Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immunity, endothelial injury and complement-induced coagulopathy in COVID-19

Abstract

In December 2019, a novel coronavirus was isolated from the respiratory epithelium of patients with unexplained pneumonia in Wuhan, China. This pathogen, named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causes a pathogenic condition that has been termed coronavirus disease 2019 (COVID-19) and has reached pandemic proportions. As of 17 September 2020, more than 30 million confirmed SARS-CoV-2 infections have been reported in 204 different countries, claiming more than 1 million lives worldwide. Accumulating evidence suggests that SARS-CoV-2 infection can lead to a variety of clinical conditions, ranging from asymptomatic to life-threatening cases. In the early stages of the disease, most patients experience mild clinical symptoms, including a high fever and dry cough. However, 20% of patients rapidly progress to severe illness characterized by atypical interstitial bilateral pneumonia, acute respiratory distress syndrome and multiorgan dysfunction. Almost 10% of these critically ill patients subsequently die. Insights into the pathogenic mechanisms underlying SARS-CoV-2 infection and COVID-19 progression are emerging and highlight the critical role of the immunological hyper-response — characterized by widespread endothelial damage, complement-induced blood clotting and systemic microangiopathy — in disease exacerbation. These insights may aid the identification of new or existing therapeutic interventions to limit the progression of early disease and treat severe cases.

Key points

  • Although most patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) experience mild to moderate symptoms that resolve after 6–10 days, almost 20% of patients develop severe illness characterized by atypical interstitial bilateral pneumonia and acute respiratory distress syndrome, with a high fatality rate.

  • Accumulating evidence suggests that an unbalanced and unrestrained innate immune response, which comes at the expense of effective adaptive immunity, underpins the progression of coronavirus disease 2019 (COVID-19).

  • In severe cases of COVID-19, massive endothelial dysfunction, widespread coagulopathy and complement-induced thrombosis can lead to the development of systemic microangiopathy and thromboembolism; these complications can be life-threatening and ultimately lead to multi-organ failure.

  • The kidney is one of the main targets of COVID-19 complications, and abnormal kidney function is associated with a significantly increased risk of death in severely ill patients.

  • Most repurposed anti-viral drugs have failed to improve clinical outcomes in COVID-19; by contrast, therapeutic interventions that target the host response, including the hyper-immune response, complement activation and systemic thrombosis, seem to be more promising approaches to the treatment of severe COVID-19.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SARS-CoV-2 structure, genome composition and life cycle.
Fig. 2: Pathogenesis and outcomes of COVID-19.
Fig. 3: Effect of SARS-CoV-2 infection on endothelial cell function, systemic coagulation and thrombosis.
Fig. 4: The effects of COVID-19 on the kidney.

Similar content being viewed by others

References

  1. Andersen, K. G., Rambaut, A., Lipkin, W. I., Holmes, E. C. & Garry, R. F. The proximal origin of SARS-CoV-2. Nat. Med. 6, 450–452 (2020).

    Google Scholar 

  2. Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Shi, J. et al. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS-coronavirus 2. Science 368, 1016–1020 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang, Y. Z. & Holmes, E. C. A genomic perspective on the origin and emergence of SARS-CoV-2. Cell 181, 223–227 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhou, H. et al. A novel bat coronavirus closely related to SARS-CoV-2 contains natural insertions at the S1/S2 cleavage site of the spike protein. Curr. Biol. 30, 2196–2203.e3 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhou, Y. et al. Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discov. 6, 14–18 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Peng, Q. et al. Structural and biochemical characterization of nsp12-nsp7-nsp8 core polymerase complex from SARS-CoV-2. Cell Rep. 31, 107774 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Kirchdoerfer, R. N. & Ward, A. B. Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors. Nat. Commun. 10, 2342 (2019).

    PubMed  PubMed Central  Google Scholar 

  9. Zumla, A., Chan, J. F. W., Azhar, E. I., Hui, D. S. C. & Yuen, K.-Y. Coronaviruses — drug discovery and therapeutic options. Nat. Rev. Drug Discov. 15, 327–347 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Hoffmann, M. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181, 271–280.e8 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Shang, J. et al. Cell entry mechanisms of SARS-CoV-2. Proc. Natl Acad. Sci. USA 117, 11727–11734 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Wan, Y., Shang, J., Graham, R., Baric, R. S. & Li, F. Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J. Virol. https://doi.org/10.1128/JVI.00127-20 (2020).

  13. Jaimes, J. A., Millet, J. K. & Whittaker, G. R. Proteolytic cleavage of the SARS-CoV-2 spike protein and the role of the novel S1/S2 site. iScience 23, 101212 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Perico, L., Benigni, A. & Remuzzi, G. Should COVID-19 concern nephrologists? Why and to what extent? The emerging impasse of angiotensin blockade. Nephron 144, 213–221 (2020).

    CAS  PubMed  Google Scholar 

  15. Li, Y. et al. The MERS-CoV receptor DPP4 as a candidate binding target of the SARS-CoV-2 spike. iScience 23, 101160 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Xu, H. et al. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int. J. Oral. Sci. 12, 1–5 (2020).

    Google Scholar 

  17. Sungnak, W. et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat. Med. 26, 681–687 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ziegler, C. G. K. et al. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell 181, 1016–1035.e19 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Wölfel, R. et al. Virological assessment of hospitalized patients with COVID-2019. Nature 581, 465–469 (2020).

    PubMed  Google Scholar 

  20. Li, Q. et al. Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. N. Engl. J. Med. 382, 1199–1207 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Hou, Y. J. et al. SARS-CoV-2 reverse genetics reveals a variable infection gradient in the respiratory tract. Cell 182, 429–446.e14 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Shi, Y. et al. COVID-19 infection: the perspectives on immune responses. Cell Death Differ. 27, 1451–1454 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Cao, X. COVID-19: immunopathology and its implications for therapy. Nat.Rev. Immunol. 20, 269–270 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ackermann, M. et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N. Engl. J. Med. 383, 120–128 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Aguiar, D., Lobrinus, J. A., Schibler, M., Fracasso, T. & Lardi, C. Inside the lungs of COVID-19 disease. Int. J. Legal Med. 34, 1271–1274 (2020).

    Google Scholar 

  26. Pernazza, A. et al. Early histologic findings of pulmonary SARS-CoV-2 infection detected in a surgical specimen. Virchows Arch. https://doi.org/10.1007/s00428-020-02829-1 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Huang, C. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395, 497–506 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Xu, Z. et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 8, 420–422 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Fan, E. et al. COVID-19-associated acute respiratory distress syndrome: is a different approach to management warranted? Lancet Respir. Med. 8, 816–821 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Marini, J. J. & Gattinoni, L. Management of COVID-19 respiratory distress. JAMA 323, 2329–2330 (2020).

    PubMed  Google Scholar 

  31. Patel, A. et al. New onset anosmia and ageusia in adult patients diagnosed with SARS-CoV-2. Clin. Microbiol. Infect. 26, 1236–1241 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Romero-Sánchez, C. M. et al. Neurologic manifestations in hospitalized patients with COVID-19: The ALBACOVID registry. Neurology 95, e1060–e1070 (2020).

    PubMed  PubMed Central  Google Scholar 

  33. Dockery, D. M., Rowe, S. G., Murphy, M. A. & Krzystolik, M. G. The ocular manifestations and transmission of COVID-19: recommendations for prevention. J. Emerg. Med. 59, 137–140 (2020).

    PubMed  PubMed Central  Google Scholar 

  34. Suresh Kumar, V. C. et al. Novelty in the gut: a systematic review and meta-analysis of the gastrointestinal manifestations of COVID-19. BMJ Open Gastroenterol. 7, e000417 (2020).

    PubMed  PubMed Central  Google Scholar 

  35. J J Jin, X. et al. Epidemiological, clinical and virological characteristics of 74 cases of coronavirus-infected disease 2019 (COVID-19) with gastrointestinal symptoms. Gut 69, 1002–1009 (2020).

    Google Scholar 

  36. Shi, S. et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol. 5, 802–810 (2020).

    PubMed  PubMed Central  Google Scholar 

  37. Zang, R. et al. TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small intestinal enterocytes. Sci. Immunol. 5, eabc3582 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Lamers, M. M. et al. SARS-CoV-2 productively infects human gut enterocytes. Science 369, 50–54 (2020).

    CAS  PubMed  Google Scholar 

  39. Grajewski, R. S. et al. Letter to the editor: a missing link between SARS-CoV-2 and the eye?: ACE2 expression on the ocular surface. J. Med. Virol. https://doi.org/10.1002/jmv.26136 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lucas, C. et al. Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature 584, 463–469 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Giamarellos-Bourboulis, E. J. et al. Complex immune dysregulation in COVID-19 patients with severe respiratory failure. Cell Host Microbe 27, 992–1000.e3 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Mathew, D. et al. Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications. Science 369, eabc8511 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. McKechnie, J. L. & Blish, C. A. The innate immune system: fighting on the front lines or fanning the flames of COVID-19? Cell Host Microbe 27, 863–869 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Vabret, N. et al. Immunology of COVID-19: current state of the science. Immunity 52, 910–941 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Blanco-Melo, D. et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell 181, 1036–1045.e9 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Park, A. & Iwasaki, A. Type I. and type III interferons — induction, signaling, evasion, and application to combat COVID-19. Cell Host Microbe 27, 870–878 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Thoms, M. et al. Structural basis for translational shutdown and immune evasion by the Nsp1 protein of SARS-CoV-2. Science 369, 1249–1255 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Jiang, H. et al. SARS-CoV-2 Orf9b suppresses type I interferon responses by targeting TOM70. Cell. Mol. Immunol. 17, 998–1000 (2020).

    CAS  PubMed  Google Scholar 

  49. Vazquez, C. & Horner, S. M. MAVS coordination of antiviral innate immunity. J. Virol. 89, 6974–6977 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Gordon, D. E. et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature 583, 459–468 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Hadjadj, J. et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science 369, 718–724 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Trouillet-Assant, S. et al. Type I IFN immunoprofiling in COVID-19 patients. J. Allergy Clin. Immunol. 146, 206–208.e2 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Mehta, P. et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 395, 1033–1034 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Yang, Y. et al. Plasma IP-10 and MCP-3 levels are highly associated with disease severity and predict the progression of COVID-19. J. Allergy Clin. Immunol. 146, 119–127.e4 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Usmani, G. N., Woda, B. A. & Newburger, P. E. Advances in understanding the pathogenesis of HLH. Br. J. Haematol. 161, 609–622 (2013).

    CAS  PubMed  Google Scholar 

  56. McGonagle, D., Sharif, K., O’Regan, A. & Bridgewood, C. The role of cytokines including interleukin-6 in COVID-19 induced pneumonia and macrophage activation syndrome-like disease. Autoimmun. Rev. 19, 102537 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Sinha, P., Matthay, M. A. & Calfee, C. S. Is a “cytokine storm” relevant to COVID-19? JAMA Intern. Med. 180, 1152–1154 (2020).

    CAS  PubMed  Google Scholar 

  58. Pedersen, S. F. & Ho, Y.-C. SARS-CoV-2: a storm is raging. J. Clin. Invest. 130, 2202–2205 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang, C. et al. Aveolar macrophage activation and cytokine storm in the pathogenesis of severe COVID-19. EBioMedicine 57, 102833 (2020).

    PubMed  PubMed Central  Google Scholar 

  60. Liao, M. et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat. Med. 26, 842–844 (2020).

    CAS  PubMed  Google Scholar 

  61. B Bost, P. et al. Host-viral infection maps reveal signatures of severe COVID-19 patients. Cell 181, 1475–1488.e12 (2020).

    PubMed  Google Scholar 

  62. Shen, B. et al. Proteomic and metabolomic characterization of COVID-19 patient sera. Cell 182, 59–72.e15 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Giordano, S., Kramer, P., Darley-Usmar, V. M., & White C. R. in Apolipoprotein Mimetics in the Management of Human Disease (eds Anantharamaiah, G., Goldberg, D.)(Adis, Springer International Publishing, 2015).

  64. Li, J. et al. Virus-host interactome and proteomic survey of PMBCs from COVID-19 patients reveal potential virulence factors influencing SARS-CoV-2 pathogenesis. Med https://doi.org/10.1016/j.medj.2020.07.002 (2020).

    Article  PubMed  Google Scholar 

  65. Z Zhou, Z. et al. Heightened innate immune responses in the respiratory tract of COVID-19 patients. Cell Host Microbe 27, 883–890.e2 (2020).

    Google Scholar 

  66. Wang, D. et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 323, 1061–1069 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Liu, J. et al. Neutrophil-to-lymphocyte ratio predicts severe illness patients with 2019 novel coronavirus in the early stage. Preprint at medRxiv https://doi.org/10.1101/2020.02.10.20021584 (2020).

  68. Carissimo, G. et al. Whole blood immunophenotyping uncovers immature neutrophil-to-VD2 T-cell ratio as an early prognostic marker for severe COVID-19. Preprint at bioRxiv https://doi.org/10.1101/2020.06.11.147389 (2020).

  69. Barnes, B. J. et al. Targeting potential drivers of COVID-19: neutrophil extracellular traps. J. Exp. Med. 217, e20200652 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Chen, G. et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J. Clin. Invest. 130, 2620–2629 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Yang, X. et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir. Med. 8, 475–481 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Tan, L. et al. Validation of predictors of disease severity and outcomes in COVID-19 patients: a descriptive and retrospective study. Med https://doi.org/10.1016/j.medj.2020.05.002 (2020).

    Article  PubMed  Google Scholar 

  73. Zheng, M. et al. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell. Mol. Immunol. 17, 533–535 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Diao, B. et al. Reduction and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID-19). Front. Immunol. 11, 827 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Chen, Y. et al. The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) directly decimates human spleens and lymph nodes. Preprint at medRxiv https://doi.org/10.1101/2020.03.27.20045427 (2020).

  76. Bellesi, S. et al. Increased CD95 (Fas) and PD-1 expression in peripheral blood T lymphocytes in COVID-19 patients. Br. J.Haematol. https://doi.org/10.1111/bjh.17034 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Qin, C. et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin. Infect. Dis. 71, 762–768 (2020).

    CAS  PubMed  Google Scholar 

  78. Bermejo-Martin, J. F. et al. Lymphopenic community acquired pneumonia as signature of severe COVID-19 infection. J. Infect. 80, e23–e24 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Bermejo-Martin, J. F. et al. Lymphopenic community acquired pneumonia (L-CAP), an immunological phenotype associated with higher risk of mortality. EBioMedicine 24, 231–236 (2017).

    PubMed  PubMed Central  Google Scholar 

  80. Menéndez, R. et al. simultaneous depression of immunological synapse and endothelial injury is associated with organ dysfunction in community-acquired pneumonia. J. Clin. Med. 8, 1404 (2019).

    PubMed Central  Google Scholar 

  81. Grifoni, A. et al. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell 181, 1489–1501.e15 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Peng, Y. et al. Broad and strong memory CD4 + and CD8 + T cells induced by SARS-CoV-2 in UK convalescent individuals following COVID-19. Nat. Immunol. https://doi.org/10.1038/s41590-020-0782-6 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Le Bert, N. et al. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature 584, 457–462 (2020).

    PubMed  Google Scholar 

  84. Weiskopf, D. et al. Phenotype and kinetics of SARS-CoV-2–specific T cells in COVID-19 patients with acute respiratory distress syndrome. Sci. Immunol. 5, eabd2071 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Braun, J. et al. SARS-CoV-2-reactive T cells in healthy donors and patients with COVID-19. Nature 217, e20200206 (2020).

    Google Scholar 

  86. Cassotta, A. et al. Deciphering and predicting CD4+ T cell immunodominance of influenza virus hemagglutinin. J. Exp. Med. 217, e20200206 (2020).

    PubMed  PubMed Central  Google Scholar 

  87. Mateus, J. et al. Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans. Science 26, 845–848 (2020).

    Google Scholar 

  88. Long, Q. X. et al. Antibody responses to SARS-CoV-2 in patients with COVID-19. Nat. Med. 26, 845–848 (2020).

    CAS  PubMed  Google Scholar 

  89. Wang, Y.-T. et al. Spiking pandemic potential: structural and immunological aspects of SARS-CoV-2. Trends Microbiol. 28, 605–618 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Yuan, M. et al. A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV. Science 368, 630–633 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Wu, Y. et al. Identification of human single-domain antibodies against SARS-CoV-2. Cell Host Microbe 27, 891–898.e5 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Chandrashekar, A. et al. SARS-CoV-2 infection protects against rechallenge in rhesus macaques. Science 369, 812–817 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Deng, W. et al. Primary exposure to SARS-CoV-2 protects against reinfection in rhesus macaques. Science 369, 818–823 (2020).

    CAS  PubMed  Google Scholar 

  94. Zost, S. J. et al. Potently neutralizing human antibodies that block SARS-CoV-2 receptor binding and protect animals. Preprint at bioRxiv https://doi.org/10.1101/2020.05.22.111005 (2020).

  95. Long, Q.-X. et al. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat. Med. 26, 1200–1204 (2020).

    CAS  PubMed  Google Scholar 

  96. Seow, J. et al. Longitudinal evaluation and decline of antibody responses in SARS-CoV-2 infection. Preprint at medRxiv https://doi.org/10.1101/2020.07.09.20148429 (2020).

  97. Ibarrondo, F. J. et al. Rapid decay of anti-SARS-CoV-2 antibodies in persons with mild Covid-19. N. Engl. J. Med. 83, 1085–1087 (2020).

    Google Scholar 

  98. Gudbjartsson, D. F. et al. Humoral immune response to SARS-CoV-2 in Iceland. N. Engl. J. Med. https://doi.org/10.1056/NEJMoa2026116 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Seydoux, E. et al. Analysis of a SARS-CoV-2-infected individual reveals development of potent neutralizing antibodies with limited somatic mutation. Immunity 53, 98–105.e5 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Juno, J. A. et al. Humoral and circulating follicular helper T cell responses in recovered patients with COVID-19. Nat. Med. 26, 1428–1434 (2020).

    CAS  PubMed  Google Scholar 

  101. Robbiani, D. F. et al. Convergent antibody responses to SARS-CoV-2 in convalescent individuals. Nature 584, 437–442 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Kuri-Cervantes, L. et al. Comprehensive mapping of immune perturbations associated with severe COVID-19. Sci. Immunol. 5, eabd7114 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Wilk, A. J. et al. A single-cell atlas of the peripheral immune response in patients with severe COVID-19. Nat. Med. 26, 1070–1076 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Woodruff, M. et al. Critically ill SARS-CoV-2 patients display lupus-like hallmarks of extrafollicular B cell activation. Preprint at medRxiv https://doi.org/10.1101/2020.04.29.20083717 (2020).

  105. Amrun, S. N. et al. Linear B-cell epitopes in the spike and nucleocapsid proteins as markers of SARS-CoV-2 exposure and disease severity. EBioMedicine 58, 102911 (2020).

    PubMed  PubMed Central  Google Scholar 

  106. Wu, F. et al. Neutralizing antibody responses to SARS-CoV-2 in a COVID-19 recovered patient cohort and their implications. Preprint at medRxiv https://doi.org/10.1101/2020.03.30.20047365 (2020).

  107. Liu, L. et al. Anti-spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection. JCI Insight 4, e123158 (2019).

    PubMed Central  Google Scholar 

  108. Yu, H. et al. Distinct features of SARS-CoV-2-specific IgA response in COVID-19 patients. Eur. Respir. J. 56, 2001526 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Hotez, P. J., Corry, D. B. & Bottazzi, M. E. COVID-19 vaccine design: the Janus face of immune enhancement. Nat. Rev. Immunol. 20, 347–348 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Olson, J. D. D-dimer: an overview of hemostasis and fibrinolysis, assays, and clinical applications. Adv. Clin. Chem. 69, 1–46 (2015).

    CAS  PubMed  Google Scholar 

  111. Yau, J. W., Teoh, H. & Verma, S. Endothelial cell control of thrombosis. BMC Cardiovasc. Disord. 15, 130 (2015).

    PubMed  PubMed Central  Google Scholar 

  112. Reitsma, S., Slaaf, D. W., Vink, H., van Zandvoort, M. A. M. J. & oude Egbrink, M. G. A. The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch. 454, 345–359 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Teuwen, L. A., Geldhof, V., Pasut, A. & Carmeliet, P. COVID-19: the vasculature unleashed. Nat. Rev. Immunol. 20, 389–391 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Varga, Z. et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet 395, 1417–1418 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Oxley, T. J. et al. Large-vessel stroke as a presenting feature of covid-19 in the Young. N. Engl. J. Med. 382, e60 (2020).

    PubMed  Google Scholar 

  116. Cheng. M. European Doctors Warn Rare Kids’ Syndrome May Have Virus Tie. (Associated Press, 2020).

  117. Bunyavanich, S., Do, A. & Vicencio, A. Nasal gene expression of angiotensin-converting Enzyme 2 in children and adults. JAMA 323, 2427–2429 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Riphagen, S., Gomez, X., Gonzalez-Martinez, C., Wilkinson, N. & Theocharis, P. Hyperinflammatory shock in children during COVID-19 pandemic. Lancet 395, 1607–1608 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Diorio, C. et al. Multisystem inflammatory syndrome in children and COVID-19 are distinct presentations of SARS-CoV-2. J. Clin. Invest. https://doi.org/10.1172/JCI140970 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Cheung, E. W. et al. Multisystem inflammatory syndrome related to COVID-19 in previously healthy children and adolescents in New York City. JAMA 324, 294–296 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Verdoni, L. et al. An outbreak of severe Kawasaki-like disease at the Italian epicentre of the SARS-CoV-2 epidemic: an observational cohort study. Lancet 395, 1771–1778 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Zahra, B. et al. Acute heart failure in multisystem inflammatory syndrome in children (MIS-C) in the context of global SARS-CoV-2 pandemic. Circulation https://doi.org/10.1161/CIRCULATIONAHA.120.048360 (2020).

    Article  Google Scholar 

  123. Monteil, V. et al. Inhibition of SARS-CoV-2 Infections in engineered human tissues using clinical-grade soluble human ACE2. Cell 181, 905–913.e7 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Verdecchia, P., Cavallini, C., Spanevello, A. & Angeli, F. The pivotal link between ACE2 deficiency and SARS-CoV-2 infection. Eur. J. Intern. Med. 76, 14–20 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Garvin, M. R. et al. A mechanistic model and therapeutic interventions for COVID-19 involving a RAS-mediated bradykinin storm. eLife 9, e59177 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Schmaier, A. H. The contact activation and kallikrein/kinin systems: pathophysiologic and physiologic activities. J. Thromb. Haemost. 14, 28–39 (2016).

    CAS  PubMed  Google Scholar 

  127. Schmaier, A. H. A novel antithrombotic mechanism mediated by the receptors of the kallikrein/kinin and renin–angiotensin systems. Front. Med. 3, 61 (2016).

    Google Scholar 

  128. Stavrou, E. X. et al. Reduced thrombosis in Klkb1−/− mice is mediated by increased Mas receptor, prostacyclin, Sirt1, and KLF4 and decreased tissue factor. Blood 125, 710–719 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Sodhi, C. P. et al. Attenuation of pulmonary ACE2 activity impairs inactivation of des-Arg9 bradykinin/BKB1R axis and facilitates LPS-induced neutrophil infiltration. Am. J. Physiol. Lung Cell Mol. Physiol. 314, L17–L31 (2018).

    PubMed  Google Scholar 

  130. Chung, M. K. et al. SARS-CoV-2 and ACE2: the biology and clinical data settling the ARB and ACEI controversy. EBioMedicine 58, 102907 (2020).

    PubMed  PubMed Central  Google Scholar 

  131. Fang, C. et al. Angiotensin 1-7 and Mas decrease thrombosis in Bdkrb2−/− mice by increasing NO and prostacyclin to reduce platelet spreading and glycoprotein VI activation. Blood 121, 3023–3032 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Veerdonk, F. L. van de et al. Outcomes associated with use of a kinin B2 receptor antagonist among patients with COVID-19. JAMA Netw. Open 3, e2017708–e2017708 (2020).

    PubMed  PubMed Central  Google Scholar 

  133. van de Veerdonk, F. L. et al. Kallikrein-kinin blockade in patients with COVID-19 to prevent acute respiratory distress syndrome. eLife 9, e57555 (2020).

    PubMed  PubMed Central  Google Scholar 

  134. Roche, J. A. & Roche, R. A hypothesized role for dysregulated bradykinin signaling in COVID-19 respiratory complications. FASEB J. 34, 7265–7269 (2020).

    CAS  PubMed  Google Scholar 

  135. Buzhdygan, T. P. et al. The SARS-CoV-2 spike protein alters barrier function in 2D static and 3D microfluidic in vitro models of the human blood–brain barrier. Preprint at bioRxiv https://doi.org/10.1101/2020.06.15.150912 (2020).

  136. Martini, R. The compelling arguments for the need of microvascular investigation in COVID-19 critical patients. Clin. Hemorheol. Microcirc. 75, 27–34 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Noris, M., Benigni, A. & Remuzzi, G. The case of complement activation in COVID-19 multiorgan impact. Kidney Int. 98, 314–322 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Song, W. C. & FitzGerald, G. A. COVID-19, microangiopathy, hemostatic activation, and complement. J. Clin. Invest. 130, 3950–3953 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Gralinski, L. E. et al. Complement activation contributes to severe acute respiratory syndrome coronavirus pathogenesis. mBio 9, e01753–18 (2018).

    PubMed  PubMed Central  Google Scholar 

  140. Ip, W. K. E. et al. Mannose-binding lectin in severe acute respiratory syndrome coronavirus infection. J. Infect. Dis. 191, 1697–1704 (2005).

    CAS  PubMed  Google Scholar 

  141. Jiang, Y. et al. Blockade of the C5a-C5aR axis alleviates lung damage in hDPP4-transgenic mice infected with MERS-CoV. Emerg. Microbes Infect. 7, 77 (2018).

    PubMed  PubMed Central  Google Scholar 

  142. Gao, T. et al. Highly pathogenic coronavirus N protein aggravates lung injury by MASP-2-mediated complement over-activation. Preprint at medRxiv https://doi.org/10.1101/2020.03.29.20041962 (2020).

  143. Yang, Y. H. et al. Autoantibodies against human epithelial cells and endothelial cells after severe acute respiratory syndrome (SARS)-associated coronavirus infection. J. Med. Virol. 77, 1–7 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Messner, C. B. et al. Ultra-high-throughput clinical proteomics reveals classifiers of COVID-19 infection. Cell Syst. 11, 11–24.e4 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Risitano, A. M. et al. Complement as a target in COVID-19? Nat. Rev. Immunol. 20, 343–344 (2020).

    CAS  PubMed  Google Scholar 

  146. McGonagle, D., O’Donnell, J. S., Sharif, K., Emery, P. & Bridgewood, C. Immune mechanisms of pulmonary intravascular coagulopathy in COVID-19 pneumonia. Lancet Rheumatol. 2, e437–e445 (2020).

    PubMed  PubMed Central  Google Scholar 

  147. Fox, S. E. et al. Pulmonary and cardiac pathology in Covid-19: the first autopsy series from New Orleans. Preprint at medRxiv https://doi.org/10.1101/2020.04.06.20050575 (2020).

  148. Carsana, L. et al. Pulmonary post-mortem findings in a large series of COVID-19 cases from Northern Italy. Preprint at medRxiv https://doi.org/10.1101/2020.04.19.20054262 (2020).

  149. Tang, N., Li, D., Wang, X. & Sun, Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J. Thromb. Haemost. 18, 844–847 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Danzi, G. B., Loffi, M., Galeazzi, G. & Gherbesi, E. Acute pulmonary embolism and COVID-19 pneumonia: a random association? Eur. Heart J. 41, 1858 (2020).

    CAS  PubMed  Google Scholar 

  151. Llitjos, J. F. et al. High incidence of venous thromboembolic events in anticoagulated severe COVID-19 patients. J. Thromb. Haemost. 18, 1743–1746 (2020).

    CAS  PubMed  Google Scholar 

  152. Zuckier, L. S., Moadel, R. M., Haramati, L. B. & Freeman, L. Diagnostic evaluation of pulmonary embolism during the COVID-19 pandemic. J. Nucl. Med. 61, 630–631 (2020).

    CAS  PubMed  Google Scholar 

  153. Beun, R., Kusadasi, N., Sikma, M., Westerink, J. & Huisman, A. Thromboembolic events and apparent heparin resistance in patients infected with SARS-CoV-2. Int. J. Lab. Hematol. 42, 19–20 (2020).

    PubMed  PubMed Central  Google Scholar 

  154. Levi, M. & van der Poll, T. Coagulation and sepsis. Thromb. Res. 149, 38–44 (2017).

    CAS  PubMed  Google Scholar 

  155. Radermecker, C. et al. Neutrophil extracellular traps infiltrate the lung airway, interstitial, and vascular compartments in severe COVID-19. J. Exp. Med. 217, e20201012 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Cheng, Y. et al. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int. 97, 829–838 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Gabarre, P. et al. Acute kidney injury in critically ill patients with COVID-19. Intensive Care Med. 46, 1339–1348 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Chan, L. et al. AKI in hospitalized patients with COVID-19. J. Am. Soc. Nephrol. https://doi.org/10.1681/ASN.2020050615 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Ali, H. et al. Survival rate in acute kidney injury superimposed COVID-19 patients: a systematic review and meta-analysis. Ren. Fail. 42, 393–397 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Lim, J.-H. et al. Fatal outcomes of COVID-19 in patients with severe acute kidney injury. J. Clin. Med. 9, 1718 (2020).

    CAS  PubMed Central  Google Scholar 

  161. Division of Nephrology, Columbia University Vagelos College of Physicians. Disaster Response to the COVID-19 Pandemic for Patients with Kidney Disease in New York City. J. Am. Soc. Nephrol. 31, 1371–1379 (2020).

    Google Scholar 

  162. Alberici, F. et al. Management of patients on dialysis and with kidney transplantation during the SARS-CoV-2 (COVID-19) pandemic in Brescia, Italy. Kidney Int. Rep. 5, 580–585 (2020).

    PubMed  PubMed Central  Google Scholar 

  163. Su, H. et al. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney Int. 98, 219–227 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Magro, C. et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: a report of five cases. Transl Res. 220, 1–13 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Diao, B. et al. Human kidney is a target for novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Preprint at medRxiv https://doi.org/10.1101/2020.03.04.20031120 (2020).

  166. Larsen, C. P., Bourne, T. D., Wilson, J. D., Saqqa, O. & Sharshir, M. A. collapsing glomerulopathy in a patient with COVID-19. Kidney Int. Rep. 5, 935–939 (2020).

    PubMed  PubMed Central  Google Scholar 

  167. Magoon, S. et al. COVID-19–related glomerulopathy: a report of 2 cases of collapsing focal segmental glomerulosclerosis. Kidney Med. 2, 488–492 (2020).

    PubMed  PubMed Central  Google Scholar 

  168. Hepokoski, M. L., Malhotra, A., Singh, P. & Crotty Alexander, L. E. Ventilator-induced kidney injury: are novel biomarkers the key to prevention? Nephron 140, 90–93 (2018).

    PubMed  Google Scholar 

  169. Durvasula, R., Wellington, T., McNamara, E. & Watnick, S. COVID-19 and kidney failure in the acute care setting: our experience from Seattle. Am. J. Kidney Dis. 76, 4–6 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Naicker, S. et al. The novel coronavirus 2019 epidemic and kidneys. Kidney Int. 97, 824–828 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Farkash, E. A., Wilson, A. M. & Jentzen, J. M. Ultrastructural evidence for direct renal infection with SARS-CoV-2. J. Am. Soc. Nephrol. 31, 1683–1687 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Abbate, M., Rottoli, D. & Gianatti, A. COVID-19 attacks the kidney: ultrastructural evidence for the presence of virus in the glomerular epithelium. Nephron 144, 341–342 (2020).

    CAS  PubMed  Google Scholar 

  173. Xu, D. et al. Identification of a potential mechanism of acute kidney injury during the COVID-19 outbreak: a study based on single-cell transcriptome analysis. Intensive Care Med. 46, 1114–1116 (2020).

    PubMed  PubMed Central  Google Scholar 

  174. Ye, M. et al. Glomerular localization and expression of angiotensin-converting enzyme 2 and angiotensin-converting enzyme: implications for albuminuria in diabetes. J. Am. Soc. Nephrol. 17, 3067–3075 (2006).

    CAS  PubMed  Google Scholar 

  175. Samavati, L. & Uhal, B. D. ACE2, much more than just a receptor for SARS-COV-2. Front. Cell. Infect. Microbiol. 10, 317 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Puelles, V. G. et al. Multiorgan and renal tropism of SARS-CoV-2. N. Engl. J. Med. 383, 590–592 (2020).

    PubMed  Google Scholar 

  177. Miller, S. E. & Goldsmith, C. S. Caution in identifying coronaviruses by electron microscopy. J. Am. Soc. Nephrol. 31, 2223–2224 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Wu, H. et al. AKI and collapsing glomerulopathy associated with COVID-19 and APOL1 high-risk genotype. J. Am. Soc. Nephrol. 31, 1688–1695 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Kudose, S. et al. Kidney biopsy findings in patients with COVID-19. J. Am. Soc. Nephrol. 31, 1959–1968 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Santoriello, D. et al. Postmortem kidney pathology findings in patients with COVID-19. J. Am. Soc. Nephrol. 31, 2158–2167 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Sharma, P. et al. COVID-19-associated kidney injury: a case series of kidney biopsy findings. J. Am. Soc. Nephrol. 31, 1948–1958 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Hanley, B. et al. Histopathological findings and viral tropism in UK patients with severe fatal COVID-19: a post-mortem study. Lancet Microbe https://doi.org/10.1016/S2666-5247(20)30115-4 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Ma, Y. et al. 2019 novel coronavirus disease in hemodialysis (HD) patients: Report from one HD center in Wuhan, China. Preprint at medRxiv https://doi.org/10.1101/2020.02.24.20027201 (2020).

  184. Wang, R. et al. COVID-19 in hemodialysis patients: a report of 5 cases. Am. J. Kidney Dis. 76, 141–143 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Kikuchi, K. et al. COVID-19 in dialysis patients in Japan: current status and guidance on preventive measures. Ther. Apher. Dial. 24, 361–365 (2020).

    CAS  PubMed  Google Scholar 

  186. Corbett, R. W. et al. Epidemiology of COVID-19 in an urban dialysis center. J. Am. Soc. Nephrol. 31, 1815–1823 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. World Health Organization. Draft landscape of COVID-19 candidate vaccines https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines (2020).

  188. Begum, J. et al. Challenges and prospects of COVID-19 vaccine development based on the progress made in SARS and MERS vaccine development. Transbound Emerg. Dis. https://doi.org/10.1111/tbed.13804 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Shannon, A. et al. Remdesivir and SARS-CoV-2: Structural requirements at both nsp12 RdRp and nsp14 exonuclease active-sites. Antivir. Res. 178, 104793 (2020).

    CAS  PubMed  Google Scholar 

  190. Liu, Z. et al. Composition and divergence of coronavirus spike proteins and host ACE2 receptors predict potential intermediate hosts of SARS-CoV-2. J. Med. Virol. 92, 595–601 (2020).

    CAS  PubMed  Google Scholar 

  191. Wang, Y. et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet 395, 1569–1578 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04280705 (2020).

  193. Gilead. Gilead’s Investigational Antiviral Remdesivir Receives U.S. Food and Drug Administration Emergency Use Authorization for the Treatment of COVID-19. https://www.gilead.com/news-and-press/press-room/press-releases/2020/5/gileads-investigational-antiviral-remdesivir-receives-us-food-and-drug-administration-emergency-use-authorization-for-the-treatment-of-covid19 (2020).

  194. Wang, Q. et al. Structural basis for RNA replication by the SARS-CoV-2 polymerase. Cell 82, 417–428.e13 (2020).

    Google Scholar 

  195. Shen, Y., Radhakrishnan, M. L. & Tidor, B. Molecular mechanisms and design principles for promiscuous inhibitors to avoid drug resistance: lessons learned from HIV-1 protease inhibition. Proteins 83, 351–372 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Cao, B. et al. A trial of lopinavir-ritonavir in adults hospitalized with severe COVID-19. N. Engl. J. Med. 382, 1787–1799 (2020).

    PubMed  Google Scholar 

  197. Zhang, L. et al. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science 368, 409–412 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Gandolfini, I. et al. COVID-19 in kidney transplant recipients. Am. J. Transpl. 20, 1941–1943 (2020).

    CAS  Google Scholar 

  199. Bartiromo, M. et al. Threatening drug-drug interaction in a kidney transplant patient with Coronavirus Disease 2019 (COVID-19). Transpl. Infect. Dis. 22, e13286 (2020).

    CAS  PubMed  Google Scholar 

  200. Vincent, M. J. et al. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol. J. 2, 69 (2005).

    PubMed  PubMed Central  Google Scholar 

  201. Cavalcanti, A. B. et al. Hydroxychloroquine with or without azithromycin in mild-to-moderate Covid-19. N. Engl. J. Med. https://doi.org/10.1056/NEJMoa2019014 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Boulware, D. R. et al. A randomized trial of hydroxychloroquine as postexposure prophylaxis for Covid-19. N. Engl. J. Med. 383, 517–525 (2020).

    CAS  PubMed  Google Scholar 

  203. Magagnoli, J. et al. Outcomes of hydroxychloroquine usage in United States veterans hospitalized with Covid-19. Med https://doi.org/10.1016/j.medj.2020.06.001 (2020).

    Article  PubMed  Google Scholar 

  204. Borba, M. G. S. et al. Effect of high vs low doses of chloroquine diphosphate as adjunctive therapy for patients hospitalized with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection: a randomized clinical trial. JAMA Netw. Open 3, e208857 (2020).

    PubMed  Google Scholar 

  205. Kleynberg, R. L. & Schiller, G. J. Secondary hemophagocytic lymphohistiocytosis in adults: an update on diagnosis and therapy. Clin. Adv. Hematol. Oncol. 10, 726–732 (2012).

    PubMed  Google Scholar 

  206. Cruz-Topete, D. & Cidlowski, J. A. One hormone, two actions: anti- and pro-inflammatory effects of glucocorticoids. Neuroimmunomodulation 22, 20–32 (2015).

    CAS  PubMed  Google Scholar 

  207. Russell, C. D., Millar, J. E. & Baillie, J. K. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet 395, 473–475 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Wu, C. et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern. Med. 180, 1–11 (2020).

    PubMed Central  Google Scholar 

  209. Russell, B. et al. Associations between immune-suppressive and stimulating drugs and novel COVID-19 — a systematic review of current evidence. Ecancermedicalscience 14, 1022 (2020).

    PubMed  PubMed Central  Google Scholar 

  210. Shang, L., Zhao, J., Hu, Y., Du, R. & Cao, B. On the use of corticosteroids for 2019-nCoV pneumonia. Lancet 395, 683–684 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Blum, C. A. et al. Adjunct prednisone therapy for patients with community-acquired pneumonia: a multicentre, double-blind, randomised, placebo-controlled trial. Lancet 385, 1511–1518 (2015).

    CAS  PubMed  Google Scholar 

  212. Torres, A. et al. Effect of corticosteroids on treatment failure among hospitalized patients with severe community-acquired pneumonia and high inflammatory response: a randomized clinical trial. JAMA 313, 677–686 (2015).

    CAS  PubMed  Google Scholar 

  213. Lee, K. Y., Rhim, J.-W. & Kang, J.-H. Early preemptive immunomodulators (corticosteroids) for severe pneumonia patients infected with SARS-CoV-2. Clin. Exp. Pediatr. 63, 117–118 (2020).

    PubMed  PubMed Central  Google Scholar 

  214. Fadel, R. et al. Early short course corticosteroids in hospitalized patients with COVID-19. Clin. Infect. Dis. https://doi.org/10.1093/cid/ciaa601 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  215. The WHO Rapid Evidence Appraisal for COVID-19 Therapies (REACT) working group. Association between administration of systemic corticosteroids and mortality among critically ill patients with COVID-19: a meta-analysis. JAMA https://doi.org/10.1001/jama.2020.17023 (2020).

    Article  Google Scholar 

  216. RECOVERY Collaborative Group, Horby, P. et al. Dexamethasone in hospitalized patients with covid-19 — preliminary report. N. Engl. J. Med. https://doi.org/10.1056/NEJMoa2021436 (2020).

    Article  Google Scholar 

  217. Jacob, K. A. et al. Intraoperative high-dose dexamethasone and severe AKI after cardiac surgery. J. Am. Soc. Nephrol. 26, 2947–2951 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Ponticelli, C. & Locatelli, F. Glucocorticoids in the treatment of glomerular diseases: pitfalls and pearls. Clin. J. Am. Soc. Nephrol. 13, 815–822 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Dusheiko, G. Side effects of alpha interferon in chronic hepatitis C. Hepatology 26, 112S–121S (1997).

    CAS  PubMed  Google Scholar 

  220. Alattar, R. et al. Tocilizumab for the treatment of severe coronavirus disease 2019. J. Med. Virol. https://doi.org/10.1002/jmv.25964 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Guaraldi, G. et al. Tocilizumab in patients with severe COVID-19: a retrospective cohort study. Lancet Rheumatol. 2, e474–e484 (2020).

    PubMed  PubMed Central  Google Scholar 

  222. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04341870 (2020).

  223. Furlow, B. COVACTA trial raises questions about tocilizumab’s benefit in COVID-19. Lancet Rheumatol. 2, e592 (2020).

    PubMed  PubMed Central  Google Scholar 

  224. Dimopoulos, G. et al. Favorable anakinra responses in severe Covid-19 patients with secondary hemophagocytic lymphohistiocytosis. Cell HostMicrobe 28, 117–123.e1 (2020).

    CAS  Google Scholar 

  225. Ahn, E. et al. Role of PD-1 during effector CD8 T cell differentiation. Proc. Natl Acad. Sci. USA 115, 4749–4754 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Jin, H.-T. et al. Cooperation of Tim-3 and PD-1 in CD8 T-cell exhaustion during chronic viral infection. Proc. Natl Acad. Sci. USA 107, 14733–14738 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Kamphorst, A. O. et al. Proliferation of PD-1+ CD8 T cells in peripheral blood after PD-1-targeted therapy in lung cancer patients. Proc. Natl Acad. Sci. USA 114, 4993–4998 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  228. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04413838 (2020).

  229. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04356508 (2020).

  230. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04268537 (2020).

  231. Wei, S. C. et al. Combination anti-CTLA-4 plus anti–PD-1 checkpoint blockade utilizes cellular mechanisms partially distinct from monotherapies. Proc. Natl Acad. Sci. USA 116, 22699–22709 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Goldstein, A. L. & Goldstein, A. L. From lab to bedside: emerging clinical applications of thymosin α1. Expert Opin. Biol. Ther. 9, 593–608 (2009).

    CAS  PubMed  Google Scholar 

  233. Liu, Y. et al. Thymosin alpha 1 (Tα1) reduces the mortality of severe COVID-19 by restoration of lymphocytopenia and reversion of exhausted T cells. Clin. Infect. Dis. https://doi.org/10.1093/cid/ciaa630 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  234. Shi, C. et al. The potential of low molecular weight heparin to mitigate cytokine storm in severe COVID-19 patients: a retrospective clinical study. Clin. Transl Sci. https://doi.org/10.1111/cts.12880 (2020).

  235. Stein, B. L. Coagulopathy associated with COVID-19. (NEJM Journal Watch, 2020).

  236. Thachil, J. et al. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J. Thromb. Haemost. 8, 1023–1026 (2020).

    Google Scholar 

  237. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04473053 (2020).

  238. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04352400 (2020).

  239. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04390594 (2020).

  240. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04418128 (2020).

  241. Yamamoto, M. et al. Identification of nafamostat as a potent inhibitor of Middle East respiratory syndrome coronavirus s protein-mediated membrane fusion using the split-protein-based cell-cell fusion assay. Antimicrob. Agents Chemother. 60, 6532–6539 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  242. Ansarin, K. et al. Effect of bromhexine on clinical outcomes and mortality in COVID-19 patients: a randomized clinical trial. Bioimpacts 10, 209–215 (2020).

    PubMed  PubMed Central  Google Scholar 

  243. Liu, X. et al. Potential therapeutic effects of dipyridamole in the severely ill patients with COVID-19. Acta Pharm. Sin. B 10, 1205–1215 (2020).

    PubMed  PubMed Central  Google Scholar 

  244. Porfidia, A. & Pola, R. Venous thromboembolism and heparin use in COVID-19 patients: juggling between pragmatic choices, suggestions of medical societies. J. Thromb. Thrombolysis 50, 68–71 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  245. Mastaglio, S. et al. The first case of COVID-19 treated with the complement C3 inhibitor AMY-101. Clin. Immunol. 215, 108450 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  246. O’Brien, K. B., Morrison, T. E., Dundore, D. Y., Heise, M. T. & Schultz-Cherry, S. A protective role for complement C3 protein during pandemic 2009 H1N1 and H5N1 influenza A virus infection. PLoS ONE 6, e17377 (2011).

    PubMed  PubMed Central  Google Scholar 

  247. Ricklin, D., Mastellos, D. C., Reis, E. S. & Lambris, J. D. The renaissance of complement therapeutics. Nat. Rev. Nephrol. 14, 26–47 (2018).

    CAS  PubMed  Google Scholar 

  248. Keshari, R. S. et al. Complement C5 inhibition blocks the cytokine storm and consumptive coagulopathy by decreasing lipopolysaccharide (LPS) release in E. coli sepsis. Blood 126, 765–765 (2015).

    Google Scholar 

  249. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04288713 (2020).

  250. Woodruff, T. M., Nandakumar, K. S. & Tedesco, F. Inhibiting the C5–C5a receptor axis. Mol. Immunol. 48, 1631–1642 (2011).

    CAS  PubMed  Google Scholar 

  251. Williams, A. L. et al. C5 inhibition prevents renal failure in a mouse model of lethal C3 glomerulopathy. Kidney Int. 91, 1386–1397 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  252. Noris, M. & Remuzzi, G. Terminal complement effectors in atypical hemolytic uremic syndrome: C5a, C5b-9, or a bit of both? Kidney Int. 96, 13–15 (2019).

    PubMed  Google Scholar 

  253. Gattinoni, L. et al. COVID-19 pneumonia: different respiratory treatments for different phenotypes? Intensive Care Med. 46, 1099–1102 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  254. Gattinoni, L., Chiumello, D. & Rossi, S. COVID-19 pneumonia: ARDS or not? Crit. Care 24, 154 (2020).

    PubMed  PubMed Central  Google Scholar 

  255. Copin, M.-C. et al. Time to consider histologic pattern of lung injury to treat critically ill patients with COVID-19 infection. Intensive Care Med. 46, 1124–1126 (2020).

    CAS  PubMed  Google Scholar 

  256. Aloisi, S., Beasley, D., Borter, G., Escritt, T. & Kelland K. Special report: as virus advances, doctors rethink rush to ventilate. Tildes https://www.reuters.com/article/us-health-coronavirus-ventilators-specia/special-report-as-virus-advances-doctors-rethink-rush-to-ventilate-idUSKCN2251PE (2020).

  257. Robba, C. et al. Distinct phenotypes require distinct respiratory management strategies in severe COVID-19. Respir. Physiol. Neurobiol. 279, 103455 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  258. Casadevall, A. & Pirofski, L. The convalescent sera option for containing COVID-19. J. Clin. Invest. 130, 1545–1548 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  259. Duan, K. et al. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc. Natl Acad. Sci. USA 117, 9490–9496 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  260. Shen, C. et al. Treatment of 5 critically ill patients with COVID-19 with convalescent plasma. JAMA 323, 1582–1589 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  261. Ye, M. et al. Treatment with convalescent plasma for COVID-19 patients in Wuhan, China. J. Med. Virol. https://doi.org/10.1002/jmv.25882 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  262. Zeng, Q. L. et al. Effect of convalescent plasma therapy on viral shedding and survival in COVID-19 patients. J. Infect. Dis. 222, 38–43 (2020).

    PubMed  Google Scholar 

  263. Li, L. et al. Effect of convalescent plasma therapy on time to clinical improvement in patients with severe and life-threatening COVID-19: a randomized clinical trial. JAMA 324, 460–470 (2020).

    CAS  PubMed  Google Scholar 

  264. Agarwal, A. et al. Convalescent plasma in the management of moderate COVID-19 in India: An open-label parallel-arm phase II multicentre randomized controlled trial (PLACID Trial). Preprint at medRxiv https://doi.org/10.1101/2020.09.03.20187252 (2020).

  265. Chi, X. et al. A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2. Science 369, 650–655 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  266. Wec, A. Z. et al. Broad neutralization of SARS-related viruses by human monoclonal antibodies. Science 369, 731–736 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  267. Hansen, J. et al. Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail. Science 369, 1010–1014 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  268. Ju, B. et al. Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature 584, 115–119 (2020).

    CAS  PubMed  Google Scholar 

  269. Pinto, D. et al. Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature 583, 290–295 (2020).

    CAS  PubMed  Google Scholar 

  270. Wang, C. et al. A human monoclonal antibody blocking SARS-CoV-2 infection. Nat. Commun. 11, 1–6 (2020).

    CAS  Google Scholar 

  271. Liu, Y. et al. Viral dynamics in mild and severe cases of COVID-19. Lancet Infect. Dis. 20, 656–657 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  272. Kirby, T. Evidence mounts on the disproportionate effect of COVID-19 on ethnic minorities. Lancet Respir. Med. 8, 547–548 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Kerstin Mierke, Istituto di Ricerche Mario Negri IRCCS, Italy, for help with English language editing of the manuscript before submission and Antonella Piccinelli, Istituto di Ricerche Mario Negri IRCCS, Italy, for preparing the figures before submission. L.P. is a recipient of the Career Development Program from Fondazione Aiuti per la Ricerca sulle Malattie Rare (ARMR), Bergamo, Italy. We are also grateful to Fondazione Aiuti per la Ricerca sulle Malattie Rare (ARMR) for research support for our studies on COVID-19 pathogenesis. L.F.P.N. and L.R. are supported by core funds at the Singapore Immunology Network (SIgN) through the Biomedical Medical Research Council (BMRC), A*STAR.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Giuseppe Remuzzi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Nephrology thanks C. Garlanda, C. Ince and A. Salama for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Betacoronavirus

One of four genera (α, β, γ and δ) of enveloped, positive-strand RNA viruses that infects humans and mammals, causing respiratory diseases that can be mild or severe.

RNA-dependent RNA polymerase

(RdRp). An enzyme encoded by viral RNA that catalyses the synthesis of new RNA strands complementary to the initial RNA template included in the viral capsid.

Incubation period

The number of days between the initial exposure to a pathogen and the day in which the infected individual experiences the first symptoms of the disease.

Anosmia

Complete loss of the ability to detect one or more smells; anosmia can be temporary, as in the case of COVID-19, or permanent such as occurs in certain neurological conditions.

Ageusia

Complete loss of taste on the tongue, particularly the inability to perceive sweetness, sourness, bitterness and saltiness; ageusia can be temporary, as in the case of COVID-19, or permanent such as occurs in certain neurological conditions.

Pattern recognition receptors

(PRRs). Host sensors that detect pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) generated during infections or injury.

Cytokine storm

Also called hypercytokinaemia. An excessive and uncontrolled release of pro-inflammatory molecules by the cellular components of the innate immune system in response to a number of infectious and non-infectious aetiologies that can lead to multi-organ damage and failure.

VH gene

The heavy-chain-variable region (VH) gene gene is located along with diversity (D), joining (J) and constant (C) genes at three primary loci in the human genome and undergoes somatic rearrangements for the biosynthesis of the heavy (H) or light (L) chain of IgG.

Glucuronidases

A class of enzyme that includes beta-glucuronidases — a glycosidases that catalyse the breakdown of complex carbohydrates by hydrolysing β-d-glucuronic acid residues from the non-reducing end of glycosaminoglycans, such as heparan sulfate.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perico, L., Benigni, A., Casiraghi, F. et al. Immunity, endothelial injury and complement-induced coagulopathy in COVID-19. Nat Rev Nephrol 17, 46–64 (2021). https://doi.org/10.1038/s41581-020-00357-4

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41581-020-00357-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing