Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of human germ cell development

Abstract

Human germ cells are the foundation of human reproduction and development, ensuring heredity and contributing to genetic diversity. Accordingly, their anomalies lead to critical diseases, including infertility. Recent advances in genomics and stem cell-based in vitro gametogenesis research have expanded our knowledge of how human germ cells are specified and differentiate during embryonic and fetal development, elucidating evolutionarily distinctive as well as conserved properties of human germ cell development. Here, based on the evidence from both in vivo and in vitro studies, we provide an integrated review of the progress in our understanding of human embryonic and fetal germ cell development, encompassing germ cell specification, epigenetic reprogramming and sex-specific germ cell development. Knowledge of the mechanisms of human germ cell development will enable its in vitro reconstitution, which in turn will serve as a foundation for innovative medical strategies to prevent germ cell-related diseases, including infertility.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Human germ cell development.
Fig. 2: A model for human germ cell specification.
Fig. 3: hPGC migration, propagation, and colonization of embryonic gonads.
Fig. 4: Epigenetic reprogramming and X chromosome dynamics in human germ cells.
Fig. 5: Sex-specific development of mitotic pro-spermatogonia and oogonia.

Similar content being viewed by others

References

  1. Seplyarskiy, V. B. & Sunyaev, S. The origin of human mutation in light of genomic data. Nat. Rev. Genet. 22, 672–686 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Bergeron, L. A. et al. Evolution of the germline mutation rate across vertebrates. Nature 615, 285–291 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Arter, M. & Keeney, S. Divergence and conservation of the meiotic recombination machinery. Nat. Rev. Genet. 25, 309–325 (2024).

    Article  CAS  PubMed  Google Scholar 

  4. WHO. Infertility Prevalence Estimates, 1990–2021 (2023).

  5. Surani, M. A., Hayashi, K. & Hajkova, P. Genetic and epigenetic regulators of pluripotency. Cell 128, 747–762 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Saitou, M. & Yamaji, M. Primordial germ cells in mice. Cold Spring Harb. Perspect. Biol. 4, a008375 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lesch, B. J. & Page, D. C. Genetics of germ cell development. Nat. Rev. Genet. 13, 781–794 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Spiller, C., Koopman, P. & Bowles, J. Sex determination in the mammalian germline. Annu. Rev. Genet. 51, 265–285 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Saitou, M. & Miyauchi, H. Gametogenesis from pluripotent stem cells. Cell Stem Cell 18, 721–735 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Saitou, M. & Hayashi, K. Mammalian in vitro gametogenesis. Science 374, eaaz6830 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Hargy, J. & Sasaki, K. The developmental dynamics of the human male germline. Development 150, dev202046 (2023).

    Article  CAS  PubMed  Google Scholar 

  12. De Felici, M. in Oogenesis (eds Coticchio, G., Albertini, D. F. & De Santis, L.) 19–37 (Springer-Verlag, 2013).

  13. Tang, W. W., Kobayashi, T., Irie, N., Dietmann, S. & Surani, M. A. Specification and epigenetic programming of the human germ line. Nat. Rev. Genet. 17, 585–600 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Kobayashi, T. & Surani, M. A. On the origin of the human germline. Development 145, dev150433 (2018).

    Article  PubMed  Google Scholar 

  15. Hancock, G.V., Wamaitha, S. E., Peretz, L. & Clark, A. T. Mammalian primordial germ cell specification. Development 148, dev189217 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. O’Rahilly, R. & Müller, F. Developmental Stages in Human Embryos Including a Revision of Streeter’s ‘Horizons’ and a Survey of the Carnegie Collection (Carnegie Institution of Washington, 1987).

  17. Nishimura, H., Takano, K., Tanimura, T., Yasuda, M. & Uchida, T. High incidence of several malformations in the early human embryos as compared with infants. Biol. Neonat. 10, 93–107 (1966).

    Article  CAS  PubMed  Google Scholar 

  18. Shiota, K. Study of normal and abnormal prenatal development using the Kyoto collection of human embryos. Anat. Rec. 301, 955–959 (2018).

    Article  Google Scholar 

  19. Pera, M. F. & Rossant, J. The exploration of pluripotency space: charting cell state transitions in peri-implantation development. Cell Stem Cell 28, 1896–1906 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Wu, J. & Fu, J. Toward developing human organs via embryo models and chimeras. Cell 187, 3194–3219 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shahbazi, M. N. & Pasque, V. Early human development and stem cell-based human embryo models. Cell Stem Cell 31, 1398–1418 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Thowfeequ, S., Hanna, C. W. & Srinivas, S. Origin, fate and function of extraembryonic tissues during mammalian development. Nat. Rev. Mol. Cell Biol. 26, 255–275 (2025).

    Article  CAS  PubMed  Google Scholar 

  23. Hertig, A. T. et al. A thirteen-day human ovum studied histochemically. Am. J. Obstet. Gynecol. 76, 1025–1040 (1958). discussion 1040-1043.

    Article  CAS  PubMed  Google Scholar 

  24. Sasaki, K. et al. The germ cell fate of cynomolgus monkeys is specified in the nascent amnion. Dev. Cell 39, 169–185 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Bergmann, S. et al. Spatial profiling of early primate gastrulation in utero. Nature 609, 136–143 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lawson, K. A. et al. Bmp4 is required for the generation of primordial germ cells in the mouse embryo. Genes Dev. 13, 424–436 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kurimoto, K. et al. Complex genome-wide transcription dynamics orchestrated by Blimp1 for the specification of the germ cell lineage in mice. Genes Dev. 22, 1617–1635 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ohinata, Y. et al. A signaling principle for the specification of the germ cell lineage in mice. Cell 137, 571–584 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Niu, Y. et al. Dissecting primate early post-implantation development using long-term in vitro embryo culture. Science 366, eaaw5754 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Gong, Y. et al. Ex utero monkey embryogenesis from blastocyst to early organogenesis. Cell 186, 2092–2110.e2023 (2023).

    Article  CAS  PubMed  Google Scholar 

  31. Xiao, Z. et al. 3D reconstruction of a gastrulating human embryo. Cell 187, 2855–2874.e2819 (2024).

    Article  CAS  PubMed  Google Scholar 

  32. Cui, L. et al. Spatial transcriptomic characterization of a Carnegie stage 7 human embryo. Nat. Cell Biol. 27, 360–369 (2025).

    Article  CAS  PubMed  Google Scholar 

  33. Irie, N. et al. SOX17 is a critical specifier of human primordial germ cell fate. Cell 160, 253–268 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ying, Q. L. et al. The ground state of embryonic stem cell self-renewal. Nature 453, 519–523 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Loh, K. M. et al. Efficient endoderm induction from human pluripotent stem cells by logically directing signals controlling lineage bifurcations. Cell Stem Cell 14, 237–252 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sasaki, K. et al. Robust in vitro induction of human germ cell fate from pluripotent stem cells. Cell Stem Cell 17, 178–194 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Tang, W. W. et al. A unique gene regulatory network resets the human germline epigenome for development. Cell 161, 1453–1467 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tyser, R. C. V. et al. Single-cell transcriptomic characterization of a gastrulating human embryo. Nature 600, 285–289 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nakamura, T. et al. A developmental coordinate of pluripotency among mice, monkeys and humans. Nature 537, 57–62 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Chen, D. et al. Human primordial germ cells are specified from lineage-primed progenitors. Cell Rep. 29, 4568–4582.e4565 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Castillo-Venzor, A. et al. Origin and segregation of the human germline. Life Sci. Alliance 6, e202201706 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kojima, Y. et al. Evolutionarily distinctive transcriptional and signaling programs drive human germ cell lineage specification from pluripotent stem cells. Cell Stem Cell 21, 517–532.e515 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Chen, D. et al. Germline competency of human embryonic stem cells depends on eomesodermin. Biol. Reprod. 97, 850–861 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kobayashi, T. et al. Principles of early human development and germ cell program from conserved model systems. Nature 546, 416–420 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yokobayashi, S. et al. Clonal variation of human induced pluripotent stem cells for induction into the germ cell fate. Biol. Reprod. 96, 1154–1166 (2017).

    Article  PubMed  Google Scholar 

  46. Tao, Y. et al. TRIM28-regulated transposon repression is required for human germline competency and not primed or naive human pluripotency. Stem Cell Rep. 10, 243–256 (2018).

    Article  CAS  Google Scholar 

  47. Gell, J. J., Zhao, J., Chen, D., Hunt, T. J. & Clark, A. T. PRDM14 is expressed in germ cell tumors with constitutive overexpression altering human germline differentiation and proliferation. Stem Cell Res. 27, 46–56 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen, D. et al. The TFAP2C-regulated OCT4 naive enhancer is involved in human germline formation. Cell Rep. 25, 3591–3602.e3595 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pierson Smela, M., Sybirna, A., Wong, F. C. K. & Surani, M. A. Testing the role of SOX15 in human primordial germ cell fate. Wellcome Open Res. 4, 122 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Sybirna, A. et al. A critical role of PRDM14 in human primordial germ cell fate revealed by inducible degrons. Nat. Commun. 11, 1282 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yu, L. et al. Derivation of intermediate pluripotent stem cells amenable to primordial germ cell specification. Cell Stem Cell 28, 550–567.e12 (2020).

    Article  PubMed  Google Scholar 

  52. Kojima, K. et al. GATA transcription factors, SOX17 and TFAP2C, drive the human germ-cell specification program. Life Sci. Alliance 4, e202000974 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tang, W. W. C. et al. Sequential enhancer state remodelling defines human germline competence and specification. Nat. Cell Biol. 24, 448–460 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hsu, F. M. et al. TET1 facilitates specification of early human lineages including germ cells. iScience 26, 107191 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lee, S. M., Smela, M. P. & Surani, M. A. The role of KLF4 in human primordial germ cell development. Open Biol. 15, 240214 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ito, J. et al. A hominoid-specific endogenous retrovirus may have rewired the gene regulatory network shared between primordial germ cells and naive pluripotent cells. PLoS Genet. 18, e1009846 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Xiang, X. et al. Human reproduction is regulated by retrotransposons derived from ancient Hominidae-specific viral infections. Nat. Commun. 13, 463 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Shao, Y. et al. Self-organized amniogenesis by human pluripotent stem cells in a biomimetic implantation-like niche. Nat. Mater. 16, 419–425 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Zheng, Y. et al. Controlled modelling of human epiblast and amnion development using stem cells. Nature 573, 421–425 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zheng, Y. et al. Single-cell analysis of embryoids reveals lineage diversification roadmaps of early human development. Cell Stem Cell 29, 1402–1419.e1408 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Esfahani, S. N. et al. Derivation of human primordial germ cell-like cells in an embryonic-like culture. Nat. Commun. 15, 167 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Warmflash, A., Sorre, B., Etoc, F., Siggia, E. D. & Brivanlou, A. H. A method to recapitulate early embryonic spatial patterning in human embryonic stem cells. Nat. Methods 11, 847–854 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Jo, K. et al. Efficient differentiation of human primordial germ cells through geometric control reveals a key role for Nodal signaling. eLife 11, e72811 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Vasic, I. et al. Loss of TJP1 disrupts gastrulation patterning and increases differentiation toward the germ cell lineage in human pluripotent stem cells. Dev. Cell 58, 1477–1488.e1475 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Overeem, A. W. et al. Efficient and scalable generation of primordial germ cells in 2D culture using basement membrane extract overlay. Cell Rep. Methods 3, 100488 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Vijayakumar, S. et al. Monolayer platform to generate and purify primordial germ-like cells in vitro provides insights into human germline specification. Nat. Commun. 14, 5690 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Neupane, J. et al. The emergence of human primordial germ cell-like cells in stem cell-derived gastruloids. Sci. Adv. 11, eado1350 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Nakagawa, M. et al. A novel efficient feeder-free culture system for the derivation of human induced pluripotent stem cells. Sci. Rep. 4, 3594 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Alves-Lopes, J. P. et al. Specification of human germ cell fate with enhanced progression capability supported by hindgut organoids. Cell Rep. 42, 111907 (2023).

    Article  CAS  PubMed  Google Scholar 

  70. Witschi, E. Migration of germ cells of human embryos from the yolk sac to the primitive gonadal folds. Contrib. Embryol. Carnegie Inst. 209, 67–80 (1948).

    Google Scholar 

  71. Mc, K. D., Hertig, A. T., Adams, E. C. & Danziger, S. Histochemical observations on the germ cells of human embryos. Anat. Rec. 117, 201–219 (1953).

    Article  Google Scholar 

  72. Fujimoto, T., Miyayama, Y. & Fuyuta, M. The origin, migration and fine morphology of human primordial germ cells. Anat. Rec. 188, 315–330 (1977).

    Article  CAS  PubMed  Google Scholar 

  73. Kuwana, T. & Fujimoto, T. Active locomotion of human primordial germ cells in vitro. Anat. Rec. 205, 21–26 (1983).

    Article  CAS  PubMed  Google Scholar 

  74. Gondos, B. & Hobel, C. J. Ultrastructure of germ cell development in the human fetal testis. Z. Zellforsch. Mikrosk. Anat. 119, 1–20 (1971).

    Article  CAS  PubMed  Google Scholar 

  75. Fukuda, T., Hedinger, C. & Groscurth, P. Ultrastructure of developing germ cells in the fetal human testis. Cell Tissue Res. 161, 55–70 (1975).

    Article  CAS  PubMed  Google Scholar 

  76. Hilscher, B. et al. Kinetics of gametogenesis. I. Comparative histological and autoradiographic studies of oocytes and transitional prospermatogonia during oogenesis and prespermatogenesis. Cell Tissue Res. 154, 443–470 (1974).

    CAS  PubMed  Google Scholar 

  77. McCarrey, J. R. Toward a more precise and informative nomenclature describing fetal and neonatal male germ cells in rodents. Biol. Reprod. 89, 47 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Mamsen, L. S., Lutterodt, M. C., Andersen, E. W., Byskov, A. G. & Andersen, C. Y. Germ cell numbers in human embryonic and fetal gonads during the first two trimesters of pregnancy: analysis of six published studies. Hum. Reprod. 26, 2140–2145 (2011).

    Article  PubMed  Google Scholar 

  79. Floros, V. I. et al. Segregation of mitochondrial DNA heteroplasmy through a developmental genetic bottleneck in human embryos. Nat. Cell Biol. 20, 144–151 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Baker, T. G. & Franchi, L. L. The fine structure of oogonia and oocytes in human ovaries. J. Cell Sci. 2, 213–224 (1967).

    Article  CAS  PubMed  Google Scholar 

  81. Gu, Y., Runyan, C., Shoemaker, A., Surani, A. & Wylie, C. Steel factor controls primordial germ cell survival and motility from the time of their specification in the allantois, and provides a continuous niche throughout their migration. Development 136, 1295–1303 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Gu, Y., Runyan, C., Shoemaker, A., Surani, M. A. & Wylie, C. Membrane-bound steel factor maintains a high local concentration for mouse primordial germ cell motility, and defines the region of their migration. PLoS ONE 6, e25984 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ara, T. et al. Impaired colonization of the gonads by primordial germ cells in mice lacking a chemokine, stromal cell-derived factor-1 (SDF-1). Proc. Natl Acad. Sci. USA 100, 5319–5323 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Molyneaux, K. A. et al. The chemokine SDF1/CXCL12 and its receptor CXCR4 regulate mouse germ cell migration and survival. Development 130, 4279–4286 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Li, L. et al. Single-cell RNA-Seq analysis maps development of human germline cells and gonadal niche interactions. Cell Stem Cell 20, 858–873.e854 (2017).

    Article  CAS  PubMed  Google Scholar 

  86. Elmentaite, R. et al. Single-cell sequencing of developing human gut reveals transcriptional links to childhood Crohn’s disease. Dev. Cell 55, 771–783.e775 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Yuan, Y. et al. 3D reconstruction of a human Carnegie stage 9 embryo provides a snapshot of early body plan formation. Cell Stem Cell 32, 1006–1024 (2025).

    Article  CAS  PubMed  Google Scholar 

  88. Murase, Y. et al. Long-term expansion with germline potential of human primordial germ cell-like cells in vitro. EMBO J. 39, e104929 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kobayashi, M. et al. Expanding homogeneous culture of human primordial germ cell-like cells maintaining germline features without serum or feeder layers. Stem Cell Rep. 17, 507–521 (2022).

    Article  CAS  Google Scholar 

  90. Ohta, H. et al. In vitro expansion of mouse primordial germ cell-like cells recapitulates an epigenetic blank slate. EMBO J. 36, 1888–1907 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ohta, H. et al. Cyclosporin A and FGF signaling support the proliferation/survival of mouse primordial germ cell-like cells in vitrodagger. Biol. Reprod. 104, 344–360 (2021).

    Article  PubMed  Google Scholar 

  92. Shamblott, M. J. et al. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc. Natl Acad. Sci. USA 95, 13726–13731 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gkountela, S. et al. DNA demethylation dynamics in the human prenatal germline. Cell 161, 1425–1436 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Guo, F. et al. The transcriptome and DNA methylome landscapes of human primordial germ cells. Cell 161, 1437–1452 (2015).

    Article  CAS  PubMed  Google Scholar 

  95. Borgel, J. et al. Targets and dynamics of promoter DNA methylation during early mouse development. Nat. Genet. 42, 1093–1100 (2010).

    Article  CAS  PubMed  Google Scholar 

  96. Auclair, G., Guibert, S., Bender, A. & Weber, M. Ontogeny of CpG island methylation and specificity of DNMT3 methyltransferases during embryonic development in the mouse. Genome Biol. 15, 545 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Kurimoto, K. et al. Quantitative dynamics of chromatin remodeling during germ cell specification from mouse embryonic stem cells. Cell Stem Cell 16, 517–532 (2015).

    Article  CAS  PubMed  Google Scholar 

  98. Mochizuki, K. et al. Repression of germline genes by PRC1.6 and SETDB1 in the early embryo precedes DNA methylation-mediated silencing. Nat. Commun. 12, 7020 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Czech, B. et al. piRNA-guided genome defense: from biogenesis to silencing. Annu. Rev. Genet. 52, 131–157 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ozata, D. M., Gainetdinov, I., Zoch, A., O’Carroll, D. & Zamore, P. D. PIWI-interacting RNAs: small RNAs with big functions. Nat. Rev. Genet. 20, 89–108 (2019).

    Article  CAS  PubMed  Google Scholar 

  101. Jouravleva, K. & Zamore, P. D. A guide to the biogenesis and functions of endogenous small non-coding RNAs in animals. Nat. Rev. Mol. Cell Biol. 26, 347–370 (2025).

    Article  CAS  PubMed  Google Scholar 

  102. Iwasaki, Y. W., Shoji, K., Nakagwa, S., Miyoshi, T. & Tomari, Y. Transposon-host arms race: a saga of genome evolution. Trends Genet. 41, 369–389 (2025).

    Article  CAS  PubMed  Google Scholar 

  103. Nagano, M. et al. Nucleome programming is required for the foundation of totipotency in mammalian germline development. EMBO J. 41, e110600 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zhou, F. et al. Reconstituting the transcriptome and DNA methylome landscapes of human implantation. Nature 572, 660–664 (2019).

    Article  CAS  PubMed  Google Scholar 

  105. Senft, A. D. & Macfarlan, T. S. Transposable elements shape the evolution of mammalian development. Nat. Rev. Genet. 22, 691–711 (2021).

    Article  CAS  PubMed  Google Scholar 

  106. Rosspopoff, O. & Trono, D. Take a walk on the KRAB side. Trends Genet. 39, 844–857 (2023).

    Article  CAS  PubMed  Google Scholar 

  107. Vertesy, A. et al. Parental haplotype-specific single-cell transcriptomics reveal incomplete epigenetic reprogramming in human female germ cells. Nat. Commun. 9, 1873 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Gruhn, W. H. et al. Epigenetic resetting in the human germ line entails histone modification remodeling. Sci. Adv. 9, eade1257 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Seki, Y. et al. Extensive and orderly reprogramming of genome-wide chromatin modifications associated with specification and early development of germ cells in mice. Dev. Biol. 278, 440–458 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Seki, Y. et al. Cellular dynamics associated with the genome-wide epigenetic reprogramming in migrating primordial germ cells in mice. Development 134, 2627–2638 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Loda, A., Collombet, S. & Heard, E. Gene regulation in time and space during X-chromosome inactivation. Nat. Rev. Mol. Cell Biol. 23, 231–249 (2022).

    Article  CAS  PubMed  Google Scholar 

  112. Okamoto, I. et al. Eutherian mammals use diverse strategies to initiate X-chromosome inactivation during development. Nature 472, 370–374 (2011).

    Article  CAS  PubMed  Google Scholar 

  113. Petropoulos, S. et al. Single-cell RNA-Seq reveals lineage and X chromosome dynamics in human preimplantation embryos. Cell 165, 1012–1026 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Alfeghaly, C. et al. XIST dampens X chromosome activity in a SPEN-dependent manner during early human development. Nat. Struct. Mol. Biol. 31, 1589–1600 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Dror, I. et al. XIST directly regulates X-linked and autosomal genes in naive human pluripotent cells. Cell 187, 110–129.e131 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Chitiashvili, T. et al. Female human primordial germ cells display X-chromosome dosage compensation despite the absence of X-inactivation. Nat. Cell Biol. 22, 1436–1446 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Okamoto, I. et al. The X chromosome dosage compensation program during the development of cynomolgus monkeys. Science 374, eabd8887 (2021).

    Article  CAS  PubMed  Google Scholar 

  118. Mizuta, K. et al. Ex vivo reconstitution of fetal oocyte development in humans and cynomolgus monkeys. EMBO J. 41, e110815 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Hwang, Y. S. et al. Reconstitution of prospermatogonial specification in vitro from human induced pluripotent stem cells. Nat. Commun. 11, 5656 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Yamashiro, C. et al. Generation of human oogonia from induced pluripotent stem cells in vitro. Science 362, 356–360 (2018).

    Article  CAS  PubMed  Google Scholar 

  121. Murase, Y. et al. In vitro reconstitution of epigenetic reprogramming in the human germ line. Nature 631, 170–178 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Yokobayashi, S. et al. Inherent genomic properties underlie the epigenomic heterogeneity of human induced pluripotent stem cells. Cell Rep. 37, 109909 (2021).

    Article  CAS  PubMed  Google Scholar 

  123. Gyobu-Motani, S. et al. Induction of fetal meiotic oocytes from embryonic stem cells in cynomolgus monkeys. EMBO J. 42, e112962 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Habibi, E. et al. Whole-genome bisulfite sequencing of two distinct interconvertible DNA methylomes of mouse embryonic stem cells. Cell Stem Cell 13, 360–369 (2013).

    Article  CAS  PubMed  Google Scholar 

  125. Takashima, Y. et al. Resetting transcription factor control circuitry toward ground-state pluripotency in human. Cell 158, 1254–1269 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Theunissen, T. W. et al. Systematic identification of culture conditions for induction and maintenance of naive human pluripotency. Cell Stem Cell 15, 471–487 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Williams, K. et al. TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity. Nature 473, 343–348 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Wu, H. et al. Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells. Nature 473, 389–393 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Verma, N. et al. TET proteins safeguard bivalent promoters from de novo methylation in human embryonic stem cells. Nat. Genet. 50, 83–95 (2018).

    Article  CAS  PubMed  Google Scholar 

  130. Charlton, J. et al. TETs compete with DNMT3 activity in pluripotent cells at thousands of methylated somatic enhancers. Nat. Genet. 52, 819–827 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Yamaguchi, S. et al. Tet1 controls meiosis by regulating meiotic gene expression. Nature 492, 443–447 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Yamaguchi, S., Shen, L., Liu, Y., Sendler, D. & Zhang, Y. Role of Tet1 in erasure of genomic imprinting. Nature 504, 460–464 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Prasasya, R. D. et al. Iterative oxidation by TET1 is required for reprogramming of imprinting control regions and patterning of mouse sperm hypomethylated regions. Dev. Cell 59, 1010–1027.e1018 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Ruth, K. S. et al. Genetic insights into biological mechanisms governing human ovarian ageing. Nature 596, 393–397 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Ke, H. et al. Landscape of pathogenic mutations in premature ovarian insufficiency. Nat. Med. 29, 483–492 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Stankovic, S. et al. Genetic links between ovarian ageing, cancer risk and de novo mutation rates. Nature 633, 608–614 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Nishimura, K. et al. Mcm8 and Mcm9 form a complex that functions in homologous recombination repair induced by DNA interstrand crosslinks. Mol. Cell 47, 511–522 (2012).

    Article  CAS  PubMed  Google Scholar 

  138. Lutzmann, M. et al. MCM8- and MCM9-deficient mice reveal gametogenesis defects and genome instability due to impaired homologous recombination. Mol. Cell 47, 523–534 (2012).

    Article  CAS  PubMed  Google Scholar 

  139. Luo, Y. & Schimenti, J. C. MCM9 deficiency delays primordial germ cell proliferation independent of the ATM pathway. Genesis 53, 678–684 (2015).

    Article  CAS  PubMed  Google Scholar 

  140. Griffin, W. C. & Trakselis, M. A. The MCM8/9 complex: a recent recruit to the roster of helicases involved in genome maintenance. DNA Repair 76, 1–10 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Wen, C. et al. MCM8 interacts with DDX5 to promote R-loop resolution. EMBO J. 43, 3044–3071 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Kottemann, M. C. & Smogorzewska, A. Fanconi anaemia and the repair of Watson and Crick DNA crosslinks. Nature 493, 356–363 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Tsui, V. & Crismani, W. The fanconi anemia pathway and fertility. Trends Genet. 35, 199–214 (2019).

    Article  CAS  PubMed  Google Scholar 

  144. Semlow, D. R. & Walter, J. C. Mechanisms of vertebrate DNA interstrand cross-link repair. Annu. Rev. Biochem. 90, 107–135 (2021).

    Article  CAS  PubMed  Google Scholar 

  145. Hill, R. J. & Crossan, G. P. DNA cross-link repair safeguards genomic stability during premeiotic germ cell development. Nat. Genet. 51, 1283–1294 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Pirouz, M., Pilarski, S. & Kessel, M. A critical function of Mad2l2 in primordial germ cell development of mice. PLoS Genet. 9, e1003712 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Watanabe, N. et al. The REV7 subunit of DNA polymerase zeta is essential for primordial germ cell maintenance in the mouse. J. Biol. Chem. 288, 10459–10471 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. de Krijger, I., Boersma, V. & Jacobs, J. J. L. REV7: Jack of many trades. Trends Cell Biol. 31, 686–701 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Clairmont, C. S. & D’Andrea, A. D. REV7 directs DNA repair pathway choice. Trends Cell Biol. 31, 965–978 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Shah, P. et al. Primordial germ cell DNA demethylation and development require DNA translesion synthesis. Nat. Commun. 15, 3734 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Garaycoechea, J. I. et al. Alcohol and endogenous aldehydes damage chromosomes and mutate stem cells. Nature 553, 171–177 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Yang, Y. et al. Transcription-replication conflicts in primordial germ cells necessitate the Fanconi anemia pathway to safeguard genome stability. Proc. Natl Acad. Sci. USA 119, e2203208119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Yu, Y. et al. UBE2T resolves transcription-replication conflicts and protects common fragile sites in primordial germ cells. Cell Mol. Life Sci. 80, 92 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Percharde, M., Wong, P. & Ramalho-Santos, M. Global hypertranscription in the mouse embryonic germline. Cell Rep. 19, 1987–1996 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Percharde, M., Bulut-Karslioglu, A. & Ramalho-Santos, M. Hypertranscription in development, stem cells, and regeneration. Dev. Cell 40, 9–21 (2017).

    Article  CAS  PubMed  Google Scholar 

  156. Guo, J. et al. Single-cell analysis of the developing human testis reveals somatic niche cell specification and fetal germline stem cell establishment. Cell Stem Cell 28, 764778 (2021).

    Article  Google Scholar 

  157. Garcia-Alonso, L. et al. Single-cell roadmap of human gonadal development. Nature 607, 540–547 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Wamaitha, S. E. et al. Single-cell analysis of the developing human ovary defines distinct insights into ovarian somatic and germline progenitors. Dev. Cell 58, 2097–2111.e2093 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Gertrude van Wagenen, M. E. S. Embryology of the Ovary and Testis Homo sapiens and Macaca mulatta (Yale University Press, 1965).

  160. Griswold, M. D. Spermatogenesis: the commitment to meiosis. Physiol. Rev. 96, 1–17 (2016).

    Article  CAS  PubMed  Google Scholar 

  161. Guo, J. et al. Chromatin and single-cell RNA-Seq profiling reveal dynamic signaling and metabolic transitions during human spermatogonial stem cell development. Cell Stem Cell 21, 533–546.e536 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Guo, J. et al. The dynamic transcriptional cell atlas of testis development during human puberty. Cell Stem Cell 26, 262–276.e264 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Saga, Y. How germ cells determine their own sexual fate in mice. Sex. Dev. 16, 329–341 (2022).

    Article  PubMed  Google Scholar 

  164. Jorgensen, A. et al. Nodal signaling regulates germ cell development and establishment of seminiferous cords in the human fetal testis. Cell Rep. 25, 1924–1937 e1924 (2018).

    Article  PubMed  Google Scholar 

  165. Fan, X. et al. Transcriptional progression during meiotic prophase I reveals sex-specific features and X chromosome dynamics in human fetal female germline. PLoS Genet. 17, e1009773 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Czukiewska, S. et al. Cell-cell interactions during the formation of primordial follicles in humans. Life Sci. Alliance 6, e202301926 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Frydman, N. et al. Human foetal ovary shares meiotic preventing factors with the developing testis. Hum. Reprod. 32, 631–642 (2017).

    CAS  PubMed  Google Scholar 

  168. Niu, W. & Spradling, A. C. Mouse oocytes develop in cysts with the help of nurse cells. Cell 185, 2576–2590.e2512 (2022).

    Article  CAS  PubMed  Google Scholar 

  169. Bahety, D., Boke, E. & Rodriguez-Nuevo, A. Mitochondrial morphology, distribution and activity during oocyte development. Trends Endocrinol. Metab. 35, 902–917 (2024).

    Article  CAS  PubMed  Google Scholar 

  170. Miyauchi, H. et al. Bone morphogenetic protein and retinoic acid synergistically specify female germ-cell fate in mice. EMBO J. 36, 3100–3119 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Nagaoka, S. I., et al. ZGLP1 is a determinant for the oogenic fate in mice. Science 367, eaaw4115 (2020).

    Article  CAS  PubMed  Google Scholar 

  172. Baltus, A. E. et al. In germ cells of mouse embryonic ovaries, the decision to enter meiosis precedes premeiotic DNA replication. Nat. Genet. 38, 1430–1434 (2006).

    Article  CAS  PubMed  Google Scholar 

  173. Cheung, F. K. M. et al. BMP and STRA8 act collaboratively to ensure correct mitotic-to-meiotic transition in the fetal mouse ovary. Development 152, dev204227 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Bowles, J. et al. Retinoid signaling determines germ cell fate in mice. Science 312, 596–600 (2006).

    Article  CAS  PubMed  Google Scholar 

  175. Chassot, A. A. et al. Retinoic acid synthesis by ALDH1A proteins is dispensable for meiosis initiation in the mouse fetal ovary. Sci. Adv. 6, eaaz1261 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Nosaka, Y. et al. Generation of germinal-vesicle oocytes from mouse embryonic stem cells under an ovarian soma-free condition. Dev. Cell https://doi.org/10.1016/j.devcel.2025.06.008 (2025).

    Article  PubMed  Google Scholar 

  177. Le Bouffant, R. et al. Meiosis initiation in the human ovary requires intrinsic retinoic acid synthesis. Hum. Reprod. 25, 2579–2590 (2010).

    Article  PubMed  Google Scholar 

  178. Jorgensen, A. et al. Ex vivo culture of human fetal gonads: manipulation of meiosis signalling by retinoic acid treatment disrupts testis development. Hum. Reprod. 30, 2351–2363 (2015).

    Article  CAS  PubMed  Google Scholar 

  179. Gonen, N. et al. In vitro cellular reprogramming to model gonad development and its disorders. Sci. Adv. 9, eabn9793 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    Article  CAS  PubMed  Google Scholar 

  181. Dong, C. et al. Derivation of trophoblast stem cells from naive human pluripotent stem cells. eLife 9, e52504 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Guo, G. et al. Human naive epiblast cells possess unrestricted lineage potential. Cell Stem Cell 28, 1040–1056.e1046 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Io, S. et al. Capturing human trophoblast development with naive pluripotent stem cells in vitro. Cell Stem Cell 28, 1023–1039.e1013 (2021).

    Article  CAS  PubMed  Google Scholar 

  184. Okubo, T. et al. Hypoblast from human pluripotent stem cells regulates epiblast development. Nature 626, 357–366 (2024).

    Article  CAS  PubMed  Google Scholar 

  185. Beddington, R. S. & Robertson, E. J. An assessment of the developmental potential of embryonic stem cells in the midgestation mouse embryo. Development 105, 733–737 (1989).

    Article  CAS  PubMed  Google Scholar 

  186. Meistermann, D. et al. Integrated pseudotime analysis of human pre-implantation embryo single-cell transcriptomes reveals the dynamics of lineage specification. Cell Stem Cell 28, 1625–1640.e1626 (2021).

    Article  CAS  PubMed  Google Scholar 

  187. Guo, G. et al. Epigenetic resetting of human pluripotency. Development 144, 2748–2763 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Khan, S. A. et al. Probing the signaling requirements for naive human pluripotency by high-throughput chemical screening. Cell Rep. 35, 109233 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Gafni, O. et al. Derivation of novel human ground state naive pluripotent stem cells. Nature 504, 282–286 (2013).

    Article  CAS  PubMed  Google Scholar 

  190. Yang, Y. et al. Derivation of pluripotent stem cells with in vivo embryonic and extraembryonic potency. Cell 169, 243–257.e225 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Bayerl, J. et al. Principles of signaling pathway modulation for enhancing human naive pluripotency induction. Cell Stem Cell 28, 1549–1565.e1512 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Mazid, M. A. et al. Rolling back human pluripotent stem cells to an eight-cell embryo-like stage. Nature 605, 315–324 (2022).

    Article  CAS  PubMed  Google Scholar 

  193. Lovell-Badge, R. et al. ISSCR guidelines for stem cell research and clinical translation: the 2021 update. Stem Cell Rep. 16, 1398–1408 (2021).

    Article  Google Scholar 

  194. Deglincerti, A. et al. Self-organization of the in vitro attached human embryo. Nature 533, 251–254 (2016).

    Article  CAS  PubMed  Google Scholar 

  195. Shahbazi, M. N. et al. Self-organization of the human embryo in the absence of maternal tissues. Nat. Cell Biol. 18, 700–708 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Popovic, M. et al. Human blastocyst outgrowths recapitulate primordial germ cell specification events. Mol. Hum. Reprod. 25, 519–526 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Xiang, L. et al. A developmental landscape of 3D-cultured human pre-gastrulation embryos. Nature 577, 537–542 (2020).

    Article  CAS  PubMed  Google Scholar 

  198. Yu, L. et al. Blastocyst-like structures generated from human pluripotent stem cells. Nature 591, 620–626 (2021).

    Article  CAS  PubMed  Google Scholar 

  199. Liu, X. et al. Modelling human blastocysts by reprogramming fibroblasts into iBlastoids. Nature 591, 627–632 (2021).

    Article  CAS  PubMed  Google Scholar 

  200. Yanagida, A. et al. Naive stem cell blastocyst model captures human embryo lineage segregation. Cell Stem Cell 28, 1016–1022.e1014 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Sozen, B. et al. Reconstructing aspects of human embryogenesis with pluripotent stem cells. Nat. Commun. 12, 5550 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Kagawa, H. et al. Human blastoids model blastocyst development and implantation. Nature 601, 600–605 (2022).

    Article  CAS  PubMed  Google Scholar 

  203. Pedroza, M. et al. Self-patterning of human stem cells into post-implantation lineages. Nature 622, 574–583 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Karvas, R. M. et al. 3D-cultured blastoids model human embryogenesis from pre-implantation to early gastrulation stages. Cell Stem Cell 30, 1148–1165.e1147 (2023).

    Article  CAS  PubMed  Google Scholar 

  205. Weatherbee, B. A. T. et al. Pluripotent stem cell-derived model of the post-implantation human embryo. Nature 622, 584–593 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Oldak, B. et al. Complete human day 14 post-implantation embryo models from naive ES cells. Nature 622, 562–573 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Liu, L. et al. Modeling post-implantation stages of human development into early organogenesis with stem-cell-derived peri-gastruloids. Cell 186, 3776–3792.e3716 (2023).

    Article  CAS  PubMed  Google Scholar 

  208. Hislop, J. et al. Modelling post-implantation human development to yolk sac blood emergence. Nature 626, 367–376 (2024).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the members of their laboratory for their helpful input into this study, and M. Yoshida and M. Kawasaki for their assistance. This work was supported by Grants-in-Aid for Specially Promoted Research from JSPS (22H04920) and grants from the Open Philanthropy Project (GV673604305) to M.S.

Author information

Authors and Affiliations

Authors

Contributions

M.S., K.M. and M.N. discussed the article content, wrote, edited and reviewed the manuscript before submission. M.S. supervised the work.

Corresponding author

Correspondence to Mitinori Saitou.

Ethics declarations

Competing interests

M.S. and K.M., together with Kyoto University, have filed provisional patent applications for germ cell culture and the induction of germ cells from hPSCs. M.N. declares no competing interests.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks John Schimenti and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

14-day rule

An internationally adopted ethical principle that prohibits in vitro culture of human embryos beyond 14 days post-fertilization or until formation of the primitive streak. It is now under reconsideration following the 2021 revision of the guidelines by the International Society for Stem Cell Research (ISSCR), which permits limited extensions under strict oversight.

DNA translesion synthesis

A DNA damage tolerance pathway that allows DNA replication to proceed across sites of damage. It is carried out by specialized DNA polymerases with active sites that can accommodate distorted or damaged DNA templates, enabling the bypass of lesions that would otherwise stall replication forks.

Fanconi anaemia pathway

A specialized DNA repair mechanism that resolves interstrand crosslinks. At least 22 Fanconi anaemia proteins (FANCA–FANCT), along with associated factors, cooperate to repair DNA damage, particularly during DNA replication.

Genomic imprinting

An epigenetic mechanism that drives mono-allelic gene expression based on parental origin, regulated by DNA methylation established during gametogenesis and maintained throughout development.

Imprinting control regions

Genomic loci that carry parent-of-origin-specific epigenetic marks and regulate gene expression in an allele-specific manner, serving as the basis for genomic imprinting.

Ovarian reserve

The finite pool of non-growing (that is, primarily primordial) follicles established during fetal development, which determines female fertility potential throughout reproductive life.

Xenogeneic

Describes any interaction or procedure involving the use of biological materials derived from different species. Here, it describes the aggregation of human primordial germ cell-like cell-derived cells with mouse gonadal somatic cells.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saitou, M., Nagano, M. & Mizuta, K. Mechanisms of human germ cell development. Nat Rev Mol Cell Biol (2025). https://doi.org/10.1038/s41580-025-00893-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41580-025-00893-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing