Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Evaluating evidence for UFMylation client diversity

The protein modifier UFM1 is primarily conjugated to lysine residues of the large ribosomal subunit protein RPL26. Loss of UFMylation affects diverse cellular processes, raising the question of whether additional proteins are UFMylated. We discuss challenges in identifying bona fide UFMylation clients and propose criteria for their validation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

References

  1. Walczak, C. P. et al. Ribosomal protein RPL26 is the principal target of UFMylation. Proc. Nat. Acad. Sci. USA 116, 1299–1308 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Wang, L. et al. UFMylation of RPL26 links translocation-associated quality control to endoplasmic reticulum protein homeostasis. Cell Res. 30, 5–20 (2020).

    Article  PubMed  CAS  Google Scholar 

  3. DaRosa, P. A. et al. UFM1 E3 ligase promotes recycling of 60S ribosomal subunits from the ER. Nature 627, 445–452 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Makhlouf, L. et al. The UFM1 E3 ligase recognizes and releases 60S ribosomes from ER translocons. Nature 627, 437–444 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Cappadocia, L. & Lima, C. D. Ubiquitin-like protein conjugation: structures, chemistry, and mechanism. Chem. Rev. 118, 889–918 (2018).

    Article  PubMed  CAS  Google Scholar 

  6. Komatsu, M., Noda, N. N. & Inada, T. The mechanistic basis and cellular functions of UFMylation. Nat. Rev. Mol. Cell Biol. https://doi.org/10.1038/s41580-025-00944-y (2026).

    Article  PubMed  Google Scholar 

  7. Peter, J. J. et al. A non-canonical scaffold-type E3 ligase complex mediates protein UFMylation. EMBO J. 41, e111015 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Millrine, D. et al. Human UFSP1 is an active protease that regulates UFM1 maturation and UFMylation. Cell Rep. 40, 111168 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Kumar, M. et al. UFC1 reveals the multifactorial and plastic nature of oxyanion holes in E2 conjugating enzymes. Nat. Commun. 16, 3912 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Wu, J., Lei, G., Mei, M., Tang, Y. & Li, H. A novel C53/LZAP-interacting protein regulates stability of C53/LZAP and DDRGK domain-containing Protein 1 (DDRGK1) and modulates NF-kappaB signaling. J. Biol. Chem. 285, 15126–15136 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Blazev, R. et al. Site-specific quantification of the in vivo UFMylome reveals myosin modification in ALS. Cell Rep. Methods 5, 101048 (2025).

    CAS  Google Scholar 

  12. Yang, S. et al. UFMylation safeguards human hepatocyte differentiation and liver homeostasis by regulating ribosome dissociation. Cell Rep. 44, 115686 (2025).

    Article  PubMed  CAS  Google Scholar 

  13. Picchianti, L. et al. Shuffled ATG8 interacting motifs form an ancestral bridge between UFMylation and autophagy. EMBO J. 42, e112053 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Adamson, B. et al. A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response. Cell 167, 1867–1882.e21 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. González-Quiroz, M. et al. When endoplasmic reticulum proteostasis meets the DNA damage response. Trends Cell Biol. 30, 881–891 (2020).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The work in R.R.K.’s lab is funded by National Institutes of Health grant 1R01GM148477. We thank C. Riepe and other members of the Kopito lab for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ron R. Kopito.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks Yogesh Kulathu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scavone, F., Kopito, R.R. Evaluating evidence for UFMylation client diversity. Nat Rev Mol Cell Biol (2026). https://doi.org/10.1038/s41580-026-00951-7

Download citation

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41580-026-00951-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing