Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Coordination of cardiogenesis in vivo and in vitro

Abstract

Heart development has been extensively explored on the anatomical, cellular and molecular levels. Yet, the intricate interplay of tissue organization, cellular lineages and molecular factors that orchestrate heart development, culminating in forming a seamlessly synchronized functional heart, remains challenging to investigate. Mechanistic studies conducted both in vivo using animal models and in vitro stem-cell-derived systems aim to unravel this complexity. In this Review, we discuss how the recent surge in technological advancements in imaging and genomics, coupled with the evolution of next-generation cardiac organoid models, has provided profound insights into these processes, holding significant implications for the development of novel therapies for congenital or acquired heart diseases. We discuss the development of the heart as the first functional organ — from the morphogenesis of the mesoderm, heart tube and cardiac chambers to the establishment of the initial heartbeat and pacemaker and further how morphogenesis and function collaboratively drive heart maturation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Coordination of cardiogenesis in vivo and in vitro.
Fig. 2: Early human cardiogenesis.
Fig. 3: Development of electrophysiological conduction and cardiac functionality.
Fig. 4: Pacemaking dominance and developmental speed of conduction velocity.
Fig. 5: Biomechanical cues influence valve formation and trabeculation.

Similar content being viewed by others

References

  1. Kanemaru, K. et al. Spatially resolved multiomics of human cardiac niches. Nature 619, 801–810 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Meilhac, S. M. & Buckingham, M. E. The deployment of cell lineages that form the mammalian heart. Nat. Rev. Cardiol. 15, 705–724 (2018).

    Article  PubMed  Google Scholar 

  3. Andrews, T. G. R. & Priya, R. The mechanics of building functional organs. Cold Spring Harb. Perspect. Biol. https://doi.org/10.1101/cshperspect.a041520 (2024).

  4. Karbassi, E. et al. Cardiomyocyte maturation: advances in knowledge and implications for regenerative medicine. Nat. Rev. Cardiol. 36, 1–19 (2020).

    Google Scholar 

  5. Groen, E., Mummery, C. L., Yiangou, L. & Davis, R. P. Three-dimensional cardiac models: a pre-clinical testing platform. Biochem. Soc. Trans. https://doi.org/10.1042/BST20230444 (2024).

  6. Garcia-Martinez, V. & Schoenwolf, G. C. Primitive-streak origin of the cardiovascular system in avian embryos. Dev. Biol. 159, 706–719 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Keegan, B. R., Meyer, D. & Yelon, D. Organization of cardiac chamber progenitors in the zebrafish blastula. Dev. Camb. Engl. 131, 3081–3091 (2004).

    CAS  Google Scholar 

  8. Rosenquist, G. C. Location and movements of cardiogenic cells in the chick embryo: the heart-forming portion of the primitive streak. Dev. Biol. 22, 461–475 (1970).

    Article  CAS  PubMed  Google Scholar 

  9. Stainier, D. Y., Lee, R. K. & Fishman, M. C. Cardiovascular development in the zebrafish. I. Myocardial fate map and heart tube formation. Dev. Camb. Engl. 119, 31–40 (1993).

    CAS  Google Scholar 

  10. Ivanovitch, K. et al. Ventricular, atrial, and outflow tract heart progenitors arise from spatially and molecularly distinct regions of the primitive streak. PLoS Biol. 19, e3001200 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lawson, K. A., Meneses, J. J. & Pedersen, R. A. Clonal analysis of epiblast fate during germ layer formation in the mouse embryo. Development 113, 891–911 (1991).

    Article  CAS  PubMed  Google Scholar 

  12. Tam, P. P., Parameswaran, M., Kinder, S. J. & Weinberger, R. P. The allocation of epiblast cells to the embryonic heart and other mesodermal lineages: the role of ingression and tissue movement during gastrulation. Development 124, 1631–1642 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Costello, I. et al. The T-box transcription factor Eomesodermin acts upstream of Mesp1 to specify cardiac mesoderm during mouse gastrulation. Nat. Cell Biol. 13, 1084–1091 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Arnold, S. J., Hofmann, U. K., Bikoff, E. K. & Robertson, E. J. Pivotal roles for eomesodermin during axis formation, epithelium-to-mesenchyme transition and endoderm specification in the mouse. Dev. Camb. Engl. 135, 501–511 (2008).

    CAS  Google Scholar 

  15. Meilhac, S. M., Esner, M., Kelly, R. G., Nicolas, J.-F. & Buckingham, M. E. The clonal origin of myocardial cells in different regions of the embryonic mouse heart. Dev. Cell 6, 685–698 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Devine, W. P., Wythe, J. D., George, M., Koshiba-Takeuchi, K. & Bruneau, B. G. Early patterning and specification of cardiac progenitors in gastrulating mesoderm. eLife 3, e03848 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lescroart, F. et al. Early lineage restriction in temporally distinct populations of Mesp1 progenitors during mammalian heart development. Nat. Cell Biol. 16, 829–840 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lescroart, F. et al. Defining the earliest step of cardiovascular lineage segregation by single-cell RNA-seq. Science 359, 1177–1181 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kelly, R. G., Buckingham, M. E. & Moorman, A. F. Heart fields and cardiac morphogenesis. Cold Spring Harb. Perspect. Med. 4, a015750 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bardot, E. et al. Foxa2 identifies a cardiac progenitor population with ventricular differentiation potential. Nat. Commun. 8, 14428 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tyser, R. C. V. et al. Characterization of a common progenitor pool of the epicardium and myocardium. Science 371, eabb2986 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang, Q. et al. Unveiling complexity and multipotentiality of early heart fields. Circ. Res. 129, 474–487 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lescroart, F. & Zaffran, S. Single cell approaches to understand the earliest steps in heart development. Curr. Cardiol. Rep. 24, 611–621 (2022).

    Article  PubMed  Google Scholar 

  24. Sendra, M. et al. Myocardium and endocardium of the early mammalian heart tube arise from independent multipotent lineages specified at the primitive streak. Dev. Cell https://doi.org/10.1016/j.devcel.2025.05.002 (2025).

  25. Abukar, S. et al. Early coordination of cell migration and cardiac fate determination during mammalian gastrulation. EMBO J. 44, 3327–3359 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dominguez, M. H., Krup, A. L., Muncie, J. M. & Bruneau, B. G. Graded mesoderm assembly governs cell fate and morphogenesis of the early mammalian heart. Cell 186, 479–496.e23 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mendjan, S. et al. NANOG and CDX2 pattern distinct subtypes of human mesoderm during exit from pluripotency. Cell Stem Cell 15, 310–325 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Loh, K. M. et al. Mapping the pairwise choices leading from pluripotency to human bone, heart, and other mesoderm cell types. Cell 166, 451–467 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rao, J. et al. Stepwise clearance of repressive roadblocks drives cardiac induction in human ESCs. Cell Stem Cell 18, 341–353 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Lee, J. H., Protze, S. I., Laksman, Z., Backx, P. H. & Keller, G. M. Human pluripotent stem cell-derived atrial and ventricular cardiomyocytes develop from distinct mesoderm populations. Cell Stem Cell 21, 179–194.e4 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Saga, Y. et al. MesP1 is expressed in the heart precursor cells and required for the formation of a single heart tube. Development 126, 3437–3447 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Protze, S. I. et al. Sinoatrial node cardiomyocytes derived from human pluripotent cells function as a biological pacemaker. Nat. Biotechnol. 35, 56–68 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Hofbauer, P. et al. Cardioids reveal self-organizing principles of human cardiogenesis. Cell 184, 3299–3317.e22 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Schmidt, C. et al. Multi-chamber cardioids unravel human heart development and cardiac defects. Cell 186, 5587–5605.e27 (2023).

    Article  CAS  PubMed  Google Scholar 

  35. Drakhlis, L. et al. Human heart-forming organoids recapitulate early heart and foregut development. Nat. Biotechnol. 39, 737–746 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lewis-Israeli, Y. R. et al. Self-assembling human heart organoids for the modeling of cardiac development and congenital heart disease. Nat. Commun. 12, 5142 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Silva, A. C. et al. Co-emergence of cardiac and gut tissues promotes cardiomyocyte maturation within human iPSC-derived organoids. Cell Stem Cell 28, 2137–2152.e6 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Miyamoto, M. et al. Cardiac progenitors instruct second heart field fate through Wnts. Proc. Natl Acad. Sci. USA 120, e2217687120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Devalla, H. D. et al. Atrial-like cardiomyocytes from human pluripotent stem cells are a robust preclinical model for assessing atrial-selective pharmacology. EMBO Mol. Med. 7, 394–410 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Firulli, A. B., McFadden, D. G., Lin, Q., Srivastava, D. & Olson, E. N. Heart and extra-embryonic mesodermal defects in mouse embryos lacking the bHLH transcription factor Hand1. Nat. Genet. 18, 266–270 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Anderson, D. J. et al. NKX2–5 regulates human cardiomyogenesis via a HEY2 dependent transcriptional network. Nat. Commun. 9, 1373 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Trinh, L. A., Yelon, D. & Stainier, D. Y. R. Hand2 regulates epithelial formation during myocardial diferentiation. Curr. Biol. 15, 441–446 (2005).

    Article  PubMed  Google Scholar 

  43. Linask, K. K. N-cadherin localization in early heart development and polar expression of Na+, K(+)-ATPase, and integrin during pericardial coelom formation and epithelialization of the differentiating myocardium. Dev. Biol. 151, 213–224 (1992).

    Article  CAS  PubMed  Google Scholar 

  44. Holtzman, N. G., Schoenebeck, J. J., Tsai, H.-J. & Yelon, D. Endocardium is necessary for cardiomyocyte movement during heart tube assembly. Dev. Camb. Engl. 134, 2379–2386 (2007).

    CAS  Google Scholar 

  45. Ivanovitch, K., Temiño, S. & Torres, M. Live imaging of heart tube development in mouse reveals alternating phases of cardiac differentiation and morphogenesis. eLife 6, 281 (2017).

    Article  Google Scholar 

  46. Ye, D., Xie, H., Hu, B. & Lin, F. Endoderm convergence controls subduction of the myocardial precursors during heart-tube formation. Dev. Camb. Engl. 142, 2928–2940 (2015).

    CAS  Google Scholar 

  47. Bloomekatz, J. et al. Platelet-derived growth factor (PDGF) signaling directs cardiomyocyte movement toward the midline during heart tube assembly. eLife 6, e21172 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Shrestha, R. et al. The myocardium utilizes a platelet-derived growth factor receptor alpha (Pdgfra)-phosphoinositide 3-kinase (PI3K) signaling cascade to steer toward the midline during zebrafish heart tube formation. eLife 12, e85930 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ye, D. & Lin, F. S1pr2/Gα13 signaling controls myocardial migration by regulating endoderm convergence. Dev. Camb. Engl. 140, 789–799 (2013).

    CAS  Google Scholar 

  50. Varner, V. D. & Taber, L. A. Not just inductive: a crucial mechanical role for the endoderm during heart tube assembly. Dev. Camb. Engl. 139, 1680–1690 (2012).

    CAS  Google Scholar 

  51. Aleksandrova, A. et al. The endoderm and myocardium join forces to drive early heart tube assembly. Dev. Biol. 404, 40–54 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Palmquist-Gomes, P. & Meilhac, S. M. Shaping the mouse heart tube from the second heart field epithelium. Curr. Opin. Genet. Dev. 73, 101896 (2022).

    Article  CAS  PubMed  Google Scholar 

  53. Desgrange, A., Le Garrec, J.-F. & Meilhac, S. M. Left–right asymmetry in heart development and disease: forming the right loop. Dev. Camb. Engl. 145, dev162776 (2018).

    Google Scholar 

  54. Francou, A. & Kelly, R. G. in Etiology and Morphogenesis of Congenital Heart Disease: From Gene Function and Cellular Interaction to Morphology (eds Nakanishi, T. et al.) (Springer, 2016).

  55. Knight, H. G. & Yelon, D. in Etiology and Morphogenesis of Congenital Heart Disease: From Gene Function and Cellular Interaction to Morphology (eds Nakanishi, T. et al.) (Springer, 2016).

  56. Rowton, M., Guzzetta, A., Rydeen, A. B. & Moskowitz, I. P. Control of cardiomyocyte differentiation timing by intercellular signaling pathways. Semin. Cell Dev. Biol. 118, 94–106 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rochais, F., Mesbah, K. & Kelly, R. G. Signaling pathways controlling second heart field development. Circ. Res. 104, 933–942 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Smith, K. A. & Uribe, V. Getting to the heart of left–right asymmetry: contributions from the zebrafish model. J. Cardiovasc. Dev. Dis. 8, 64 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Sidhwani, P. & Yelon, D. Fluid forces shape the embryonic heart: insights from zebrafish. Curr. Top. Dev. Biol. 132, 395–416 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Desgrange, A., Le Garrec, J.-F., Bernheim, S., Bønnelykke, T. H. & Meilhac, S. M. Transient nodal signaling in left precursors coordinates opposed asymmetries shaping the heart loop. Dev. Cell 55, 413–431.e6 (2020).

    Article  CAS  PubMed  Google Scholar 

  61. Le Garrec, J.-F. et al. A predictive model of asymmetric morphogenesis from 3D reconstructions of mouse heart looping dynamics. eLife 6, e28951 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Auman, H. J. et al. Functional modulation of cardiac form through regionally confined cell shape changes. PLoS Biol. 5, e53 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Noël, E. S. et al. A nodal-independent and tissue-intrinsic mechanism controls heart-looping chirality. Nat. Commun. 4, 2754 (2013).

    Article  PubMed  Google Scholar 

  64. Branco, M. A., Dias, T. P., Cabral, J. M. S., Pinto-do-Ó, P. & Diogo, M. M. Human multilineage pro-epicardium/foregut organoids support the development of an epicardium/myocardium organoid. Nat. Commun. 13, 6981 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lassar, A. B., Marvin, M. J., Di Rocco, G., Gardiner, A. & Bush, S. M. Inhibition of Wnt activity induces heart formation from posterior mesoderm. 15, 316–327 (2001).

  66. Mummery, C. et al. Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation 107, 2733–2740 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Dardano, M. et al. Blood-generating heart-forming organoids recapitulate co-development of the human haematopoietic system and the embryonic heart. Nat. Cell Biol. https://doi.org/10.1038/s41556-024-01526-4 (2024).

  68. Linask, K. K. Regulation of heart morphology: current molecular and cellular perspectives on the coordinated emergence of cardiac form and function. Birth Defects Res. Part C Embryo Today Rev. 69, 14–24 (2003).

    Article  CAS  Google Scholar 

  69. DeHaan, R. L. Cardia bifida and the development of pacemaker function in the early chick heart. Dev. Biol. 1, 586–602 (1959).

    Article  Google Scholar 

  70. Olson, E. N., Molkentin, J. D., Lin, Q. & Duncan, S. A. Requirement of the transcription factor GATA4 for heart tube formation and ventral morphogenesis. Genes Dev. 11, 1061–1072 (1997).

    Article  PubMed  Google Scholar 

  71. Li, S., Zhou, D., Lu, M. M. & Morrisey, E. E. Advanced cardiac morphogenesis does not require heart tube fusion. Science 305, 1619–1622 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Rossi, G. et al. Capturing cardiogenesis in gastruloids. Cell Stem Cell https://doi.org/10.1016/j.stem.2020.10.013 (2020).

  73. Lau, K. Y. C. et al. Mouse embryo model derived exclusively from embryonic stem cells undergoes neurulation and heart development. Cell Stem Cell https://doi.org/10.1016/j.stem.2022.08.013 (2022).

  74. Weatherbee, B. A. T. et al. Pluripotent stem cell-derived model of the post-implantation human embryo. Nature 622, 584–593 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Jia, B. Z., Qi, Y., Wong-Campos, J. D., Megason, S. G. & Cohen, A. E. A bioelectrical phase transition patterns the first vertebrate heartbeats. Nature 622, 149–155 (2023).

    Article  CAS  PubMed  Google Scholar 

  76. Tyser, R. C. et al. Calcium handling precedes cardiac differentiation to initiate the first heartbeat. eLife 5, 454 (2016).

    Article  Google Scholar 

  77. Henley, T. et al. Local tissue mechanics control cardiac pacemaker cell embryonic patterning. Life Sci. Alliance 6, e202201799 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tyser, R. C. V. & Srinivas, S. The first heartbeat-origin of cardiac contractile activity. Cold Spring Harb. Perspect. Biol. https://doi.org/10.1101/cshperspect.a037135 (2019).

  79. Ypey, D. L., Clapham, D. E. & DeHaan, R. L. Development of electrical coupling and action potential synchrony between paired aggregates of embryonic heart cells. J. Membr. Biol. 51, 75–96 (1979).

    Article  CAS  PubMed  Google Scholar 

  80. Hayashi, T., Tokihiro, T., Kurihara, H. & Yasuda, K. Community effect of cardiomyocytes in beating rhythms is determined by stable cells. Sci. Rep. 7, 15450 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Kojima, K., Kaneko, T. & Yasuda, K. Role of the community effect of cardiomyocyte in the entrainment and reestablishment of stable beating rhythms. Biochem. Biophys. Res. Commun. 351, 209–215 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Nakano, K., Nanri, N., Tsukamoto, Y. & Akashi, M. Mechanical activities of self-beating cardiomyocyte aggregates under mechanical compression. Sci. Rep. 11, 15159 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Chiou, K. K. et al. Mechanical signaling coordinates the embryonic heartbeat. Proc. Natl Acad. Sci. USA 113, 8939–8944 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Körner, A., Mosqueira, M., Hecker, M. & Ullrich, N. D. Substrate stiffness influences structural and functional remodeling in induced pluripotent stem cell-derived cardiomyocytes. Front. Physiol. 12, 710619 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Chuck, E. T., Freeman, D. M., Watanabe, M. & Rosenbaum, D. S. Changing activation sequence in the embryonic chick heart. Implications for the development of the His-Purkinje system. Circ. Res. 81, 470–476 (1997).

    Article  CAS  PubMed  Google Scholar 

  86. Kamino, K., Hirota, A. & Fujii, S. Localization of pacemaking activity in early embryonic heart monitored using voltage-sensitive dye. Nature 290, 595–597 (1981).

    Article  CAS  PubMed  Google Scholar 

  87. Bressan, M., Liu, G. & Mikawa, T. Early mesodermal cues assign avian cardiac pacemaker fate potential in a tertiary heart field. Science 340, 744–748 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chen, F. et al. Atrioventricular conduction and arrhythmias at the initiation of beating in embryonic mouse hearts. Dev. Dyn. Publ. Am. Assoc. Anat. 239, 1941–1949 (2010).

    CAS  Google Scholar 

  89. Mosimann, C. et al. Chamber identity programs drive early functional partitioning of the heart. Nat. Commun. 6, 8146 (2015).

    Article  CAS  PubMed  Google Scholar 

  90. de Jong, F. et al. Persisting zones of slow impulse conduction in developing chicken hearts. Circ. Res. 71, 240–250 (1992).

    Article  PubMed  Google Scholar 

  91. Han, B., Trew, M. L. & Zgierski-Johnston, C. M. Cardiac conduction velocity, remodeling and arrhythmogenesis. Cells 10, 2923 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lin, Z. et al. Tissue-embedded stretchable nanoelectronics reveal endothelial cell-mediated electrical maturation of human 3D cardiac microtissues. Sci. Adv. 9, eade8513 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ye, C. et al. Canonical Wnt signaling directs the generation of functional human PSC-derived atrioventricular canal cardiomyocytes in bioprinted cardiac tissues. Cell Stem Cell 31, 398–409.e5 (2024).

    Article  CAS  PubMed  Google Scholar 

  94. Ren, J. et al. Canonical Wnt5b signaling directs outlying Nkx2.5+ mesoderm into pacemaker cardiomyocytes. Dev. Cell https://doi.org/10.1016/j.devcel.2019.07.014 (2019).

  95. Boulgakoff, L., D’Amato, G. & Miquerol, L. Molecular regulation of cardiac conduction system development. Curr. Cardiol. Rep. 26, 943–952 (2024).

    Article  PubMed  Google Scholar 

  96. van Eif, V. W. W., Devalla, H. D., Boink, G. J. J. & Christoffels, V. M. Transcriptional regulation of the cardiac conduction system. Nat. Rev. Cardiol. 15, 617–630 (2018).

    Article  PubMed  Google Scholar 

  97. van der Maarel, L. E., Postma, A. V. & Christoffels, V. M. Genetics of sinoatrial node function and heart rate disorders. Dis. Model Mech. 16, dmm050101 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Thomas, K. et al. Adherens junction engagement regulates functional patterning of the cardiac pacemaker cell lineage. Dev. Cell 56, 1498–1511.e7 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yechikov, S. et al. NODAL inhibition promotes differentiation of pacemaker-like cardiomyocytes from human induced pluripotent stem cells. Stem Cell Res. 49, 102043 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hou, X. et al. Chemically defined and small molecules-based generation of sinoatrial node-like cells. Stem Cell Res. Ther. 13, 158 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wang, F. et al. The method of sinus node-like pacemaker cells from human induced pluripotent stem cells by BMP and Wnt signaling. Cell Biol. Toxicol. 39, 2725–2741 (2023).

    Article  CAS  PubMed  Google Scholar 

  102. Liu, F. et al. Enrichment differentiation of human induced pluripotent stem cells into sinoatrial node-like cells by combined modulation of BMP, FGF, and RA signaling pathways. Stem Cell Res. Ther. 11, 284 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Li, J. et al. Modeling the atrioventricular conduction axis using human pluripotent stem cell-derived cardiac assembloids. Cell Stem Cell https://doi.org/10.1016/j.stem.2024.08.008 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Sun, Y.-H. et al. The sinoatrial node extracellular matrix promotes pacemaker phenotype and protects automaticity in engineered heart tissues from cyclic strain. Cell Rep. 42, 113505 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. O’Donnell, A. & Yutzey, K. E. Mechanisms of heart valve development and disease. Dev. Camb. Engl. 147, dev183020 (2020).

    Google Scholar 

  106. Gunawan, F., Priya, R. & Stainier, D. Y. R. Sculpting the heart: cellular mechanisms shaping valves and trabeculae. Curr. Opin. Cell Biol. 73, 26–34 (2021).

    Article  CAS  PubMed  Google Scholar 

  107. Fukui, H., Chow, R. W.-Y., Yap, C. H. & Vermot, J. Rhythmic forces shaping the zebrafish cardiac system. Trends Cell Biol. 35, 166–176 (2025).

    Article  CAS  PubMed  Google Scholar 

  108. Vignes, H. et al. Extracellular mechanical forces drive endocardial cell volume decrease during zebrafish cardiac valve morphogenesis. Dev. Cell 57, 598–609.e5 (2022).

    Article  CAS  PubMed  Google Scholar 

  109. Chow, R. W.-Y. et al. Cardiac forces regulate zebrafish heart valve delamination by modulating Nfat signaling. PLoS Biol. 20, e3001505 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Vermot, J. et al. Reversing blood flows act through klf2a to ensure normal valvulogenesis in the developing heart. PLoS Biol. 7, e1000246 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Beis, D. et al. Genetic and cellular analyses of zebrafish atrioventricular cushion and valve development. Dev. Camb. Engl. 132, 4193–4204 (2005).

    CAS  Google Scholar 

  112. Bartman, T. et al. Early myocardial function affects endocardial cushion development in zebrafish. PLoS Biol. 2, E129 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Hove, J. R. et al. Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature 421, 172–177 (2003).

    Article  CAS  PubMed  Google Scholar 

  114. Sedmera, D., Pexieder, T., Rychterova, V., Hu, N. & Clark, E. B. Remodeling of chick embryonic ventricular myoarchitecture under experimentally changed loading conditions. Anat. Rec. 254, 238–252 (1999).

    Article  CAS  PubMed  Google Scholar 

  115. da Silva, A. R. et al. egr3 is a mechanosensitive transcription factor gene required for cardiac valve morphogenesis. Sci. Adv. 10, eadl0633 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Juan, T. et al. Multiple pkd and piezo gene family members are required for atrioventricular valve formation. Nat. Commun. 14, 214 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Fukui, H. et al. Bioelectric signaling and the control of cardiac cell identity in response to mechanical forces. Science 374, 351–354 (2021).

    Article  CAS  PubMed  Google Scholar 

  118. Goddard, L. M. et al. Hemodynamic forces sculpt developing heart valves through a KLF2-WNT9B paracrine signaling axis. Dev. Cell 43, 274–289.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Heckel, E. et al. Oscillatory flow modulates mechanosensitive klf2a expression through trpv4 and trpp2 during heart valve development. Curr. Biol. CB 25, 1354–1361 (2015).

    Article  CAS  PubMed  Google Scholar 

  120. Mikryukov, A. A. et al. BMP10 signaling promotes the development of endocardial cells from human pluripotent stem cell-derived cardiovascular progenitors. Cell Stem Cell 28, 96–111.e7 (2021).

    Article  CAS  PubMed  Google Scholar 

  121. Neri, T. et al. Human pre-valvular endocardial cells derived from pluripotent stem cells recapitulate cardiac pathophysiological valvulogenesis. Nat. Commun. 10, 1929 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Cai, Z. et al. Directed differentiation of human induced pluripotent stem cells to heart valve cells. Circulation 149, 1435–1456 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Shen, M. & Wu, J. C. Empowering valvular heart disease research with stem cell-derived valve cells. Circulation 149, 1457–1460 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Andrés-Delgado, L. & Mercader, N. Interplay between cardiac function and heart development. Biochim. Biophys. Acta 1863, 1707–1716 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Simões, F. C. & Riley, P. R. The ontogeny, activation and function of the epicardium during heart development and regeneration. Dev. Camb. Engl. 145, dev155994 (2018).

    Google Scholar 

  126. Andres-Delgado, L. et al. Actomyosin dynamics, Bmp and Notch signaling pathways drive apical extrusion of proepicardial cells. https://doi.org/10.1101/332593 (2018).

  127. Peralta, M. et al. Heartbeat-driven pericardiac fluid forces contribute to epicardium morphogenesis. Curr. Biol. 23, 1726–1735 (2013).

    Article  CAS  PubMed  Google Scholar 

  128. Guadix, J. A. et al. Human pluripotent stem cell differentiation into functional epicardial progenitor cells. Stem Cell Rep. 9, 1754–1764 (2017).

    Article  CAS  Google Scholar 

  129. Cheung, C., Bernardo, A. S., Trotter, M. W. B., Pedersen, R. A. & Sinha, S. Generation of human vascular smooth muscle subtypes provides insight into embryological origin-dependent disease susceptibility. Nat. Biotechnol. 30, 165–175 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Meier, A. B. et al. Epicardioid single-cell genomics uncovers principles of human epicardium biology in heart development and disease. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01718-7 (2023).

  131. Moorman, A. F. M. & Christoffels, V. M. Cardiac chamber formation: development, genes, and evolution. Physiol. Rev. 83, 1223–1267 (2003).

    Article  CAS  PubMed  Google Scholar 

  132. Priya, R. et al. Tension heterogeneity directs form and fate to pattern the myocardial wall. Nature 588, 130–134 (2020).

    Article  CAS  PubMed  Google Scholar 

  133. Yue, Y. et al. Long-term, in toto live imaging of cardiomyocyte behaviour during mouse ventricle chamber formation at single-cell resolution. Nat. Cell Biol. 22, 332–340 (2020).

    Article  CAS  PubMed  Google Scholar 

  134. Jimenez-Amilburu, V. et al. In vivo visualization of cardiomyocyte apicobasal polarity reveals epithelial to mesenchymal-like transition during cardiac trabeculation. Cell Rep. 17, 2687–2699 (2016).

    Article  CAS  PubMed  Google Scholar 

  135. Staudt, D. W. et al. High-resolution imaging of cardiomyocyte behavior reveals two distinct steps in ventricular trabeculation. Dev. Camb. Engl. 141, 585–593 (2014).

    CAS  Google Scholar 

  136. del Monte-Nieto, G. et al. Control of cardiac jelly dynamics by NOTCH1 and NRG1 defines the building plan for trabeculation. Nature 557, 439–445 (2018).

    Article  PubMed  Google Scholar 

  137. Vignes, H., Vagena-Pantoula, C. & Vermot, J. Mechanical control of tissue shape: cell-extrinsic and -intrinsic mechanisms join forces to regulate morphogenesis. Semin. Cell Dev. Biol. 130, 45–55 (2022).

    Article  CAS  PubMed  Google Scholar 

  138. Quijada, P., Trembley, M. A. & Small, E. M. The role of the epicardium during heart development and repair. Circ. Res. 126, 377–394 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Funakoshi, S. et al. Generation of mature compact ventricular cardiomyocytes from human pluripotent stem cells. Nat. Commun. 12, 3155 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Ong, L. P. et al. Epicardially secreted fibronectin drives cardiomyocyte maturation in 3D-engineered heart tissues. Stem Cell Rep. 18, 936–951 (2023).

    Article  CAS  Google Scholar 

  141. Tan, J. J. et al. Human iPS-derived pre-epicardial cells direct cardiomyocyte aggregation expansion and organization in vitro. Nat. Commun. 12, 4997 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Giacomelli, E. et al. Human-iPSC-derived cardiac stromal cells enhance maturation in 3D cardiac microtissues and reveal non-cardiomyocyte contributions to heart disease. Cell Stem Cell 26, 862–879.e11 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Voges, H. K. et al. Vascular cells improve functionality of human cardiac organoids. Cell Rep. 42, 112322 (2023).

    Article  CAS  PubMed  Google Scholar 

  144. Hamidzada, H. et al. Primitive macrophages induce sarcomeric maturation and functional enhancement of developing human cardiac microtissues via efferocytic pathways. Nat. Cardiovasc. Res. https://doi.org/10.1038/s44161-024-00471-7 (2024).

  145. Lock, R. I. et al. Macrophages enhance contractile force in iPSC-derived human engineered cardiac tissue. Cell Rep. 43, 114302 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Landau, S. et al. Primitive macrophages enable long-term vascularization of human heart-on-a-chip platforms. Cell Stem Cell 31, 1222–1238.e10 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Garay, B. I. et al. Dual inhibition of MAPK and PI3K/AKT pathways enhances maturation of human iPSC-derived cardiomyocytes. Stem Cell Rep. https://doi.org/10.1016/j.stemcr.2022.07.003 (2022).

  148. Feyen, D. A. M. et al. Metabolic maturation media improve physiological function of human iPSC-derived cardiomyocytes. Cell Rep. 32, 107925 (2020).

    Article  CAS  PubMed  Google Scholar 

  149. Brassard, J. A. & Lutolf, M. P. Engineering stem cell self-organization to build better organoids. Cell Stem Cell 24, 860–876 (2019).

    Article  CAS  PubMed  Google Scholar 

  150. Gjorevski, N. et al. Tissue geometry drives deterministic organoid patterning. Science https://doi.org/10.1126/science.aaw9021 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Nikolaev, M. et al. Homeostatic mini-intestines through scaffold-guided organoid morphogenesis. Nature 585, 574–578 (2020).

    Article  PubMed  Google Scholar 

  152. Lorenzo-Martín, L. F. et al. Spatiotemporally resolved colorectal oncogenesis in mini-colons ex vivo. Nature 629, 450–457 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Lewis, J. et al. Developmental and stem cell biology’s bright future. Cell 187, 3224–3228 (2024).

    Article  CAS  PubMed  Google Scholar 

  154. Kuo, C. T. et al. GATA4 transcription factor is required for ventral morphogenesis and heart tube formation. Genes Dev. 11, 1048–1060 (1997).

    Article  CAS  PubMed  Google Scholar 

  155. Lian, X. et al. Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc. Natl Acad. Sci. USA 109, E1848–E1857 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Burridge, P. W. et al. Chemically defined generation of human cardiomyocytes. Nat. Methods 11, 855–860 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Palpant, N. J. et al. Generating high-purity cardiac and endothelial derivatives from patterned mesoderm using human pluripotent stem cells. Nat. Protoc. 12, 15–31 (2017).

    Article  CAS  PubMed  Google Scholar 

  158. Orlova, V. V. et al. Generation, expansion and functional analysis of endothelial cells and pericytes derived from human pluripotent stem cells. Nat. Protoc. 9, 1514–1531 (2014).

    Article  CAS  PubMed  Google Scholar 

  159. Iyer, D. et al. Robust derivation of epicardium and its differentiated smooth muscle cell progeny from human pluripotent stem cells. Development 142, 1528–1541 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Murry, C. E., Keller, G. & Murry, C. E. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132, 661–680 (2008).

    Article  CAS  PubMed  Google Scholar 

  161. Ogle, B. M. et al. Distilling complexity to advance cardiac tissue engineering. Sci. Transl. Med. 8, 342ps13 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Eschenhagen, T. & Zimmermann, W. H. Engineering myocardial tissue. Circ. Res. 97, 1220–1231 (2005).

    Article  CAS  PubMed  Google Scholar 

  163. Tiburcy, M. et al. Defined engineered human myocardium with advanced maturation for applications in heart failure modeling and repair. Circulation 135, 1832–1847 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Abilez, O. J. et al. Gastruloids enable modeling of the earliest stages of human cardiac and hepatic vascularization. Science 388, eadu9375 (2025).

    Article  CAS  PubMed  Google Scholar 

  165. Dongre, A. & Weinberg, R. A. New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer. Nat. Rev. Mol. Cell Biol. 20, 69–84 (2019).

    Article  CAS  PubMed  Google Scholar 

  166. Yang, J. et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117, 927–939 (2004).

    Article  CAS  PubMed  Google Scholar 

  167. Moustakas, A. & Heldin, C.-H. Signaling networks guiding epithelial–mesenchymal transitions during embryogenesis and cancer progression. Cancer Sci. 98, 1512–1520 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Stephens, M. C., Brandt, V. & Botas, J. The developmental roots of neurodegeneration. Neuron 110, 1–3 (2022).

    Article  CAS  PubMed  Google Scholar 

  169. Gluckman, P. D. & Hanson, M. A. Developmental origins of disease paradigm: a mechanistic and evolutionary perspective. Pediatr. Res. 56, 311–317 (2004).

    Article  PubMed  Google Scholar 

  170. Richards, A. A. & Garg, V. Genetics of congenital heart disease. Curr. Cardiol. Rev. 6, 91–97 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Bouma, B. J. & Mulder, B. J. M. Changing landscape of congenital heart disease. Circ. Res. 120, 908–922 (2017).

    Article  CAS  PubMed  Google Scholar 

  172. Bruneau, B. G. The developmental genetics of congenital heart disease. Nature 451, 943–948 (2008).

    Article  CAS  PubMed  Google Scholar 

  173. Bruneau, B. G. The developing heart: from the wizard of Oz to congenital heart disease. Development 147, dev194233 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Morton, S. U., Quiat, D., Seidman, J. G. & Seidman, C. E. Genomic frontiers in congenital heart disease. Nat. Rev. Cardiol. https://doi.org/10.1038/s41569-021-00587-4 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Yotti, R., Seidman, C. E. & Seidman, J. G. Advances in the genetic basis and pathogenesis of sarcomere cardiomyopathies. Annu. Rev. Genom. Hum. Genet. 20, 129–153 (2019).

    Article  CAS  Google Scholar 

  176. Fahed, A. C., Gelb, B. D., Seidman, J. G. & Seidman, C. E. Genetics of congenital heart disease: the glass half empty. Circ. Res. 112, 707–720 (2013).

    Article  CAS  PubMed  Google Scholar 

  177. Wilsbacher, L. & McNally, E. M. Genetics of cardiac developmental disorders: cardiomyocyte proliferation and growth and relevance to heart failure. Annu. Rev. Pathol. Mech. Dis. 11, 395–419 (2016).

    Article  CAS  Google Scholar 

  178. Thorp, E. B. & Filipp, M. Contributions of inflammation to cardiometabolic heart failure with preserved ejection fraction. Annu. Rev. Pathol. 20, 143–167 (2025).

    Article  CAS  PubMed  Google Scholar 

  179. Pesce, M. et al. Cardiac fibroblasts and mechanosensation in heart development, health and disease. Nat. Rev. Cardiol. 20, 309–324 (2023).

    Article  CAS  PubMed  Google Scholar 

  180. DeBerge, M., Shah, S. J., Wilsbacher, L. & Thorp, E. B. Macrophages in heart failure with reduced versus preserved ejection fraction. Trends Mol. Med. 25, 328–340 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Ayer, J., Charakida, M., Deanfield, J. E. & Celermajer, D. S. Lifetime risk: childhood obesity and cardiovascular risk. Eur. Heart J. 36, 1371–1376 (2015).

    Article  PubMed  Google Scholar 

  182. Goldstein, S. A. & Krasuski, R. A. Complex congenital heart disease in the adult. Annu. Rev. Med. 75, 493–512 (2024).

    Article  CAS  PubMed  Google Scholar 

  183. Lurbe, E. & Ingelfinger, J. Developmental and early life origins of cardiometabolic risk factors. Hypertension 77, 308–318 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to researching and discussing the content of the article, writing the article and editing the manuscript.

Corresponding author

Correspondence to Sasha Mendjan.

Ethics declarations

Competing interests

IMBA filed a patent application (No. 21712188.8) on multichamber cardioids with A.D. and S.M. named as inventors. S.M. is a co-founder of HeartBeat.bio. D.Y. declares no competing interests.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks Robert Zweigerdt, Benoit Bruneau and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendjan, S., Deyett, A. & Yelon, D. Coordination of cardiogenesis in vivo and in vitro. Nat Rev Mol Cell Biol (2025). https://doi.org/10.1038/s41580-025-00878-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41580-025-00878-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing