Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Maternal and environmental risk factors for neonatal AKI and its long-term consequences

Abstract

Acute kidney injury (AKI) is a common and life-threatening complication in critically ill neonates. Gestational risk factors for AKI include premature birth, intrauterine growth restriction and low birthweight, which are associated with poor nephron development and are often the consequence of pre-gestational and gestational factors, such as poor nutritional status. Our understanding of how to best optimize renal development and prevent AKI is in its infancy; however, the identification of pre-gestational and gestational factors that increase the risk of adverse neonatal outcomes and the implementation of interventions, such as improving nutritional status early in pregnancy, have the potential to optimize fetal growth and reduce the risk of preterm birth, thereby improving kidney health. The overall risk of AKI among critically ill and premature neonates is exacerbated postnatally as these infants are often exposed to dehydration, septic shock and potentially nephrotoxic medications. Strategies to improve outcomes — for example, through careful evaluation of nephrotoxic drugs — may reduce the incidence of AKI and its consequences among this population. Management strategies and updated technology that will support neonates with AKI are greatly needed. Extremely premature infants and those who survive an episode of AKI should be screened for chronic kidney disease until early adulthood. Here, we provide an overview of our current understanding of neonatal AKI, focusing on its relationship to preterm birth and growth restriction. We describe factors that prevent optimal nephrogenesis during pregnancy and provide a framework for future explorations designed to maximize outcomes in this vulnerable population.

Key points

  • Even after controlling for multiple potential confounders, acute kidney injury (AKI) is an important determinant of morbidity and mortality in critically ill neonates.

  • Prematurity and low birthweight (LBW), which are surrogate indices of reduced nephron endowment, might predispose neonates to AKI.

  • Prematurity and LBW are associated with several comorbidities that are themselves risk factors for AKI in neonates.

  • Neonates with critical illness, especially those born prematurely, often receive medications that might increase susceptibility to toxic renal injury and risk of AKI.

  • The identification of pre-gestational risk factors and early intervention during pregnancy, especially in the context of maternal nutrition, as well as careful evaluation of infant exposure to nephrotoxic medications, might limit neonatal AKI, although further research is required to optimize renal development in premature infants and support neonates with AKI.

  • Neonates who survive AKI might experience long-term renal dysfunction and should be monitored and screened periodically for chronic kidney disease throughout childhood and young-adult life.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Changes in serum creatinine concentrations over the first 52 days of life in preterm neonates (gestational age (GA) <27 weeks and 31–32 weeks).
Fig. 2: Maternal diet regulates epigenetic processes that influence fetal growth as demonstrated by studies in mice fed a low-protein diet during early gestation.
Fig. 3: Pre-gestational and gestational risk factors for intrauterine growth restriction, low birthweight and preterm birth, which are associated with impaired renal development and low nephron number.

Similar content being viewed by others

References

  1. Mehta, R. L. et al. International Society of Nephrology’s 0by25 initiative for acute kidney injury (zero preventable deaths by 2025): a human rights case for nephrology. Lancet 385, 2616–2643 (2015).

    Article  PubMed  Google Scholar 

  2. Sharfuddin, A. A. & Molitoris, B. A. Pathophysiology of ischemic acute kidney injury. Nat. Rev. Nephrol. 7, 189–200 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Zuk, A. & Bonventre, J. V. Acute kidney injury. Annu. Rev. Med. 67, 293–307 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lombardi, D., Becherucci, F. & Romagnani, P. How much can the tubule regenerate and who does it? An open question. Nephrol. Dial Transplant. 31, 1243–1250 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Lazzari, E. et al. Endocycle-related tubular cell hypertrophy and preogenitor proliferation recover renal function after acute kidney injury. Nat. Commun. 9, 1344 (2018).

    Article  CAS  Google Scholar 

  6. Chawla, L. S., Eggers, P. W., Star, R. A. & Kimmel, P. L. Acute kidney injury and chronic kidney disease as interconnected syndromes. N. Engl. J. Med. 371, 58–66 (2014).

    Article  PubMed  CAS  Google Scholar 

  7. Couser, W. G., Remuzzi, G., Mendis, S. & Tonelli, M. The contribution of chronic kidney disease to the global burden of major noncommunicable diseases. Kidney Int. 80, 1258–1270 (2011).

    Article  PubMed  Google Scholar 

  8. Gansevoort, R. T. et al. Chronic kidney disease and cardiovascular risk: epidemiology, mechanisms, and prevention. Lancet 382, 339–352 (2013).

    Article  PubMed  Google Scholar 

  9. GBD 2016 Causes of Death Collaborators. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 390, 1151–1210 (2017).

    Article  Google Scholar 

  10. Jha, V. et al. Chronic kidney disease: global dimension and perspectives. Lancet 382, 260–272 (2013).

    Article  PubMed  Google Scholar 

  11. Liyanage, T. et al. Worldwide access to treatment for end-stage kidney disease: a systematic review. Lancet 385, 1975–1982 (2015).

    Article  PubMed  Google Scholar 

  12. Luyckx, V. A. & Brenner, B. M. Birth weight, malnutrition and kidney-associated outcomes — a global concern. Nat. Rev. Nephrol. 11, 135–149 (2015).

    Article  PubMed  Google Scholar 

  13. Luyckx, V. A. et al. A developmental approach to the prevention of hypertension and kidney disease: a report from the Low Birth Weight and Nephron Number Working Group. Lancet 390, 424–428 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Low Birth Weight and Nephron Number Working Group. The impact of kidney development on the life course: a consensus document for action. Nephron 136, 3–49 (2017).

    Article  Google Scholar 

  15. Barker, D. J. The fetal and infant origins of disease. Eur. J. Clin. Invest. 25, 457–463 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Barker, D. J. & Osmond, C. Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet 1, 1077–1081 (1986).

    Article  CAS  PubMed  Google Scholar 

  17. Barker, D. J., Osmond, C. & Law, C. M. The intrauterine and early postnatal origins of cardiovascular disease and chronic bronchitis. J. Epidemiol. Commun. Health. 43, 237–240 (1989).

    Article  CAS  Google Scholar 

  18. Manalich, R., Reyes, L., Herrera, M., Melendi, C. & Fundora, I. Relationship between weight at birth and the number and size of renal glomeruli in humans: a histomorphometric study. Kidney Int. 58, 770–773 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Hinchliffe, S. A., Lynch, M. R., Sargent, P. H., Howard, C. V. & Van Velzen, D. The effect of intrauterine growth retardation on the development of renal nephrons. Br. J. Obstet. Gynaecol. 99, 296–301 (1992).

    Article  CAS  PubMed  Google Scholar 

  20. Rodriguez, M. M. et al. Histomorphometric analysis of postnatal glomerulogenesis in extremely preterm infants. Pediatr. Dev. Pathol. 7, 17–25 (2004).

    Article  PubMed  Google Scholar 

  21. Sutherland, M. R. et al. Accelerated maturation and abnormal morphology in the preterm neonatal kidney. J. Am. Soc. Nephrol. 22, 1365–1374 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hughson, M., Farris, A. B. 3rd, Douglas-Denton, R., Hoy, W. E. & Bertram, J. F. Glomerular number and size in autopsy kidneys: the relationship to birth weight. Kidney Int. 63, 2113–2122 (2003).

    Article  PubMed  Google Scholar 

  23. Brenner, B. M., Garcia, D. L. & Anderson, S. Glomeruli and blood pressure. Less of one, more the other? Am. J. Hypertens. 1, 335–347 (1988).

    Article  CAS  PubMed  Google Scholar 

  24. Askenazi, D. J., Griffin, R., McGwin, G., Carlo, W. & Ambalavanan, N. Acute kidney injury is independently associated with mortality in very low birthweight infants: a matched case-control analysis. Pediatr. Nephrol. 24, 991–997 (2009).

    Article  PubMed  Google Scholar 

  25. Koralkar, R. et al. Acute kidney injury reduces survival in very low birth weight infants. Pediatr. Res. 69, 354–358 (2011).

    Article  PubMed  Google Scholar 

  26. Viswanathan, S., Manyam, B., Azhibekov, T. & Mhanna, M. J. Risk factors associated with acute kidney injury in extremely low birth weight (ELBW) infants. Pediatr. Nephrol. 27, 303–311 (2012).

    Article  PubMed  Google Scholar 

  27. Carmody, J. B., Swanson, J. R., Rhone, E. T. & Charlton, J. R. Recognition and reporting of AKI in very low birth weight infants. Clin. J. Am. Soc. Nephrol. 9, 2036–2043 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Stojanovic, V., Barisic, N., Milanovic, B. & Doronjski, A. Acute kidney injury in preterm infants admitted to a neonatal intensive care unit. Pediatr. Nephrol. 29, 2213–2220 (2014).

    Article  PubMed  Google Scholar 

  29. Nagaraj, N., Berwal, P. K., Srinivas, A. & Berwal, A. A study of acute kidney injury in hospitalized preterm neonates in NICU. J. Neonatal Perinatal Med. 9, 417–421 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Daga, A., Dapaah-Siakwan, F., Rajbhandari, S., Arevalo, C. & Salvador, A. Diagnosis and risk factors of acute kidney injury in very low birth weight infants. Pediatr. Neonatol. 58, 258–263 (2017).

    Article  PubMed  Google Scholar 

  31. Selewski, D. T. et al. Neonatal acute kidney injury. Pediatrics 136, e463–e473 (2015).

    Article  PubMed  Google Scholar 

  32. Aydin, S. I. et al. Acute kidney injury after surgery for congenital heart disease. Ann. Thorac Surg. 94, 1589–1595 (2012).

    Article  PubMed  Google Scholar 

  33. dos Santos El Halal, M. G. & Carvalho, P. R. Acute kidney injury according to pediatric RIFLE criteria is associated with negative outcomes after heart surgery in children. Pediatr. Nephrol. 28, 1307–1314 (2013).

    Article  PubMed  Google Scholar 

  34. Taylor, M. L. et al. Mild postoperative acute kidney injury and outcomes after surgery for congenital heart disease. J. Thorac Cardiovasc. Surg. 146, 146–152 (2013).

    Article  PubMed  Google Scholar 

  35. Wong, J. H. et al. Severe acute kidney injury following stage 1 norwood palliation: effect on outcomes and risk of severe acute kidney injury at subsequent surgical stages. Pediatr. Crit. Care Med. 17, 615–623 (2016).

    Article  PubMed  Google Scholar 

  36. Mathur, N. B., Agarwal, H. S. & Maria, A. Acute renal failure in neonatal sepsis. Indian J. Pediatr. 73, 499–502 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Sarkar, S. et al. Relationship between acute kidney injury and brain MRI findings in asphyxiated newborns after therapeutic hypothermia. Pediatr. Res. 75, 431–435 (2014).

    Article  PubMed  Google Scholar 

  38. Askenazi, D. J. et al. Fluid overload and mortality are associated with acute kidney injury in sick near-term/term neonate. Pediatr. Nephrol. 28, 661–666 (2013).

    Article  PubMed  Google Scholar 

  39. Selewski, D. T., Jordan, B. K., Askenazi, D. J., Dechert, R. E. & Sarkar, S. Acute kidney injury in asphyxiated newborns treated with therapeutic hypothermia. J. Pediatr. 162, 725–729 e721 (2013).

    Article  PubMed  Google Scholar 

  40. Alaro, D., Bashir, A., Musoke, R. & Wanaiana, L. Prevalence and outcomes of acute kidney injury in term neonates with perinatal asphyxia. Afr. Health Sci. 14, 682–688 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Askenazi, D. J. et al. Acute kidney injury and renal replacement therapy independently predict mortality in neonatal and pediatric noncardiac patients on extracorporeal membrane oxygenation. Pediatr. Crit. Care Med. 12, e1–6 (2011).

    Article  PubMed  Google Scholar 

  42. Gadepalli, S. K., Selewski, D. T., Drongowski, R. A. & Mychaliska, G. B. Acute kidney injury in congenital diaphragmatic hernia requiring extracorporeal life support: an insidious problem. J. Pediatr. Surg. 46, 630–635 (2011).

    Article  PubMed  Google Scholar 

  43. Fleming, G. M. et al. The incidence of acute kidney injury and its effect on neonatal and pediatric extracorporeal membrane oxygenation outcomes: a multicenter report from the Kidney Intervention During Extracorporeal Membrane Oxygenation Study Group. Pediatr. Crit. Care Med. 17, 1157–1169 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Arcinue, R., Kantak, A. & Elkhwad, M. Acute kidney injury in ELBW infants (<750 grams) and its associated risk factors. J. Neonatal Perinatal Med. 8, 349–357 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Csaicsich, D. et al. Renal failure, comorbidity and mortality in preterm infants. Wien Klin. Wochenschr. 120, 153–157 (2008).

    Article  PubMed  Google Scholar 

  46. Rhone, E. T., Carmody, J. B., Swanson, J. R. & Charlton, J. R. Nephrotoxic medication exposure in very low birth weight infants. J. Matern. Fetal Neonatal Med. 27, 1485–1490 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Jetton, J. G. et al. Incidence and outcomes of neonatal acute kidney injury (AWAKEN): a multicentre, multinational, observational cohort study. Lancet Child Adolesc. Health 1, 184–194 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Askenazi, D. J., Ambalavanan, N. & Goldstein, S. L. Acute kidney injury in critically ill newborns: what do we know? What do we need to learn? Pediatr. Nephrol. 24, 265–274 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Gupta, C., Massaro, A. N. & Ray, P. E. A new approach to define acute kidney injury in term newborns with hypoxic ischemic encephalopathy. Pediatr. Nephrol. 31, 1167–1178 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Jetton, J. G. & Askenazi, D. J. Update on acute kidney injury in the neonate. Curr. Opin. Pediatr. 24, 191–196 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zappitelli, M. et al. Developing a neonatal acute kidney injury research definition: a report from the NIDDK neonatal AKI workshop. Pediatr. Res. 82, 569–573 (2017).

    Article  PubMed  Google Scholar 

  52. Kellum, J. A. & Lameire, N. Diagnosis, evaluation, and management of acute kidney injury: a KDIGO summary (Part 1). Crit. Care. 17, 204 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Sarafidis, K. et al. Urine neutrophil gelatinase-associated lipocalin to predict acute kidney injury in preterm neonates. A pilot study. Pediatr. Nephrol. 29, 305–310 (2014).

    Article  PubMed  Google Scholar 

  54. Tabel, Y. et al. Urinary neutrophil gelatinase-associated lipocalin as an early biomarker for prediction of acute kidney injury in preterm infants. Am. J. Perinatol. 31, 167–174 (2014).

    PubMed  Google Scholar 

  55. Genc, G., Ozkaya, O., Avci, B., Aygun, C. & Kucukoduk, S. Kidney injury molecule-1 as a promising biomarker for acute kidney injury in premature babies. Am. J. Perinatol. 30, 245–252 (2013).

    PubMed  Google Scholar 

  56. Sarafidis, K. et al. Serum and urine acute kidney injury biomarkers in asphyxiated neonates. Pediatr. Nephrol. 27, 1575–1582 (2012).

    Article  PubMed  Google Scholar 

  57. Askenazi, D. J. et al. Urine biomarkers predict acute kidney injury in newborns. J. Pediatr. 161, 270–275 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Askenazi, D. J. et al. Urine biomarkers predict acute kidney injury and mortality in very low birth weight infants. J. Pediatr. 159, 907–912 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Askenazi, D. J. et al. Baseline values of candidate urine acute kidney injury biomarkers vary by gestational age in premature infants. Pediatr. Res. 70, 302–306 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Hentschel, R., Lodige, B. & Bulla, M. Renal insufficiency in the neonatal period. Clin. Nephrol. 46, 54–58 (1996).

    CAS  PubMed  Google Scholar 

  61. Drukker, A. & Guignard, J. P. Renal aspects of the term and preterm infant: a selective update. Curr. Opin. Pediatr. 14, 175–182 (2002).

    Article  PubMed  Google Scholar 

  62. Cataldi, L. et al. Potential risk factors for the development of acute renal failure in preterm newborn infants: a case-control study. Arch. Dis. Child Fetal Neonatal Ed. 90, F514–F519 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bezold, K. Y., Karjalainen, M. K., Hallman, M., Teramo, K. & Muglia, L. J. The genomics of preterm birth: from animal models to human studies. Genome Med. 5, 34 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Spitzer, A. Renal physiology and functional development. In Pediatric kidney disease. (ed. Edelmann, C. M.) 25–127 (Boston, Little & Brown, 1978).

    Google Scholar 

  65. Gallini, F., Maggio, L., Romagnoli, C., Marrocco, G. & Tortorolo, G. Progression of renal function in preterm neonates with gestational age < or = 32 weeks. Pediatr. Nephrol. 15, 119–124 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Finney, H., Newman, D. J., Thakkar, H., Fell, J. M. & Price, C. P. Reference ranges for plasma cystatin C and creatinine measurements in premature infants, neonates, and older children. Arch. Dis. Child. 82, 71–75 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lee, C. C. et al. Incidence and outcomes of acute kidney injury in extremely-low-birth-weight infants. PLoS ONE 12, e0187764 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Joseph, K. S., Liston, R. M., Dodds, L., Dahlgren, L. & Allen, A. C. Socioeconomic status and perinatal outcomes in a setting with universal access to essential health care services. CMAJ 177, 583–590 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Smith, L. K., Draper, E. S., Manktelow, B. N., Dorling, J. S. & Field, D. J. Socioeconomic inequalities in very preterm birth rates. Arch. Dis. Child Fetal Neonatal Ed. 92, F11–F14 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Huynh, M., Parker, J. D., Harper, S., Pamuk, E. & Schoendorf, K. C. Contextual effect of income inequality on birth outcomes. Int. J. Epidemiol. 34, 888–895 (2005).

    Article  PubMed  Google Scholar 

  71. Parker, J. D., Schoendorf, K. C. & Kiely, J. L. Associations between measures of socioeconomic status and low birth weight, small for gestational age, and premature delivery in the United States. Ann. Epidemiol. 4, 271–278 (1994).

    Article  CAS  PubMed  Google Scholar 

  72. Gavin, A. R., Nurius, P. & Logan-Greene, P. Mediators of adverse birth outcomes among socially disadvantaged women. J. Womens Health (Larchmt). 21, 634–642 (2012).

    Article  PubMed Central  Google Scholar 

  73. Fall, C. H. et al. Association between maternal age at childbirth and child and adult outcomes in the offspring: a prospective study in five low-income and middle-income countries (COHORTS collaboration). Lancet Glob. Health. 3, e366–377 (2015).

    Google Scholar 

  74. Stephenson, J. et al. Before the beginning: nutrition and lifestyle in the preconception period and its importance for future health. Lancet 391, 1830–1841 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Han, Z., Mulla, S., Beyene, J., Liao, G. & McDonald, S. D. Maternal underweight and the risk of preterm birth and low birth weight: a systematic review and meta-analyses. Int. J. Epidemiol. 40, 65–101 (2011).

    Article  PubMed  Google Scholar 

  76. Liu, P. et al. Association between perinatal outcomes and maternal pre-pregnancy body mass index. Obes. Rev. 17, 1091–1102 (2016).

    Article  CAS  PubMed  Google Scholar 

  77. Yu, Z. et al. Pre-pregnancy body mass index in relation to infant birth weight and offspring overweight/obesity: a systematic review and meta-analysis. PLoS ONE 8, e61627 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Catalano, P. M. Obesity, insulin resistance, and pregnancy outcome. Reproduction 140, 365–371 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Piccoli, G. B. et al. Pregnancy and chronic kidney disease: a challenge in all CKD stages. Clin. J. Am. Soc. Nephrol. 5, 844–855 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Kendrick, J. et al. Kidney disease and maternal and fetal outcomes in pregnancy. Am. J. Kidney Dis. 66, 55–59 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Piccoli, G. B. et al. Risk of adverse pregnancy outcomes in women with CKD. J. Am. Soc. Nephrol. 26, 2011–2022 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Zhang, J. J. et al. A systematic review and meta-analysis of outcomes of pregnancy in CKD and CKD outcomes in pregnancy. Clin. J. Am. Soc. Nephrol. 10, 1964–1978 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Khoury, J. C., Miodovnik, M., LeMasters, G. & Sibai, B. Pregnancy outcome and progression of diabetic nephropathy. What’s next? J. Matern. Fetal Neonatal Med. 11, 238–244 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Klemetti, M. M. et al. Obstetric and perinatal outcome in type 1 diabetes patients with diabetic nephropathy during 1988–2011. Diabetologia 58, 678–686 (2015).

    Article  CAS  PubMed  Google Scholar 

  85. Phansenee, S., Sekararithi, R., Jatavan, P. & Tongsong, T. Pregnancy outcomes among women with systemic lupus erythematosus: a retrospective cohort study from Thailand. Lupus 27, 158–164 (2018).

    Article  CAS  PubMed  Google Scholar 

  86. Skorpen, C. G. et al. Influence of disease activity and medications on offspring birth weight, pre-eclampsia and preterm birth in systemic lupus erythematosus: a population-based study. Ann. Rheum. Dis. 77, 264–269 (2018).

    Article  PubMed  CAS  Google Scholar 

  87. Wallenius, M., Salvesen, K. A., Daltveit, A. K. & Skomsvoll, J. F. Secular trends of pregnancies in women with inflammatory connective tissue disease. Acta Obstet. Gynecol. Scand. 94, 1195–1202 (2015).

    Article  PubMed  Google Scholar 

  88. Wagner, S. J. et al. Maternal and foetal outcomes in pregnant patients with active lupus nephritis. Lupus 18, 342–347 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Clowse, M. E., Magder, L. S., Witter, F. & Petri, M. The impact of increased lupus activity on obstetric outcomes. Arthritis Rheum. 52, 514–521 (2005).

    Article  PubMed  Google Scholar 

  90. Clowse, M. E., Magder, L. S. & Petri, M. The clinical utility of measuring complement and anti-dsDNA antibodies during pregnancy in patients with systemic lupus erythematosus. J. Rheumatol. 38, 1012–1016 (2011).

    Article  CAS  PubMed  Google Scholar 

  91. Savitz, D. A., Danilack, V. A., Engel, S. M., Elston, B. & Lipkind, H. S. Descriptive epidemiology of chronic hypertension, gestational hypertension, and preeclampsia in New York State, 1995–2004. Matern. Child Health J. 18, 829–838 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Bramham, K. et al. Chronic hypertension and pregnancy outcomes: systematic review and meta-analysis. BMJ 348, g2301 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Conde-Agudelo, A., Rosas-Bermudez, A. & Kafury-Goeta, A. C. Birth spacing and risk of adverse perinatal outcomes: a meta-analysis. JAMA 295, 1809–1823 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Zhu, B. P., Rolfs, R. T., Nangle, B. E. & Horan, J. M. Effect of the interval between pregnancies on perinatal outcomes. N. Engl. J. Med. 340, 589–594 (1999).

    Article  CAS  PubMed  Google Scholar 

  95. Ball, S. J., Pereira, G., Jacoby, P., de Klerk, N. & Stanley, F. J. Re-evaluation of link between interpregnancy interval and adverse birth outcomes: retrospective cohort study matching two intervals per mother. BMJ 349, g4333 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Sullivan, E. A. et al. International Committee for Monitoring Assisted Reproductive Technologies (ICMART) world report: assisted reproductive technology 2004. Hum. Reprod. 28, 1375–1390 (2013).

    Article  CAS  PubMed  Google Scholar 

  97. Mansour, R. et al. International Committee for Monitoring Assisted Reproductive Technologies world report: Assisted Reproductive Technology 2006. Hum. Reprod. 29, 1536–1551 (2014).

    Article  PubMed  Google Scholar 

  98. Luke, B. et al. Birth outcomes by infertility treatment: analyses of the population-based cohort: Massachusetts Outcomes Study of Assisted Reproductive Technologies (MOSART). J. Reprod. Med. 61, 114–127 (2016).

    PubMed  PubMed Central  Google Scholar 

  99. Grady, R., Alavi, N., Vale, R., Khandwala, M. & McDonald, S. D. Elective single embryo transfer and perinatal outcomes: a systematic review and meta-analysis. Fertil. Steril. 97, 324–331 (2012).

    Article  PubMed  Google Scholar 

  100. Poikkeus, P., Gissler, M., Unkila-Kallio, L., Hyden-Granskog, C. & Tiitinen, A. Obstetric and neonatal outcome after single embryo transfer. Hum. Reprod. 22, 1073–1079 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Kapiteijn, K. et al. Does subfertility explain the risk of poor perinatal outcome after IVF and ovarian hyperstimulation? Hum. Reprod. 21, 3228–3234 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Clausson, B., Lichtenstein, P. & Cnattingius, S. Genetic influence on birthweight and gestational length determined by studies in offspring of twins. BJOG 107, 375–381 (2000).

    Article  CAS  PubMed  Google Scholar 

  103. York, T. P. et al. Fetal and maternal genes’ influence on gestational age in a quantitative genetic analysis of 244,000 Swedish births. Am. J. Epidemiol. 178, 543–550 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Plunkett, J. et al. Mother’s genome or maternally-inherited genes acting in the fetus influence gestational age in familial preterm birth. Hum. Hered. 68, 209–219 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kistka, Z. A. et al. Heritability of parturition timing: an extended twin design analysis. Am J. Obstet Gynecol. 199, 43.e1–43.e5 (2008).

    Article  Google Scholar 

  106. Boyd, H. A. et al. Maternal contributions to preterm delivery. Am. J. Epidemiol. 170, 1358–1364 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Zhang, G. et al. Genetic associations with gestational duration and spontaneous preterm birth. N. Engl. J. Med. 377, 1156–1167 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zhang, G. et al. Assessing the causal relationship of maternal height on birth size and gestational age at birth: a mendelian randomization analysis. PLOS Med. 12, e1001865 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Akbar, S. A. et al. Angiotensin II type 1 and 2 receptors gene polymorphisms in pre-eclampsia and normal pregnancy in three different populations. Acta Obstet. Gynecol. Scand. 88, 606–611 (2009).

    Article  CAS  PubMed  Google Scholar 

  110. Yamada, H., Sata, F., Saijo, Y., Kishi, R. & Minakami, H. Genetic factors in fetal growth restriction and miscarriage. Semin. Thromb. Hemost. 31, 334–345 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Edwards, D. R. et al. Polymorphisms in maternal and fetal genes encoding for proteins involved in extracellular matrix metabolism alter the risk for small-for-gestational-age. J. Matern. Fetal Neonatal Med. 24, 362–380 (2011).

    Article  CAS  PubMed  Google Scholar 

  112. Chelbi, S. T. et al. Genetic and epigenetic mechanisms collaborate to control SERPINA3 expression and its association with placental diseases. Hum. Mol. Genet. 21, 1968–1978 (2012).

    Article  CAS  PubMed  Google Scholar 

  113. McMillen, I. C. & Robinson, J. S. Developmental origins of the metabolic syndrome: prediction, plasticity, and programming. Physiol. Rev. 85, 571–633 (2005).

    Article  CAS  PubMed  Google Scholar 

  114. Pinney, S. E., Jaeckle Santos, L. J., Han, Y., Stoffers, D. A. & Simmons, R. A. Exendin-4 increases histone acetylase activity and reverses epigenetic modifications that silence Pdx1 in the intrauterine growth retarded rat. Diabetologia 54, 2606–2614 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Sohi, G., Marchand, K., Revesz, A., Arany, E. & Hardy, D. B. Maternal protein restriction elevates cholesterol in adult rat offspring due to repressive changes in histone modifications at the cholesterol 7alpha-hydroxylase promoter. Mol. Endocrinol. 25, 785–798 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Koukoura, O. et al. Loss of imprinting and aberrant methylation of IGF2 in placentas from pregnancies complicated with fetal growth restriction. Int. J. Mol. Med. 28, 481–487 (2011).

    CAS  PubMed  Google Scholar 

  117. Koukoura, O. et al. Hypomethylation along with increased H19 expression in placentas from pregnancies complicated with fetal growth restriction. Placenta 32, 51–57 (2011).

    Article  CAS  PubMed  Google Scholar 

  118. Lambertini, L. et al. Differential methylation of imprinted genes in growth-restricted placentas. Reprod. Sci. 18, 1111–1117 (2011).

    Article  CAS  PubMed  Google Scholar 

  119. Banister, C. E. et al. Infant growth restriction is associated with distinct patterns of DNA methylation in human placentas. Epigenetics 6, 920–927 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Mouillet, J. F. et al. The levels of hypoxia-regulated microRNAs in plasma of pregnant women with fetal growth restriction. Placenta 31, 781–784 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Hromadnikova, I., Kotlabova, K., Doucha, J., Dlouha, K. & Krofta, L. Absolute and relative quantification of placenta-specific microRNAs in maternal circulation with placental insufficiency-related complications. J. Mol. Diagn. 14, 160–167 (2012).

    Article  CAS  PubMed  Google Scholar 

  122. Tobi, E. W. et al. DNA methylation signatures link prenatal famine exposure to growth and metabolism. Nat. Commun. 5, 5592 (2014).

    Article  CAS  PubMed  Google Scholar 

  123. Wang, P. X., Wang, J. J., Lei, Y. X., Xiao, L. & Luo, Z. C. Impact of fetal and infant exposure to the Chinese Great Famine on the risk of hypertension in adulthood. PLoS ONE 7, e49720 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Radford, E. J. et al. In utero effects. In utero undernourishment perturbs the adult sperm methylome and intergenerational metabolism. Science 345, 1255903 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Radford, E. J. Exploring the extent and scope of epigenetic inheritance. Nat. Rev. Endocrinol. 14, 345–355 (2018).

    Article  CAS  PubMed  Google Scholar 

  126. Rasmussen, K., Yaktine, A. L. (eds). Weight Gain During Pregnancy: Reexamining the Guidelines (National Academies Press, 2009).

    Google Scholar 

  127. Goldstein, R. F. et al. Association of gestational weight gain with maternal and infant outcomes: a systematic review and meta-analysis. JAMA 317, 2207–2225 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Vehaskari, V. M., Aviles, D. H. & Manning, J. Prenatal programming of adult hypertension in the rat. Kidney Int. 59, 238–245 (2001).

    Article  CAS  PubMed  Google Scholar 

  129. Moore, V. M., Davies, M. J., Willson, K. J., Worsley, A. & Robinson, J. S. Dietary composition of pregnant women is related to size of the baby at birth. J. Nutr. 134, 1820–1826 (2004).

    Article  CAS  PubMed  Google Scholar 

  130. Cuco, G. et al. Association of maternal protein intake before conception and throughout pregnancy with birth weight. Acta Obstet. Gynecol. Scand. 85, 413–421 (2006).

    Article  CAS  PubMed  Google Scholar 

  131. Olsen, S. F. et al. Milk consumption during pregnancy is associated with increased infant size at birth: prospective cohort study. Am. J. Clin. Nutr. 86, 1104–1110 (2007).

    Article  CAS  PubMed  Google Scholar 

  132. Mathews, F., Yudkin, P. & Neil, A. Influence of maternal nutrition on outcome of pregnancy: prospective cohort study. BMJ 319, 339–343 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Chong, M. F. et al. Maternal protein intake during pregnancy is not associated with offspring birth weight in a multiethnic Asian population. J. Nutr. 145, 1303–1310 (2015).

    Article  CAS  PubMed  Google Scholar 

  134. Patra, J. et al. Dose-response relationship between alcohol consumption before and during pregnancy and the risks of low birthweight, preterm birth and small for gestational age (SGA)-a systematic review and meta-analyses. BJOG 118, 1411–1421 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Strandberg-Larsen, K. et al. Association of light-to-moderate alcohol drinking in pregnancy with preterm birth and birth weight: elucidating bias by pooling data from nine European cohorts. Eur. J. Epidemiol. 32, 751–764 (2017).

    Article  CAS  PubMed  Google Scholar 

  136. O’Leary, C. M. & Bower, C. Guidelines for pregnancy: what’s an acceptable risk, and how is the evidence (finally) shaping up? Drug Alcohol Rev. 31, 170–183 (2012).

    Article  PubMed  Google Scholar 

  137. Henderson, J., Gray, R. & Brocklehurst, P. Systematic review of effects of low-moderate prenatal alcohol exposure on pregnancy outcome. BJOG 114, 243–252 (2007).

    Article  CAS  PubMed  Google Scholar 

  138. Lundsberg, L. S., Illuzzi, J. L., Belanger, K., Triche, E. W. & Bracken, M. B. Low-to-moderate prenatal alcohol consumption and the risk of selected birth outcomes: a prospective cohort study. Ann. Epidemiol. 25, 46–54 e3 (2015).

    Article  PubMed  Google Scholar 

  139. Ko, T. J. et al. Parental smoking during pregnancy and its association with low birth weight, small for gestational age, and preterm birth offspring: a birth cohort study. Pediatr. Neonatol. 55, 20–27 (2014).

    Article  PubMed  Google Scholar 

  140. Jaddoe, V. W. et al. Active and passive maternal smoking during pregnancy and the risks of low birthweight and preterm birth: the Generation R Study. Paediatr. Perinat. Epidemiol. 22, 162–171 (2008).

    Article  PubMed  Google Scholar 

  141. Agrawal, A. et al. The effects of maternal smoking during pregnancy on offspring outcomes. Prev. Med. 50, 13–18 (2010).

    Article  CAS  PubMed  Google Scholar 

  142. Jauniaux, E. & Burton, G. J. Morphological and biological effects of maternal exposure to tobacco smoke on the feto-placental unit. Early Hum. Dev. 83, 699–706 (2007).

    Article  CAS  PubMed  Google Scholar 

  143. Kupers, L. K. et al. DNA methylation mediates the effect of maternal smoking during pregnancy on birthweight of the offspring. Int. J. Epidemiol. 44, 1224–1237 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Bouwland-Both, M. I. et al. Prenatal parental tobacco smoking, gene specific DNA methylation, and newborns size: the Generation R study. Clin. Epigenet. 7, 83 (2015).

    Article  CAS  Google Scholar 

  145. Janssen, B. G. et al. Placental mitochondrial DNA and CYP1A1 gene methylation as molecular signatures for tobacco smoke exposure in pregnant women and the relevance for birth weight. J. Transl. Med. 15, 5 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Guron, G. & Friberg, P. An intact renin-angiotensin system is a prerequisite for normal renal development. J. Hypertens. 18, 123–137 (2000).

    Article  CAS  PubMed  Google Scholar 

  147. Friberg, P. et al. Renin-angiotensin system in neonatal rats: induction of a renal abnormality in response to ACE inhibition or angiotensin II antagonism. Kidney Int. 45, 485–492 (1994).

    Article  CAS  PubMed  Google Scholar 

  148. Shotan, A., Widerhorn, J., Hurst, A. & Elkayam, U. Risks of angiotensin-converting enzyme inhibition during pregnancy: experimental and clinical evidence, potential mechanisms, and recommendations for use. Am. J. Med. 96, 451–456 (1994).

    Article  CAS  PubMed  Google Scholar 

  149. Zambraski, E. J. The effects of nonsteroidal anti-inflammatory drugs on renal function: experimental studies in animals. Semin. Nephrol. 15, 205–213 (1995).

    CAS  PubMed  Google Scholar 

  150. van der Heijden, B. & Gubler, M. C. Renal failure in the neonate associated with in utero exposure to non-steroidal anti-inflammatory agents. Pediatr. Nephrol. 9, 675 (1995).

    Article  PubMed  Google Scholar 

  151. Alano, M. A., Ngougmna, E., Ostrea, E. M. Jr & Konduri, G. G. Analysis of nonsteroidal antiinflammatory drugs in meconium and its relation to persistent pulmonary hypertension of the newborn. Pediatrics 107, 519–523 (2001).

    Article  CAS  PubMed  Google Scholar 

  152. Cuzzolin, L. et al. Postnatal renal function in preterm newborns: a role of diseases, drugs and therapeutic interventions. Pediatr. Nephrol. 21, 931–938 (2006).

    Article  PubMed  Google Scholar 

  153. Mol, B. W. J. et al. Pre-eclampsia. Lancet 387, 999–1011 (2016).

    Article  PubMed  Google Scholar 

  154. Bilano, V. L., Ota, E., Ganchimeg, T., Mori, R. & Souza, J. P. Risk factors of pre-eclampsia/eclampsia and its adverse outcomes in low- and middle-income countries: a WHO secondary analysis. PLoS ONE 9, e91198 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Sherf, Y. et al. Like mother like daughter: low birth weight and preeclampsia tend to reoccur at the next generation. J. Matern. Fetal Neonatal Med. 7, 1–7 (2017).

    Google Scholar 

  156. Abitbol, C. L., DeFreitas, M. J. & Strauss, J. Assessment of kidney function in preterm infants: lifelong implications. Pediatr. Nephrol. 31, 2213–2222 (2016).

    Article  PubMed  Google Scholar 

  157. Nada, A., Bonachea, E. M. & Askenazi, D. J. Acute kidney injury in the fetus and neonate. Semin. Fetal Neonatal Med. 22, 90–97 (2017).

    Article  PubMed  Google Scholar 

  158. Kaur, S. et al. Evaluation of glomerular and tubular renal function in neonates with birth asphyxia. Ann. Trop. Paediatr. 31, 129–134 (2011).

    Article  CAS  PubMed  Google Scholar 

  159. Blinder, J. J. et al. Congenital heart surgery in infants: effects of acute kidney injury on outcomes. J. Thorac. Cardiovasc. Surg. 143, 368–374 (2012).

    Article  PubMed  Google Scholar 

  160. Krawczeski, C. D. et al. Neutrophil gelatinase-associated lipocalin concentrations predict development of acute kidney injury in neonates and children after cardiopulmonary bypass. J. Pediatr. 158, 1009–1015 (2011).

    Article  CAS  PubMed  Google Scholar 

  161. Morgan, C. J. et al. Risk factors for and outcomes of acute kidney injury in neonates undergoing complex cardiac surgery. J. Pediatr. 162, 120–127 (2013).

    Article  PubMed  Google Scholar 

  162. Stoll, B. J. et al. Early onset neonatal sepsis: the burden of group B Streptococcal and E. coli disease continues. Pediatrics 127, 817–826 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Shane, A. L., Sanchez, P. J. & Stoll, B. J. Neonatal sepsis. Lancet 390, 1770–1780 (2017).

    Article  PubMed  Google Scholar 

  164. Palmeira, P., Quinello, C., Silveira-Lessa, A. L., Zago, C. A. & Carneiro-Sampaio, M. IgG placental transfer in healthy and pathological pregnancies. Clin. Dev. Immunol. 2012, 985646 (2012).

    Article  PubMed  CAS  Google Scholar 

  165. Momtaz, H. E., Sabzehei, M. K., Rasuli, B. & Torabian, S. The main etiologies of acute kidney injury in the newborns hospitalized in the neonatal intensive care unit. J. Clin. Neonatol. 3, 99–102 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Vachvanichsanong, P. et al. Neonatal acute kidney injury in a tertiary center in a developing country. Nephrol. Dial Transplant. 27, 973–977 (2012).

    Article  PubMed  Google Scholar 

  167. Bolat, F. et al. Acute kidney injury in a single neonatal intensive care unit in Turkey. World J. Pediatr. 9, 323–329 (2013).

    Article  PubMed  Google Scholar 

  168. Blatt, N. B., Srinivasan, S., Mottes, T., Shanley, M. M. & Shanley, T. P. Biology of sepsis: its relevance to pediatric nephrology. Pediatr. Nephrol. 29, 2273–2287 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Sakr, Y., Dubois, M. J., De Backer, D., Creteur, J. & Vincent, J. L. Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit. Care Med. 32, 1825–1831 (2004).

    Article  PubMed  Google Scholar 

  170. Vincent, J. L. & De Backer, D. Microvascular dysfunction as a cause of organ dysfunction in severe sepsis. Crit. Care 9 (Suppl. 4), S9–S12 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Venkatachalam, M. A. & Weinberg, J. M. The tubule pathology of septic acute kidney injury: a neglected area of research comes of age. Kidney Int. 81, 338–340 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Suzuki, M. Children’s toxicology from bench to bed —drug-induced renal injury (4): effects of nephrotoxic compounds on fetal and developing kidney. J. Toxicol. Sci. 34 (Suppl. 2), SP267–SP271 (2009).

    Article  CAS  PubMed  Google Scholar 

  173. Gilbert, T., Lelievre-Pegorier, M., Malienou, R., Meulemans, A. & Merlet-Benichou, C. Effects of prenatal and postnatal exposure to gentamicin on renal differentiation in the rat. Toxicology 43, 301–313 (1987).

    Article  CAS  PubMed  Google Scholar 

  174. Laughon, M. M. et al. Drug labeling and exposure in neonates. JAMA Pediatr. 168, 130–136 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Kent, A., Turner, M. A., Sharland, M. & Heath, P. T. Aminoglycoside toxicity in neonates: something to worry about? Expert Rev. Anti Infect. Ther. 12, 319–331 (2014).

    Article  CAS  PubMed  Google Scholar 

  176. Zappitelli, M., Selewski, D. T. & Askenazi, D. J. Nephrotoxic medication rxposure and acute kidney injury in neonates. NeoReviews 13, e420–e427 (2012).

    Article  Google Scholar 

  177. Oktem, F. et al. In vivo evidences suggesting the role of oxidative stress in pathogenesis of vancomycin-induced nephrotoxicity: protection by erdosteine. Toxicology 215, 227–233 (2005).

    Article  PubMed  CAS  Google Scholar 

  178. Lopez-Novoa, J. M., Quiros, Y., Vicente, L., Morales, A. I. & Lopez-Hernandez, F. J. New insights into the mechanism of aminoglycoside nephrotoxicity: an integrative point of view. Kidney Int. 79, 33–45 (2011).

    Article  CAS  PubMed  Google Scholar 

  179. Allegaert, K., Cossey, V. & van den Anker, J. N. Dosing guidelines of aminoglycosides in neonates: a balance between physiology and feasibility. Curr. Pharm. Des. 21, 5699–5704 (2015).

    Article  CAS  PubMed  Google Scholar 

  180. Fanos, V., Cuzzolin, L., Atzei, A. & Testa, M. Antibiotics and antifungals in neonatal intensive care units: a review. J. Chemother. 19, 5–20 (2007).

    Article  CAS  PubMed  Google Scholar 

  181. Hamill, R. J. Amphotericin B formulations: a comparative review of efficacy and toxicity. Drugs 73, 919–934 (2013).

    Article  CAS  PubMed  Google Scholar 

  182. Zager, R. A., Bredl, C. R. & Schimpf, B. A. Direct amphotericin B-mediated tubular toxicity: assessments of selected cytoprotective agents. Kidney Int. 41, 1588–1594 (1992).

    Article  CAS  PubMed  Google Scholar 

  183. Branch, R. A. Prevention of amphotericin B-induced renal impairment. A review on the use of sodium supplementation. Arch. Intern. Med. 148, 2389–2394 (1988).

    Article  CAS  PubMed  Google Scholar 

  184. Turkova, A., Roilides, E. & Sharland, M. Amphotericin B in neonates: deoxycholate or lipid formulation as first-line therapy — is there a ‘right’ choice? Curr. Opin. Infect. Dis. 24, 163–171 (2011).

    Article  CAS  PubMed  Google Scholar 

  185. Manzoni, P. et al. Liposomal amphotericin B does not induce nephrotoxicity or renal function impairment in premature neonates. Early Hum. Dev. 88 (Suppl. 2), S86–S91 (2012).

    Article  CAS  PubMed  Google Scholar 

  186. Karadag-Oncel, E., Ozsurekci, Y., Yurdakok, M. & Kara, A. Is liposomal amphotericin B really safety in neonates? Early Hum. Dev. 89, 35–36 (2013).

    Article  CAS  PubMed  Google Scholar 

  187. Scarcella, A., Pasquariello, M. B., Giugliano, B., Vendemmia, M. & de Lucia, A. Liposomal amphotericin B treatment for neonatal fungal infections. Pediatr. Infect. Dis. J. 17, 146–148 (1998).

    Article  CAS  PubMed  Google Scholar 

  188. Heyman, S. N., Khamaisi, M., Rosen, S. & Rosenberger, C. Renal parenchymal hypoxia, hypoxia response and the progression of chronic kidney disease. Am. J. Nephrol. 28, 998–1006 (2008).

    Article  CAS  PubMed  Google Scholar 

  189. Cetin, I., Mando, C. & Calabrese, S. Maternal predictors of intrauterine growth restriction. Curr. Opin. Clin. Nutr. Metab. Care 16, 310–319 (2013).

    Article  CAS  PubMed  Google Scholar 

  190. Koullali, B., Oudijk, M. A., Nijman, T. A., Mol, B. W. & Pajkrt, E. Risk assessment and management to prevent preterm birth. Semin. Fetal Neonatal Med. 21, 80–88 (2016).

    Article  CAS  PubMed  Google Scholar 

  191. Fleming, T. P. et al. Origins of lifetime health around the time of conception: causes and consequences. Lancet 391, 1842–1852 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Sebert, S., Sharkey, D., Budge, H. & Symonds, M. E. The early programming of metabolic health: is epigenetic setting the missing link? Am. J. Clin. Nutr. 94, 1953S–1958S (2011).

    Article  CAS  PubMed  Google Scholar 

  193. Wang, J. et al. Nutrition, epigenetics, and metabolic syndrome. Antioxid. Redox Signal. 17, 282–301 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Kessler, N. J., Waterland, R. A., Andrew Prentice, M. A. M., & Silver, M. J. Establishment of environmentally sensitive DNA methylation states in the very early human embryo. Sci. Adv. 4, eaat2624 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Anderson, O. S., Sant, K. E. & Dolinoy, D. C. Nutrition and epigenetics: an interplay of dietary methyl donors, one-carbon metabolism and DNA methylation. J. Nutr. Biochem. 23, 853–859 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Sundrani, D. P., Chavan Gautam, P. M., Mehendale, S. S. & Joshi, S. R. Altered metabolism of maternal micronutrients and omega 3 fatty acids epigenetically regulate matrix metalloproteinases in preterm pregnancy: a novel hypothesis. Med. Hypotheses 77, 878–883 (2011).

    Article  CAS  PubMed  Google Scholar 

  197. Jiang, X. et al. Maternal choline intake alters the epigenetic state of fetal cortisol-regulating genes in humans. FASEB J. 26, 3563–3574 (2012).

    Article  CAS  PubMed  Google Scholar 

  198. Zeng, Y., Gu, P., Liu, K. & Huang, P. Maternal protein restriction in rats leads to reduced PGC-1alpha expression via altered DNA methylation in skeletal muscle. Mol. Med. Rep. 7, 306–312 (2013).

    Article  CAS  PubMed  Google Scholar 

  199. Watkins, A. J. et al. Low protein diet fed exclusively during mouse oocyte maturation leads to behavioural and cardiovascular abnormalities in offspring. J. Physiol. 586, 2231–2244 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Kwong, W. Y., Wild, A. E., Roberts, P., Willis, A. C. & Fleming, T. P. Maternal undernutrition during the preimplantation period of rat development causes blastocyst abnormalities and programming of postnatal hypertension. Development 127, 4195–4202 (2000).

    Article  CAS  PubMed  Google Scholar 

  201. Watkins, A. J. et al. Adaptive responses by mouse early embryos to maternal diet protect fetal growth but predispose to adult onset disease. Biol. Reprod. 78, 299–306 (2008).

    Article  CAS  PubMed  Google Scholar 

  202. Eckert, J. J. et al. Metabolic induction and early responses of mouse blastocyst developmental programming following maternal low protein diet affecting life-long health. PLoS ONE 7, e52791 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Sun, C. et al. Mouse early extra-embryonic lineages activate compensatory endocytosis in response to poor maternal nutrition. Development 141, 1140–1150 (2014).

    Article  CAS  PubMed  Google Scholar 

  204. Denisenko, O. et al. Regulation of ribosomal RNA expression across the lifespan is fine-tuned by maternal diet before implantation. Biochim. Biophys. Acta 1859, 906–913 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Watkins, A. J. et al. Maternal nutrition modifies trophoblast giant cell phenotype and fetal growth in mice. Reproduction 149, 563–575 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Waterland, R. A. et al. Season of conception in rural gambia affects DNA methylation at putative human metastable epialleles. PLoS Genet. 6, e1001252 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Dominguez-Salas, P. et al. Maternal nutrition at conception modulates DNA methylation of human metastable epialleles. Nat. Commun. 5, 3746 (2014).

    Article  CAS  PubMed  Google Scholar 

  208. Lillycrop, K. A., Phillips, E. S., Jackson, A. A., Hanson, M. A. & Burdge, G. C. Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. J. Nutr. 135, 1382–1386 (2005).

    Article  CAS  PubMed  Google Scholar 

  209. Lillycrop, K. A. et al. Induction of altered epigenetic regulation of the hepatic glucocorticoid receptor in the offspring of rats fed a protein-restricted diet during pregnancy suggests that reduced DNA methyltransferase-1 expression is involved in impaired DNA methylation and changes in histone modifications. Br. J. Nutr. 97, 1064–1073 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Haider, B. A. & Bhutta, Z. A. Multiple-micronutrient supplementation for women during pregnancy. Cochrane Database Syst. Rev. 4, CD004905 (2015).

    Google Scholar 

  211. da Silva Lopes, K. et al. Effects of nutrition interventions during pregnancy on low birth weight: an overview of systematic reviews. BMJ Glob. Health 2, e000389 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Fryer, A. A. et al. Quantitative, high-resolution epigenetic profiling of CpG loci identifies associations with cord blood plasma homocysteine and birth weight in humans. Epigenetics 6, 86–94 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Karlowicz, M. G. & Adelman, R. D. Nonoliguric and oliguric acute renal failure in asphyxiated term neonates. Pediatr. Nephrol. 9, 718–722 (1995).

    Article  CAS  PubMed  Google Scholar 

  214. Arikan, A. A. et al. Fluid overload is associated with impaired oxygenation and morbidity in critically ill children. Pediatr. Crit. Care Med. 13, 253–258 (2012).

    Article  PubMed  Google Scholar 

  215. Wilder, N. S., Yu, S., Donohue, J. E., Goldberg, C. S. & Blatt, N. B. Fluid overload is associated with late poor outcomes in neonates following cardiac surgery. Pediatr. Crit. Care Med. 17, 420–427 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Koyner, J. L. et al. Furosemide stress test and biomarkers for the prediction of AKI severity. J. Am. Soc. Nephrol. 26, 2023–2031 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Chawla, L. S. et al. Development and standardization of a furosemide stress test to predict the severity of acute kidney injury. Crit. Care. 17, R207 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Merheb, R. C., Kruzer, K. A. & Mhanna, M. J. The effect of bumetanide in extremely low birth weight infants with acute kidney injury during their first weeks of life. J. Clin. Pediatr. Nephrol. 2, 53–63 (2014).

    Article  Google Scholar 

  219. Oliveros, M., Pham, J. T., John, E., Resheidat, A. & Bhat, R. The use of bumetanide for oliguric acute renal failure in preterm infants. Pediatr. Crit. Care Med. 12, 210–214 (2011).

    Article  PubMed  Google Scholar 

  220. Eslami, Z., Shajari, A., Kheirandish, M. & Heidary, A. Theophylline for prevention of kidney dysfunction in neonates with severe asphyxia. Iran. J. Kidney Dis. 3, 222–226 (2009).

    PubMed  Google Scholar 

  221. Cattarelli, D. et al. A randomised, double blind, placebo controlled trial of the effect of theophylline in prevention of vasomotor nephropathy in very preterm neonates with respiratory distress syndrome. Arch. Dis. Child Fetal Neonatal Ed. 91, F80–F84 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Bakr, A. F. Prophylactic theophylline to prevent renal dysfunction in newborns exposed to perinatal asphyxia — a study in a developing country. Pediatr. Nephrol. 20, 1249–1252 (2005).

    Article  PubMed  Google Scholar 

  223. Jenik, A. G. et al. A randomized, double-blind, placebo-controlled trial of the effects of prophylactic theophylline on renal function in term neonates with perinatal asphyxia. Pediatrics 105, E45 (2000).

    Article  CAS  PubMed  Google Scholar 

  224. Al-Wassia, H., Alshaikh, B. & Sauve, R. Prophylactic theophylline for the prevention of severe renal dysfunction in term and post-term neonates with perinatal asphyxia: a systematic review and meta-analysis of randomized controlled trials. J. Perinatol. 33, 271–277 (2013).

    Article  CAS  PubMed  Google Scholar 

  225. Ferguson, K. N., Roberts, C. T., Manley, B. J. & Davis, P. G. Interventions to improve rates of successful extubation in preterm infants: a systematic review and meta-analysis. JAMA Pediatr. 171, 165–174 (2017).

    Article  PubMed  Google Scholar 

  226. Harer, M. W. et al. Association between early caffeine citrate administration and risk of acute kidney injury in preterm neonates: results from the AWAKEN study. JAMA Pediatr. 172, e180322 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Ricci, Z. et al. Fenoldopam in newborn patients undergoing cardiopulmonary bypass: controlled clinical trial. Interact. Cardiovasc. Thorac. Surg. 7, 1049–1053 (2008).

    Article  PubMed  Google Scholar 

  228. Ricci, Z. et al. High-dose fenoldopam reduces postoperative neutrophil gelatinase-associated lipocaline and cystatin C levels in pediatric cardiac surgery. Crit. Care 15, R160 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Matzke, G. R. et al. Drug dosing consideration in patients with acute and chronic kidney disease-a clinical update from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 80, 1122–1137 (2011).

    Article  CAS  PubMed  Google Scholar 

  230. Goldstein, S. L. et al. A sustained quality improvement program reduces nephrotoxic medication-associated acute kidney injury. Kidney Int. 90, 212–221 (2016).

    Article  PubMed  Google Scholar 

  231. Sutherland, S. M. et al. Fluid overload and mortality in children receiving continuous renal replacement therapy: the prospective pediatric continuous renal replacement therapy registry. Am. J. Kidney Dis. 55, 316–325 (2010).

    Article  PubMed  Google Scholar 

  232. Ronco, C., Garzotto, F. & Ricci, Z. CA.R.PE.DI.E.M. (Cardio-Renal Pediatric Dialysis Emergency Machine): evolution of continuous renal replacement therapies in infants. A personal journey. Pediatr. Nephrol. 27, 1203–1211 (2012).

    Article  PubMed  Google Scholar 

  233. Ronco, C. et al. Continuous renal replacement therapy in neonates and small infants: development and first-in-human use of a miniaturised machine (CARPEDIEM). Lancet 383, 1807–1813 (2014).

    Article  PubMed  Google Scholar 

  234. Hothi, D. K. Designing technology to meet the therapeutic demands of acute renal injury in neonates and small infants. Pediatr. Nephrol. 29, 1869–1871 (2014).

    Article  PubMed  Google Scholar 

  235. Harshman, L. A. et al. Peritoneal dialysis in an extremely low-birth-weight infant with acute kidney injury. Clin. Kidney J. 7, 582–585 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Alparslan, C. et al. The performance of acute peritoneal dialysis treatment in neonatal period. Ren. Fail. 34, 1015–1020 (2012).

    Article  PubMed  Google Scholar 

  237. Unal, S. et al. The implementation of neonatal peritoneal dialysis in a clinical setting. J. Matern. Fetal Neonatal Med. 25, 2111–2114 (2012).

    Article  PubMed  Google Scholar 

  238. Oyachi, N. et al. Use of a flexible Blake(R) silicone drains for peritoneal dialysis in the neonatal intensive care unit. Pediatr. Int. 53, 417–418 (2011).

    Article  PubMed  Google Scholar 

  239. Yu, J. E., Park, M. S. & Pai, K. S. Acute peritoneal dialysis in very low birth weight neonates using a vascular catheter. Pediatr. Nephrol. 25, 367–371 (2010).

    Article  PubMed  Google Scholar 

  240. Andreoli, S. P. Acute renal failure in the newborn. Semin. Perinatol. 28, 112–123 (2004).

    Article  PubMed  Google Scholar 

  241. Agras, P. I. et al. Acute renal failure in the neonatal period. Ren. Fail. 26, 305–309 (2004).

    Article  PubMed  Google Scholar 

  242. Abitbol, C. L. et al. Long-term follow-up of extremely low birth weight infants with neonatal renal failure. Pediatr. Nephrol. 18, 887–893 (2003).

    Article  PubMed  Google Scholar 

  243. Basile, D. P. The endothelial cell in ischemic acute kidney injury: implications for acute and chronic function. Kidney Int. 72, 151–156 (2007).

    Article  CAS  PubMed  Google Scholar 

  244. Askenazi, D. J., Feig, D. I., Graham, N. M., Hui-Stickle, S. & Goldstein, S. L. 3–5 year longitudinal follow-up of pediatric patients after acute renal failure. Kidney Int. 69, 184–189 (2006).

    Article  CAS  PubMed  Google Scholar 

  245. Mammen, C. et al. Long-term risk of CKD in children surviving episodes of acute kidney injury in the intensive care unit: a prospective cohort study. Am. J. Kidney Dis. 59, 523–530 (2012).

    Article  PubMed  Google Scholar 

  246. Coca, S. G., Singanamala, S. & Parikh, C. R. Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis. Kidney Int. 81, 442–448 (2012).

    Article  PubMed  Google Scholar 

  247. Abdulkader, R. C., Liborio, A. B. & Malheiros, D. M. Histological features of acute tubular necrosis in native kidneys and long-term renal function. Ren. Fail. 30, 667–673 (2008).

    Article  CAS  PubMed  Google Scholar 

  248. Basile, D. P. Rarefaction of peritubular capillaries following ischemic acute renal failure: a potential factor predisposing to progressive nephropathy. Curr. Opin. Nephrol. Hypertens. 13, 1–7 (2004).

    Article  PubMed  Google Scholar 

  249. Faa, G. et al. Marked interindividual variability in renal maturation of preterm infants: lessons from autopsy. J. Matern. Fetal Neonatal Med. 23 (Suppl. 3), 129–133 (2010).

    Article  PubMed  Google Scholar 

  250. Carmody, J. B. & Charlton, J. R. Short-term gestation, long-term risk: prematurity and chronic kidney disease. Pediatrics 131, 1168–1179 (2013).

    Article  PubMed  Google Scholar 

  251. Harer, M. W., Pope, C. F., Conaway, M. R. & Charlton, J. R. Follow-up of Acute kidney injury in Neonates during Childhood Years (FANCY): a prospective cohort study. Pediatr. Nephrol. 32, 1067–1076 (2017).

    Article  PubMed  Google Scholar 

  252. Calderon-Margalit, R. et al. History of childhood kidney disease and risk of adult end-stage renal disease. N. Engl. J. Med. 378, 428–438 (2018).

    Article  PubMed  Google Scholar 

  253. Chang, H. H. et al. Preventing preterm births: analysis of trends and potential reductions with interventions in 39 countries with very high human development index. Lancet 381, 223–234 (2013).

    Article  PubMed  Google Scholar 

  254. Lee, A. C. et al. National and regional estimates of term and preterm babies born small for gestational age in 138 low-income and middle-income countries in 2010. Lancet Glob. Health 1, e26–e36 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  255. UNICEF. Undernourishment in the womb can lead to diminished potential and predispose infants to early death. UNICEF low birthweight, https://data.unicef.org/topic/nutrition/low-birthweight/ (2014).

  256. Kallioinen, M., Eadon, H., Murphy, M. S. & Baird, G. Developmental follow-up of children and young people born preterm: summary of NICE guidance. BMJ 358, j3514 (2017).

    Article  PubMed  Google Scholar 

  257. Polito, C., Papale, M. R. & La Manna, A. Long-term prognosis of acute renal failure in the full-term neonate. Clin. Pediatr. (Phila.) 37, 381–385 (1998).

    Article  CAS  PubMed  Google Scholar 

  258. Zwiers, A. J. et al. CKD and hypertension during long-term follow-up in children and adolescents previously treated with extracorporeal membrane oxygenation. Clin. J. Am. Soc. Nephrol. 9, 2070–2078 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Cooper, D. S. et al. Follow-Up Renal Assessment of Injury Long-Term After Acute Kidney Injury (FRAIL-AKI). Clin. J. Am. Soc. Nephrol. 11, 21–29 (2016).

    Article  CAS  PubMed  Google Scholar 

  260. Bruel, A. et al. Renal outcome in children born preterm with neonatal acute renal failure: IRENEO-a prospective controlled study. Pediatr. Nephrol. 31, 2365–2373 (2016).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

N.P. and M.C. researched data for the article. N.P. and G.R. discussed how to organize the manuscript and which topics to cover. N.P. and M.C. wrote the first draft of the manuscript, which was reviewed, implemented and edited by D.A. and G.R. before submission.

Corresponding author

Correspondence to Giuseppe Remuzzi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Chorioamnionitis

Also known as intra-amniotic infection, it is an inflammation of the fetal membranes (amnion and chorion) due to a bacterial infection.

Hypocomplementaemia

A condition in which one of the components of complement is lacking or reduced in the blood.

Spontaneously conceived

Conception without the use of any medical interventions; also referred to as natural conception.

Peripartum period

The peripartum period spans from the last month of gestation to 5 months after delivery.

Perinatal asphyxia

Also known as birth asphyxia, it is the failure to initiate and sustain respiration at birth.

Diaphragmatic hernia

The presence of a defect in the diaphragm that allows herniation of some abdominal viscera into the thoracic cavity, causing respiratory distress at birth with or without pulmonary hypoplasia and/or hypertension.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perico, N., Askenazi, D., Cortinovis, M. et al. Maternal and environmental risk factors for neonatal AKI and its long-term consequences. Nat Rev Nephrol 14, 688–703 (2018). https://doi.org/10.1038/s41581-018-0054-y

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41581-018-0054-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing