. Clonal analysis of epiblast fate during germ layer formation in the mouse embryo. Development 113, 891–911 (1991).
Tam, P. P., Parameswaran, M., Kinder, S. J. & Weinberger, R. P. The allocation of epiblast cells to the embryonic heart and other mesodermal lineages: the role of ingression and tissue movement during gastrulation. Development 124, 1631–1642 (1997).
Costello, I. et al. The T-box transcription factor Eomesodermin acts upstream of Mesp1 to specify cardiac mesoderm during mouse gastrulation. Nat. Cell Biol. 13, 1084–1091 (2011).
Arnold, S. J., Hofmann, U. K., Bikoff, E. K. & Robertson, E. J. Pivotal roles for eomesodermin during axis formation, epithelium-to-mesenchyme transition and endoderm specification in the mouse. Dev. Camb. Engl. 135, 501–511 (2008).
Meilhac, S. M., Esner, M., Kelly, R. G., Nicolas, J.-F. & Buckingham, M. E. The clonal origin of myocardial cells in different regions of the embryonic mouse heart. Dev. Cell 6, 685–698 (2004).
Devine, W. P., Wythe, J. D., George, M., Koshiba-Takeuchi, K. & Bruneau, B. G. Early patterning and specification of cardiac progenitors in gastrulating mesoderm. eLife 3, e03848 (2014).
Lescroart, F. et al. Early lineage restriction in temporally distinct populations of Mesp1 progenitors during mammalian heart development. Nat. Cell Biol. 16, 829–840 (2014).
Lescroart, F. et al. Defining the earliest step of cardiovascular lineage segregation by single-cell RNA-seq. Science 359, 1177–1181 (2018).
Kelly, R. G., Buckingham, M. E. & Moorman, A. F. Heart fields and cardiac morphogenesis. Cold Spring Harb. Perspect. Med. 4, a015750 (2014).
Bardot, E. et al. Foxa2 identifies a cardiac progenitor population with ventricular differentiation potential. Nat. Commun. 8, 14428 (2017).
Tyser, R. C. V. et al. Characterization of a common progenitor pool of the epicardium and myocardium. Science 371, eabb2986 (2021).
Zhang, Q. et al. Unveiling complexity and multipotentiality of early heart fields. Circ. Res. 129, 474–487 (2021).
Lescroart, F. & Zaffran, S. Single cell approaches to understand the earliest steps in heart development. Curr. Cardiol. Rep. 24, 611–621 (2022).
Sendra, M. et al. Myocardium and endocardium of the early mammalian heart tube arise from independent multipotent lineages specified at the primitive streak. Dev. Cell https://doi.org/10.1016/j.devcel.2025.05.002 (2025).
Abukar, S. et al. Early coordination of cell migration and cardiac fate determination during mammalian gastrulation. EMBO J. 44, 3327–3359 (2025).
Dominguez, M. H., Krup, A. L., Muncie, J. M. & Bruneau, B. G. Graded mesoderm assembly governs cell fate and morphogenesis of the early mammalian heart. Cell 186, 479–496.e23 (2023).
Mendjan, S. et al. NANOG and CDX2 pattern distinct subtypes of human mesoderm during exit from pluripotency. Cell Stem Cell 15, 310–325 (2014).
Loh, K. M. et al. Mapping the pairwise choices leading from pluripotency to human bone, heart, and other mesoderm cell types. Cell 166, 451–467 (2016).
Rao, J. et al. Stepwise clearance of repressive roadblocks drives cardiac induction in human ESCs. Cell Stem Cell 18, 341–353 (2016).
Lee, J. H., Protze, S. I., Laksman, Z., Backx, P. H. & Keller, G. M. Human pluripotent stem cell-derived atrial and ventricular cardiomyocytes develop from distinct mesoderm populations. Cell Stem Cell 21, 179–194.e4 (2017).
Saga, Y. et al. MesP1 is expressed in the heart precursor cells and required for the formation of a single heart tube. Development 126, 3437–3447 (1999).
Protze, S. I. et al. Sinoatrial node cardiomyocytes derived from human pluripotent cells function as a biological pacemaker. Nat. Biotechnol. 35, 56–68 (2017).
Hofbauer, P. et al. Cardioids reveal self-organizing principles of human cardiogenesis. Cell 184, 3299–3317.e22 (2021).
Schmidt, C. et al. Multi-chamber cardioids unravel human heart development and cardiac defects. Cell 186, 5587–5605.e27 (2023).
Drakhlis, L. et al. Human heart-forming organoids recapitulate early heart and foregut development. Nat. Biotechnol. 39, 737–746 (2021).
Lewis-Israeli, Y. R. et al. Self-assembling human heart organoids for the modeling of cardiac development and congenital heart disease. Nat. Commun. 12, 5142 (2021).
Silva, A. C. et al. Co-emergence of cardiac and gut tissues promotes cardiomyocyte maturation within human iPSC-derived organoids. Cell Stem Cell 28, 2137–2152.e6 (2021).
Miyamoto, M. et al. Cardiac progenitors instruct second heart field fate through Wnts. Proc. Natl Acad. Sci. USA 120, e2217687120 (2023).
Devalla, H. D. et al. Atrial-like cardiomyocytes from human pluripotent stem cells are a robust preclinical model for assessing atrial-selective pharmacology. EMBO Mol. Med. 7, 394–410 (2015).
Firulli, A. B., McFadden, D. G., Lin, Q., Srivastava, D. & Olson, E. N. Heart and extra-embryonic mesodermal defects in mouse embryos lacking the bHLH transcription factor Hand1. Nat. Genet. 18, 266–270 (1998).
Anderson, D. J. et al. NKX2–5 regulates human cardiomyogenesis via a HEY2 dependent transcriptional network. Nat. Commun. 9, 1373 (2018).
Trinh, L. A., Yelon, D. & Stainier, D. Y. R. Hand2 regulates epithelial formation during myocardial diferentiation. Curr. Biol. 15, 441–446 (2005).
Linask, K. K. N-cadherin localization in early heart development and polar expression of Na+, K(+)-ATPase, and integrin during pericardial coelom formation and epithelialization of the differentiating myocardium. Dev. Biol. 151, 213–224 (1992).
Holtzman, N. G., Schoenebeck, J. J., Tsai, H.-J. & Yelon, D. Endocardium is necessary for cardiomyocyte movement during heart tube assembly. Dev. Camb. Engl. 134, 2379–2386 (2007).
Ivanovitch, K., Temiño, S. & Torres, M. Live imaging of heart tube development in mouse reveals alternating phases of cardiac differentiation and morphogenesis. eLife 6, 281 (2017).
Ye, D., Xie, H., Hu, B. & Lin, F. Endoderm convergence controls subduction of the myocardial precursors during heart-tube formation. Dev. Camb. Engl. 142, 2928–2940 (2015).
Bloomekatz, J. et al. Platelet-derived growth factor (PDGF) signaling directs cardiomyocyte movement toward the midline during heart tube assembly. eLife 6, e21172 (2017).
Shrestha, R. et al. The myocardium utilizes a platelet-derived growth factor receptor alpha (Pdgfra)-phosphoinositide 3-kinase (PI3K) signaling cascade to steer toward the midline during zebrafish heart tube formation. eLife 12, e85930 (2023).
Ye, D. & Lin, F. S1pr2/Gα13 signaling controls myocardial migration by regulating endoderm convergence. Dev. Camb. Engl. 140, 789–799 (2013).
Varner, V. D. & Taber, L. A. Not just inductive: a crucial mechanical role for the endoderm during heart tube assembly. Dev. Camb. Engl. 139, 1680–1690 (2012).
Aleksandrova, A. et al. The endoderm and myocardium join forces to drive early heart tube assembly. Dev. Biol. 404, 40–54 (2015).
Palmquist-Gomes, P. & Meilhac, S. M. Shaping the mouse heart tube from the second heart field epithelium. Curr. Opin. Genet. Dev. 73, 101896 (2022).
Desgrange, A., Le Garrec, J.-F. & Meilhac, S. M. Left–right asymmetry in heart development and disease: forming the right loop. Dev. Camb. Engl. 145, dev162776 (2018).
Francou, A. & Kelly, R. G. in Etiology and Morphogenesis of Congenital Heart Disease: From Gene Function and Cellular Interaction to Morphology (eds Nakanishi, T. et al.) (Springer, 2016).
Knight, H. G. & Yelon, D. in Etiology and Morphogenesis of Congenital Heart Disease: From Gene Function and Cellular Interaction to Morphology (eds Nakanishi, T. et al.) (Springer, 2016).
Rowton, M., Guzzetta, A., Rydeen, A. B. & Moskowitz, I. P. Control of cardiomyocyte differentiation timing by intercellular signaling pathways. Semin. Cell Dev. Biol. 118, 94–106 (2021).
Rochais, F., Mesbah, K. & Kelly, R. G. Signaling pathways controlling second heart field development. Circ. Res. 104, 933–942 (2009).
Smith, K. A. & Uribe, V. Getting to the heart of left–right asymmetry: contributions from the zebrafish model. J. Cardiovasc. Dev. Dis. 8, 64 (2021).
Sidhwani, P. & Yelon, D. Fluid forces shape the embryonic heart: insights from zebrafish. Curr. Top. Dev. Biol. 132, 395–416 (2019).
Desgrange, A., Le Garrec, J.-F., Bernheim, S., Bønnelykke, T. H. & Meilhac, S. M. Transient nodal signaling in left precursors coordinates opposed asymmetries shaping the heart loop. Dev. Cell 55, 413–431.e6 (2020).
Le Garrec, J.-F. et al. A predictive model of asymmetric morphogenesis from 3D reconstructions of mouse heart looping dynamics. eLife 6, e28951 (2017).
Auman, H. J. et al. Functional modulation of cardiac form through regionally confined cell shape changes. PLoS Biol. 5, e53 (2007).
Noël, E. S. et al. A nodal-independent and tissue-intrinsic mechanism controls heart-looping chirality. Nat. Commun. 4, 2754 (2013).
Branco, M. A., Dias, T. P., Cabral, J. M. S., Pinto-do-Ó, P. & Diogo, M. M. Human multilineage pro-epicardium/foregut organoids support the development of an epicardium/myocardium organoid. Nat. Commun. 13, 6981 (2022).
Lassar, A. B., Marvin, M. J., Di Rocco, G., Gardiner, A. & Bush, S. M. Inhibition of Wnt activity induces heart formation from posterior mesoderm. 15, 316–327 (2001).
Mummery, C. et al. Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation 107, 2733–2740 (2003).
Dardano, M. et al. Blood-generating heart-forming organoids recapitulate co-development of the human haematopoietic system and the embryonic heart. Nat. Cell Biol. https://doi.org/10.1038/s41556-024-01526-4 (2024).
Linask, K. K. Regulation of heart morphology: current molecular and cellular perspectives on the coordinated emergence of cardiac form and function. Birth Defects Res. Part C Embryo Today Rev. 69, 14–24 (2003).
DeHaan, R. L. Cardia bifida and the development of pacemaker function in the early chick heart. Dev. Biol. 1, 586–602 (1959).
Olson, E. N., Molkentin, J. D., Lin, Q. & Duncan, S. A. Requirement of the transcription factor GATA4 for heart tube formation and ventral morphogenesis. Genes Dev. 11, 1061–1072 (1997).
Li, S., Zhou, D., Lu, M. M. & Morrisey, E. E. Advanced cardiac morphogenesis does not require heart tube fusion. Science 305, 1619–1622 (2004).
Rossi, G. et al. Capturing cardiogenesis in gastruloids. Cell Stem Cell https://doi.org/10.1016/j.stem.2020.10.013 (2020).
Lau, K. Y. C. et al. Mouse embryo model derived exclusively from embryonic stem cells undergoes neurulation and heart development. Cell Stem Cell https://doi.org/10.1016/j.stem.2022.08.013 (2022).
Weatherbee, B. A. T. et al. Pluripotent stem cell-derived model of the post-implantation human embryo. Nature 622, 584–593 (2023).
Jia, B. Z., Qi, Y., Wong-Campos, J. D., Megason, S. G. & Cohen, A. E. A bioelectrical phase transition patterns the first vertebrate heartbeats. Nature 622, 149–155 (2023).
Tyser, R. C. et al. Calcium handling precedes cardiac differentiation to initiate the first heartbeat. eLife 5, 454 (2016).
Henley, T. et al. Local tissue mechanics control cardiac pacemaker cell embryonic patterning. Life Sci. Alliance 6, e202201799 (2023).
Tyser, R. C. V. & Srinivas, S. The first heartbeat-origin of cardiac contractile activity. Cold Spring Harb. Perspect. Biol. https://doi.org/10.1101/cshperspect.a037135 (2019).
Ypey, D. L., Clapham, D. E. & DeHaan, R. L. Development of electrical coupling and action potential synchrony between paired aggregates of embryonic heart cells. J. Membr. Biol. 51, 75–96 (1979).
Hayashi, T., Tokihiro, T., Kurihara, H. & Yasuda, K. Community effect of cardiomyocytes in beating rhythms is determined by stable cells. Sci. Rep. 7, 15450 (2017).
Kojima, K., Kaneko, T. & Yasuda, K. Role of the community effect of cardiomyocyte in the entrainment and reestablishment of stable beating rhythms. Biochem. Biophys. Res. Commun. 351, 209–215 (2006).
Nakano, K., Nanri, N., Tsukamoto, Y. & Akashi, M. Mechanical activities of self-beating cardiomyocyte aggregates under mechanical compression. Sci. Rep. 11, 15159 (2021).
Chiou, K. K. et al. Mechanical signaling coordinates the embryonic heartbeat. Proc. Natl Acad. Sci. USA 113, 8939–8944 (2016).
Körner, A., Mosqueira, M., Hecker, M. & Ullrich, N. D. Substrate stiffness influences structural and functional remodeling in induced pluripotent stem cell-derived cardiomyocytes. Front. Physiol. 12, 710619 (2021).
Chuck, E. T., Freeman, D. M., Watanabe, M. & Rosenbaum, D. S. Changing activation sequence in the embryonic chick heart. Implications for the development of the His-Purkinje system. Circ. Res. 81, 470–476 (1997).
Kamino, K., Hirota, A. & Fujii, S. Localization of pacemaking activity in early embryonic heart monitored using voltage-sensitive dye. Nature 290, 595–597 (1981).
Bressan, M., Liu, G. & Mikawa, T. Early mesodermal cues assign avian cardiac pacemaker fate potential in a tertiary heart field. Science 340, 744–748 (2013).
Chen, F. et al. Atrioventricular conduction and arrhythmias at the initiation of beating in embryonic mouse hearts. Dev. Dyn. Publ. Am. Assoc. Anat. 239, 1941–1949 (2010).
Mosimann, C. et al. Chamber identity programs drive early functional partitioning of the heart. Nat. Commun. 6, 8146 (2015).
de Jong, F. et al. Persisting zones of slow impulse conduction in developing chicken hearts. Circ. Res. 71, 240–250 (1992).
Han, B., Trew, M. L. & Zgierski-Johnston, C. M. Cardiac conduction velocity, remodeling and arrhythmogenesis. Cells 10, 2923 (2021).
Lin, Z. et al. Tissue-embedded stretchable nanoelectronics reveal endothelial cell-mediated electrical maturation of human 3D cardiac microtissues. Sci. Adv. 9, eade8513 (2023).
Ye, C. et al. Canonical Wnt signaling directs the generation of functional human PSC-derived atrioventricular canal cardiomyocytes in bioprinted cardiac tissues. Cell Stem Cell 31, 398–409.e5 (2024).
Ren, J. et al. Canonical Wnt5b signaling directs outlying Nkx2.5+ mesoderm into pacemaker cardiomyocytes. Dev. Cell https://doi.org/10.1016/j.devcel.2019.07.014 (2019).
Boulgakoff, L., D’Amato, G. & Miquerol, L. Molecular regulation of cardiac conduction system development. Curr. Cardiol. Rep. 26, 943–952 (2024).
van Eif, V. W. W., Devalla, H. D., Boink, G. J. J. & Christoffels, V. M. Transcriptional regulation of the cardiac conduction system. Nat. Rev. Cardiol. 15, 617–630 (2018).
van der Maarel, L. E., Postma, A. V. & Christoffels, V. M. Genetics of sinoatrial node function and heart rate disorders. Dis. Model Mech. 16, dmm050101 (2023).
Thomas, K. et al. Adherens junction engagement regulates functional patterning of the cardiac pacemaker cell lineage. Dev. Cell 56, 1498–1511.e7 (2021).
Yechikov, S. et al. NODAL inhibition promotes differentiation of pacemaker-like cardiomyocytes from human induced pluripotent stem cells. Stem Cell Res. 49, 102043 (2020).
Hou, X. et al. Chemically defined and small molecules-based generation of sinoatrial node-like cells. Stem Cell Res. Ther. 13, 158 (2022).
Wang, F. et al. The method of sinus node-like pacemaker cells from human induced pluripotent stem cells by BMP and Wnt signaling. Cell Biol. Toxicol. 39, 2725–2741 (2023).
Liu, F. et al. Enrichment differentiation of human induced pluripotent stem cells into sinoatrial node-like cells by combined modulation of BMP, FGF, and RA signaling pathways. Stem Cell Res. Ther. 11, 284 (2020).
Li, J. et al. Modeling the atrioventricular conduction axis using human pluripotent stem cell-derived cardiac assembloids. Cell Stem Cell https://doi.org/10.1016/j.stem.2024.08.008 (2024).
Sun, Y.-H. et al. The sinoatrial node extracellular matrix promotes pacemaker phenotype and protects automaticity in engineered heart tissues from cyclic strain. Cell Rep. 42, 113505 (2023).
O’Donnell, A. & Yutzey, K. E. Mechanisms of heart valve development and disease. Dev. Camb. Engl. 147, dev183020 (2020).
Gunawan, F., Priya, R. & Stainier, D. Y. R. Sculpting the heart: cellular mechanisms shaping valves and trabeculae. Curr. Opin. Cell Biol. 73, 26–34 (2021).
Fukui, H., Chow, R. W.-Y., Yap, C. H. & Vermot, J. Rhythmic forces shaping the zebrafish cardiac system. Trends Cell Biol. 35, 166–176 (2025).
Vignes, H. et al. Extracellular mechanical forces drive endocardial cell volume decrease during zebrafish cardiac valve morphogenesis. Dev. Cell 57, 598–609.e5 (2022).
Chow, R. W.-Y. et al. Cardiac forces regulate zebrafish heart valve delamination by modulating Nfat signaling. PLoS Biol. 20, e3001505 (2022).
Vermot, J. et al. Reversing blood flows act through klf2a to ensure normal valvulogenesis in the developing heart. PLoS Biol. 7, e1000246 (2009).
Beis, D. et al. Genetic and cellular analyses of zebrafish atrioventricular cushion and valve development. Dev. Camb. Engl. 132, 4193–4204 (2005).
Bartman, T. et al. Early myocardial function affects endocardial cushion development in zebrafish. PLoS Biol. 2, E129 (2004).
Hove, J. R. et al. Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature 421, 172–177 (2003).
Sedmera, D., Pexieder, T., Rychterova, V., Hu, N. & Clark, E. B. Remodeling of chick embryonic ventricular myoarchitecture under experimentally changed loading conditions. Anat. Rec. 254, 238–252 (1999).
da Silva, A. R. et al. egr3 is a mechanosensitive transcription factor gene required for cardiac valve morphogenesis. Sci. Adv. 10, eadl0633 (2024).
Juan, T. et al. Multiple pkd and piezo gene family members are required for atrioventricular valve formation. Nat. Commun. 14, 214 (2023).
Fukui, H. et al. Bioelectric signaling and the control of cardiac cell identity in response to mechanical forces. Science 374, 351–354 (2021).
Goddard, L. M. et al. Hemodynamic forces sculpt developing heart valves through a KLF2-WNT9B paracrine signaling axis. Dev. Cell 43, 274–289.e5 (2017).
Heckel, E. et al. Oscillatory flow modulates mechanosensitive klf2a expression through trpv4 and trpp2 during heart valve development. Curr. Biol. CB 25, 1354–1361 (2015).
Mikryukov, A. A. et al. BMP10 signaling promotes the development of endocardial cells from human pluripotent stem cell-derived cardiovascular progenitors. Cell Stem Cell 28, 96–111.e7 (2021).
Neri, T. et al. Human pre-valvular endocardial cells derived from pluripotent stem cells recapitulate cardiac pathophysiological valvulogenesis. Nat. Commun. 10, 1929 (2019).
Cai, Z. et al. Directed differentiation of human induced pluripotent stem cells to heart valve cells. Circulation 149, 1435–1456 (2024).
Shen, M. & Wu, J. C. Empowering valvular heart disease research with stem cell-derived valve cells. Circulation 149, 1457–1460 (2024).
Andrés-Delgado, L. & Mercader, N. Interplay between cardiac function and heart development. Biochim. Biophys. Acta 1863, 1707–1716 (2016).
Simões, F. C. & Riley, P. R. The ontogeny, activation and function of the epicardium during heart development and regeneration. Dev. Camb. Engl. 145, dev155994 (2018).
Andres-Delgado, L. et al. Actomyosin dynamics, Bmp and Notch signaling pathways drive apical extrusion of proepicardial cells. https://doi.org/10.1101/332593 (2018).
Peralta, M. et al. Heartbeat-driven pericardiac fluid forces contribute to epicardium morphogenesis. Curr. Biol. 23, 1726–1735 (2013).
Guadix, J. A. et al. Human pluripotent stem cell differentiation into functional epicardial progenitor cells. Stem Cell Rep. 9, 1754–1764 (2017).
Cheung, C., Bernardo, A. S., Trotter, M. W. B., Pedersen, R. A. & Sinha, S. Generation of human vascular smooth muscle subtypes provides insight into embryological origin-dependent disease susceptibility. Nat. Biotechnol. 30, 165–175 (2012).
Meier, A. B. et al. Epicardioid single-cell genomics uncovers principles of human epicardium biology in heart development and disease. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01718-7 (2023).
Moorman, A. F. M. & Christoffels, V. M. Cardiac chamber formation: development, genes, and evolution. Physiol. Rev. 83, 1223–1267 (2003).
Priya, R. et al. Tension heterogeneity directs form and fate to pattern the myocardial wall. Nature 588, 130–134 (2020).
Yue, Y. et al. Long-term, in toto live imaging of cardiomyocyte behaviour during mouse ventricle chamber formation at single-cell resolution. Nat. Cell Biol. 22, 332–340 (2020).
Jimenez-Amilburu, V. et al. In vivo visualization of cardiomyocyte apicobasal polarity reveals epithelial to mesenchymal-like transition during cardiac trabeculation. Cell Rep. 17, 2687–2699 (2016).
Staudt, D. W. et al. High-resolution imaging of cardiomyocyte behavior reveals two distinct steps in ventricular trabeculation. Dev. Camb. Engl. 141, 585–593 (2014).
del Monte-Nieto, G. et al. Control of cardiac jelly dynamics by NOTCH1 and NRG1 defines the building plan for trabeculation. Nature 557, 439–445 (2018).
Vignes, H., Vagena-Pantoula, C. & Vermot, J. Mechanical control of tissue shape: cell-extrinsic and -intrinsic mechanisms join forces to regulate morphogenesis. Semin. Cell Dev. Biol. 130, 45–55 (2022).
Quijada, P., Trembley, M. A. & Small, E. M. The role of the epicardium during heart development and repair. Circ. Res. 126, 377–394 (2020).
Funakoshi, S. et al. Generation of mature compact ventricular cardiomyocytes from human pluripotent stem cells. Nat. Commun. 12, 3155 (2021).
Ong, L. P. et al. Epicardially secreted fibronectin drives cardiomyocyte maturation in 3D-engineered heart tissues. Stem Cell Rep. 18, 936–951 (2023).
Tan, J. J. et al. Human iPS-derived pre-epicardial cells direct cardiomyocyte aggregation expansion and organization in vitro. Nat. Commun. 12, 4997 (2021).
Giacomelli, E. et al. Human-iPSC-derived cardiac stromal cells enhance maturation in 3D cardiac microtissues and reveal non-cardiomyocyte contributions to heart disease. Cell Stem Cell 26, 862–879.e11 (2020).
Voges, H. K. et al. Vascular cells improve functionality of human cardiac organoids. Cell Rep. 42, 112322 (2023).
Hamidzada, H. et al. Primitive macrophages induce sarcomeric maturation and functional enhancement of developing human cardiac microtissues via efferocytic pathways. Nat. Cardiovasc. Res. https://doi.org/10.1038/s44161-024-00471-7 (2024).
Lock, R. I. et al. Macrophages enhance contractile force in iPSC-derived human engineered cardiac tissue. Cell Rep. 43, 114302 (2024).
Landau, S. et al. Primitive macrophages enable long-term vascularization of human heart-on-a-chip platforms. Cell Stem Cell 31, 1222–1238.e10 (2024).
Garay, B. I. et al. Dual inhibition of MAPK and PI3K/AKT pathways enhances maturation of human iPSC-derived cardiomyocytes. Stem Cell Rep. https://doi.org/10.1016/j.stemcr.2022.07.003 (2022).
Feyen, D. A. M. et al. Metabolic maturation media improve physiological function of human iPSC-derived cardiomyocytes. Cell Rep. 32, 107925 (2020).
Brassard, J. A. & Lutolf, M. P. Engineering stem cell self-organization to build better organoids. Cell Stem Cell 24, 860–876 (2019).
Gjorevski, N. et al. Tissue geometry drives deterministic organoid patterning. Science https://doi.org/10.1126/science.aaw9021 (2022).
Nikolaev, M. et al. Homeostatic mini-intestines through scaffold-guided organoid morphogenesis. Nature 585, 574–578 (2020).
Lorenzo-Martín, L. F. et al. Spatiotemporally resolved colorectal oncogenesis in mini-colons ex vivo. Nature 629, 450–457 (2024).
Lewis, J. et al. Developmental and stem cell biology’s bright future. Cell 187, 3224–3228 (2024).
Kuo, C. T. et al. GATA4 transcription factor is required for ventral morphogenesis and heart tube formation. Genes Dev. 11, 1048–1060 (1997).
Lian, X. et al. Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc. Natl Acad. Sci. USA 109, E1848–E1857 (2012).
Burridge, P. W. et al. Chemically defined generation of human cardiomyocytes. Nat. Methods 11, 855–860 (2014).
Palpant, N. J. et al. Generating high-purity cardiac and endothelial derivatives from patterned mesoderm using human pluripotent stem cells. Nat. Protoc. 12, 15–31 (2017).
Orlova, V. V. et al. Generation, expansion and functional analysis of endothelial cells and pericytes derived from human pluripotent stem cells. Nat. Protoc. 9, 1514–1531 (2014).
Iyer, D. et al. Robust derivation of epicardium and its differentiated smooth muscle cell progeny from human pluripotent stem cells. Development 142, 1528–1541 (2015).
Murry, C. E., Keller, G. & Murry, C. E. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132, 661–680 (2008).
Ogle, B. M. et al. Distilling complexity to advance cardiac tissue engineering. Sci. Transl. Med. 8, 342ps13 (2016).
Eschenhagen, T. & Zimmermann, W. H. Engineering myocardial tissue. Circ. Res. 97, 1220–1231 (2005).
Tiburcy, M. et al. Defined engineered human myocardium with advanced maturation for applications in heart failure modeling and repair. Circulation 135, 1832–1847 (2017).
Abilez, O. J. et al. Gastruloids enable modeling of the earliest stages of human cardiac and hepatic vascularization. Science 388, eadu9375 (2025).
Dongre, A. & Weinberg, R. A. New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer. Nat. Rev. Mol. Cell Biol. 20, 69–84 (2019).
Yang, J. et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117, 927–939 (2004).
Moustakas, A. & Heldin, C.-H. Signaling networks guiding epithelial–mesenchymal transitions during embryogenesis and cancer progression. Cancer Sci. 98, 1512–1520 (2007).
Stephens, M. C., Brandt, V. & Botas, J. The developmental roots of neurodegeneration. Neuron 110, 1–3 (2022).
Gluckman, P. D. & Hanson, M. A. Developmental origins of disease paradigm: a mechanistic and evolutionary perspective. Pediatr. Res. 56, 311–317 (2004).
Richards, A. A. & Garg, V. Genetics of congenital heart disease. Curr. Cardiol. Rev. 6, 91–97 (2010).
Bouma, B. J. & Mulder, B. J. M. Changing landscape of congenital heart disease. Circ. Res. 120, 908–922 (2017).
Bruneau, B. G. The developmental genetics of congenital heart disease. Nature 451, 943–948 (2008).
Bruneau, B. G. The developing heart: from the wizard of Oz to congenital heart disease. Development 147, dev194233 (2020).
Morton, S. U., Quiat, D., Seidman, J. G. & Seidman, C. E. Genomic frontiers in congenital heart disease. Nat. Rev. Cardiol. https://doi.org/10.1038/s41569-021-00587-4 (2021).
Yotti, R., Seidman, C. E. & Seidman, J. G. Advances in the genetic basis and pathogenesis of sarcomere cardiomyopathies. Annu. Rev. Genom. Hum. Genet. 20, 129–153 (2019).
Fahed, A. C., Gelb, B. D., Seidman, J. G. & Seidman, C. E. Genetics of congenital heart disease: the glass half empty. Circ. Res. 112, 707–720 (2013).
Wilsbacher, L. & McNally, E. M. Genetics of cardiac developmental disorders: cardiomyocyte proliferation and growth and relevance to heart failure. Annu. Rev. Pathol. Mech. Dis. 11, 395–419 (2016).
Thorp, E. B. & Filipp, M. Contributions of inflammation to cardiometabolic heart failure with preserved ejection fraction. Annu. Rev. Pathol. 20, 143–167 (2025).
Pesce, M. et al. Cardiac fibroblasts and mechanosensation in heart development, health and disease. Nat. Rev. Cardiol. 20, 309–324 (2023).
DeBerge, M., Shah, S. J., Wilsbacher, L. & Thorp, E. B. Macrophages in heart failure with reduced versus preserved ejection fraction. Trends Mol. Med. 25, 328–340 (2019).
Ayer, J., Charakida, M., Deanfield, J. E. & Celermajer, D. S. Lifetime risk: childhood obesity and cardiovascular risk. Eur. Heart J. 36, 1371–1376 (2015).
Goldstein, S. A. & Krasuski, R. A. Complex congenital heart disease in the adult. Annu. Rev. Med. 75, 493–512 (2024).
Lurbe, E. & Ingelfinger, J. Developmental and early life origins of cardiometabolic risk factors. Hypertension 77, 308–318 (2021).
Author information
Authors and Affiliations
Contributions
All authors contributed to researching and discussing the content of the article, writing the article and editing the manuscript.
Corresponding author
Ethics declarations
Competing interests
IMBA filed a patent application (No. 21712188.8) on multichamber cardioids with A.D. and S.M. named as inventors. S.M. is a co-founder of HeartBeat.bio. D.Y. declares no competing interests.
Peer review
Peer review information
Nature Reviews Molecular Cell Biology thanks Robert Zweigerdt, Benoit Bruneau and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Mendjan, S., Deyett, A. & Yelon, D. Coordination of cardiogenesis in vivo and in vitro. Nat Rev Mol Cell Biol (2025). https://doi.org/10.1038/s41580-025-00878-5
Accepted:
Published:
DOI: https://doi.org/10.1038/s41580-025-00878-5