Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Therapeutic trials in adult FSGS: lessons learned and the road forward

Abstract

Focal segmental glomerulosclerosis (FSGS) is not a specific disease entity but a lesion that primarily targets the podocyte. In a broad sense, the causes of the lesion can be divided into those triggered by a presumed circulating permeability factor, those that occur secondary to a process that might originate outside the kidneys, those caused by a genetic mutation in a podocyte or glomerular basement membrane protein, and those that arise through an as yet unidentifiable process, seemingly unrelated to a circulating permeability factor. A careful attempt to correctly stratify patients with FSGS based on their clinical presentation and pathological findings on kidney biopsy is essential for sound treatment decisions in individual patients. However, it is also essential for the rational design of therapeutic trials in FSGS. Greater recognition of the pathophysiology underlying podocyte stress and damage in FSGS will increase the likelihood that the cause of an FSGS lesion is properly identified and enable stratification of patients in future interventional trials. Such efforts will facilitate the identification of effective therapeutic agents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Podocyte structural changes in FSGS.
Fig. 2: Foot process effacement in FSGS.
Fig. 3: Ultrastructural visualization of foot process effacement.
Fig. 4: FSGS findings by light microscopy.
Fig. 5: Electron microscopy evaluation of FSGS.

Similar content being viewed by others

References

  1. D’Agati, V. D., Fogo, A. B., Bruijn, J. A. & Jennette, J. C. Pathologic classification of focal segmental glomerulosclerosis: a working proposal. Am. J. Kidney Dis. 43, 368–382 (2004).

    Article  PubMed  Google Scholar 

  2. Velosa, J. A., Donadio, J. V. Jr & Holley, K. E. Focal sclerosing glomerulonephropathy: a clinicopathologic study. Mayo Clin. Proc. 50, 121–133 (1975).

    CAS  PubMed  Google Scholar 

  3. Fogo, A. B. Causes and pathogenesis of focal segmental glomerulosclerosis. Nat. Rev. Nephrol. 11, 76–87 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. De Vriese, A. S., Sethi, S., Nath, K. A., Glassock, R. J. & Fervenza, F. C. Differentiating primary, genetic, and secondary FSGS in adults: a clinicopathologic approach. J. Am. Soc. Nephrol. 29, 759–774 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kopp, J. B. et al. Podocytopathies. Nat. Rev. Dis. Prim. 13, 68 (2020).

    Article  Google Scholar 

  6. Candelier, J. J. & Lorenzo, H. K. Idiopathic nephrotic syndrome and serum permeability factors: a molecular jigsaw puzzle. Cell Tissue Res. 379, 231–243 (2020).

    Article  PubMed  Google Scholar 

  7. Savin, V. J. et al. Multiple targets for novel therapy of FSGS associated with circulating permeability factor. Biomed. Res. Int. 2017, 6232616 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. den Braanker, D. J. W. et al. Novel in vitro assays to detect circulating permeability factor(s) in idiopathic focal segmental glomerulosclerosis. Nephrol. Dial. Transplant. 6, gfaa211 (2020).

    Google Scholar 

  9. Li, M. et al. Assessment of increased glomerular permeability associated with recurrent focal segmental glomerulosclerosis using an in vitro model of the glomerular filtration barrier. J. Nephrol. 33, 747–755 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Kidney Disease: Improving Global Outcomes (KDIGO) Glomerular Diseases Work Group. KDIGO 2021 Clinical practice guideline on glomerular diseases. Kidney Int. 99 (3S), S1–87 (2021).

    Google Scholar 

  11. Korbet, S. M. Treatment of primary FSGS in adults. J. Am. Soc. Nephrol. 23, 1769–1776 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Praga, M. et al. Nephrotic proteinuria without hypoalbuminemia: clinical characteristics and response to angiotensin-converting enzyme inhibition. Am. J. Kidney Dis. 17, 330–338 (1991).

    Article  CAS  PubMed  Google Scholar 

  13. Maas, R. J., Deegens, J. K., van den Brand, J. A., Cornelissen, E. A. & Wetzels, J. F. A retrospective study of focal segmental glomerulosclerosis: clinical criteria can identify patients at high risk for recurrent disease after first renal transplantation. BMC Nephrol. 14, 47 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Maas, R. J., Deegens, J. K., Smeets, B., Moeller, M. J. & Wetzels, J. F. Minimal change disease and idiopathic FSGS: manifestations of the same disease. Nat. Rev. Nephrol. 12, 768–776 (2016).

    Article  PubMed  Google Scholar 

  15. Hommos, M. S. et al. The incidence of primary vs secondary focal segmental glomerulosclerosis: a clinicopathologic study. Mayo Clin. Proc. 92, 1772–1781 (2017).

    Article  PubMed  Google Scholar 

  16. Kudose, S. et al. Kidney biopsy findings in patients with COVID-19. J. Am. Soc. Nephrol. 31, 1959–1968 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lepori, N., Zand, L., Sethi, S., Fernandez-Juarez, G. & Fervenza, F. C. Clinical and pathological phenotype of genetic causes of focal segmental glomerulosclerosis in adults. Clin. Kidney J. 11, 179–190 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gast, C. et al. Collagen (COL4A) mutations are the most frequent mutations underlying adult focal segmental glomerulosclerosis. Nephrol. Dial. Transpl. 31, 961–970 (2016).

    Article  CAS  Google Scholar 

  19. Sol, M. et al. Glomerular endothelial cells as instigators of glomerular sclerotic diseases. Front. Pharmacol. 11, 573557 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Landini, S. et al. Reverse phenotyping after whole-exome sequencing in steroid-resistant nephrotic syndrome. Clin. J. Am. Soc. Nephrol. 15, 89–100 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Miao, J. et al. Positive identification of genetic causes of FSGS increases with proper patient selection. Mayo Clin Proc. In press (2021).

  22. Wang, M. et al. Contributions of rare gene variants to familial and sporadic FSGS. J. Am. Soc. Nephrol. 30, 1625–1640 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Daina, E. et al. A multidrug, antiproteinuric approach to Alport syndrome: a ten-year cohort study. Nephron 130, 13–20 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Gee, H. Y. et al. Mutations in EMP2 cause childhood-onset nephrotic syndrome. Am. J. Hum. Genet. 94, 884–890 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ashraf, S. et al. Mutations in six nephrosis genes delineate a pathogenic pathway amenable to treatment. Nat. Commun 9, 1960 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Büscher, A. K. et al. German Pediatric Nephrology Association (GPN). Rapid response to cyclosporin A and favorable renal outcome in nongenetic versus genetic steroid-resistant nephrotic syndrome. Clin. J. Am. Soc. Nephrol. 11, 245–253 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Malakasioti, G., Iancu, D. & Tullus, K. Calcineurin inhibitors in nephrotic syndrome secondary to podocyte gene mutations: a systematic review. Pediatr. Nephrol. https://doi.org/10.1007/s00467-020-04695-0 (2020).

    Article  PubMed  Google Scholar 

  28. Faul, C. et al. The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine A. Nat. Med. 14, 931–938 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Patrakka, J. et al. Recurrence of nephrotic syndrome in kidney grafts of patients with congenital nephrotic syndrome of the Finnish type: role of nephrin. Transplantation 73, 394–403 (2002).

    Article  PubMed  Google Scholar 

  30. Friedman, D. J. & Pollak, M. R. APOL1 nephropathy: from genetics to clinical applications. Clin. J. Am. Soc. Nephrol. 2, 15161219 (2020).

    Google Scholar 

  31. Korkmaz, E. et al. ADCK4-associated glomerulopathy causes adolescence-onset FSGS. J. Am. Soc. Nephrol. 27, 63–68 (2016).

    Article  CAS  PubMed  Google Scholar 

  32. Tin, A. et al. Association between mitochondrial DNA copy number in peripheral blood and incident CKD in the atherosclerosis risk in communities study. J. Am. Soc. Nephrol. 27, 2467–2473 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kriz, W. The inability of podocytes to proliferate: cause, consequences, and origin. Anat. Rec. 303, 2588–2596 (2020).

    Article  Google Scholar 

  34. Smeets, B. et al. The parietal epithelial cell: a key player in the pathogenesis of focal segmental glomerulosclerosis in Thy-1.1 transgenic mice. J. Am. Soc. Nephrol. 15, 928–939 (2004).

    Article  PubMed  Google Scholar 

  35. Moeller, M. J. & Tharaux, P. L. Cellular regeneration of podocytes from parietal cells: the debate is still open. Kidney Int. 96, 542–544 (2019).

    Article  PubMed  Google Scholar 

  36. Lasagni, L. et al. Podocyte regeneration driven by renal progenitors determines glomerular disease remission and can be pharmacologically enhanced. Stem Cell Rep. 5, 248–263 (2015).

    Article  CAS  Google Scholar 

  37. Mondini, A., Messa, P. & Rastaldi, M. P. The sclerosing glomerulus in mice and man: novel insights. Curr. Opin. Nephrol. Hypertens. 23, 239–244 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Kriz, W., Shirato, I., Nagata, M., LeHir, M. & Lemley, K. V. The podocyte’s response to stress: the enigma of foot process effacement. Am. J. Physiol. Renal Physiol. 304, F333–F347 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Ichimura, K. et al. Morphological processes of foot process effacement in puromycin aminonucleoside nephrosis revealed by FIB/SEM tomography. J. Am. Soc. Nephrol. 30, 96–108 (2019).

    Article  PubMed  Google Scholar 

  40. Kriz, W. & Lemley, K. V. Mechanical challenges to the glomerular filtration barrier: adaptations and pathway to sclerosis. Pediatr. Nephrol. 32, 405–417 (2017).

    Article  PubMed  Google Scholar 

  41. Kriz, W. & Lemley, K. V. Potential relevance of shear stress for slit diaphragm and podocyte function. Kidney Int. 91, 1283–1286 (2017).

    Article  PubMed  Google Scholar 

  42. Deegens, J. K. et al. Podocyte foot process effacement as a diagnostic tool in focal segmental glomerulosclerosis. Kidney Int. 74, 1568–1576 (2008).

    Article  PubMed  Google Scholar 

  43. Praga, M. et al. Absence of hypoalbuminemia despite massive proteinuria in focal segmental glomerulosclerosis secondary to hyperfiltration. Am. J. Kidney Dis. 33, 52–58 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Sethi, S., Glassock, R. J. & Fervenza, F. C. Focal segmental glomerulosclerosis: towards a better understanding for the practicing nephrologist. Nephrol. Dial. Transpl. 30, 375–384 (2015).

    Article  CAS  Google Scholar 

  45. Sethi, S., Zand, L., Nasr, S. H., Glassock, R. J. & Fervenza, F. C. Focal and segmental glomerulosclerosis: clinical and kidney biopsy correlations. Clin. Kidney J. 7, 531–537 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kambham, N., Markowitz, G. S., Valeri, A. M., Lin, J. & D’Agati, V. D. Obesity-related glomerulopathy: an emerging epidemic. Kidney Int. 59, 1498–1509 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Zhong, Y. et al. The evolution of morphological variants of focal segmental glomerulosclerosis: a repeat biopsy-based observation. Nephrol. Dial. Transpl. 31, 87–95 (2016).

    Article  Google Scholar 

  48. Taneda, S. et al. Podocyte and endothelial injury in focal segmental glomerulosclerosis: an ultrastructural analysis. Virchows Arch. 467, 449–458 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Siegerist, F., Endlich, K. & Endlich, N. Novel microscopic techniques for podocyte research. Front. Endocrinol. 9, 379 (2018).

    Article  Google Scholar 

  50. Artelt, N. et al. Comparative analysis of podocyte foot process morphology in three species by 3D super-resolution microscopy. Front. Med. 5, 292 (2018).

    Article  Google Scholar 

  51. Glassock, R. J., Fervenza, F. C., Hebert, L. & Cameron, J. S. Nephrotic syndrome redux. Nephrol. Dial. Transpl. 30, 12–17 (2015).

    Article  CAS  Google Scholar 

  52. van de Logt, A. E. et al. The bias between different albumin assays may affect clinical decision-making. Kidney Int. 95, 1514–1517 (2019).

    Article  CAS  PubMed  Google Scholar 

  53. Maas, R. J., Deegens, J. K. & Wetzels, J. F. Permeability factors in idiopathic nephrotic syndrome: historical perspectives and lessons for the future. Nephrol. Dial. Transpl. 29, 2207–2216 (2014).

    Article  CAS  Google Scholar 

  54. Koehler, S. et al. Proteome analysis of isolated podocytes reveals stress responses in glomerular sclerosis. J. Am. Soc. Nephrol. 31, 544–559 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Oliverio, A. L., Bellomo, T. & Mariani, L. H. Evolving clinical applications of tissue transcriptomics in kidney disease. Front. Pediatr. 7, 306 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kashgary, A. et al. The role of plasma exchange in treating post-transplant focal segmental glomerulosclerosis: a systematic review and meta-analysis of 77 case-reports and case-series. BMC Nephrol. 17, 104 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Dantal, J. et al. Antihuman immunoglobulin affinity immunoadsorption strongly decreases proteinuria in patients with relapsing nephrotic syndrome. J. Am. Soc. Nephrol. 9, 1709–1715 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Kronbichler, A. et al. Immunoadsorption in nephrotic syndrome: where are we now and where are we going from here? Atheroscler. Suppl. 40, 55–60 (2019).

    Article  PubMed  Google Scholar 

  59. Savin, V. J., McCarthy, E. T., Sharma, R., Charba, D. & Sharma, M. Galactose binds to focal segmental glomerulosclerosis permeability factor and inhibits its activity. Transl. Res. 151, 288–292 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Trachtman, H. et al. Efficacy of galactose and adalimumab in patients with resistant focal segmental glomerulosclerosis: report of the font clinical trial group. BMC Nephrol. 16, 111 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kairaitis, L. et al. Blockade of CD40-CD40 ligand protects against renal injury in chronic proteinuric renal disease. Kidney Int. 64, 1265–1272 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Delville, M. et al. A circulating antibody panel for pretransplant prediction of FSGS recurrence after kidney transplantation. Sci. Transl. Med. 6, 256ra136 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gipson, D. S. et al. Clinical trial of focal segmental glomerulosclerosis in children and young adults. Kidney Int. 80, 868–878 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Troost, J. P. et al. Proteinuria reduction and kidney survival in focal segmental glomerulosclerosis. Am. J. Kidney Dis. 77, 216–225 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Fernandez-Fresnedo, G. et al. Rituximab treatment of adult patients with steroid resistant focal segmental glomerulosclerosis. Clin. J. Am. Soc. Nephrol. 4, 1317–1323 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Fervenza, F. C. & Sethi, S. Frequent-relapsing, steroid-dependent minimal change disease: is rituximab the answer? Nephrol. Dial. Transpl. 29, 722–727 (2014).

    Article  Google Scholar 

  67. Alhasan, K. A., Alherbish, A., Osman, A., Kari, J. A. & Almojalli, H. Successful treatment of recurrent focal segmental glomerulosclerosis after transplantation in children: a single-center experience. Transpl. Proc. 51, 517–521 (2019).

    Article  CAS  Google Scholar 

  68. Nishiyama, A. & Kobori, H. Independent regulation of renin-angiotensin-aldosterone system in the kidney. Clin. Exp. Nephrol. 22, 1231–1239 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kohan, D. E. & Barton, M. Endothelin and endothelin antagonists in chronic kidney disease. Kidney Int. 86, 896–904 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Trachtman, H. et al. DUET: a phase 2 study evaluating the efficacy and safety of Sparsentan in patients with FSGS. J. Am. Soc. Nephrol. 29, 2745–2754 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Komers, R. et al. Study design of the phase 3 Sparsentan versus Irbesartan (DUPLEX) study in patients with focal segmental glomerulosclerosis. Kidney Int. Rep. 5, 494–502 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Aghajan, M. et al. Antisense oligonucleotide treatment ameliorates IFN-γ-induced proteinuria in APOL1-transgenic mice. JCI Insight 4, e126124 (2019).

    Article  PubMed Central  Google Scholar 

  73. Yoo, T. H. & Fornoni, A. Nonimmunologic targets of immunosuppressive agents in podocytes. Kidney Res. Clin. Pract. 34, 69–75 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Mallipattu, S. K. et al. Kruppel-like Factor 15 mediates glucocorticoid-induced restoration of podocyte differentiation markers. J. Am. Soc. Nephrol. 28, 166–184 (2017).

    Article  CAS  PubMed  Google Scholar 

  75. Bergwall, L. et al. Amplification of the melanocortin-1 receptor in nephrotic syndrome identifies a target for podocyte cytoskeleton stabilization. Sci. Rep. 8, 15731 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Qiao, Y. et al. Melanocortin therapy ameliorates podocytopathy and proteinuria in experimental focal segmental glomerulosclerosis involving a podocyte specific non-MC1R-mediated melanocortinergic signaling. Clin. Sci. 134, 695–710 (2020).

    Article  CAS  Google Scholar 

  77. Hogan, J. et al. Treatment of idiopathic FSGS with adrenocorticotropic hormone gel. Clin. J. Am. Soc. Nephrol. 8, 2072–2081 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Novelli, R., Benigni, A. & Remuzzi, G. The role of B7-1 in proteinuria of glomerular origin. Nat. Rev. Nephrol. 14, 589–596 (2018).

    Article  CAS  PubMed  Google Scholar 

  79. Zhou, Y. et al. A small-molecule inhibitor of TRPC5 ion channels suppresses progressive kidney disease in animal models. Science 358, 1332–1336 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. van der Wijst, J. & Bindels, R. J. M. Renal physiology: TRPC5 inhibition to treat progressive kidney disease. Nat. Rev. Nephrol. 14, 145–146 (2018).

    Article  PubMed  Google Scholar 

  81. Yu, M. et al. Discovery of a potent and selective TRPC5 Inhibitor, efficacious in a focal segmental glomerulosclerosis model. ACS Med. Chem. Lett. 10, 1579–1585 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yang, R. C. et al. Bone marrow mesenchymal stem cells attenuate the progression of focal segmental glomerulosclerosis in rat models. BMC Nephrol. 19, 335 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ornellas, F. M. et al. Mesenchymal stromal cells induce podocyte protection in the puromycin injury model. Sci. Rep. 9, 19604 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Belingheri, M. et al. Allogeneic mesenchymal stem cell infusion for the stabilization of focal segmental glomerulosclerosis. Biologicals 41, 439–445 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. Lee, E. Y. et al. The monocyte chemoattractant protein-1/CCR2 loop, inducible by TGF-beta, increases podocyte motility and albumin permeability. Am. J. Physiol. Renal Physiol. 297, F85–F94 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wilkening, A. et al. C-C chemokine receptor type 2 mediates glomerular injury and interstitial fibrosis in focal segmental glomerulosclerosis. Nephrol. Dial. Transpl. 35, 227–239 (2020).

    CAS  Google Scholar 

  87. Miao, Z. et al. CCR2 antagonism leads to marked reduction in proteinuria and glomerular injury in murine models of focal segmental glomerulosclerosis (FSGS). PLoS One 13, e0192405 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ito, M., Tanaka, T. & Nangaku, M. Nuclear factor erythroid 2-related factor 2 as a treatment target of kidney diseases. Curr. Opin. Nephrol. Hypertens. 29, 128–135 (2020).

    Article  CAS  PubMed  Google Scholar 

  89. Chaturvedi, S. & Robinson, L. A. Slit2-Robo signaling in inflammation and kidney injury. Pediatr. Nephrol. 30, 561–566 (2015).

    Article  PubMed  Google Scholar 

  90. Yuen, D. A. et al. Recombinant N-terminal Slit2 inhibits TGF-β-induced fibroblast activation and renal fibrosis. J. Am. Soc. Nephrol. 27, 2609–2615 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Koshikawa, M. et al. Role of p38 mitogen-activated protein kinase activation in podocyte injury and proteinuria in experimental nephrotic syndrome. J. Am. Soc. Nephrol. 16, 2690–2701 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Gipson, D. S. et al. Assessing the impact of Losmapimod on proteinuria in idiopathic focal segmental glomerulosclerosis. Kidney Int. Rep. 5, 1228–1239 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Chung, C. F. et al. Intrinsic tumor necrosis factor-alpha pathway is activated in a subset of patients with focal segmental glomerulosclerosis. PLoS One 14, e0216426 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Joy, M. S. et al. Phase 1 trial of adalimumab in focal segmental glomerulosclerosis (FSGS): II. Report of the FONT (Novel therapies for resistant FSGS) study group. Am. J. Kidney Dis. 55, 50–60 (2010).

    Article  CAS  PubMed  Google Scholar 

  95. Hogan, M. C. et al. The relatively poor correlation between random and 24-hour urine protein excretion in patients with biopsy-proven glomerular diseases. Kidney Int. 90, 1080–1089 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kaminska, J., Dymicka-Piekarska, V., Tomaszewska, J., Matowicka-Karna, J. & Koper-Lenkiewicz, O. M. Diagnostic utility of protein to creatinine ratio (P/C ratio) in spot urine sample within routine clinical practice. Crit. Rev. Clin. Lab. Sci. 57, 345–364 (2020).

    Article  CAS  PubMed  Google Scholar 

  97. Glassock, R. J. Albuminuria: a target for clinical trials in kidney disease? Nat. Rev. Nephrol. 15, 257–258 (2019).

    Article  PubMed  Google Scholar 

  98. Thompson, A., Smith, K. & Lawrence, J. Change in estimated GFR and albuminuria as End Points in Clinical Trials: a viewpoint from the FDA. Am. J. Kidney Dis. 75, 4–5 (2020).

    Article  PubMed  Google Scholar 

  99. Heerspink, H. J. L. et al. Chronic Kidney Disease Epidemiology Collaboration. Change in albuminuria as a surrogate endpoint for progression of kidney disease: a meta-analysis of treatment effects in randomised clinical trials. Lancet Diabetes Endocrinol. 7, 128–139 (2019).

    Article  CAS  PubMed  Google Scholar 

  100. Coresh, J. et al. Change in albuminuria and subsequent risk of end-stage kidney disease: an individual participant-level consortium meta-analysis of observational studies. Lancet Diabetes Endocrinol. 7, 115–127 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Grams, M. E. et al. Evaluating glomerular filtration rate slope as a surrogate end point for ESKD in clinical trials: an individual participant meta-analysis of observational data. J. Am. Soc. Nephrol. 30, 1746–1755 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Greene, T. et al. Performance of GFR slope as a surrogate end point for kidney disease progression in clinical trials: a statistical simulation. J. Am. Soc. Nephrol. 30, 1756–1769 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Dekkers, I. A. & van der Molen, A. J. Propensity score matching as a substitute for randomized controlled trials on acute kidney injury after contrast media administration: a systematic review. AJR Am. J. Roentgenol. 211, 822–826 (2018).

    Article  PubMed  Google Scholar 

  104. Nicholls, S. G. et al. Ethical issues in the design and conduct of pragmatic cluster randomized trials in hemodialysis care: an interview study with key stakeholders. Can. J. Kidney Health Dis. 7, 2054358120964119 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A.S.D.V and F.C.F. wrote the article. All authors researched data for the article, contributed substantially to discussion of the content and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Fernando C. Fervenza.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Nephrology thanks J. Kopp and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Vriese, A.S., Wetzels, J.F., Glassock, R.J. et al. Therapeutic trials in adult FSGS: lessons learned and the road forward. Nat Rev Nephrol 17, 619–630 (2021). https://doi.org/10.1038/s41581-021-00427-1

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41581-021-00427-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing