Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Biomarkers of ageing of humans and non-human primates

Abstract

Ageing is characterized by progressive functional decline and increase in disease risk and imposes substantial burdens on human health. Identifying aging biomarkers in primates is crucial for advancing our understanding of human ageing and for informing interventions to mitigate age-related pathologies. However, a comprehensive grasp of these biomarkers is still lacking, hindering the translation of fundamental research into clinical practice. In this Review, we present the current knowledge on biomarkers of ageing at the cellular, tissue and organism levels in humans and non-human primates. Through systematic analysis of representative biomarkers across diverse biological contexts and scales, we discuss both the variability and the conservation of ageing-associated physiological changes, underscoring their importance in assessing and intervening in the ageing process. Finally, we critically assess challenges in ageing research and outline strategic avenues for future investigation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: An overview of ageing biomarkers in primates.
Fig. 2: Representative biomarkers of primate ageing at the cellular level.
Fig. 3: Hierarchical intersection of ageing biomarkers at the cellular, tissue and organism levels.

Similar content being viewed by others

References

  1. Cai, Y. et al. The landscape of aging. Sci. China Life Sci. 65, 2354–2454 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Partridge, L., Deelen, J. & Slagboom, P. E. Facing up to the global challenges of ageing. Nature 561, 45–56 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Chang, A. Y., Skirbekk, V. F., Tyrovolas, S., Kassebaum, N. J. & Dieleman, J. L. Measuring population ageing: an analysis of the Global Burden of Disease Study 2017. Lancet Public Health 4, e159–e167 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Crimmins, E. M. Recent trends and increasing differences in life expectancy present opportunities for multidisciplinary research on aging. Nat. Aging 1, 12–13 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Peng, Y. et al. Ethical concerns in aging research: perspectives of global frontline researchers. Sci. China Life Sci. 67, 2149–2156 (2024).

    Article  PubMed  Google Scholar 

  6. Moqri, M. et al. Biomarkers of aging for the identification and evaluation of longevity interventions. Cell 186, 3758–3775 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bao, H. et al. Biomarkers of aging. Sci. China Life Sci. 66, 893–1066 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ying, K. et al. Causality-enriched epigenetic age uncouples damage and adaptation. Nat. Aging 4, 231–246 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Waziry, R. et al. Effect of long-term caloric restriction on DNA methylation measures of biological aging in healthy adults from the CALERIE trial. Nat. Aging 3, 248–257 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu, X. et al. Resurrection of endogenous retroviruses during aging reinforces senescence. Cell 186, 287–304.e26 (2023).

    Article  CAS  PubMed  Google Scholar 

  11. Yu, L. et al. IgG is an aging factor that drives adipose tissue fibrosis and metabolic decline. Cell Metab. 36, 793–807.e5 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yu, Z. et al. Thermal facial image analyses reveal quantitative hallmarks of aging and metabolic diseases. Cell Metab. 36, 1482–1493.e7 (2024).

    Article  CAS  PubMed  Google Scholar 

  13. Ma, S. et al. Spatial transcriptomic landscape unveils immunoglobin-associated senescence as a hallmark of aging. Cell 187, 7025–7044.e34 (2024).

    Article  CAS  PubMed  Google Scholar 

  14. Yang, Y. et al. Metformin decelerates aging clock in male monkeys. Cell 187, 6358–6378.e29 (2024).

    Article  CAS  PubMed  Google Scholar 

  15. Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Herbig, U., Ferreira, M., Condel, L., Carey, D. & Sedivy, J. M. Cellular senescence in aging primates. Science 311, 1257 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Suda, K. et al. Plasma membrane damage limits replicative lifespan in yeast and induces premature senescence in human fibroblasts. Nat. Aging 4, 319–335 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang, W. et al. Aging stem cells. A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging. Science 348, 1160–1163 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wu, Z. et al. Differential stem cell aging kinetics in Hutchinson–Gilford progeria syndrome and Werner syndrome. Protein Cell 9, 333–350 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang, C. et al. RIG-I-driven CDKN1A stabilization reinforces cellular senescence. Sci. China Life Sci. 68, 1646–1661 (2025).

    Article  PubMed  Google Scholar 

  21. Lin, J. R., Shen, W. L., Yan, C. & Gao, P. J. Downregulation of dynamin-related protein 1 contributes to impaired autophagic flux and angiogenic function in senescent endothelial cells. Arterioscler. Thromb. Vasc. Biol. 35, 1413–1422 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Diekman, B. O. et al. Expression of p16INK4a is a biomarker of chondrocyte aging but does not cause osteoarthritis. Aging Cell 17, e12771 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Han, Z. et al. Role of p21 in apoptosis and senescence of human colon cancer cells treated with camptothecin. J. Biol. Chem. 277, 17154–17160 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Li, Q. et al. NSUN2-mediated m5C methylation and METTL3/METTL14-mediated m6A methylation cooperatively enhance p21 translation. J. Cell. Biochem. 118, 2587–2598 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sun, S. et al. CHIT1-positive microglia drive motor neuron ageing in the primate spinal cord. Nature 624, 611–620 (2023).

    Article  CAS  PubMed  Google Scholar 

  26. Victorelli, S. et al. Senescent human melanocytes drive skin ageing via paracrine telomere dysfunction. EMBO J. 38, e101982 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jeyapalan, J. C., Ferreira, M., Sedivy, J. M. & Herbig, U. Accumulation of senescent cells in mitotic tissue of aging primates. Mech. Ageing Dev. 128, 36–44 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Aguado, J. et al. Senolytic therapy alleviates physiological human brain aging and COVID-19 neuropathology. Nat. Aging 3, 1561–1575 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shaker, M. R., Aguado, J., Chaggar, H. K. & Wolvetang, E. J. Klotho inhibits neuronal senescence in human brain organoids. npj Aging Mech. Dis. 7, 18 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ye, Y. et al. SIRT2 counteracts primate cardiac aging via deacetylation of STAT3 that silences CDKN2B. Nat. Aging 3, 1269–1287 (2023).

    Article  CAS  PubMed  Google Scholar 

  31. Yang, S. et al. A single-nucleus transcriptomic atlas of primate liver aging uncovers the pro-senescence role of SREBP2 in hepatocytes. Protein Cell 15, 98–120 (2024).

    Article  PubMed  Google Scholar 

  32. Melk, A. et al. Expression of p16INK4a and other cell cycle regulator and senescence associated genes in aging human kidney. Kidney Int. 65, 510–520 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Wang, W. et al. A genome-wide CRISPR-based screen identifies KAT7 as a driver of cellular senescence. Sci. Transl. Med. 13, eabd2655 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Park, S. S. et al. p15INK4B is an alternative marker of senescent tumor cells in colorectal cancer. Heliyon 9, e13170 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tang, H. et al. NSun2 delays replicative senescence by repressing p27 (KIP1) translation and elevating CDK1 translation. Aging 7, 1143–1158 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Park, S. H., Lim, J. S. & Jang, K. L. All-trans retinoic acid induces cellular senescence via upregulation of p16, p21, and p27. Cancer Lett. 310, 232–239 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Ogrodnik, M. et al. Guidelines for minimal information on cellular senescence experimentation in vivo. Cell 187, 4150–4175 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dehkordi, S. K. et al. Profiling senescent cells in human brains reveals neurons with CDKN2D/p19 and tau neuropathology. Nat. Aging 1, 1107–1116 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Suryadevara, V. et al. SenNet recommendations for detecting senescent cells in different tissues. Nat. Rev. Mol. Cell Biol. 25, 1001–1023 (2024).

    Article  CAS  PubMed  Google Scholar 

  40. Beauséjour, C. M. et al. Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J. 22, 4212–4222 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kubben, F. J. et al. Proliferating cell nuclear antigen (PCNA): a new marker to study human colonic cell proliferation. Gut 35, 530–535 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sun, X. & Kaufman, P. D. Ki-67: more than a proliferation marker. Chromosoma 127, 175–186 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Davalos, A. R. et al. p53-dependent release of Alarmin HMGB1 is a central mediator of senescent phenotypes. J. Cell Biol. 201, 613–629 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kohli, J. et al. Algorithmic assessment of cellular senescence in experimental and clinical specimens. Nat. Protoc. 16, 2471–2498 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liang, C. et al. BMAL1 moonlighting as a gatekeeper for LINE1 repression and cellular senescence in primates. Nucleic Acids Res. 50, 3323–3347 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. d’Adda di Fagagna, F. et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature 426, 194–198 (2003).

    Article  PubMed  Google Scholar 

  47. Alfano, M. et al. Aging, inflammation and DNA damage in the somatic testicular niche with idiopathic germ cell aplasia. Nat. Commun. 12, 5205 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wu, M. et al. Spatiotemporal transcriptomic changes of human ovarian aging and the regulatory role of FOXP1. Nat. Aging 4, 527–545 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sedelnikova, O. A. et al. Delayed kinetics of DNA double-strand break processing in normal and pathological aging. Aging Cell 7, 89–100 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Zhang, H. et al. Single-nucleus transcriptomic landscape of primate hippocampal aging. Protein Cell 12, 695–716 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu, Z. et al. Large-scale chromatin reorganization reactivates placenta-specific genes that drive cellular aging. Dev. Cell 57, 1347–1368.e12 (2022).

    Article  CAS  PubMed  Google Scholar 

  52. Hewitt, G. et al. Telomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence. Nat. Commun. 3, 708 (2012).

    Article  PubMed  Google Scholar 

  53. Fumagalli, M. et al. Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation. Nat. Cell Biol. 14, 355–365 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shim, H. S. et al. TERT activation targets DNA methylation and multiple aging hallmarks. Cell 187, 4030–4042.e13 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Barnes, R. P. et al. Telomeric 8-oxo-guanine drives rapid premature senescence in the absence of telomere shortening. Nat. Struct. Mol. Biol. 29, 639–652 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zou, Z. et al. A single-cell transcriptomic atlas of human skin aging. Dev. Cell 56, 383–397.e8 (2021).

    Article  CAS  PubMed  Google Scholar 

  57. Wang, S. et al. Single-cell transcriptomic atlas of primate ovarian aging. Cell 180, 585–600.e19 (2020).

    Article  CAS  PubMed  Google Scholar 

  58. Huang, Z. et al. Single-cell analysis of somatic mutations in human bronchial epithelial cells in relation to aging and smoking. Nat. Genet. 54, 492–498 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Choudhury, S. et al. Somatic mutations in single human cardiomyocytes reveal age-associated DNA damage and widespread oxidative genotoxicity. Nat. Aging 2, 714–725 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cagan, A. et al. Somatic mutation rates scale with lifespan across mammals. Nature 604, 517–524 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Krupina, K., Goginashvili, A. & Cleveland, D. W. Causes and consequences of micronuclei. Curr. Opin. Cell Biol. 70, 91–99 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Miller, K. N., Dasgupta, N., Liu, T., Adams, P. D. & Vizioli, M. G. Cytoplasmic chromatin fragments — from mechanisms to therapeutic potential. eLife 10, e63728 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ganz, J. et al. Contrasting somatic mutation patterns in aging human neurons and oligodendrocytes. Cell 187, 1955–1970.e23 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Dou, Z. et al. Cytoplasmic chromatin triggers inflammation in senescence and cancer. Nature 550, 402–406 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Vizioli, M. G. et al. Mitochondria-to-nucleus retrograde signaling drives formation of cytoplasmic chromatin and inflammation in senescence. Genes Dev. 34, 428–445 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Técher, H. et al. MRE11 and TREX1 control senescence by coordinating replication stress and interferon signaling. Nat. Commun. 15, 5423 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Wu, Z., Qu, J. & Liu, G. H. Roles of chromatin and genome instability in cellular senescence and their relevance to ageing and related diseases. Nat. Rev. Mol. Cell Biol. 25, 979–1000 (2024).

    Article  CAS  PubMed  Google Scholar 

  68. Kaul, Z., Cesare, A. J., Huschtscha, L. I., Neumann, A. A. & Reddel, R. R. Five dysfunctional telomeres predict onset of senescence in human cells. EMBO Rep. 13, 52–59 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Minamino, T. et al. Endothelial cell senescence in human atherosclerosis: role of telomere in endothelial dysfunction. Circulation 105, 1541–1544 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Zhang, X. et al. Telomere-dependent and telomere-independent roles of RAP1 in regulating human stem cell homeostasis. Protein Cell 10, 649–667 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Steinert, S., White, D. M., Zou, Y., Shay, J. W. & Wright, W. E. Telomere biology and cellular aging in nonhuman primate cells. Exp. Cell Res. 272, 146–152 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Wu, Z., Zhang, W., Qu, J. & Liu, G. H. Emerging epigenetic insights into aging mechanisms and interventions. Trends Pharmacol. Sci. 45, 157–172 (2024).

    Article  CAS  PubMed  Google Scholar 

  73. Seale, K., Horvath, S., Teschendorff, A., Eynon, N. & Voisin, S. Making sense of the ageing methylome. Nat. Rev. Genet. 23, 585–605 (2022).

    Article  CAS  PubMed  Google Scholar 

  74. Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 14, R115 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Hannum, G. et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol. Cell 49, 359–367 (2013).

    Article  CAS  PubMed  Google Scholar 

  76. Lu, A. T. et al. Universal DNA methylation age across mammalian tissues. Nat. Aging 3, 1144–1166 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Horvath, S. et al. Epigenetic clock for skin and blood cells applied to Hutchinson Gilford Progeria syndrome and ex vivo studies. Aging 10, 1758–1775 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Jasinska, A. J. et al. Epigenetic clock and methylation studies in vervet monkeys. Geroscience 44, 699–717 (2022).

    Article  CAS  PubMed  Google Scholar 

  79. Horvath, S. et al. Pan-primate studies of age and sex. Geroscience 45, 3187–3209 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zheng, Z. et al. DNA methylation clocks for estimating biological age in Chinese cohorts. Protein Cell 15, 575–593 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Scaffidi, P. & Misteli, T. Lamin A-dependent nuclear defects in human aging. Science 312, 1059–1063 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Della Valle, F. et al. LINE-1 RNA causes heterochromatin erosion and is a target for amelioration of senescent phenotypes in progeroid syndromes. Sci. Transl. Med. 14, eabl6057 (2022).

    Article  CAS  PubMed  Google Scholar 

  83. Zhang, X. et al. The loss of heterochromatin is associated with multiscale three-dimensional genome reorganization and aberrant transcription during cellular senescence. Genome Res. 31, 1121–1135 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhang, H. et al. Nuclear lamina erosion-induced resurrection of endogenous retroviruses underlies neuronal aging. Cell Rep. 42, 112593 (2023).

    Article  CAS  PubMed  Google Scholar 

  85. Zhang, Y. et al. Single-nucleus transcriptomics reveals a gatekeeper role for FOXP1 in primate cardiac aging. Protein Cell 14, 279–293 (2023).

    PubMed  Google Scholar 

  86. Liang, C. et al. Stabilization of heterochromatin by CLOCK promotes stem cell rejuvenation and cartilage regeneration. Cell Res. 31, 187–205 (2021).

    Article  CAS  PubMed  Google Scholar 

  87. Zhao, H. et al. Destabilizing heterochromatin by APOE mediates senescence. Nat. Aging 2, 303–316 (2022).

    Article  CAS  PubMed  Google Scholar 

  88. Van Meter, M. et al. SIRT6 represses LINE1 retrotransposons by ribosylating KAP1 but this repression fails with stress and age. Nat. Commun. 5, 5011 (2014).

    Article  PubMed  Google Scholar 

  89. De Cecco, M. et al. L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature 566, 73–78 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Bi, S. et al. SIRT7 antagonizes human stem cell aging as a heterochromatin stabilizer. Protein Cell 11, 483–504 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Liu, F. et al. Identification of FOXO1 as a geroprotector in human synovium through single-nucleus transcriptomic profiling. Protein Cell 15, 441–459 (2024).

    Article  CAS  PubMed  Google Scholar 

  92. Hu, Q. et al. Single-nucleus transcriptomics uncovers a geroprotective role of YAP in primate gingival aging. Protein Cell 15, 612–632 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Mao, J. et al. Reactivation of senescence-associated endogenous retroviruses by ATF3 drives interferon signaling in aging. Nat. Aging 4, 1794–1812 (2024).

    Article  CAS  PubMed  Google Scholar 

  94. Zhou, S., Liu, L. & Lu, X. Endogenous retroviruses make aging go viral. Life Med. 2, lnad001 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Ren, R. et al. Visualization of aging-associated chromatin alterations with an engineered TALE system. Cell Res. 27, 483–504 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Ren, X. et al. Maintenance of nucleolar homeostasis by CBX4 alleviates senescence and osteoarthritis. Cell Rep. 26, 3643–3656.e7 (2019).

    Article  CAS  PubMed  Google Scholar 

  97. Swanson, E. C., Manning, B., Zhang, H. & Lawrence, J. B. Higher-order unfolding of satellite heterochromatin is a consistent and early event in cell senescence. J. Cell Biol. 203, 929–942 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Narita, M. et al. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113, 703–716 (2003).

    Article  CAS  PubMed  Google Scholar 

  99. Chandra, T. et al. Independence of repressive histone marks and chromatin compaction during senescent heterochromatic layer formation. Mol. Cell 47, 203–214 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kreiling, J. A. et al. Age-associated increase in heterochromatic marks in murine and primate tissues. Aging Cell 10, 292–304 (2011).

    Article  CAS  PubMed  Google Scholar 

  101. Diao, Z. et al. SIRT3 consolidates heterochromatin and counteracts senescence. Nucleic Acids Res. 49, 4203–4219 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Grootaert, M. O. J., Finigan, A., Figg, N. L., Uryga, A. K. & Bennett, M. R. SIRT6 protects smooth muscle cells from senescence and reduces atherosclerosis. Circ. Res. 128, 474–491 (2021).

    Article  CAS  PubMed  Google Scholar 

  103. Criscione, S. W. et al. Reorganization of chromosome architecture in replicative cellular senescence. Sci. Adv. 2, e1500882 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Bi, S. et al. The sirtuin-associated human senescence program converges on the activation of placenta-specific gene PAPPA. Dev. Cell 59, 991–1009.e12 (2024).

    Article  CAS  PubMed  Google Scholar 

  105. Wu, Z., Ren, J. & Liu, G. H. Deciphering RNA m6A regulation in aging: perspectives on current advances and future directions. Aging Cell 22, e13972 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Wu, Z. et al. METTL3 counteracts premature aging via m6A-dependent stabilization of MIS12 mRNA. Nucleic Acids Res. 48, 11083–11096 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wu, Z. et al. m6A epitranscriptomic regulation of tissue homeostasis during primate aging. Nat. Aging 3, 705–721 (2023).

    Article  CAS  PubMed  Google Scholar 

  108. Zhang, J. et al. Lamin A safeguards the m6A methylase METTL14 nuclear speckle reservoir to prevent cellular senescence. Aging Cell 19, e13215 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Min, K. W. et al. Profiling of m6A RNA modifications identified an age-associated regulation of AGO2 mRNA stability. Aging Cell 17, e12753 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Fu, Y. et al. Perturbation of METTL1-mediated tRNA N7-methylguanosine modification induces senescence and aging. Nat. Commun. 15, 5713 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Cai, D. & Han, J. J. Aging-associated lncRNAs are evolutionarily conserved and participate in NFκB signaling. Nat. Aging 1, 438–453 (2021).

    Article  PubMed  Google Scholar 

  112. Montes, M. et al. The long non-coding RNA MIR31HG regulates the senescence associated secretory phenotype. Nat. Commun. 12, 2459 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zhang, X. et al. KCNQ1OT1 promotes genome-wide transposon repression by guiding RNA–DNA triplexes and HP1 binding. Nat. Cell Biol. 24, 1617–1629 (2022).

    Article  CAS  PubMed  Google Scholar 

  114. Faraonio, R. et al. A set of miRNAs participates in the cellular senescence program in human diploid fibroblasts. Cell Death Differ. 19, 713–721 (2012).

    Article  CAS  PubMed  Google Scholar 

  115. Freund, A., Laberge, R. M., Demaria, M. & Campisi, J. Lamin B1 loss is a senescence-associated biomarker. Mol. Biol. Cell 23, 2066–2075 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Jing, Y. et al. Single-nucleus profiling unveils a geroprotective role of the FOXO3 in primate skeletal muscle aging. Protein Cell 14, 497–512 (2023).

    PubMed  Google Scholar 

  117. Zhang, H. et al. Protocols for the application of human embryonic stem cell-derived neurons for aging modeling and gene manipulation. STAR Protoc. 6, 103633 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Pienta, K. J., Getzenberg, R. H. & Coffey, D. S. Characterization of nuclear morphology and nuclear matrices in ageing human fibroblasts. Mech. Ageing Dev. 62, 13–24 (1992).

    Article  CAS  PubMed  Google Scholar 

  119. Kim, S. Y. et al. Senescence-related functional nuclear barrier by down-regulation of nucleo-cytoplasmic trafficking gene expression. Biochem. Biophys. Res. Commun. 391, 28–32 (2010).

    Article  CAS  PubMed  Google Scholar 

  120. Li, L. Z. et al. CRISPR-based screening identifies XPO7 as a positive regulator of senescence. Protein Cell 14, 623–628 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Buchwalter, A. & Hetzer, M. W. Nucleolar expansion and elevated protein translation in premature aging. Nat. Commun. 8, 328 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Li, H. Y. et al. CRISPR screening uncovers nucleolar RPL22 as a heterochromatin destabilizer and senescence driver. Nucleic Acids Res. 52, 11481–11499 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Pinho, M., Macedo, J. C., Logarinho, E. & Pereira, P. S. NOL12 repression induces nucleolar stress-driven cellular senescence and is associated with normative aging. Mol. Cell. Biol. 39, e00099-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Wang, M. et al. PML2-mediated thread-like nuclear bodies mark late senescence in Hutchinson–Gilford progeria syndrome. Aging Cell 19, e13147 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Wenger, B. et al. PML-nuclear bodies decrease with age and their stress response is impaired in aged individuals. BMC Geriatr. 14, 42 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  126. López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of aging: an expanding universe. Cell 186, 243–278 (2023).

    Article  PubMed  Google Scholar 

  127. Liu, Y. et al. Age-related changes in the mitochondria of human mural granulosa cells. Hum. Reprod. 32, 2465–2473 (2017).

    Article  CAS  PubMed  Google Scholar 

  128. He, Y. et al. 4E-BP1 counteracts human mesenchymal stem cell senescence via maintaining mitochondrial homeostasis. Protein Cell 14, 202–216 (2023).

    CAS  PubMed  Google Scholar 

  129. Wang, C. et al. MAVS antagonizes human stem cell senescence as a mitochondrial stabilizer. Research 6, 0192 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Yu, B. et al. Mitochondrial phosphatase PGAM5 modulates cellular senescence by regulating mitochondrial dynamics. Nat. Commun. 11, 2549 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Guo, X. et al. High-frequency and functional mitochondrial DNA mutations at the single-cell level. Proc. Natl Acad. Sci. USA 120, e2201518120 (2023).

    Article  CAS  PubMed  Google Scholar 

  132. Vandiver, A. R. et al. Nanopore sequencing identifies a higher frequency and expanded spectrum of mitochondrial DNA deletion mutations in human aging. Aging Cell 22, e13842 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Victorelli, S. et al. Apoptotic stress causes mtDNA release during senescence and drives the SASP. Nature 622, 627–636 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Andreux, P. A. et al. The mitophagy activator urolithin A is safe and induces a molecular signature of improved mitochondrial and cellular health in humans. Nat. Metab. 1, 595–603 (2019).

    Article  CAS  PubMed  Google Scholar 

  135. Fang, E. F. et al. NAD+ augmentation restores mitophagy and limits accelerated aging in Werner syndrome. Nat. Commun. 10, 5284 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Tan, J. X. & Finkel, T. Lysosomes in senescence and aging. EMBO Rep. 24, e57265 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Moreno-García, A., Kun, A., Calero, O., Medina, M. & Calero, M. An overview of the role of lipofuscin in age-related neurodegeneration. Front. Neurosci. 12, 464 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Gilissen, E. P. et al. A neuronal aging pattern unique to humans and common chimpanzees. Brain Struct. Funct. 221, 647–664 (2016).

    Article  PubMed  Google Scholar 

  139. Georgakopoulou, E. A. et al. Specific lipofuscin staining as a novel biomarker to detect replicative and stress-induced senescence. A method applicable in cryo-preserved and archival tissues. Aging 5, 37–50 (2013).

    Article  CAS  PubMed  Google Scholar 

  140. Wang, S. et al. Deciphering primate retinal aging at single-cell resolution. Protein Cell 12, 889–898 (2021).

    Article  PubMed  Google Scholar 

  141. Dimri, G. P. et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl Acad. Sci. USA 92, 9363–9367 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Lee, B. Y. et al. Senescence-associated beta-galactosidase is lysosomal beta-galactosidase. Aging Cell 5, 187–195 (2006).

    Article  CAS  PubMed  Google Scholar 

  143. Kurz, D. J., Decary, S., Hong, Y. & Erusalimsky, J. D. Senescence-associated β-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. J. Cell Sci. 113, 3613–3622 (2000).

    Article  CAS  PubMed  Google Scholar 

  144. Ma, S. et al. Single-cell transcriptomic atlas of primate cardiopulmonary aging. Cell Res. 31, 415–432 (2021).

    Article  CAS  PubMed  Google Scholar 

  145. Kavanagh, K. et al. Biomarkers of senescence in non-human primate adipose depots relate to aging. Geroscience 43, 343–352 (2021).

    Article  CAS  PubMed  Google Scholar 

  146. Wang, M. et al. Single-nucleus transcriptomics decodes the link between aging and lumbar disc herniation. Protein Cell https://doi.org/10.1093/procel/pwaf025 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Roh, K. et al. Lysosomal control of senescence and inflammation through cholesterol partitioning. Nat. Metab. 5, 398–413 (2023).

    Article  CAS  PubMed  Google Scholar 

  148. Li, W. et al. Cellular senescence triggers intracellular acidification and lysosomal pH alkalinized via ATP6AP2 attenuation in breast cancer cells. Commun. Biol. 6, 1147 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Jin, J. et al. CISH impairs lysosomal function in activated T cells resulting in mitochondrial DNA release and inflammaging. Nat. Aging 3, 600–616 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Johmura, Y. et al. Senolysis by glutaminolysis inhibition ameliorates various age-associated disorders. Science 371, 265–270 (2021).

    Article  CAS  PubMed  Google Scholar 

  151. Xiao, F. H. et al. ETS1 acts as a regulator of human healthy aging via decreasing ribosomal activity. Sci. Adv. 8, eabf2017 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Lessard, F. et al. Senescence-associated ribosome biogenesis defects contributes to cell cycle arrest through the Rb pathway. Nat. Cell Biol. 20, 789–799 (2018).

    Article  CAS  PubMed  Google Scholar 

  153. Cheng, Y. et al. A non-canonical role for a small nucleolar RNA in ribosome biogenesis and senescence. Cell 187, 4770–4789.e23 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Geng, L. et al. Systematic profiling reveals betaine as an exercise mimetic for geroprotection. Cell https://doi.org/10.1016/j.cell.2025.06.001 (2025).

    Article  PubMed  Google Scholar 

  155. Payea, M. J. et al. Senescence suppresses the integrated stress response and activates a stress-remodeled secretory phenotype. Mol. Cell 84, 4454–4469.e7 (2024).

    Article  CAS  PubMed  Google Scholar 

  156. Fukumoto, H. et al. Beta-secretase activity increases with aging in human, monkey, and mouse brain. Am. J. Pathol. 164, 719–725 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Gaikwad, S. et al. Tau oligomer induced HMGB1 release contributes to cellular senescence and neuropathology linked to Alzheimer’s disease and frontotemporal dementia. Cell Rep. 36, 109419 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Uchihara, T. et al. Tau pathology in aged cynomolgus monkeys is progressive supranuclear palsy/corticobasal degeneration — but not Alzheimer disease-like — ultrastructural mapping of tau by EDX. Acta Neuropathol. Commun. 4, 118 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Bie, J. et al. PKM2 aggregation drives metabolism reprograming during aging process. Nat. Commun. 15, 5761 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Sabath, N. et al. Cellular proteostasis decline in human senescence. Proc. Natl Acad. Sci. USA 117, 31902–31913 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Lee, H. J. et al. Cold temperature extends longevity and prevents disease-related protein aggregation through PA28γ-induced proteasomes. Nat. Aging 3, 546–566 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Cheng, F. et al. Reducing oxidative protein folding alleviates senescence by minimizing ER-to-nucleus H2O2 release. EMBO Rep. 24, e56439 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Hayashi, T. et al. Endothelial cellular senescence is inhibited by nitric oxide: implications in atherosclerosis associated with menopause and diabetes. Proc. Natl Acad. Sci. USA 103, 17018–17023 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Li, M. et al. [Gly14]-Humanin ameliorates high glucose-induced endothelial senescence via SIRT6. Sci. Rep. 14, 30924 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Wu, Y. et al. Phosphoglycerate dehydrogenase activates PKM2 to phosphorylate histone H3T11 and attenuate cellular senescence. Nat. Commun. 14, 1323 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Han, X. et al. AMPK activation protects cells from oxidative stress-induced senescence via autophagic flux restoration and intracellular NAD+ elevation. Aging Cell 15, 416–427 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Carroll, B. et al. Persistent mTORC1 signaling in cell senescence results from defects in amino acid and growth factor sensing. J. Cell Biol. 216, 1949–1957 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Ionescu, R. B. et al. Increased cholesterol synthesis drives neurotoxicity in patient stem cell-derived model of multiple sclerosis. Cell Stem Cell 31, 1574–1590.e11 (2024).

    Article  CAS  PubMed  Google Scholar 

  169. Flor, A. C., Wolfgeher, D., Wu, D. & Kron, S. J. A signature of enhanced lipid metabolism, lipid peroxidation and aldehyde stress in therapy-induced senescence. Cell Death Discov. 3, 17075 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Haney, M. S. et al. APOE4/4 is linked to damaging lipid droplets in Alzheimer’s disease microglia. Nature 628, 154–161 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Shota, Y. et al. Mitochondrial fatty acid oxidation drives senescence. Sci. Adv. 10, eado5887 (2024).

    Article  Google Scholar 

  172. Chen, W. et al. The SESAME complex regulates cell senescence through the generation of acetyl-CoA. Nat. Metab. 3, 983–1000 (2021).

    Article  CAS  PubMed  Google Scholar 

  173. Li, X. et al. Lipid metabolism dysfunction induced by age-dependent DNA methylation accelerates aging. Signal. Transduct. Target. Ther. 7, 162 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Garagnani, P. et al. Methylation of ELOVL2 gene as a new epigenetic marker of age. Aging Cell 11, 1132–1134 (2012).

    Article  CAS  PubMed  Google Scholar 

  175. Li, F. et al. Blocking methionine catabolism induces senescence and confers vulnerability to GSK3 inhibition in liver cancer. Nat. Cancer 5, 131–146 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Kang, J. et al. Depletion of SAM leading to loss of heterochromatin drives muscle stem cell ageing. Nat. Metab. 6, 153–168 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Shang, L. et al. S-adenosyl-l-methionine alleviates the senescence of MSCs through the PI3K/AKT/FOXO3a signaling pathway. Stem Cell 42, 475–490 (2024).

    Article  Google Scholar 

  178. Ueno, D. et al. Spermidine improves angiogenic capacity of senescent endothelial cells, and enhances ischemia-induced neovascularization in aged mice. Sci. Rep. 13, 8338 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Eisenberg, T. et al. Induction of autophagy by spermidine promotes longevity. Nat. Cell Biol. 11, 1305–1314 (2009).

    Article  CAS  PubMed  Google Scholar 

  180. Unterluggauer, H. et al. Premature senescence of human endothelial cells induced by inhibition of glutaminase. Biogerontology 9, 247–259 (2008).

    Article  CAS  PubMed  Google Scholar 

  181. Zhang, Y. et al. Glutamine suppresses senescence and promotes autophagy through glycolysis inhibition-mediated AMPKα lactylation in intervertebral disc degeneration. Commun. Biol. 7, 325 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Pacifico, F. et al. Glutamine promotes escape from therapy-induced senescence in tumor cells. Aging 13, 20962–20991 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Yuan, X. et al. NAD+/NADH redox alterations reconfigure metabolism and rejuvenate senescent human mesenchymal stem cells in vitro. Commun. Biol. 3, 774 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Sanokawa-Akakura, R., Akakura, S. & Tabibzadeh, S. Replicative senescence in human fibroblasts is delayed by hydrogen sulfide in a NAMPT/SIRT1 dependent manner. PLoS ONE 11, e0164710 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Wiley, C. D. et al. Mitochondrial dysfunction induces senescence with a distinct secretory phenotype. Cell Metab. 23, 303–314 (2016).

    Article  CAS  PubMed  Google Scholar 

  186. Sun, C. et al. Re-equilibration of imbalanced NAD metabolism ameliorates the impact of telomere dysfunction. EMBO J. 39, e103420 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Nacarelli, T. et al. NAD+ metabolism governs the proinflammatory senescence-associated secretome. Nat. Cell Biol. 21, 397–407 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Wang, B., Han, J., Elisseeff, J. H. & Demaria, M. The senescence-associated secretory phenotype and its physiological and pathological implications. Nat. Rev. Mol. Cell Biol. 25, 958–978 (2024).

    Article  CAS  PubMed  Google Scholar 

  189. Wu, Z., Qu, J., Zhang, W. & Liu, G. H. Stress, epigenetics, and aging: unraveling the intricate crosstalk. Mol. Cell 84, 34–54 (2024).

    Article  CAS  PubMed  Google Scholar 

  190. Chen, Y. et al. Circadian factors CLOCK and BMAL1 promote nonhomologous end joining and antagonize cellular senescence. Life Med. 3, lnae006 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Taylor, R. N. et al. Interleukin-1β induces and accelerates human endometrial stromal cell senescence and impairs decidualization via the c-Jun N-terminal kinase pathway. Cell Death Discov. 10, 288 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Gulen, M. F. et al. cGAS-STING drives ageing-related inflammation and neurodegeneration. Nature 620, 374–380 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Lee, S. et al. Virus-induced senescence is a driver and therapeutic target in COVID-19. Nature 599, 283–289 (2021).

    Article  CAS  PubMed  Google Scholar 

  194. Schmitt, C. A. et al. COVID-19 and cellular senescence. Nat. Rev. Immunol. 23, 251–263 (2023).

    Article  CAS  PubMed  Google Scholar 

  195. Guo, Y. et al. Senescence-associated tissue microenvironment promotes colon cancer formation through the secretory factor GDF15. Aging Cell 18, e13013 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Acosta, J. C. et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat. Cell Biol. 15, 978–990 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Jin, H. J. et al. Senescence-associated MCP-1 secretion is dependent on a decline in BMI1 in human mesenchymal stromal cells. Antioxid. Redox Signal. 24, 471–485 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Xu, M. et al. JAK inhibition alleviates the cellular senescence-associated secretory phenotype and frailty in old age. Proc. Natl Acad. Sci. USA 112, E6301–E6310 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Acosta, J. C. et al. Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 133, 1006–1018 (2008).

    Article  CAS  PubMed  Google Scholar 

  200. Freund, A., Patil, C. K. & Campisi, J. p38MAPK is a novel DNA damage response-independent regulator of the senescence-associated secretory phenotype. EMBO J. 30, 1536–1548 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Amor, C. et al. Senolytic CAR T cells reverse senescence-associated pathologies. Nature 583, 127–132 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Suda, M. et al. Senolytic vaccination improves normal and pathological age-related phenotypes and increases lifespan in progeroid mice. Nat. Aging 1, 1117–1126 (2021).

    Article  PubMed  Google Scholar 

  203. Zhu, Y. et al. The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14, 644–658 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Zhang, B. et al. SenoIndex: S100A8/S100A9 as a novel aging biomarker. Life Med. 2, lnad022 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Su, Y. et al. S100A13 promotes senescence-associated secretory phenotype and cellular senescence via modulation of non-classical secretion of IL-1α. Aging 11, 549–572 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Kang, H. T., Lee, K. B., Kim, S. Y., Choi, H. R. & Park, S. C. Autophagy impairment induces premature senescence in primary human fibroblasts. PLoS ONE 6, e23367 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Lehmann, B. D. et al. Senescence-associated exosome release from human prostate cancer cells. Cancer Res. 68, 7864–7871 (2008).

    Article  CAS  PubMed  Google Scholar 

  208. Liu, X. et al. Migrasomes trigger innate immune activation and mediate transmission of senescence signals across human cells. Life Med. 2, lnad050 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Segurado-Miravalles, G. et al. Assessment of the effect of 3% diclofenac sodium on photodamaged skin by means of reflectance confocal microscopy. Acta Derm. Venereol. 98, 963–969 (2018).

    Article  CAS  PubMed  Google Scholar 

  210. Montagna, W. & Carlisle, K. Structural changes in aging human skin. J. Invest. Dermatol. 73, 47–53 (1979).

    Article  CAS  PubMed  Google Scholar 

  211. Watt, F. M. & Fujiwara, H. Cell–extracellular matrix interactions in normal and diseased skin. Cold Spring Harb. Perspect. Biol. 3, a005124 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Liu, N. et al. Stem cell competition orchestrates skin homeostasis and ageing. Nature 568, 344–350 (2019).

    Article  CAS  PubMed  Google Scholar 

  213. Matsumura, H. et al. Hair follicle aging is driven by transepidermal elimination of stem cells via COL17A1 proteolysis. Science 351, aad4395 (2016).

    Article  PubMed  Google Scholar 

  214. Hasegawa, T. et al. Cytotoxic CD4+ T cells eliminate senescent cells by targeting cytomegalovirus antigen. Cell 186, 1417–1431.e20 (2023).

    Article  CAS  PubMed  Google Scholar 

  215. Xiao, X. et al. Identification of key circadian rhythm genes in skin aging based on bioinformatics and machine learning. Aging 15, 11672–11689 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Chiou, K. L. et al. Multiregion transcriptomic profiling of the primate brain reveals signatures of aging and the social environment. Nat. Neurosci. 25, 1714–1723 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Yu, Y. et al. A stress-induced miR-31-CLOCK-ERK pathway is a key driver and therapeutic target for skin aging. Nat. Aging 1, 795–809 (2021).

    Article  PubMed  Google Scholar 

  218. Sun, C. et al. Integrated analysis of facial microbiome and skin physio-optical properties unveils cutotype-dependent aging effects. Microbiome 12, 163 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Aging Biomarker Consortium. A framework of biomarkers for brain aging: a consensus statement by the Aging Biomarker Consortium. Life Med. 2, lnad017 (2023).

    Article  PubMed Central  Google Scholar 

  220. Groh, J. & Simons, M. White matter aging and its impact on brain function. Neuron 113, 127–139 (2025).

    Article  CAS  PubMed  Google Scholar 

  221. Vickery, S. et al. The uniqueness of human vulnerability to brain aging in great ape evolution. Sci. Adv. 10, eado2733 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Moguilner, S. et al. Brain clocks capture diversity and disparities in aging and dementia across geographically diverse populations. Nat. Med. 30, 3646–3657 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Oveisgharan, S. et al. The time course of motor and cognitive decline in older adults and their associations with brain pathologies: a multicohort study. Lancet Healthy Longev. 5, e336–e345 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  224. Castner, S. A. et al. Longevity factor klotho enhances cognition in aged nonhuman primates. Nat. Aging 3, 931–937 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  225. Wen, X. et al. Single-cell multiplex chromatin and RNA interactions in ageing human brain. Nature 628, 648–656 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Green, G. S. et al. Cellular communities reveal trajectories of brain ageing and Alzheimer’s disease. Nature 633, 634–645 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Herdy, J. R. et al. Increased post-mitotic senescence in aged human neurons is a pathological feature of Alzheimer’s disease. Cell Stem Cell 29, 1637–1652.e6 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Bae, T. et al. Analysis of somatic mutations in 131 human brains reveals aging-associated hypermutability. Science 377, 511–517 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Ning, C. et al. Epigenomic landscapes during prefrontal cortex development and aging in rhesus. Natl Sci. Rev. 11, nwae213 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Liu, S. et al. Annotation and cluster analysis of spatiotemporal- and sex-related lncRNA expression in rhesus macaque brain. Genome Res. 27, 1608–1620 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Li, D. et al. Aging-induced tRNA(Glu)-derived fragment impairs glutamate biosynthesis by targeting mitochondrial translation-dependent cristae organization. Cell Metab. 36, 1059–1075.e9 (2024).

    Article  CAS  PubMed  Google Scholar 

  232. Fan, Y. et al. Generic amyloid fibrillation of TMEM106B in patient with Parkinson’s disease dementia and normal elders. Cell Res. 32, 585–588 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  233. Beckman, D. et al. Oligomeric Aβ in the monkey brain impacts synaptic integrity and induces accelerated cortical aging. Proc. Natl Acad. Sci. USA 116, 26239–26246 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Liu, W. S. et al. Plasma proteomics identify biomarkers and undulating changes of brain aging. Nat. Aging 5, 99–112 (2025).

    Article  CAS  PubMed  Google Scholar 

  235. Khalil, M. et al. Serum neurofilament light levels in normal aging and their association with morphologic brain changes. Nat. Commun. 11, 812 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Li, Y. et al. Aging-related NADPH diaphorase positive neurodegenerations in the sacral spinal cord of aged non-human primates. Sci. Rep. 14, 27168 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Steenman, M. & Lande, G. Cardiac aging and heart disease in humans. Biophys. Rev. 9, 131–137 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  238. Aging Biomarker Consortium. A biomarker framework for cardiac aging: the Aging Biomarker Consortium consensus statement. Life Med. 2, lnad035 (2023).

    Article  PubMed Central  Google Scholar 

  239. Aging Biomarker Consortium. A framework of biomarkers for vascular aging: a consensus statement by the Aging Biomarker Consortium. Life Med. 2, lnad033 (2023).

    Article  PubMed Central  Google Scholar 

  240. Hastings, M. H. et al. Cardiac aging: from hallmarks to therapeutic opportunities. Cardiovasc. Res. https://doi.org/10.1093/cvr/cvae124 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  241. Abdellatif, M., Rainer, P. P., Sedej, S. & Kroemer, G. Hallmarks of cardiovascular ageing. Nat. Rev. Cardiol. 20, 754–777 (2023).

    Article  PubMed  Google Scholar 

  242. Olivetti, G., Melissari, M., Capasso, J. M. & Anversa, P. Cardiomyopathy of the aging human heart. Myocyte loss and reactive cellular hypertrophy. Circ. Res. 68, 1560–1568 (1991).

    Article  CAS  PubMed  Google Scholar 

  243. Wang, M. et al. Aging increases aortic MMP-2 activity and angiotensin II in nonhuman primates. Hypertension 41, 1308–1316 (2003).

    Article  CAS  PubMed  Google Scholar 

  244. Yoshida, Y. et al. Alteration of cardiac performance and serum B-type natriuretic peptide level in healthy aging. J. Am. Coll. Cardiol. 74, 1789–1800 (2019).

    Article  CAS  PubMed  Google Scholar 

  245. de Lemos, J. A. et al. Association of troponin T detected with a highly sensitive assay and cardiac structure and mortality risk in the general population. JAMA 304, 2503–2512 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  246. Ding, Y. et al. Comprehensive human proteome profiles across a 50-year lifespan reveal aging trajectories and signatures. Cell https://doi.org/10.1016/j.cell.2025.06.047 (2025).

    Article  PubMed  Google Scholar 

  247. Sun, D. Y. et al. Pro-ferroptotic signaling promotes arterial aging via vascular smooth muscle cell senescence. Nat. Commun. 15, 1429 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Zhang, Y. et al. Sirtuin 2 deficiency aggravates ageing-induced vascular remodelling in humans and mice. Eur. Heart J. 44, 2746–2759 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Zhang, W. et al. A single-cell transcriptomic landscape of primate arterial aging. Nat. Commun. 11, 2202 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Gossner, J. & Nau, R. Geriatric chest imaging: when and how to image the elderly lung, age-related changes, and common pathologies. Radiol. Res. Pract. 2013, 584793 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  251. Copley, S. J. et al. Effect of aging on lung structure in vivo: assessment with densitometric and fractal analysis of high-resolution computed tomography data. J. Thorac. Imaging 27, 366–371 (2012).

    Article  PubMed  Google Scholar 

  252. Baratella, E. et al. Aging-related findings of the respiratory system in chest imaging: pearls and pitfalls. Curr. Radiol. Rep. 11, 1–11 (2023).

    Article  PubMed  Google Scholar 

  253. Cho, S. J. & Stout-Delgado, H. W. Aging and lung disease. Annu. Rev. Physiol. 82, 433–459 (2020).

    Article  CAS  PubMed  Google Scholar 

  254. Janssens, J. P., Pache, J. C. & Nicod, L. P. Physiological changes in respiratory function associated with ageing. Eur. Respir. J. 13, 197–205 (1999).

    Article  CAS  PubMed  Google Scholar 

  255. Schneider, J. L. et al. The aging lung: physiology, disease, and immunity. Cell 184, 1990–2019 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Lee, S. et al. Molecular programs of fibrotic change in aging human lung. Nat. Commun. 12, 6309 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Jia, H. et al. A single-cell atlas of lung homeostasis reveals dynamic changes during development and aging. Commun. Biol. 7, 427 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  258. Chow, R. D., Majety, M. & Chen, S. The aging transcriptome and cellular landscape of the human lung in relation to SARS-CoV-2. Nat. Commun. 12, 4 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Cogger, V. C. et al. Hepatic sinusoidal pseudocapillarization with aging in the non-human primate. Exp. Gerontol. 38, 1101–1107 (2003).

    Article  PubMed  Google Scholar 

  260. McLean, A. J. et al. Age-related pseudocapillarization of the human liver. J. Pathol. 200, 112–117 (2003).

    Article  PubMed  Google Scholar 

  261. Wynne, H. A. et al. The effect of age upon liver volume and apparent liver blood flow in healthy man. Hepatology 9, 297–301 (1989).

    Article  CAS  PubMed  Google Scholar 

  262. Moon, C. M., Kim, S. K., Heo, S. H. & Shin, S. S. Hemodynamic changes in the portal vein with age: evaluation using four-dimensional flow MRI. Sci. Rep. 13, 7397 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Aging Biomarker Consortium. A biomarker framework for liver aging: the Aging Biomarker Consortium consensus statement. Life Med. 3, lnae004 (2024).

    Article  PubMed Central  Google Scholar 

  264. Kudryavtsev, B. N., Kudryavtseva, M. V., Sakuta, G. A. & Stein, G. I. Human hepatocyte polyploidization kinetics in the course of life cycle. Virchows Arch. B Cell Pathol. Incl. Mol. Pathol. 64, 387–393 (1993).

    Article  CAS  PubMed  Google Scholar 

  265. Ogrodnik, M. et al. Cellular senescence drives age-dependent hepatic steatosis. Nat. Commun. 8, 15691 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Brazhnik, K. et al. Single-cell analysis reveals different age-related somatic mutation profiles between stem and differentiated cells in human liver. Sci. Adv. 6, eaax2659 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Bacalini, M. G. et al. Molecular aging of human liver: an epigenetic/transcriptomic signature. J. Gerontol. A Biol. Sci. Med. Sci. 74, 1–8 (2019).

    CAS  PubMed  Google Scholar 

  268. Wiemann, S. U. et al. Hepatocyte telomere shortening and senescence are general markers of human liver cirrhosis. FASEB J. 16, 935–942 (2002).

    Article  CAS  PubMed  Google Scholar 

  269. Deng, D. et al. Aging-induced short-chain acyl-CoA dehydrogenase promotes age-related hepatic steatosis by suppressing lipophagy. Aging Cell 23, e14256 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Corton, J. C. et al. Determinants of gene expression in the human liver: impact of aging and sex on xenobiotic metabolism. Exp. Gerontol. 169, 111976 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Arif, M. et al. Data-driven transcriptomics analysis identifies PCSK9 as a novel key regulator in liver aging. Geroscience 45, 3059–3077 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Du, K. et al. Aging promotes metabolic dysfunction-associated steatotic liver disease by inducing ferroptotic stress. Nat. Aging 4, 949–968 (2024).

    Article  CAS  PubMed  Google Scholar 

  273. Li, J. et al. Determining a multimodal aging clock in a cohort of Chinese women. Med 4, 825–848.e13 (2023).

    Article  CAS  PubMed  Google Scholar 

  274. Tietz, N. W., Shuey, D. F. & Wekstein, D. R. Laboratory values in fit aging individuals — sexagenarians through centenarians. Clin. Chem. 38, 1167–1185 (1992).

    Article  CAS  PubMed  Google Scholar 

  275. Cui, Q. et al. Serum PCSK9 is associated with multiple metabolic factors in a large Han Chinese population. Atherosclerosis 213, 632–636 (2010).

    Article  CAS  PubMed  Google Scholar 

  276. Rezzani, R., Nardo, L., Favero, G., Peroni, M. & Rodella, L. F. Thymus and aging: morphological, radiological, and functional overview. Age 36, 313–351 (2014).

    Article  PubMed  Google Scholar 

  277. Mittelbrunn, M. & Kroemer, G. Hallmarks of T cell aging. Nat. Immunol. 22, 687–698 (2021).

    Article  CAS  PubMed  Google Scholar 

  278. Zago, M. A., Figueiredo, M. S., Covas, D. T. & Bottura, C. Aspects of splenic hypofunction in old age. Klin. Wochenschr. 63, 590–592 (1985).

    Article  CAS  PubMed  Google Scholar 

  279. Alex, L. et al. Microscopic study of human spleen in different age groups. Int. J. Med. Sci. 3, 1701–1706 (2017).

    Google Scholar 

  280. Turner, V. M. & Mabbott, N. A. Influence of ageing on the microarchitecture of the spleen and lymph nodes. Biogerontology 18, 723–738 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  281. Murakami, G. & Taniguchi, I. Histologic heterogeneity and intranodal shunt flow in lymph nodes from elderly subjects: a cadaveric study. Ann. Surg. Oncol. 11, 279s–284s (2004).

    Article  PubMed  Google Scholar 

  282. Blebea, J. S. et al. Structural and functional imaging of normal bone marrow and evaluation of its age-related changes. Semin. Nucl. Med. 37, 185–194 (2007).

    Article  PubMed  Google Scholar 

  283. Stervbo, U. et al. Effects of aging on human leukocytes (part I): immunophenotyping of innate immune cells. Age 37, 92 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  284. Mogilenko, D. A. et al. Comprehensive profiling of an aging immune system reveals clonal GZMK+ CD8+ T cells as conserved hallmark of inflammaging. Immunity 54, 99–115.e12 (2021).

    Article  CAS  PubMed  Google Scholar 

  285. Mogilenko, D. A., Shchukina, I. & Artyomov, M. N. Immune ageing at single-cell resolution. Nat. Rev. Immunol. 22, 484–498 (2022).

    Article  CAS  PubMed  Google Scholar 

  286. Chang, Y. et al. An updated immunosenescence exploration in healthy Chinese donors: circular elevated PD-1 on T cell and increased Ki67 on CD8+ T cell towards aging. Aging 16, 10985–10996 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Bohacova, P. et al. Multidimensional profiling of human T cells reveals high CD38 expression, marking recent thymic emigrants and age-related naive T cell remodeling. Immunity 57, 2362–2379.e10 (2024).

    Article  CAS  PubMed  Google Scholar 

  288. Terekhova, M. et al. Single-cell atlas of healthy human blood unveils age-related loss of NKG2C+GZMBCD8+ memory T cells and accumulation of type 2 memory T cells. Immunity 56, 2836–2854.e9 (2023).

    Article  CAS  PubMed  Google Scholar 

  289. Luo, O. J. et al. Multidimensional single-cell analysis of human peripheral blood reveals characteristic features of the immune system landscape in aging and frailty. Nat. Aging 2, 348–364 (2022).

    Article  CAS  PubMed  Google Scholar 

  290. Filippov, I., Schauser, L. & Peterson, P. An integrated single-cell atlas of blood immune cells in aging. npj Aging 10, 59 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Nguyen, T. T. & Corvera, S. Adipose tissue as a linchpin of organismal ageing. Nat. Metab. 6, 793–807 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Porter, J. W. et al. Age, sex, and depot-specific differences in adipose-tissue estrogen receptors in individuals with obesity. Obesity 28, 1698–1707 (2020).

    Article  CAS  PubMed  Google Scholar 

  293. Mansoor, A. et al. Echocardiographic determination of epicardial adipose tissue in healthy bonnet macaques. Echocardiography 27, 180–185 (2010).

    Article  PubMed  Google Scholar 

  294. Cefalu, W. T. et al. Caloric restriction and cardiovascular aging in cynomolgus monkeys (Macaca fascicularis): metabolic, physiologic, and atherosclerotic measures from a 4-year intervention trial. J. Gerontol. A Biol. Sci. Med. Sci. 59, 1007–1014 (2004).

    Article  PubMed  Google Scholar 

  295. Zhang, Y. et al. Adipose tissue senescence: biological changes, hallmarks and therapeutic approaches. Mech. Ageing Dev. 222, 111988 (2024).

    Article  CAS  PubMed  Google Scholar 

  296. Saito, M. et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 58, 1526–1531 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Wang, L. et al. Age and BMI have different effects on subcutaneous, visceral, liver, bone marrow, and muscle adiposity, as measured by CT and MRI. Obesity 32, 1339–1348 (2024).

    Article  CAS  PubMed  Google Scholar 

  298. Xu, P. et al. Integrated multi-omic analyses uncover the effects of aging on cell-type regulation in glucose-responsive tissues. Aging Cell 23, e14199 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Zhou, W. et al. High-resolution aging niche of human adipose tissues. Signal. Transduct. Target. Ther. 8, 105 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  300. Sasaki, T. et al. Status and physiological significance of circulating adiponectin in the very old and centenarians: an observational study. eLife 12, e86309 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Pareja-Galeano, H. et al. Circulating leptin and adiponectin concentrations in healthy exceptional longevity. Mech. Ageing Dev. 162, 129–132 (2017).

    Article  CAS  PubMed  Google Scholar 

  302. Mitchell, W. K. et al. Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength; a quantitative review. Front. Physiol. 3, 260 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  303. Wilkinson, D. J., Piasecki, M. & Atherton, P. J. The age-related loss of skeletal muscle mass and function: measurement and physiology of muscle fibre atrophy and muscle fibre loss in humans. Ageing Res. Rev. 47, 123–132 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Granic, A., Suetterlin, K., Shavlakadze, T., Grounds, M. D. & Sayer, A. A. Hallmarks of ageing in human skeletal muscle and implications for understanding the pathophysiology of sarcopenia in women and men. Clin. Sci. 137, 1721–1751 (2023).

    Article  CAS  Google Scholar 

  305. Zhao, Q. et al. SIRT5 safeguards against primate skeletal muscle ageing via desuccinylation of TBK1. Nat. Metab. 7, 556–573 (2025).

    Article  CAS  PubMed  Google Scholar 

  306. Huang, N. et al. A framework of biomarkers for skeletal muscle aging: a consensus statement by the Aging Biomarker Consortium. Life Med. 3, lnaf001 (2024).

    Article  PubMed  Google Scholar 

  307. Black, A. et al. A nonhuman primate model of age-related bone loss: a longitudinal study in male and premenopausal female rhesus monkeys. Bone 28, 295–302 (2001).

    Article  CAS  PubMed  Google Scholar 

  308. Colman, R. J., Lane, M. A., Binkley, N., Wegner, F. H. & Kemnitz, J. W. Skeletal effects of aging in male rhesus monkeys. Bone 24, 17–23 (1999).

    Article  CAS  PubMed  Google Scholar 

  309. Runolfsdottir, H. L., Sigurdsson, G., Franzson, L. & Indridason, O. S. Gender comparison of factors associated with age-related differences in bone mineral density. Arch. Osteoporos. 10, 214 (2015).

    Article  PubMed  Google Scholar 

  310. Aging Biomarker Consortium. A framework of biomarkers for skeletal aging: a consensus statement by the Aging Biomarker Consortium. Life Med. 2, lnad045 (2023).

    Article  PubMed Central  Google Scholar 

  311. Lotz, M. & Loeser, R. F. Effects of aging on articular cartilage homeostasis. Bone 51, 241–248 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  312. Grote, C., Reinhardt, D., Zhang, M. & Wang, J. Regulatory mechanisms and clinical manifestations of musculoskeletal aging. J. Orthop. Res. 37, 1475–1488 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  313. Burr, D. B. Changes in bone matrix properties with aging. Bone 120, 85–93 (2019).

    Article  CAS  PubMed  Google Scholar 

  314. Iijima, H. et al. Age-related matrix stiffening epigenetically regulates α-Klotho expression and compromises chondrocyte integrity. Nat. Commun. 14, 18 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. Lai, Y. et al. Multimodal cell atlas of the ageing human skeletal muscle. Nature 629, 154–164 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. Kedlian, V. R. et al. Human skeletal muscle aging atlas. Nat. Aging 4, 727–744 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  317. Mi, B. et al. Ageing-related bone and immunity changes: insights into the complex interplay between the skeleton and the immune system. Bone Res. 12, 42 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. Busse, B. et al. Decrease in the osteocyte lacunar density accompanied by hypermineralized lacunar occlusion reveals failure and delay of remodeling in aged human bone. Aging Cell 9, 1065–1075 (2010).

    Article  CAS  PubMed  Google Scholar 

  319. Chung, P. L. et al. Effect of age on regulation of human osteoclast differentiation. J. Cell. Biochem. 115, 1412–1419 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  320. Pang, W. W. et al. Human bone marrow hematopoietic stem cells are increased in frequency and myeloid-biased with age. Proc. Natl Acad. Sci. USA 108, 20012–20017 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  321. Barbero, A. et al. Age related changes in human articular chondrocyte yield, proliferation and post-expansion chondrogenic capacity. Osteoarthr. Cartil. 12, 476–484 (2004).

    Article  Google Scholar 

  322. Zhang, X. et al. Characterization of cellular senescence in aging skeletal muscle. Nat. Aging 2, 601–615 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  323. Jing, Y. et al. SESN1 is a FOXO3 effector that counteracts human skeletal muscle ageing. Cell Prolif. 56, e13455 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  324. Janssens, G. E. et al. A conserved complex lipid signature marks human muscle aging and responds to short-term exercise. Nat. Aging 4, 681–693 (2024).

    Article  CAS  PubMed  Google Scholar 

  325. Fuerst, M. et al. Calcification of articular cartilage in human osteoarthritis. Arthritis Rheum. 60, 2694–2703 (2009).

    Article  CAS  PubMed  Google Scholar 

  326. Rex, N., Melk, A. & Schmitt, R. Cellular senescence and kidney aging. Clin. Sci. 137, 1805–1821 (2023).

    Article  CAS  Google Scholar 

  327. Fang, Y. et al. Age-related GSK3β overexpression drives podocyte senescence and glomerular aging. J. Clin. Invest. 132, e141848 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  328. Lee, H. J. et al. Marmoset as a model to study kidney changes associated with aging. J. Gerontol. A Biol. Sci. Med. Sci. 74, 315–324 (2019).

    Article  CAS  PubMed  Google Scholar 

  329. Fang, Y. et al. The ageing kidney: molecular mechanisms and clinical implications. Ageing Res. Rev. 63, 101151 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  330. Schmitt, R. & Melk, A. Molecular mechanisms of renal aging. Kidney Int. 92, 569–579 (2017).

    Article  CAS  PubMed  Google Scholar 

  331. Xie, H. et al. Uremic toxin receptor AhR facilitates renal senescence and fibrosis via suppressing mitochondrial biogenesis. Adv. Sci. 11, e2402066 (2024).

    Article  Google Scholar 

  332. Zhou, S. et al. Cannabinoid receptor 2 plays a central role in renal tubular mitochondrial dysfunction and kidney ageing. J. Cell. Mol. Med. 25, 8957–8972 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  333. Luo, C. et al. Wnt9a promotes renal fibrosis by accelerating cellular senescence in tubular epithelial cells. J. Am. Soc. Nephrol. 29, 1238–1256 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  334. Mylonas, K. J. et al. Cellular senescence inhibits renal regeneration after injury in mice, with senolytic treatment promoting repair. Sci. Transl. Med. 13, eabb0203 (2021).

    Article  CAS  PubMed  Google Scholar 

  335. Li, L. et al. Inhibition of ACSS2-mediated histone crotonylation alleviates kidney fibrosis via IL-1β-dependent macrophage activation and tubular cell senescence. Nat. Commun. 15, 3200 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  336. Jiang, Q. et al. ZFYVE21 promotes endothelial nitric oxide signaling and vascular barrier function in the kidney during aging. Kidney Int. 106, 419–432 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  337. Oh, H. S. et al. Organ aging signatures in the plasma proteome track health and disease. Nature 624, 164–172 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  338. Yamazaki, Y. et al. Establishment of sandwich ELISA for soluble alpha-Klotho measurement: age-dependent change of soluble alpha-Klotho levels in healthy subjects. Biochem. Biophys. Res. Commun. 398, 513–518 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  339. Perheentupa, A. & Huhtaniemi, I. Aging of the human ovary and testis. Mol. Cell. Endocrinol. 299, 2–13 (2009).

    Article  CAS  PubMed  Google Scholar 

  340. Wang, S., Ren, J., Jing, Y., Qu, J. & Liu, G. H. Perspectives on biomarkers of reproductive aging for fertility and beyond. Nat. Aging 4, 1697–1710 (2024).

    Article  CAS  PubMed  Google Scholar 

  341. Lu, H. et al. Aging hallmarks of the primate ovary revealed by spatiotemporal transcriptomics. Protein Cell 15, 364–384 (2024).

    Article  CAS  PubMed  Google Scholar 

  342. Yan, L. et al. Stem cell transplantation extends the reproductive life span of naturally aging cynomolgus monkeys. Cell Discov. 10, 111 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  343. Zhou, C. et al. Single-cell atlas of human ovaries reveals the role of the pyroptotic macrophage in ovarian aging. Adv. Sci. 11, e2305175 (2024).

    Article  Google Scholar 

  344. Jin, C. et al. Molecular and genetic insights into human ovarian aging from single-nuclei multi-omics analyses. Nat. Aging 5, 275–290 (2025).

    Article  PubMed  Google Scholar 

  345. Yang, Q. et al. NADase CD38 is a key determinant of ovarian aging. Nat. Aging 4, 110–128 (2024).

    Article  CAS  PubMed  Google Scholar 

  346. Huang, D. et al. A single-nucleus transcriptomic atlas of primate testicular aging reveals exhaustion of the spermatogonial stem cell reservoir and loss of Sertoli cell homeostasis. Protein Cell 14, 888–907 (2023).

    PubMed  Google Scholar 

  347. Nie, X. et al. Single-cell analysis of human testis aging and correlation with elevated body mass index. Dev. Cell 57, 1160–1176.e5 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  348. Deng, Z. et al. Targeting dysregulated phago-/auto-lysosomes in Sertoli cells to ameliorate late-onset hypogonadism. Nat. Aging 4, 647–663 (2024).

    Article  CAS  PubMed  Google Scholar 

  349. He, J. et al. Single-cell transcriptomics identifies senescence-associated secretory phenotype (SASP) features of testicular aging in human. Aging 16, 3350–3362 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  350. Jiang, H. et al. Quantitative histological analysis and ultrastructure of the aging human testis. Int. Urol. Nephrol. 46, 879–885 (2014).

    Article  PubMed  Google Scholar 

  351. Huber, H. F., Gerow, K. G. & Nathanielsz, P. W. Walking speed as an aging biomarker in baboons (Papio hamadryas). J. Med. Primatol. 44, 373–380 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  352. Legdeur, N. et al. Associations of brain pathology cognitive and physical markers with age in cognitively normal individuals aged 60–102 years. J. Gerontol. A Biol. Sci. Med. Sci. 75, 1609–1617 (2020).

    Article  PubMed  Google Scholar 

  353. Shively, C. A., Lacreuse, A., Frye, B. M., Rothwell, E. S. & Moro, M. Nonhuman primates at the intersection of aging biology, chronic disease, and health: an introduction to the American Journal of Primatology Special Issue on aging, cognitive decline, and neuropathology in nonhuman primates. Am. J. Primatol. 83, e23309 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  354. Kim, S., Myers, L., Wyckoff, J., Cherry, K. E. & Jazwinski, S. M. The frailty index outperforms DNA methylation age and its derivatives as an indicator of biological age. Geroscience 39, 83–92 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  355. Mamoshina, P. et al. Population specific biomarkers of human aging: a big data study using South Korean, Canadian, and Eastern European patient populations. J. Gerontol. A Biol. Sci. Med. Sci. 73, 1482–1490 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  356. Kubota, K. et al. [Changes in the blood cell counts with aging]. Nihon Ronen Igakkai Zasshi 28, 509–514 (1991).

    Article  CAS  PubMed  Google Scholar 

  357. Videan, E. N., Fritz, J. & Murphy, J. Effects of aging on hematology and serum clinical chemistry in chimpanzees (Pan troglodytes). Am. J. Primatol. 70, 327–338 (2008).

    Article  CAS  PubMed  Google Scholar 

  358. Puzianowska-Kuźnicka, M. et al. Interleukin-6 and C-reactive protein, successful aging, and mortality: the PolSenior study. Immun. Ageing 13, 21 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  359. Kaeser, S. A. et al. A neuronal blood marker is associated with mortality in old age. Nat. Aging 1, 218–225 (2021).

    Article  PubMed  Google Scholar 

  360. Tian, C. R., Qian, L., Shen, X. Z., Li, J. J. & Wen, J. T. Distribution of serum total protein in elderly Chinese. PLoS ONE 9, e101242 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  361. Semba, R. D. et al. Plasma klotho and mortality risk in older community-dwelling adults. J. Gerontol. A Biol. Sci. Med. Sci. 66, 794–800 (2011).

    Article  PubMed  Google Scholar 

  362. Liu, Z. et al. Cross-species metabolomic analysis identifies uridine as a potent regeneration promoting factor. Cell Discov. 8, 6 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  363. Singh, P. et al. Taurine deficiency as a driver of aging. Science 380, eabn9257 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  364. Shi, F. et al. Oxidative damage of DNA, RNA and their metabolites in leukocytes, plasma and urine of Macaca mulatta: 8-oxoguanosine in urine is a useful marker for aging. Free Radic. Res. 46, 1093–1098 (2012).

    Article  CAS  PubMed  Google Scholar 

  365. Gan, W. et al. Urinary 8-oxo-7,8-dihydroguanosine as a potential biomarker of aging. Front. Aging Neurosci. 10, 34 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  366. Horvath, S. & Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 19, 371–384 (2018).

    Article  CAS  PubMed  Google Scholar 

  367. Haghani, A. et al. DNA methylation networks underlying mammalian traits. Science 381, eabq5693 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  368. Levine, M. E. et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging 10, 573–591 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  369. Horvath, S. et al. DNA methylation age analysis of rapamycin in common marmosets. Geroscience 43, 2413–2425 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  370. Chen, W. et al. Three-dimensional human facial morphologies as robust aging markers. Cell Res. 25, 574–587 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  371. Xia, X. et al. Three-dimensional facial-image analysis to predict heterogeneity of the human ageing rate and the impact of lifestyle. Nat. Metab. 2, 946–957 (2020).

    Article  CAS  PubMed  Google Scholar 

  372. Zhavoronkov, A., Kochetov, K., Diamandis, P. & Mitina, M. PsychoAge and SubjAge: development of deep markers of psychological and subjective age using artificial intelligence. Aging 12, 23548–23577 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  373. Ren, J. et al. The Aging Biomarker Consortium represents a new era for aging research in China. Nat. Med. 29, 2162–2165 (2023).

    Article  CAS  PubMed  Google Scholar 

  374. Franceschi, C. et al. The continuum of aging and age-related diseases: common mechanisms but different rates. Front. Med. 5, 61 (2018).

    Article  Google Scholar 

  375. Ruggiero, A. D. et al. Long-term dasatinib plus quercetin effects on aging outcomes and inflammation in nonhuman primates: implications for senolytic clinical trial design. Geroscience 45, 2785–2803 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  376. Hickson, L. J. et al. Senolytics decrease senescent cells in humans: preliminary report from a clinical trial of dasatinib plus quercetin in individuals with diabetic kidney disease. eBioMedicine 47, 446–456 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  377. Millar, C. L. et al. A pilot study of senolytics to improve cognition and mobility in older adults at risk for Alzheimer’s disease. eBioMedicine 113, 105612 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  378. Lei, J. et al. Senescence-resistant human mesenchymal progenitor cells counter aging in primates. Cell https://doi.org/10.1016/j.cell.2025.05.021 (2025).

    Article  PubMed  Google Scholar 

  379. Hao, Y. et al. Extracellular vesicles from antler blastema progenitor cells reverse bone loss and mitigate aging-related phenotypes in mice and macaques. Nat. Aging https://doi.org/10.1038/s43587-025-00918-x (2025).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank L. Bai, J. Lu, J. Chen and J. Li for their administrative and technical support, and Y. Yang and S. Luo for their assistance with literature collection. This work was supported by the National Natural Science Foundation of China (82488301, 82125011 and 82361148131), the National Key Research and Development Program of China (2020YFA0804000, 2022YFA1103700 and 2022YFA1103800), Non-Communicable Chronic Diseases-National Science and Technology Major Project (2024ZD0530400), the National Natural Science Foundation of China (92168201, 82330044, 32341001 and 32121001), the Program of the Beijing Natural Science Foundation (JQ24044, Z240018 and F251011), CAS Project for Young Scientists in Basic Research (YSBR-076 and YSBR-012), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA0460403), New Cornerstone Science Foundation through the XPLORER PRIZE (2021-1045), Young Elite Scientists Sponsorship Program by CAST (2023QNRC001) and Tang Aoqing Scholar Program of Jilin University.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

Z.W., J.Q., W.Z. and G.-H.L. contributed equally to researching data for the article, discussion of content, writing and reviewing and/or editing of the manuscript. The members of the Aging Biomarker Consortium contributed to the discussion of content and to reviewing and/or editing of the manuscript.

Corresponding authors

Correspondence to Jing Qu, Weiqi Zhang or Guang-Hui Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks Vijay Yadav and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Qu, J., Zhang, W. et al. Biomarkers of ageing of humans and non-human primates. Nat Rev Mol Cell Biol (2025). https://doi.org/10.1038/s41580-025-00883-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41580-025-00883-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing