Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Hypertension-induced cognitive impairment: from pathophysiology to public health

Abstract

Hypertension affects two-thirds of people aged >60 years and significantly increases the risk of both vascular cognitive impairment and Alzheimer’s disease. Hypertension compromises the structural and functional integrity of the cerebral microcirculation, promoting microvascular rarefaction, cerebromicrovascular endothelial dysfunction and neurovascular uncoupling, which impair cerebral blood supply. In addition, hypertension disrupts the blood–brain barrier, promoting neuroinflammation and exacerbation of amyloid pathologies. Ageing is characterized by multifaceted homeostatic dysfunction and impaired cellular stress resilience, which exacerbate the deleterious cerebromicrovascular effects of hypertension. Neuroradiological markers of hypertension-induced cerebral small vessel disease include white matter hyperintensities, lacunar infarcts and microhaemorrhages, all of which are associated with cognitive decline. Use of pharmaceutical and lifestyle interventions that reduce blood pressure, in combination with treatments that promote microvascular health, have the potential to prevent or delay the pathogenesis of vascular cognitive impairment and Alzheimer’s disease in patients with hypertension.

Key points

  • Hypertension is associated with ageing and significantly increases the risk of vascular cognitive impairment and Alzheimer’s disease.

  • In older individuals, hypertension leads to maladaptation of the cerebral circulation, resulting in dysregulation of cerebral blood flow, microvascular rarefaction, blood–brain barrier disruption, oxidative stress and impaired neurovascular coupling.

  • Hypertension causes pathological alterations in cerebral microvessels that damage microvascular structure, network architecture and function, and contribute to the genesis of cerebral microhaemorrhages, lacunar infarcts and white matter injury; these factors are associated with cognitive decline.

  • Potential mechanisms by which hypertension could exacerbate the progression of Alzheimer’s disease include increased oxidative microvascular damage, brain inflammation and blood–brain barrier disruption, as well as impaired glymphatic (also known as glial-lymphatic) clearance of amyloid-β.

  • Use of pharmaceutical and/or lifestyle interventions that reduce blood pressure in combination with treatments that promote microvascular health could potentially prevent or delay cognitive decline in patients with hypertension.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Age-related autoregulatory dysfunction exacerbates hypertension-induced cerebromicrovascular injury.
Fig. 2: Hypertension-induced small vessel disease and its radiological manifestations.
Fig. 3: Hypertension-induced blood–brain barrier disruption.
Fig. 4: Hypertension-induced cerebral microhaemorrhages.
Fig. 5: Hypertension and ageing exert synergistic negative effects on cerebromicrovascular network maintenance.
Fig. 6: Hypertension and ageing lead to impairment of endothelium-dependent neurovascular coupling and functional hyperaemia.
Fig. 7: Hypertension exacerbates Alzheimer’s disease pathologies.

Similar content being viewed by others

References

  1. Hurd, M. D., Martorell, P., Delavande, A., Mullen, K. J. & Langa, K. M. Monetary costs of dementia in the United States. N. Engl. J. Med. 368, 1326–1334 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wimo, A. et al. The worldwide economic impact of dementia 2010. Alzheimers Dement. 9, 1–11.e3 (2013).

    Article  PubMed  Google Scholar 

  3. Iadecola, C. et al. Impact of hypertension on cognitive function: a scientific statement from the American Heart Association. Hypertension 68, e67–e94 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Forette, F. et al. Prevention of dementia in randomised double-blind placebo-controlled Systolic Hypertension in Europe (Syst-Eur) trial. Lancet 352, 1347–1351 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Launer, L. J. et al. Midlife blood pressure and dementia: the Honolulu-Asia aging study. Neurobiol. Aging 21, 49–55 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Israeli-Korn, S. D. et al. Hypertension increases the probability of Alzheimer’s disease and of mild cognitive impairment in an Arab community in northern Israel. Neuroepidemiology 34, 99–105 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Petrovitch, H. et al. Midlife blood pressure and neuritic plaques, neurofibrillary tangles, and brain weight at death: the HAAS. Honolulu-Asia aging Study. Neurobiol. Aging 21, 57–62 (2000).

    CAS  PubMed  Google Scholar 

  8. van Dijk, E. J. et al. The association between blood pressure, hypertension, and cerebral white matter lesions: cardiovascular determinants of dementia study. Hypertension 44, 625–630 (2004).

    Article  PubMed  CAS  Google Scholar 

  9. Baker, A. B., Resch, J. A. & Loewenson, R. B. Hypertension and cerebral atherosclerosis. Circulation 39, 701–710 (1969).

    Article  CAS  PubMed  Google Scholar 

  10. James, P. A. et al. 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA 311, 507–520 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Fryar, C. D., Ostchega, Y., Hales, C. M., Zhang, G. & Kruszon-Moran, D. Hypertension Prevalence and Control among Adults: United States 2015-1026. NCHS data brief, no 289 (National Center for Health Statistics, 2017).

  12. Muntner, P. et al. Potential U.S. Population Impact of the 2017 ACC/AHA High Blood Pressure Guideline. J. Am. Coll. Cardiol. 71, 109–118 (2018).

    Article  PubMed  Google Scholar 

  13. Iadecola, C. & Gottesman, R. F. Neurovascular and cognitive dysfunction in hypertension. Circ. Res. 124, 1025–1044 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wilkie, F. L., Eisdorfer, C. & Nowlin, J. B. Memory and blood pressure in the aged. Exp. Aging Res. 2, 3–16 (1976).

    Article  CAS  PubMed  Google Scholar 

  15. Kennelly, S. P., Lawlor, B. A. & Kenny, R. A. Blood pressure and dementia — a comprehensive review. Ther. Adv. Neurol. Disord. 2, 241–260 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Whitmer, R. A., Sidney, S., Selby, J., Johnston, S. C. & Yaffe, K. Midlife cardiovascular risk factors and risk of dementia in late life. Neurology 64, 277–281 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Kivipelto, M. et al. Midlife vascular risk factors and Alzheimer’s disease in later life: longitudinal, population based study. BMJ 322, 1447–1451 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Walker, K. A. et al. Association of midlife to late-life blood pressure patterns with incident dementia. JAMA 322, 535–545 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Skoog, I. et al. 15-year longitudinal study of blood pressure and dementia. Lancet 347, 1141–1145 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Qiu, C., von Strauss, E., Fastbom, J., Winblad, B. & Fratiglioni, L. Low blood pressure and risk of dementia in the Kungsholmen project: a 6-year follow-up study. Arch. Neurol. 60, 223–228 (2003).

    Article  PubMed  Google Scholar 

  21. Li, G. et al. Age-varying association between blood pressure and risk of dementia in those aged 65 and older: a community-based prospective cohort study. J. Am. Geriatr. Soc. 55, 1161–1167 (2007).

    Article  PubMed  Google Scholar 

  22. Yoshitake, T. et al. Incidence and risk factors of vascular dementia and Alzheimer’s disease in a defined elderly Japanese population: the Hisayama Study. Neurology 45, 1161–1168 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Posner, H. B. et al. The relationship of hypertension in the elderly to AD, vascular dementia, and cognitive function. Neurology 58, 1175–1181 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Lopez, O. L. et al. Risk factors for mild cognitive impairment in the cardiovascular health study cognition study: part 2. Arch. Neurol. 60, 1394–1399 (2003).

    Article  PubMed  Google Scholar 

  25. Hestad, K., Engedal, K., Schirmer, H. & Strand, B. H. The effect of blood pressure on cognitive performance. an 8-year follow-up of the tromso study, comprising people aged 45–74 years. Front. Psychol. 11, 607 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Swan, G. E. et al. Association of midlife blood pressure to late-life cognitive decline and brain morphology. Neurology 51, 986–993 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Mills, K. T. et al. Global Disparities of hypertension prevalence and control: a systematic analysis of population-based studies from 90 countries. Circulation 134, 441–450 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Chin, A. L., Negash, S. & Hamilton, R. Diversity and disparity in dementia: the impact of ethnoracial differences in Alzheimer disease. Alzheimer Dis. Assoc. Disord. 25, 187–195 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ferri, C. P. et al. Global prevalence of dementia: a Delphi consensus study. Lancet 366, 2112–2117 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Levine, D. A. et al. Association between blood pressure and later-life cognition among black and white individuals. JAMA Neurol. 77, 810–819 (2020).

    Article  PubMed  Google Scholar 

  31. Mills, K. T., Stefanescu, A. & He, J. The global epidemiology of hypertension. Nat. Rev. Nephrol. 16, 223–237 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Noh, J. et al. Prevalence of comorbidity among people with hypertension: The Korea National Health and Nutrition Examination Survey 2007–2013. Korean Circ. J. 46, 672–680 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Trauernicht, A. K., Sun, H., Patel, K. P. & Mayhan, W. G. Enalapril prevents impaired nitric oxide synthase-dependent dilatation of cerebral arterioles in diabetic rats. Stroke 34, 2698–2703 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Tarantini, S. et al. Nrf2 deficiency exacerbates obesity-induced oxidative stress, neurovascular dysfunction, blood brain barrier disruption, neuroinflammation, amyloidogenic gene expression and cognitive decline in mice, mimicking the aging phenotype. J. Gerontol. A Biol. Sci. Med. Sci. 73, 853–863 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Tucsek, Z. et al. Obesity in aging exacerbates blood brain barrier disruption, neuroinflammation and oxidative stress in the mouse hippocampus: effects on expression of genes involved in beta-amyloid generation and Alzheimer’s disease. J. Gerontol. A Biol. Sci. Med. Sci. 69, 1212–1226 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Valcarcel-Ares, M. N. et al. Obesity in aging exacerbates neuroinflammation, dysregulating synaptic function-related genes and altering eicosanoid synthesis in the mouse hippocampus: potential role in impaired synaptic plasticity and cognitive decline. J. Gerontol. A Biol. Sci. Med. Sci. 74, 290–298 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  37. Viggiano, D. et al. Mechanisms of cognitive dysfunction in CKD. Nat. Rev. Nephrol. 16, 452–469 (2020).

    Article  PubMed  Google Scholar 

  38. Hooghiemstra, A. M. et al. Frequent cognitive impairment in patients with disorders along the heart-brain axis. Stroke 50, 3369–3375 (2019).

    Article  PubMed  Google Scholar 

  39. Toth, P., Tarantini, S., Csiszar, A. & Ungvari, Z. Functional vascular contributions to cognitive impairment and dementia: mechanisms and consequences of cerebral autoregulatory dysfunction, endothelial impairment, and neurovascular uncoupling in aging. Am. J. Physiol. Heart Circ. Physiol. 312, H1–H20 (2017).

    Article  PubMed  Google Scholar 

  40. Fulop, G. A. et al. IGF-1 deficiency promotes pathological remodeling of cerebral arteries: a potential mechanism contributing to the pathogenesis of intracerebral hemorrhages in aging. J. Gerontol. A Biol. Sci. Med. Sci. 74, 446–454 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  41. Toth, P. et al. Age-related autoregulatory dysfunction and cerebromicrovascular injury in mice with angiotensin II-induced hypertension. J. Cereb. Blood Flow. Metab. 33, 1732–1742 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Harder, D. R., Smeda, J. & Lombard, J. Enhanced myogenic depolarization in hypertensive cerebral arterial muscle. Circ. Res. 57, 319–322 (1985).

    Article  CAS  PubMed  Google Scholar 

  43. Iadecola, C., Park, L. & Capone, C. Threats to the mind: aging, amyloid, and hypertension. Stroke 40, S40–S44 (2009).

    Article  PubMed  Google Scholar 

  44. Toth, P. et al. Role of 20-HETE, TRP channels and BKCa in dysregulation of pressure-induced Ca2+ signaling and myogenic constriction of cerebral arteries in aged hypertensive mice. Am. J. Physiol. Heart Circ. Physiol. 305, H1698–H1708 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Choi, S. K., Yeon, S. I., Kwon, Y., Byeon, S. & Lee, Y. H. Involvement of epithelial Na+ channel in the elevated myogenic response in posterior cerebral arteries from spontaneously hypertensive rats. Sci. Rep. 7, 45996 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Diaz-Otero, J. M. et al. Mineralocorticoid receptor antagonism improves parenchymal arteriole dilation via a TRPV4-dependent mechanism and prevents cognitive dysfunction in hypertension. Am. J. Physiol. Heart Circ. Physiol. 315, H1304–H1315 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jarajapu, Y. P. & Knot, H. J. Relative contribution of Rho kinase and protein kinase C to myogenic tone in rat cerebral arteries in hypertension. Am. J. Physiol. Heart Circ. Physiol. 289, H1917–H1922 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Tomoto, T., Sugawara, J., Nogami, Y., Aonuma, K. & Maeda, S. The influence of central arterial compliance on cerebrovascular hemodynamics: insights from endurance training intervention. J. Appl. Physiol. 119, 445–451 (2015).

    Article  PubMed  Google Scholar 

  49. Diaz-Otero, J. M., Garver, H., Fink, G. D., Jackson, W. F. & Dorrance, A. M. Aging is associated with changes to the biomechanical properties of the posterior cerebral artery and parenchymal arterioles. Am. J. Physiol. Heart Circ. Physiol. 310, H365–H375 (2016).

    Article  PubMed  Google Scholar 

  50. Webb, A. J. et al. Increased cerebral arterial pulsatility in patients with leukoaraiosis: arterial stiffness enhances transmission of aortic pulsatility. Stroke 43, 2631–2636 (2012).

    Article  PubMed  Google Scholar 

  51. Mitchell, G. F. et al. Arterial stiffness, pressure and flow pulsatility and brain structure and function: the Age, Gene/Environment Susceptibility — Reykjavik study. Brain 134, 3398–3407 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Brown, I. A. M. et al. Vascular smooth muscle remodeling in conductive and resistance arteries in hypertension. Arterioscler. Thromb. Vasc. Biol. 38, 1969–1985 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Springo, Z. et al. Aging impairs myogenic adaptation to pulsatile pressure in mouse cerebral arteries. J. Cereb. Blood Flow. Metab. 35, 527–530 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ascenzi, F. et al. Effects of IGF-1 isoforms on muscle growth and sarcopenia. Aging Cell 18, e12954 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Tarantini, S. et al. Insulin-like growth factor 1 deficiency exacerbates hypertension-induced cerebral microhemorrhages in mice, mimicking the aging phenotype. Aging Cell 16, 469–479 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Toth, P. et al. IGF-1 deficiency impairs cerebral myogenic autoregulation in hypertensive mice. J. Cereb. Blood Flow. Metab. 34, 1887–1897 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sonntag, W. E. et al. Insulin-like growth factor-1 in CNS and cerebrovascular aging. Front. Aging Neurosci. 5, 27 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tarantini, S. et al. Circulating IGF-1 deficiency exacerbates hypertension-induced microvascular rarefaction in the mouse hippocampus and retrosplenial cortex: implications for cerebromicrovascular and brain aging. Age 38, 273–289 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Angelini, A. et al. Insulin-like growth factor-1 (IGF-1): relation with cognitive functioning and neuroimaging marker of brain damage in a sample of hypertensive elderly subjects. Arch. Gerontol. Geriatr. 49 (Suppl 1), 5–12 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Johnsen, S. P. et al. Insulin-like growth factor (IGF) I, -II, and IGF binding protein-3 and risk of ischemic stroke. J. Clin. Endocrinol. Metab. 90, 5937–5941 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Park, L., Anrather, J., Girouard, H., Zhou, P. & Iadecola, C. Nox2-derived reactive oxygen species mediate neurovascular dysregulation in the aging mouse brain. J. Cereb. Blood Flow. Metab. 27, 1908–1918 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Springo, Z. et al. Aging exacerbates pressure-induced mitochondrial oxidative stress in mouse cerebral arteries. J. Gerontol. A Biol. Sci. Med. Sci 70, 1355–1359 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Toth, P. et al. Aging exacerbates hypertension-induced cerebral microhemorrhages in mice: role of resveratrol treatment in vasoprotection. Aging Cell 14, 400–408 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ungvari, Z. et al. Vascular oxidative stress in aging: a homeostatic failure due to dysregulation of Nrf2-mediated antioxidant response. Am. J. Physiol. Heart Circ. Physiol. 301, H363–H372 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ungvari, Z. et al. Nrf2 dysfunction and impaired cellular resilience to oxidative stressors in the aged vasculature: from increased cellular senescence to the pathogenesis of age-related vascular diseases. Geroscience 41, 727–738 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Fulop, G. A. et al. Nrf2 deficiency in aged mice exacerbates cellular senescence promoting cerebrovascular inflammation. Geroscience 40, 513–521 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bailey-Downs, L. C. et al. Liver-specific knockdown of IGF-1 decreases vascular oxidative stress resistance by impairing the Nrf2-dependent antioxidant response: a novel model of vascular aging. J. Gerontol. A Biol. Sci. Med. Sci. 67, 313–329 (2012).

    Article  PubMed  CAS  Google Scholar 

  68. Csiszar, A. et al. Caloric restriction confers persistent anti-oxidative, pro-angiogenic, and anti-inflammatory effects and promotes anti-aging miRNA expression profile in cerebromicrovascular endothelial cells of aged rats. Am. J. Physiol. Heart Circ. Physiol. 307, H292–H306 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ungvari, Z. et al. Age-associated vascular oxidative stress, Nrf2 dysfunction and NF-kB activation in the non-human primate Macaca mulatta. J. Gerontol. A Biol. Sci. Med. Sci. 66, 866–875 (2011).

    Article  PubMed  CAS  Google Scholar 

  70. Valcarcel-Ares, M. N. et al. Disruption of Nrf2 signaling impairs angiogenic capacity of endothelial cells: implications for microvascular aging. J. Gerontol. A Biol. Sci. Med. Sci. 67, 821–829 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Gorelick, P. B. et al. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 42, 2672–2713 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Girouard, H., Park, L., Anrather, J., Zhou, P. & Iadecola, C. Cerebrovascular nitrosative stress mediates neurovascular and endothelial dysfunction induced by angiotensin II. Arterioscler. Thromb. Vasc. Biol. 27, 303–309 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Suzuki, K., Masawa, N., Sakata, N. & Takatama, M. Pathologic evidence of microvascular rarefaction in the brain of renal hypertensive rats. J. Stroke Cerebrovasc. Dis. 12, 8–16 (2003).

    Article  PubMed  Google Scholar 

  74. Jimenez-Balado, J. et al. Prevalence of hippocampal enlarged perivascular spaces in a sample of patients with hypertension and their relation with vascular risk factors and cognitive function. J. Neurol. Neurosurg. Psychiatry 89, 651–656 (2018).

    Article  PubMed  Google Scholar 

  75. Carnevale, D. et al. Role of neuroinflammation in hypertension-induced brain amyloid pathology. Neurobiol. Aging 33, 205.e19–e29 (2012).

    Article  CAS  Google Scholar 

  76. Carnevale, D. et al. Hypertension induces brain β-amyloid accumulation, cognitive impairment, and memory deterioration through activation of receptor for advanced glycation end products in brain vasculature. Hypertension 60, 188–197 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Zhang, M., Mao, Y., Ramirez, S. H., Tuma, R. F. & Chabrashvili, T. Angiotensin II induced cerebral microvascular inflammation and increased blood-brain barrier permeability via oxidative stress. Neuroscience 171, 852–858 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Jorgensen, D. R. et al. A population neuroscience approach to the study of cerebral small vessel disease in midlife and late life: an invited review. Am. J. Physiol. Heart Circ. Physiol. 314, H1117–H1136 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Alber, J. et al. White matter hyperintensities in vascular contributions to cognitive impairment and dementia (VCID): knowledge gaps and opportunities. Alzheimers Dement. 5, 107–117 (2019).

    Article  Google Scholar 

  80. Wardlaw, J. M., Valdes Hernandez, M. C. & Munoz-Maniega, S. What are white matter hyperintensities made of? Relevance to vascular cognitive impairment. J. Am. Heart Assoc. 4, 001140 (2015).

    Article  PubMed  Google Scholar 

  81. de Leeuw, F. E. et al. Hypertension and cerebral white matter lesions in a prospective cohort study. Brain 125, 765–772 (2002).

    Article  PubMed  Google Scholar 

  82. Guevarra, A. C. et al. Age moderates associations of hypertension, white matter hyperintensities, and cognition. J. Alzheimers Dis. 75, 1351–1360 (2020).

    Article  PubMed  Google Scholar 

  83. Weaver, N. A. et al. Cerebral amyloid burden is associated with white matter hyperintensity location in specific posterior white matter regions. Neurobiol. Aging 84, 225–234 (2019).

    Article  PubMed  Google Scholar 

  84. Tsao, C. W. et al. Relations of arterial stiffness and endothelial function to brain aging in the community. Neurology 81, 984–991 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Vermeer, S. E., Longstreth, W. T. Jr. & Koudstaal, P. J. Silent brain infarcts: a systematic review. Lancet Neurol. 6, 611–619 (2007).

    Article  PubMed  Google Scholar 

  86. Geerlings, M. I. et al. Association of white matter lesions and lacunar infarcts with executive functioning: the SMART-MR study. Am. J. Epidemiol. 170, 1147–1155 (2009).

    Article  PubMed  Google Scholar 

  87. Zlokovic, B. V. The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 57, 178–201 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Kerkhofs, D. et al. Pharmacological depletion of microglia and perivascular macrophages prevents vascular cognitive impairment in Ang II-induced hypertension. Theranostics 10, 9512–9527 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sweeney, M. D., Zhao, Z., Montagne, A., Nelson, A. R. & Zlokovic, B. V. Blood-brain barrier: from physiology to disease and back. Physiol. Rev. 99, 21–78 (2019).

    Article  CAS  PubMed  Google Scholar 

  90. Xu, L., Nirwane, A. & Yao, Y. Basement membrane and blood-brain barrier. Stroke Vasc. Neurol. 4, 78–82 (2019).

    Article  PubMed  Google Scholar 

  91. Bailey, E. L. et al. Cerebral small vessel endothelial structural changes predate hypertension in stroke-prone spontaneously hypertensive rats: a blinded, controlled immunohistochemical study of 5- to 21-week-old rats. Neuropathol. Appl. Neurobiol. 37, 711–726 (2011).

    Article  CAS  PubMed  Google Scholar 

  92. Fan, Y. et al. Tight junction disruption of blood-brain barrier in white matter lesions in chronic hypertensive rats. Neuroreport 26, 1039–1043 (2015).

    Article  CAS  PubMed  Google Scholar 

  93. Setiadi, A., Korim, W. S., Elsaafien, K. & Yao, S. T. The role of the blood-brain barrier in hypertension. Exp. Physiol. 103, 337–342 (2018).

    Article  CAS  PubMed  Google Scholar 

  94. Yang, Y. et al. Vascular tight junction disruption and angiogenesis in spontaneously hypertensive rat with neuroinflammatory white matter injury. Neurobiol. Dis. 114, 95–110 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Santisteban, M. M. et al. Endothelium-macrophage crosstalk mediates blood-brain barrier dysfunction in hypertension. Hypertension 76, 795–807 (2020).

    Article  CAS  PubMed  Google Scholar 

  96. Yang, Y., Estrada, E. Y., Thompson, J. F., Liu, W. & Rosenberg, G. A. Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat. J. Cereb. Blood Flow. Metab. 27, 697–709 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Ueno, M. et al. Blood-brain barrier disruption in the hypothalamus of young adult spontaneously hypertensive rats. Histochem. Cell Biol. 122, 131–137 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Roggendorf, W., Opitz, H. & Schuppan, D. Altered expression of collagen type VI in brain vessels of patients with chronic hypertension. A comparison with the distribution of collagen IV and procollagen III. Acta Neuropathol. 77, 55–60 (1988).

    Article  CAS  PubMed  Google Scholar 

  99. Bell, R. D. et al. Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 68, 409–427 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Winkler, E. A., Bell, R. D. & Zlokovic, B. V. Central nervous system pericytes in health and disease. Nat. Neurosci. 14, 1398–1405 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Sure, V. N. et al. A novel high-throughput assay for respiration in isolated brain microvessels reveals impaired mitochondrial function in the aged mice. Geroscience 40, 365–375 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Van Skike, C. E. et al. Inhibition of mTOR protects the blood-brain barrier in models of Alzheimer’s disease and vascular cognitive impairment. Am. J. Physiol. Heart Circ. Physiol. 314, H693–H703 (2018).

    Article  PubMed  CAS  Google Scholar 

  103. Wilhelm, I., Nyul-Toth, A., Kozma, M., Farkas, A. E. & Krizbai, I. A. Role of pattern recognition receptors of the neurovascular unit in inflamm-aging. Am. J. Physiol. Heart Circ. Physiol 313, H1000–H1012 (2017).

    Article  PubMed  CAS  Google Scholar 

  104. Kiss, T. et al. Single-cell RNA sequencing identifies senescent cerebromicrovascular endothelial cells in the aged mouse brain. Geroscience 42, 429–444 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Mayhan, W. G. & Heistad, D. D. Role of veins and cerebral venous pressure in disruption of the blood-brain barrier. Circ. Res. 59, 216–220 (1986).

    Article  CAS  PubMed  Google Scholar 

  106. Fulop, G. A. et al. Cerebral venous congestion promotes blood-brain barrier disruption and neuroinflammation, impairing cognitive function in mice. Geroscience 41, 575–589 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Tucsek, Z. et al. Hypertension-induced synapse loss and impairment in synaptic plasticity in the mouse hippocampus mimics the aging phenotype: implications for the pathogenesis of vascular cognitive impairment. Geroscience 39, 385–406 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Davalos, D. et al. Fibrinogen-induced perivascular microglial clustering is required for the development of axonal damage in neuroinflammation. Nat. Commun. 3, 1227 (2012).

    Article  PubMed  CAS  Google Scholar 

  109. Sadekova, N. et al. Arterial stiffness induced by carotid calcification leads to cerebral gliosis mediated by oxidative stress. J. Hypertens. 36, 286–298 (2018).

    Article  CAS  PubMed  Google Scholar 

  110. Bowman, G. L. et al. Blood-brain barrier breakdown, neuroinflammation, and cognitive decline in older adults. Alzheimers Dement. 14, 1640–1650 (2018).

    Article  PubMed  Google Scholar 

  111. Singh, M. V., Chapleau, M. W., Harwani, S. C. & Abboud, F. M. The immune system and hypertension. Immunol. Res. 59, 243–253 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Carnevale, D. & Lembo, G. ‘Alzheimer-like’ pathology in a murine model of arterial hypertension. Biochem. Soc. Trans. 39, 939–944 (2011).

    Article  CAS  PubMed  Google Scholar 

  113. Ungvari, Z., Tarantini, S., Kirkpatrick, A. C., Csiszar, A. & Prodan, C. I. Cerebral microhemorrhages: mechanisms, consequences, and prevention. Am. J. Physiol. Heart Circ. Physiol. 312, H1128–H1143 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Yates, P. A. et al. Cerebral microhemorrhage and brain β-amyloid in aging and Alzheimer disease. Neurology 77, 48–54 (2011).

    Article  CAS  PubMed  Google Scholar 

  115. Petrea, R. E. et al. Mid to late life hypertension trends and cerebral small vessel disease in the framingham heart study. Hypertension 76, 707–714 (2020).

    Article  CAS  PubMed  Google Scholar 

  116. Lau, W. L. et al. Chronic kidney disease increases cerebral microbleeds in mouse and man. Transl. Stroke Res. 11, 122–134 (2020).

    Article  PubMed  Google Scholar 

  117. Ungvari, Z., Tarantini, S., Kirkpatrick, A. C., Csiszar, A. & Prodan, C. I. Cerebral microhemorrhages: mechanisms, consequences and prevention. Am. J. Physiol. Heart Circ. Physiol. 312, H1128–H1143 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Ungvari, Z. et al. Repeated Valsalva maneuvers promote symptomatic manifestations of cerebral microhemorrhages: implications for the pathogenesis of vascular cognitive impairment in older adults. Geroscience 40, 485–496 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Choi, Y. & Lee, M. K. Neuroimaging findings of brain MRI and CT in patients with COVID-19: a systematic review and meta-analysis. Eur. J. Radiol. 133, 109393 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Haroon, K. H., Patro, S. N., Hussain, S., Zafar, A. & Muhammad, A. Multiple microbleeds: a serious neurological manifestation in a critically ill COVID-19 patient. Case Rep. Neurol. 12, 373–377 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Kirschenbaum, D. et al. Intracerebral endotheliitis and microbleeds are neuropathological features of COVID-19. Neuropathol. Appl. Neurobiol. 47, 454–459 (2020).

    Article  PubMed  CAS  Google Scholar 

  122. Bosch, A. J. et al. Retinal capillary rarefaction in patients with untreated mild-moderate hypertension. BMC Cardiovasc. Disord. 17, 300 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Hoenig, M. R., Bianchi, C., Rosenzweig, A. & Sellke, F. W. The cardiac microvasculature in hypertension, cardiac hypertrophy and diastolic heart failure. Curr. Vasc. Pharmacol. 6, 292–300 (2008).

    Article  CAS  PubMed  Google Scholar 

  124. Kubis, N. et al. Decreased arteriolar density in endothelial nitric oxide synthase knockout mice is due to hypertension, not to the constitutive defect in endothelial nitric oxide synthase enzyme. J. Hypertens. 20, 273–280 (2002).

    Article  CAS  PubMed  Google Scholar 

  125. Williams, S. A. et al. Capillary hypertension and abnormal pressure dynamics in patients with essential hypertension. Clin. Sci. 79, 5–8 (1990).

    Article  CAS  Google Scholar 

  126. Antonios, T. F., Singer, D. R., Markandu, N. D., Mortimer, P. S. & MacGregor, G. A. Structural skin capillary rarefaction in essential hypertension. Hypertension 33, 998–1001 (1999).

    Article  CAS  PubMed  Google Scholar 

  127. Ungvari, Z. et al. Endothelial dysfunction and angiogenesis impairment in the ageing vasculature. Nat. Rev. Cardiol. 15, 555–565 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Kiss, T. et al. Nicotinamide mononucleotide (NMN) treatment attenuates oxidative stress and rescues angiogenic capacity in aged cerebromicrovascular endothelial cells: a potential mechanism for the prevention of vascular cognitive impairment. Geroscience 41, 619–630 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Banki, E. et al. Age-related decline of autocrine pituitary adenylate cyclase-activating polypeptide impairs angiogenic capacity of rat cerebromicrovascular endothelial cells. J. Gerontol. A Biol. Sci. Med. Sci. 70, 665–674 (2015).

    Article  CAS  PubMed  Google Scholar 

  130. Reglodi, D. et al. PACAP deficiency as a model of aging. Geroscience 40, 437–452 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Ungvari, Z. et al. Aging-induced dysregulation of dicer1-dependent microRNA expression impairs angiogenic capacity of rat cerebromicrovascular endothelial cells. J. Gerontol. A Biol. Sci. Med. Sci. 68, 877–891 (2013).

    Article  CAS  PubMed  Google Scholar 

  132. Ungvari, Z. et al. Ionizing radiation promotes the acquisition of a senescence-associated secretory phenotype and impairs angiogenic capacity in cerebromicrovascular endothelial cells: role of increased DNA damage and decreased DNA repair capacity in microvascular radiosensitivity. J. Gerontol. A Biol. Sci. Med. Sci. 68, 1443–1457 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Toth, P. et al. Purinergic glio-endothelial coupling during neuronal activity: role of P2Y1 receptors and eNOS in functional hyperemia in the mouse somatosensory cortex. Am. J. Physiol. Heart Circ. Physiol. 309, H1837–H1845 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Tarantini, S. et al. Pharmacologically-induced neurovascular uncoupling is associated with cognitive impairment in mice. J. Cereb. Blood Flow. Metab. 35, 1871–1881 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Tarantini, S. et al. Treatment with the poly(ADP-ribose) polymerase inhibitor PJ-34 improves cerebromicrovascular endothelial function, neurovascular coupling responses and cognitive performance in aged mice, supporting the NAD+ depletion hypothesis of neurovascular aging. Geroscience 41, 533–542 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Tong, X. K., Lecrux, C., Rosa-Neto, P. & Hamel, E. Age-dependent rescue by simvastatin of Alzheimer’s disease cerebrovascular and memory deficits. J. Neurosci. 32, 4705–4715 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Nicolakakis, N. et al. Complete rescue of cerebrovascular function in aged Alzheimer’s disease transgenic mice by antioxidants and pioglitazone, a peroxisome proliferator-activated receptor gamma agonist. J. Neurosci. 28, 9287–9296 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Faraco, G. et al. Hypertension enhances Aβ-induced neurovascular dysfunction, promotes β-secretase activity, and leads to amyloidogenic processing of APP. J. Cereb. Blood Flow. Metab. 36, 241–252 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Girouard, H., Park, L., Anrather, J., Zhou, P. & Iadecola, C. Angiotensin II attenuates endothelium-dependent responses in the cerebral microcirculation through nox-2-derived radicals. Arterioscler. Thromb. Vasc. Biol. 26, 826–832 (2006).

    Article  CAS  PubMed  Google Scholar 

  140. Kazama, K. et al. Angiotensin II impairs neurovascular coupling in neocortex through NADPH oxidase-derived radicals. Circ. Res. 95, 1019–1026 (2004).

    Article  CAS  PubMed  Google Scholar 

  141. Kazama, K., Wang, G., Frys, K., Anrather, J. & Iadecola, C. Angiotensin II attenuates functional hyperemia in the mouse somatosensory cortex. Am. J. Physiol. Heart Circ. Physiol. 285, H1890–H1899 (2003).

    Article  CAS  PubMed  Google Scholar 

  142. Wong, R. et al. Assessment of cerebral blood flow in adult patients with aortic coarctation. Cardiol. Young 27, 1606–1613 (2017).

    Article  PubMed  Google Scholar 

  143. Muhire, G. et al. Arterial stiffness due to carotid calcification disrupts cerebral blood flow regulation and leads to cognitive deficits. J. Am. Heart Assoc. 8, e011630 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Faraco, G. et al. Perivascular macrophages mediate the neurovascular and cognitive dysfunction associated with hypertension. J. Clin. Invest. 126, 4674–4689 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Huang, A., Sun, D. & Koller, A. Endothelial dysfunction augments myogenic arteriolar constriction in hypertension. Hypertension 22, 913–921 (1993).

    Article  CAS  PubMed  Google Scholar 

  146. Ungvari, Z. et al. High pressure induces superoxide production in isolated arteries via protein kinase C-dependent activation of NAD(P)H oxidase. Circulation 108, 1253–1258 (2003).

    Article  CAS  PubMed  Google Scholar 

  147. Ungvari, Z., Csiszar, A., Kaminski, P. M., Wolin, M. S. & Koller, A. Chronic high pressure-induced arterial oxidative stress: Involvement of protein kinase C-dependent NAD(P)H oxidase and local renin-angiotensin system. Am. J. Pathol. 165, 219–226 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Koh, K. K. et al. Comparison of effects of losartan, irbesartan, and candesartan on flow-mediated brachial artery dilation and on inflammatory and thrombolytic markers in patients with systemic hypertension. Am. J. Cardiol. 93, 1432–1435, A1410 (2004).

    Article  CAS  PubMed  Google Scholar 

  149. Calcinaghi, N. et al. Multimodal imaging in rats reveals impaired neurovascular coupling in sustained hypertension. Stroke 44, 1957–1964 (2013).

    Article  PubMed  Google Scholar 

  150. Wiedenhoeft, T. et al. Fusogenic liposomes effectively deliver resveratrol to the cerebral microcirculation and improve endothelium-dependent neurovascular coupling responses in aged mice. Geroscience 41, 711–725 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Toth, P. et al. Resveratrol treatment rescues neurovascular coupling in aged mice: role of improved cerebromicrovascular endothelial function and downregulation of NADPH oxidase. Am. J. Physiol. Heart Circ. Physiol. 306, H299–H308 (2014).

    Article  CAS  PubMed  Google Scholar 

  152. Liang, E. S. et al. PARP-1 (Poly[ADP-Ribose] Polymerase 1) inhibition protects from Ang II (Angiotensin II)-induced abdominal aortic aneurysm in mice. Hypertension 72, 1189–1199 (2018).

    Article  CAS  PubMed  Google Scholar 

  153. Tarantini, S. et al. Treatment with the mitochondrial-targeted antioxidant peptide SS-31 rescues neurovascular coupling responses and cerebrovascular endothelial function and improves cognition in aged mice. Aging Cell 17, e12731 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  154. Dikalov, S. I. et al. Nox2-induced production of mitochondrial superoxide in angiotensin II-mediated endothelial oxidative stress and hypertension. Antioxid. Redox Signal. 20, 281–294 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Iadecola, C. & Gottesman, R. F. Cerebrovascular alterations in alzheimer disease. Circ. Res. 123, 406–408 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Kim, H. J. et al. Assessment of extent and role of tau in subcortical vascular cognitive impairment using 18F-AV1451 positron emission tomography imaging. JAMA Neurol. 75, 999–1007 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Zlokovic, B. V. Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat. Rev. Neurosci. 12, 723–738 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Niwa, K. et al. Cerebrovascular autoregulation is profoundly impaired in mice overexpressing amyloid precursor protein. Am. J. Physiol. Heart Circ. Physiol. 283, H315–H323 (2002).

    Article  CAS  PubMed  Google Scholar 

  159. Nyul-Toth, A. et al. Increases in hypertension-induced cerebral microhemorrhages exacerbate gait dysfunction in a mouse model of Alzheimer’s disease. Geroscience 42, 1685–1698 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Rasmussen, M. K., Mestre, H. & Nedergaard, M. The glymphatic pathway in neurological disorders. Lancet Neurol. 17, 1016–1024 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Mortensen, K. N. et al. Impaired glymphatic transport in spontaneously hypertensive rats. J. Neurosci. 39, 6365–6377 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Rouch, L. et al. Antihypertensive drugs, prevention of cognitive decline and dementia: a systematic review of observational studies, randomized controlled trials and meta-analyses, with discussion of potential mechanisms. CNS Drugs 29, 113–130 (2015).

    Article  CAS  PubMed  Google Scholar 

  163. Peters, R. et al. Incident dementia and blood pressure lowering in the Hypertension in the Very Elderly Trial cognitive function assessment (HYVET-COG): a double-blind, placebo controlled trial. Lancet Neurol. 7, 683–689 (2008).

    Article  CAS  PubMed  Google Scholar 

  164. Menezes, S. T. et al. Hypertension, prehypertension, and hypertension control: association with decline in cognitive performance in the ELSA-Brasil cohort. Hypertension 77, 672–681 (2020).

    Article  PubMed  Google Scholar 

  165. Tzourio, C. et al. Effects of blood pressure lowering with perindopril and indapamide therapy on dementia and cognitive decline in patients with cerebrovascular disease. Arch. Intern. Med. 163, 1069–1075 (2003).

    Article  CAS  PubMed  Google Scholar 

  166. Barthold, D., Joyce, G., Wharton, W., Kehoe, P. & Zissimopoulos, J. The association of multiple anti-hypertensive medication classes with Alzheimer’s disease incidence across sex, race, and ethnicity. PLoS One 13, e0206705 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Hughes, D. et al. Association of blood pressure lowering with incident dementia or cognitive impairment: a systematic review and meta-analysis. JAMA 323, 1934–1944 (2020).

    Article  PubMed  Google Scholar 

  168. Maxwell, C. J., Hogan, D. B. & Ebly, E. M. Calcium-channel blockers and cognitive function in elderly people: results from the Canadian study of health and aging. CMAJ 161, 501–506 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Tu, K. et al. Antihypertensive drug prescribing and persistence among new elderly users: implications for persistence improvement interventions. Can. J. Cardiol. 30, 647–652 (2014).

    Article  PubMed  Google Scholar 

  170. Quitterer, U. & AbdAlla, S. Improvements of symptoms of Alzheimer’s disease by inhibition of the angiotensin system. Pharmacol. Res. 154, 104230 (2020).

    Article  CAS  PubMed  Google Scholar 

  171. Hachinski, V. et al. Preventing dementia by preventing stroke: The Berlin Manifesto. Alzheimers Dement. 15, 961–984 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Friberg, L. & Rosenqvist, M. Less dementia with oral anticoagulation in atrial fibrillation. Eur. Heart J. 39, 453–460 (2018).

    Article  CAS  PubMed  Google Scholar 

  173. SPRINT MIND Investigators for the SPRINT Research Group. et al. Effect of intensive vs standard blood pressure control on probable dementia: a randomized clinical trial. JAMA 321, 553–561 (2019).

    Article  Google Scholar 

  174. Lv, Y. B. et al. A U-shaped association between blood pressure and cognitive impairment in chinese elderly. J. Am. Med. Dir. Assoc. 18, 193.e7–193.e13 (2017).

    Article  Google Scholar 

  175. Waldstein, S. R., Giggey, P. P., Thayer, J. F. & Zonderman, A. B. Nonlinear relations of blood pressure to cognitive function: the baltimore longitudinal study of aging. Hypertension 45, 374–379 (2005).

    Article  CAS  PubMed  Google Scholar 

  176. Nilsson, S. E. et al. Low systolic blood pressure is associated with impaired cognitive function in the oldest old: longitudinal observations in a population-based sample 80 years and older. Aging Clin. Exp. Res. 19, 41–47 (2007).

    Article  PubMed  Google Scholar 

  177. Noriega de la Colina, A. et al. Diurnal blood pressure loads are associated with lower cognitive performances in controlled-hypertensive elderly individuals. J. Hypertens. 37, 2168–2179 (2019).

    Article  CAS  PubMed  Google Scholar 

  178. Xie, Z., Gao, M., Togashi, H., Saito, H. & Koyama, T. Improvement in the capillarity of the left ventricular wall of stroke-prone spontaneously hypertensive rats following angiotensin II receptor blockade. Clin. Exp. Hypertens. 21, 441–452 (1999).

    Article  CAS  PubMed  Google Scholar 

  179. Whitson, J. A. et al. SS-31 and NMN: Two paths to improve metabolism and function in aged hearts. Aging Cell 19, e13213 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Lee, G. H. et al. Anthocyanins attenuate endothelial dysfunction through regulation of uncoupling of nitric oxide synthase in aged rats. Aging Cell 19, e13279 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Walaszczyk, A. et al. Pharmacological clearance of senescent cells improves survival and recovery in aged mice following acute myocardial infarction. Aging Cell 18, e12945 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Lewis-McDougall, F. C. et al. Aged-senescent cells contribute to impaired heart regeneration. Aging Cell 18, e12931 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Yang, D. et al. Histone methyltransferase Smyd3 is a new regulator for vascular senescence. Aging Cell 19, e13212 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Ogrodnik, M., Salmonowicz, H. & Gladyshev, V. N. Integrating cellular senescence with the concept of damage accumulation in aging: relevance for clearance of senescent cells. Aging Cell 18, e12841 (2019).

    Article  PubMed  CAS  Google Scholar 

  185. Marin-Aguilar, F. et al. NLRP3 inflammasome suppression improves longevity and prevents cardiac aging in male mice. Aging Cell 19, e13050 (2020).

    Article  CAS  PubMed  Google Scholar 

  186. Tarantini, S. et al. Nicotinamide mononucleotide (NMN) supplementation rescues cerebromicrovascular endothelial function and neurovascular coupling responses and improves cognitive function in aged mice. Redox Biol. 24, 101192 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Sardu, C. et al. Effects of metformin therapy on coronary endothelial dysfunction in patients with prediabetes with stable angina and nonobstructive coronary artery stenosis: the CODYCE multicenter prospective study. Diabetes Care 42, 1946–1955 (2019).

    Article  CAS  PubMed  Google Scholar 

  188. Van Skike, C. E. et al. mTOR drives cerebrovascular, synaptic, and cognitive dysfunction in normative aging. Aging Cell 19, e13057 (2020).

    PubMed  Google Scholar 

  189. Toth, P. et al. IGF-1 deficiency impairs neurovascular coupling in mice: implications for cerebromicrovascular aging. Aging Cell (2015).

  190. PROGRESS Collaborative Group. Randomised trial of a perindopril-based blood-pressure-lowering regimen among 6,105 individuals with previous stroke or transient ischaemic attack. Lancet 358, 1033–1041 (2001).

    Article  Google Scholar 

  191. Cortes-Canteli, M. & Iadecola, C. Alzheimer’s disease and vascular aging: JACC focus seminar. J. Am. Coll. Cardiol. 75, 942–951 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors’ work was supported by grants from the American Heart Association, the Oklahoma Center for the Advancement of Science and Technology, the Presbyterian Health Foundation and the Department of Veterans Affairs (award Number CX000340).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to all aspects of the article.

Corresponding author

Correspondence to Anna Csiszar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Nephrology thanks Prasad Katakam, Anja Meissner and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Lacunar infarcts

Small infarcts (2–20 mm in diameter) in the deep cerebral white matter, basal ganglia, or pons that are presumed to result from the occlusion of a single small perforating artery supplying the subcortical areas of the brain.

White matter lesions

Areas of abnormal myelination in the brain that are best visualized as hyperintensities on T2-weighted and fluid-attenuated inversion recovery (FLAIR) MRI sequences.

Abstract reasoning

A cognitive domain that is closely related to fluid intelligence. The ability to quickly reason with information to solve new, unfamiliar problems, independent of any prior knowledge.

Executive function

A set of mental skills that include working memory, flexible thinking and self-control.

Digit Symbol Substitution Test

A paper-and-pencil cognitive test that requires matching of symbols to numbers.

Mini-Mental State Examination

(MMSE). A test of cognitive function that is widely used for elderly people. The MMSE includes tests of orientation, attention, memory, language and visuo-spatial skills.

Lipohyalinosis

Cerebral small vessel disease affecting the small arteries and arterioles in the brain. Lipohyalinosis is characterized by vessel wall thickening and a resultant reduction in luminal diameter.

Lacunes

Small subcortical infarcts (<15 mm in diameter) in the territory of the deep penetrating arteries. These lesions may present with specific lacunar syndromes or they may be asymptomatic.

Gliosis

An inflammatory process leading to scars in the central nervous system that involves the production of a dense fibrous network of neuroglia in areas of damage.

Astrocytic endfeet

Processes that physically connect the astrocyte cell body to the outside of capillary walls.

Pathogen-associated molecular patterns

Small molecular motifs that are recognized by Toll-like receptors. PAMPS activate innate immune responses that protect the host from infection.

Transverse aortic coarctation

Narrowing of the transverse aortic arch.

Neuropil

A dense network of interwoven nerve fibres and their branches and synapses together with glial filaments.

Senolytics

A class of small molecules that selectively induce death of senescent cells. Senolytics are being developed with the aim of delaying, preventing, alleviating or reversing age-related diseases and improving human health.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ungvari, Z., Toth, P., Tarantini, S. et al. Hypertension-induced cognitive impairment: from pathophysiology to public health. Nat Rev Nephrol 17, 639–654 (2021). https://doi.org/10.1038/s41581-021-00430-6

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41581-021-00430-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing